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CONFORMAL BOOTSTRAP IN LIOUVILLE THEORY

COLIN GUILLARMOU, ANTTI KUPIAINEN, RÉMI RHODES, AND VINCENT VARGAS

Abstract. The conformal bootstrap hypothesis is a powerful idea in theoretical physics which has led to

spectacular predictions in the context of critical phenomena. It postulates an explicit expression for the

correlation functions of a conformal field theory in terms of its 3-point correlation functions. In this paper we
give the first mathematical proof of the conformal bootstrap hypothesis in the context of Liouville theory,

a 2-dimensional conformal field theory studied since the eighties in theoretical physics and constructed

recently by F. David and the three last authors using probability theory. The proof is based on a probabilistic
construction of the Virasoro algebra highest weight modules through spectral analysis of an associated self

adjoint operator akin to harmonic analysis on non compact Lie groups but in an infinite dimensional setup.

“We developed a general approach to CFTs, something like
complex analysis in the quantum domain. It worked very well
in the various problems of statistical mechanics but the
Liouville theory remained unsolved.”

— Alexander Polyakov, From Strings to Quarks (2008)
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1. Introduction

1.1. Overview. There are essentially two approaches to Quantum Field Theory (QFT) in the physics

literature. In the first approach the quantum fields are (generalized) functions Ô(t, x) on the space-time
Rd+1 (d = 3 for the Standard Model of physics) taking values in operators acting in a Hilbert space H of

physical states. Matrix elements of products of quantum fields at different points ⟨ψ∣∏
N
k=1 Ôk(tk, xk)∣ψ⟩

where ψ ∈ H (the “vacuum” state) are (generalized) functions on RN(d+1). Physical principles (positivity
of energy) imply that these matrix elements should have an analytic continuation to the Euclidean domain
where tk ∈ iR and be given there as correlation functions of random fields O(y) defined on y ∈ Rn where
n = d + 1. In the second approach, based on the so-called path integral approach due to Feynman, these
correlation functions are formally given as integrals over a space of generalized functions on Rn, called fields,
with the formal integration measure given explicitly as a Gibbs measure with potential a functional of the
fields. The Euclidean formulation serves also as a setup for the theory of second order phase transitions in
statistical mechanics systems where now n 6 3. In this case one expects the correlation functions to possess
an additional symmetry under the conformal transformations of Rn and the QFT is now a Conformal Field
Theory (CFT).

In practice most of the information on QFT obtained by physicists has been perturbative, namely given
in terms of a formal power series expansion in parameters perturbing a Gaussian measure (and pictorially
described by Feynman diagrams). In CFT however there is another, nonperturbative, approach going under
the name of Conformal bootstrap. In this approach one postulates a set of special primary fields Oα(y) (or
operators Oα(t, x) in the Hilbert space formulation) whose correlation functions transform as conformal
tensors under the action of the conformal group. Furthermore one postulates a rule called the operator
product expansion allowing to expand the product of two primary fields inside a correlation function (or a
product of two quantum fields in the Hilbert space formulation) as a sum running over a subset of primary
fields called the spectrum with explicit coefficients depending on the three point correlation functions, the
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so called structure constants of the CFT (see Section 1.3). Hence the correlation functions of a CFTs are
determined in the bootstrap approach if one knows its spectrum and the structure constants.

In the case of two dimensional conformal field theories (d = 1 or n = 2 above) the conformal symmetry
constrains the possible CFTs particularly strongly and Belavin, Polyakov and Zamolodchikov [BPZ84] (BPZ
from now on) showed the power of the bootstrap hypothesis by producing explicit expressions for the
correlation functions of a large family of CFTs of interest to statistical physics among which the CFT that
is believed to coincide with the scaling limit of critical Ising model. In a nutshell, BPZ argued that one
could parametrize CFTs by a unique parameter c called the central charge and they found the correlation
functions for certain rational values of c where the number of primary fields is finite (the minimal models).
During the last decade the bootstrap approach has also led to spectacular predictions of critical exponents
in the three dimensional case [PoRyVi]. The reader may consult [Ga] for some background on 2d CFTs.

Giving a rigorous mathematical meaning to these two approaches and relating them has been a huge
challenge for mathematicians. On the axiomatic level the transition from the operator theory on Hilbert
space to the Euclidean probabilistic theory was understood early on and for the converse the crucial concept
of reflection positivity was isolated [OsSh73, OsSh75]. Reflection positivity is a property of the probability
law underlying the random fields that allows for a construction of a canonical Hilbert space where operators
representing the symmetries of the theory act. Reflection positivity is one of the crucial inputs in the present
paper.

However on a more concrete level of explicit examples of QFTs mathematical progress has been slower.
The (Euclidean) path integral approach was addressed by constructive field theory in dimensions d + 1 6 4
using probabilistic methods but detailed information has been restricted to the cases that are small per-
turbations of a Gaussian measure. In particular the 2d CFTs have been beyond this approach so far. A
different probabilistic approach to conformal invariance has been developed during the past twenty years
following the introduction by Schramm [Sch00] of random curves called Schramm-Loewner evolution (SLE).
This approach, centred around the geometric description of critical models of statistical physics, has led
to exact statements on the interfaces of percolation or the critical Ising model; following the introduction
of SLE and the work of Smirnov, probabilists also managed to justify and construct the CFT correlation
functions of the scaling limit of the 2d Ising model [ChSm12, CHI15] (see also the review [Pel19] for the
construction of CFT correlations via SLE observables).

Making a mathematical theory of the BPZ approach triggered in the 80’s and 90’s intense research in the
field of Vertex Operator Algebras (VOA for short) introduced by Borcherds [Bo86] and Frenkel-Lepowsky-
Meurman [FLM89] (see also the book [Hu97] and the article [HuKo07] for more recent developments on this
formalism). Even if the theory of VOA was quite successful to rigorously formalize numerous CFTs, the
approach suffers certain limitations at the moment. First, correlations are defined as formal power series
(convergence issues are not tackled in the first place and are often difficult); second, many fundamental CFTs
have still not been formalized within this approach, among which the CFTs with uncountable collections
of primary fields and in particular Liouville conformal field theory (LCFT in short) studied in this paper.
Moreover, the theory of VOA, which is based on axiomatically implementing the operator product expansion
point of view of physics, does not elucidate the link to the the path integral approach or to the models of
statistical physics at critical temperature (if any).

In their seminal work, BPZ were in fact motivated by the quest to compute the correlation functions
in LCFT, which had been introduced a few years before by Polyakov under the form of a path integral
in his approach to bosonic string theory [Po81]. Although BPZ failed to carry out the bootstrap program
for LCFT1, this was successfully implemented later in the physics literature by Dorn, Otto, Zamolodchikov
and Zamolodchikov [DoOt94, ZaZa96]. Since then, LCFT has appeared in the physics literature in a wide
range of fields including random planar maps (discrete quantum gravity, see the review [Ko11]) and the
supersymmetric Yang-Mills theory (via the AGT correspondence [AGT10]). Recently, there has been a
large effort in probability theory to make sense of Polyakov’s path integral formulation of LCFT within
the framework of random conformal geometry and the scaling limit of random planar maps: see [LeG13,
Mier13, MS20a, MS20b, MS20c, DiDuDuFa, DuFaGwPfS, MiGw] for the construction of a random metric

1See Polyakov’s citation [Po08] at the beginning of this paper.
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space describing (at least at the conjectural level) the limit of random planar maps and [DMS14, NS]
for exact results on their link with LCFT2. In particular, the three last authors of the present paper in
collaboration with F. David [DKRV16] have constructed the path integral formulation of LCFT on the
Riemann sphere using probability theory. This was extended to higher genus surfaces in [DRV16, GRV19].
In this paper, we will be concerned with LCFT on the Riemann sphere.

LCFT depends on two parameters γ ∈ (0,2) and µ > 03. In this paper we prove that for all γ ∈ (0,2) and
µ > 0 the probabilistic construction of LCFT satisfies the hypothesis of the bootstrap approach envisioned in
[BPZ84]. In particular we determine the spectrum of LCFT and prove the bootstrap formula for the 4-point
function in terms of the structure constants that were identified by the last three authors in [KRV20]. LCFT
for γ ∈ (0,2) is a highly nontrivial CFT with an uncountable family of primary fields and a nontrivial OPE
and we believe the proof of conformal bootstrap in this case provides the first nontrivial test case where
a mathematical justification for this beautiful idea from physics has been achieved. Let us emphasize that
determining the spectrum and the structure constants of LCFT is the cornerstone of the deep link between
LCFT and representation theory via exact formulae for correlation functions. Indeed they lead to exact
formulae for n point correlation functions on the sphere and pave the way towards understanding bootstrap
formulae for higher genus surfaces [GKRV].

In a nutshell, our proof uses reflection positivity to construct a representation of the semigroup of dilations
in C on an explicit Hilbert space associated to LCFT. Its generator, called the Hamiltonian of LCFT, is
a self-adjoint unbounded operator. It has the form of a Schrödinger operator acting in the L2-space of
an infinite dimensional Gaussian measure with a non trivial potential which is a positive function for
γ ∈ (0,

√
2) and a measure for γ ∈ [

√
2,2). We perform the spectral analysis of this operator to determine

the spectrum of LCFT 4 and show that the bootstrap formula for the 4 point correlations functions can be
seen as a Plancherel formula with respect to its spectral decomposition. We obtain exact expressions for the
generalized eigenfunctions of the Hamiltonian by deriving conformal Ward identities for LCFT correlation
functions which reflect the underlying symmetry algebra of LCFT (i.e. the Virasoro algebra).

1.2. Probabilistic approach of Liouville CFT. Let us start with the physicists formulation of LCFT.
It is a theory of a random (generalized) function φ ∶ C → R called the Liouville field. One is interested in
averages of functionals F of φ formally given by the path integral

(1.1) ⟨F ⟩γ,µ ∶= ∫ F (φ)e−SL(φ)Dφ,

where SL is the Liouville action functional

SL(φ) ∶=
1

π
∫
C
(∣∂zφ(z)∣

2
+ πµeγφ(z))dz

and where dz denotes the Lebesgue measure on C. It depends on two parameters γ ∈ (0,2) and µ > 0 (called
cosmological constant). The notation Dφ refers to a formal “Lebesgue measure” on the space of functions
φ ∶ C→ R obeying the asymptotic

φ(z) ∼
∣z∣→∞

−2Q ln ∣z∣

with Q = 2
γ
+
γ
2
. This asymptotic is formally required by conformal invariance whereby the field φ should

be thought to be defined on the Riemann sphere Ĉ = C ∪ {∞}. The physically interesting expectations in
LCFT are the n-point correlation functions

(1.2) ⟨
n

∏
i=1

Vαi(zi)⟩γ,µ

2It is beyond the scope of this introduction to state and comment all the exciting results that have been obtained recently

in this flourishing field of probability theory.
3The case µ = 0 is different and corresponds to Gaussian Free Field theory; for the study of a related model, see Kang-

Makarov [KM13].
4The importance of understanding the spectral analysis of the Hamiltonian of LCFT was stressed by Teschner in [Te01]

which was an inspiration for us.
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of the exponentials of the Liouville field Vα(z) = e
αφ(z) called “vertex operators” in physics. In (1.2) the

points zi ∈ C are distinct and αi ∈ C.
The recent work [DKRV16] gave a rigorous mathematical meaning to the correlation functions (1.2) via

probability theory as we now describe. As usual the quadratic part of the action functional can be interpreted
in terms of a Gaussian Free Field (GFF). We consider the GFF X on C with the following covariance kernel

(1.3) E[X(z)X(z′)] = ln
1

∣z − z′∣
+ ln ∣z∣+ + ln ∣z′∣+ ∶= G(z, z′)

with ∣x∣+ = max(∣x∣,1). This GFF can be defined as a random generalized function on a suitable probability
space (Ω,Σ,P) (with expectation E[.]): see Section 3.1. As is readily checked with the covariance (1.3)

X(z)
law
= X(1/z) so that the GFF is naturally defined on the Riemann sphere Ĉ = C∪ {∞}. Furthermore it

defines P almost surely an element in the space of distributions D′(Ĉ).
The second ingredient needed for making sense of the path integral is the following Gaussian multiplicative

chaos measure (GMC, originally introduced by Kahane [Ka85])

(1.4) Mγ(dz) ∶= lim
ε→0

eγXε(z)−
γ2

2 E[Xε(z)
2] dz

∣z∣4+

where Xε = X ∗ θε is the mollification of X with an approximation (θε)ε>0 of the Dirac mass δ0; indeed,

one can show that the limit (1.4) exists in probability in the space of Radon measures on Ĉ and that the
limit does not depend on the mollifier θε: see [RoVa10, RhVa14, Be17] for example. The condition γ ∈ (0,2)
stems from the fact that the random measure Mγ is different from zero if and only if γ ∈ (0,2). With these
definitions the rigorous definition of the Liouville field φ is

φ(z) = c +X(z) − 2Q ln ∣z∣+(1.5)

and the expectation (1.1) for F continuous and non negative on D′(Ĉ) is defined as 5

(1.6) ⟨F (φ)⟩γ,µ = ∫
R
e−2QcE[F (c +X − 2Q ln ∣.∣+)e

−µeγcMγ(C)
]dc.

The variable c ∈ R stems from the fact that in the path integral (1.1) one wants to include also the constant
functions on C which are not captured by the GFF. Indeed, it is needed to ensure conformal invariance of
LCFT [DKRV16]. We remark also that the expectation ⟨⋅⟩γ,µ is not a probability measure as ⟨1⟩γ,µ = ∞

[DKRV16].
Following [DKRV16], the n-point correlations (1.2) can be defined for real valued αi via the following

limit

(1.7) ⟨
n

∏
i=1

Vαi(zi)⟩γ,µ ∶= lim
ε→0

⟨
n

∏
i=1

Vαi,ε(zi)⟩γ,µ

where z1, . . . , zn ∈ C are distinct,

(1.8) Vα,ε(z) = ∣z∣−4∆α
+ eαceαXε(z)−

α2

2 E[Xε(z)
2]

and ∆α is called the conformal weight of Vα

∆α =
α

2
(Q −

α

2
), α ∈ C.(1.9)

The limit (1.7) exists and is non trivial if and only if the following bounds hold

(1.10)
n

∑
i=1

αi > 2Q, αi < Q, ∀i = 1, . . . , n (Seiberg bounds).

One of the main results of [DKRV16] is that the limit (1.7) admits the following representation in terms of
the moments of GMC

(1.11) ⟨
n

∏
i=1

Vαi(zi)⟩γ,µ = γ
−1 ⎛

⎝
∏

1 6 j<j′ 6 n

1

∣zj − zj′ ∣
αjαj′

⎞

⎠
µ−sΓ(s)E[Z−s

]

5In the recent paper [KRV20], the authors used a convention where the RHS is multiplied by 2.
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where s = ∑
n
i=1 αi−2Q

γ
, Γ is the standard Gamma function and (recall that ∣x∣+ = max(∣x∣,1))

Z = ∫
C
(
n

∏
i=1

∣x∣γαi+
∣x − zi∣γαi

)Mγ(dx).

We stress that the formula (1.11) is valid for correlations with n > 3, which can be seen at the level
of the Seiberg bounds (1.10)6. Also it was proved in [DKRV16, Th 3.5] that these correlation functions
are conformally covariant. More precisely, if z1,⋯, zn are n distinct points in C then for a Möbius map
ψ(z) = az+b

cz+d (with a, b, c, d ∈ C and ad − bc = 1)

(1.12) ⟨
n

∏
i=1

Vαi(ψ(zi))⟩γ,µ =
n

∏
i=1

∣ψ′(zi)∣
−2∆αi ⟨

n

∏
k=1

Vαi(zi)⟩γ,µ.

Because of relation (1.12), the vertex operators are primary fields in the language of CFT. The Möbius
covariance implies in particular that the three point functions are determined up to a constant, called the
structure constant, which we write as

⟨Vα1(0)Vα2(1)Vα3(∞)⟩γ,µ ∶= lim
∣u∣→∞

∣u∣4∆α3 ⟨Vα1(0)Vα2(1)Vα3(u)⟩γ,µ.(1.13)

Similarly the four point function can be reduced to a function of one complex variable defined by

⟨Vα1(0)Vα2(z)Vα3(1)Vα4(∞)⟩γ,µ ∶= lim
∣u∣→∞

∣u∣4∆α4 ⟨Vα1(0)Vα2(z)Vα3(1)Vα4(u)⟩γ,µ.(1.14)

Let us now turn to the conformal bootstrap approach to LCFT.

1.3. DOZZ formula and Conformal Bootstrap. In theoretical physics conformal field theory is a quan-
tum field theory with conformal group symmetry. In particular one then postulates existence of primary
fields whose correlation functions transform covariantly under conformal maps (Möbius transformations in
the two dimensional case). The basic physical axiom of conformal field theory apart from this covariance is
the operator product expansion (OPE for short). Denoting the primary fields still as Vα(x) for x ∈ Rn then,
in very loose terms and cutting many corners, the OPE is the identity

Vα(x)Vα′(x
′
) = ∑

β∈S
Cβαα′(x,x

′,∇x)Vβ(x)(1.15)

where S labels a special set of primary fields called the spectrum of the CFT and the Cβα,α′ are differential
operators completely determined by the conformal weights of the fields Vα, Vα′ , Vβ and linear in the structure
constants Cαα′β (defined in general analogously to (1.13)). The identity (1.15) is assumed to hold once
inserted in the correlation functions. Obviously a repeated application of the OPE allows to express an
n-point function of the CFT as a sum of products of the structure constants. Hence to “solve a CFT” one
needs to find its structure constants and spectrum. To find these, the following approach where the 4-point
function7 (1.14) plays a fundamental role has been extremely fruitful. Applying the OPE (1.15) in (1.14)
to α1 and α2 leads to a quadratic expression in the structure constants. Applying the OPE instead to α2

and α3 yields another quadratic expression and equating the two produces a quadratic equation for the
structure constants. Varying α1, . . . , α4 results in a set of quadratic equations labeled by 4-tuples of αi ∈ S
(for LCFT see (1.17)). These 4-point bootstrap equations pose strong constraints on the spectrum and the
structure constants and have been used to great effect e.g. in the case of the 3-dimensional Ising model
[EPPR12a, EPPR12b]. In two dimensions their study in the case when one of the fields Vαi is a so-called
degenerate field led in [BPZ84] to the discovery of the minimal models (2d Ising model among them) and
their spectra and structure constants.

The motivation for the BPZ paper [BPZ84] was to solve the bootstrap equations for LCFT but in
this they were unsuccessful [Po08]. The spectrum of LCFT was conjectured in [CuTh, BCT82, GeNe84]
to be continuous S = Q + iR+ and an explicit formula (see Appendix B) for the structure constants, the
DOZZ formula, was postulated by Dorn, Otto, Zamolodchikov and Zamolodchikov [DoOt94, ZaZa96]. A

6In fact, one can extend the probabilistic construction (1.11) a bit beyond the Seiberg bounds but the extended bounds
also imply n > 3. We will not discuss these extended bounds in this paper.

7In d > 2 the four point function is a function of two complex variables.
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derivation based on the degenerate 4-point bootstrap equations was subsequently given by Teschner [Te95]
and further evidence for the formula was given in [Te01], [Te04]. The DOZZ expression which we denote
by CDOZZ

γ,µ (α1, α2, α3) is analytic in the variables α1, α2, α3 ∈ C (with a countable number of poles) and one
is led to expect that it coincides with the probabilistic expression (1.13) on the domain of validity of the
probabilistic construction, i.e. for real α1, α2, α3 satisfying the Seiberg bounds (1.10). This is indeed the
case: in a recent work [KRV20], the last three authors proved that the probabilistically constructed 3-point
correlation functions satisfy the DOZZ formula:

⟨Vα1(0)Vα2(z)Vα3(∞)⟩γ,µ =
1

2
CDOZZ
γ,µ (α1, α2, α3)

8.

Given that the spectrum is S = Q + iR+, the formula (1.15) (where the sum becomes an integral) leads
formally to the following bootstrap conjecture for the 4 point correlation functions

⟨Vα1(0)Vα2(z)Vα3(1)Vα4(∞)⟩
Boot
γ,µ

=
1

8π
∫

∞

0
CDOZZ
γ,µ (α1, α2,Q − iP )CDOZZ

γ,µ (Q + iP,α3, α4)∣z∣
2(∆Q+iP−∆α1

−∆α2
)
∣FP (z)∣2dP(1.16)

where FP are holomorphic functions in z called (spherical) conformal blocks. The conformal blocks are
universal in the sense that they only depend on the conformal weights ∆αi and ∆Q+iP and the central
charge cL = 1 + 6Q2 of LCFT, i.e. FP (z) = F(cL,∆α1 ,∆α2 ,∆α3 ,∆α4 ,∆Q+iP , z); see Subsection 8.1 for the
exact definition.

The second hypothesis on the bootstrap approach i.e. the fact that the OPE may be applied in the two
ways explained above goes under the name of crossing symmetry. More specifically, it is the conjecture that
the following identity holds for real z ∈ (0,1)

∫
R+
CDOZZ
γ,µ (α1, α2,Q − iP )CDOZZ

γ,µ (α3, α4,Q + iP )∣z∣2(∆Q+iP−∆α1
−∆α2

)
∣FP (z)∣2dP

= ∫
R+
CDOZZ
γ,µ (α3, α2,Q − iP )CDOZZ

γ,µ (α1, α4,Q + iP )∣1 − z∣2(∆Q+iP−∆α3
−∆α2

)
∣F̃P (1 − z)∣2dP(1.17)

where F̃P is obtained from FP by flipping the parameter α1 with α3. As explained above this identity is a
very strong constraint in LCFT.

1.4. Main result on conformal bootstrap. In this paper, we justify rigorously the bootstrap approach
to LCFT by constructing the spectral representation of LCFT; as an output, we prove the bootstrap and
crossing formulas described in the previous subsection.

To understand our approach to the spectrum of LCFT it is useful to draw the analogy with the harmonic
analysis on a Lie group G and in particular the Plancherel identity on L2(G). For a compact G, L2(G)

is decomposed into a direct sum of irreducible (highest weight) representations of G whereas in the non-
compact case also a continuous family of representations (a direct integral) appears. This decomposition is
related to the spectral decomposition of a self-adjoint operator (the Laplacian) acting on the Hilbert space
L2(G). In 2d CFT, Osterwalder-Schrader’s method of reflection positivity provides a canonical Hilbert space
where the symmetry algebra of 2d CFT, the Virasoro algebra, acts. The role of the Laplacian is played by
a self adjoint operator, a special element in the Virasoro algebra called the Hamiltonian of the CFT. In
the case of “compact CFTs” (examples being the minimal models of BPZ) the spectrum of this operator is
discrete whereas in case of “non-compact CFTs” the spectrum is continuous. Our proof is based on finding
the spectral resolution of this operator using scattering theory and representation theory of the Virasoro
algebra, leading to a Plancherel type identity as a rigorous version of the OPE.

The main result of this paper is the following theorem proving that the conformal bootstrap formula
(1.16) holds for the probabilistic construction of the 4-point function:

Theorem 1.1. Let γ ∈ (0,2) and αi < Q for all i ∈ J1,4K. Then the following identity holds for α1 + α2 > Q
and α3 + α4 > Q

(1.18) ⟨Vα1(0)Vα2(z)Vα3(1)Vα4(∞)⟩γ,µ = ⟨Vα1(0)Vα2(z)Vα3(1)Vα4(∞)⟩
Boot
γ,µ .

8The 1
2

factor here is a general global constant which can be absorbed in the definition of the probablistic construction: see

footnote associated to (1.6).
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The conditions α1 +α2 > Q and α3 +α4 > Q are essential. Indeed, if α1 +α2 < Q the analytic continuation
of (1.16) from αi ∈ S requires adding an extra term (cf. the discussion on the so-called discrete terms in
[ZaZa96]). The second main input to the bootstrap hypothesis, namely the crossing symmetry conjecture
(1.17), follows directly from our work since one has by conformal covariance (1.12) of the probabilistic
construction of the correlations

⟨Vα1(0)Vα2(z)Vα3(1)Vα4(∞)⟩γ,µ = ⟨Vα3(0)Vα2(1 − z)Vα1(1)Vα4(∞)⟩γ,µ

whereby we get the following corollary:

Corollary 1.2. The bootstrap construction of LCFT satisfies crossing symmetry for γ ∈ (0,2).

This result seems to be very hard to prove directly, however let us also mention that Teschner has given
strong arguments in [Te01] in that direction.

Remark 1.3. We have stated the bootstrap conjecture as the statements (1.16) and (1.17) since these are
the crucial relations following from the OPE axiom (1.15) used by physicists to study CFTs. However,
as explained above the OPE axiom (1.15) leads also to a recursive computation of the n-point correlation
functions for all n. Likewise, the approach in this paper can be extended to n > 4 by a n − 3-fold application
of the Plancherel identity. Hence the spectral analysis of the LCFT Hamiltonian is the crucial result of this
paper. In order to keep the length of this paper reasonable, we will discuss these generalisations elsewhere,
in particular for the case of LCFT on the complex torus where the n-point formuli are mathematically quite
appealing [GKRV].

1.5. Conformal blocks and relations with the AGT conjecture. Let us mention that it is not at all
obvious that the bootstrap definition of the four point correlation function, i.e. the right hand side of (1.18),
exists for real αi satisfying the condition αi < Q for all i ∈ J1,4K along with α1 + α2 > Q and α3 + α4 > Q.
Indeed, first the conformal blocks are defined via a series expansion

(1.19) FP (z) =
∞
∑
n=0

βnz
n

where the coefficients βn, which have a strong representation theoretic content, are non explicit : see (8.2)
for the exact definition of βn. Hence, it is not obvious that the series (1.19) converges for ∣z∣ < 1. Second, it
is not clear that the integral in P ∈ R+ of expression (1.16) is convergent. As a matter of fact, in the course
of the proof of Theorem 1.1, we establish both that the radius of convergence9 of (1.19) is 1 for almost all P
and that the integral (1.16) makes sense. To the best of our knowledge, the proof of the convergence of the
conformal blocks is new and we expect that the result holds for all P , although we do not need such a strong
statement for our purpose. Let us mention here the recent work [GRSS20] which establishes a probabilistic
formula involving moments of a GMC type variable for the conformal blocks of LCFT on the complex torus
thereby proving the existence of the torus blocks for all values of the relevant parameters. Convergence of
conformal blocks defining series is also topical in physics, see [PRER12, HoRy13, KQR20].

The AGT correspondence [AGT10] between 4d supersymmetric Yang-Mills theory and the bootstrap
construction of LCFT conjectures that FP (z) coincides with special cases of Nekrasov’s partition function
[Ne04]. In particular this leads to an explicit formula for βn in (1.19). However, even admitting this con-
jecture, it remains difficult to show that the radius of convergence in (1.19) is 1: see for instance [FLM18].
The AGT conjecture has been proved as an identity between formal power series in the case of the torus in
[Ne16] following the works [MaOk12, ScVa13] but this does not address the issue of convergence. See also
[FL10, AFLT11] for arguments in the physics literature which support the AGT conjecture on the torus or
the Riemann sphere.

Acknowledgements. C. Guillarmou acknowledges that this project has received funding from the Euro-
pean Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme,
grant agreement No 725967. A. Kupiainen is supported by the Academy of Finland and ERC Advanced
Grant 741487. R. Rhodes is partially supported by the Institut Universitaire de France (IUF). The authors

9We acknowledge here an argument that was given to us by Slava Rychkov in private communication.
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2. Outline of the proof

In this section we give an informal summary of the proof of the bootstrap formula with pointers to precise
definitions and statements.

2.1. Reflection positivity. The LCFT expectation (1.6) is an expectation in a positive measure but it
has another positivity property called reflection positivity (or Osterwalder-Schrader positivity) that allows
us to express the correlation functions of LCFT in terms of a scalar product in the physical Hilbert space of
LCFT. This task is carried out in Section 3 and outlined now. The construction of the Hilbert space is based
on an involution acting on observables F . For this, we consider the reflection at the unit circle θ ∶ Ĉ→ Ĉ

θ(z) = 1/z̄(2.1)

which maps the unit disk D to its complement Dc. We promote it to an operator Θ acting on observables
F ↦ ΘF by

(ΘF )(φ) ∶= F (φ ○ θ − 2Q ln ∣ ⋅ ∣).(2.2)

This allows us to define a sesquilinear form acting on a set FD of observables F that depend only on the
restriction φ∣D of φ to the unit disk (i.e. F (φ) = F (φ∣D)) by

(2.3) (F,G)D ∶= ⟨ΘF (φ)G(φ)⟩γ,µ, F,G ∈ FD.

Note that ΘF is an observable depending on the restriction φ∣Dc of φ to the complementary disc Dc so that
the scalar product of two observables on the disk D is given by the LCFT expectation of their product
when one of them is reflected to Dc. Reflection positivity is the statement that the sesquilinear form (2.3)
is nonnegative:

(F,F )D > 0

see Proposition 3.3. The canonical Hilbert space HD of LCFT is defined as the completion of FD, quotiented
out by the null set N0 = {F ∈ FD ∣ (F,F )D = 0}, with respect to the sesquilinear form (2.3). This space can
be realized in more concrete terms as follows.

2.2. Hilbert space of LCFT. The space HD can be realized as an L2 space on a set of fields on the
equatorial circle T = ∂D using the domain Markov property of the GFF. To do this let ϕ = X ∣T be the
restriction of the GFF to the unit circle. ϕ can be realized (see Section 3.1) as a (real valued) random
Fourier series

(2.4) ϕ(θ) = ∑
n/=0

ϕne
inθ

with ϕn =
1

2
√
n
(xn + iyn) for n > 0 where xn, yn are i.i.d. unit Gaussians. ϕ can be understood as a random

element in a Sobolev space W s(T) with s < 0 (see (3.3)) and as the coordinate function in the probability

space ΩT = (R2)N
∗

equipped with a cylinder set sigma algebra and a Gaussian probability measure P (see
(3.6)). The GFF X (1.3) can now be decomposed (Section 3.1) as an independent sum

(2.5) X
law
= Pϕ +XD +XDc

where Pϕ is the harmonic extension of ϕ to Ĉ and XD,XDc are two independent GFFs on D and Dc with
Dirichlet boundary conditions. In Proposition 3.3 we show that there is a unitary map U ∶HD → L2(R×ΩT)
given by

(UF )(c,ϕ) = e−QcEϕ[F (c +X)e−µe
γcMγ(D)

],(2.6)
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where Eϕ is expectation over XD in the decomposition X ∣D = XD + Pϕ. Hence HD can by identified with
L2(R×ΩT). The operator U then allows us to write the 4 point function in terms of the scalar product ⟨⋅∣⋅⟩2
in L2(R ×ΩT), namely, we have for ∣z∣ < 1

(2.7) ⟨Vα1(0)Vα2(z)Vα3(1)Vα4(∞)⟩γ,µ = ⟨U(Vα1(0)Vα2(z)) ∣U(Vα4(0)Vα3(1))⟩2
.

The bootstrap formula is then obtained by expanding this scalar product along the eigenstates of a self
adjoint operator H on L2(R ×ΩT), the LCFT Hamiltonian to which we now turn.

2.3. Hamiltonian of Liouville theory. For q ∈ C with ∣q∣ 6 1, the dilation map z ∈ C→ sq(z) = qz maps
the unit disc to itself and it gives rise to a map Sq ∶ FD → FD by

SqF (φ) ∶= F (φ ○ sq +Q ln ∣q∣)(2.8)

for F ∈ FD. In Proposition 3.6 we show that these operators satisfy SqSq′ = Sqq′ and q ↦ Sq descends to a
strongly continuous semigroup onHD. Taking q = e−t for t > 0, we get a contraction semigroup on L2(R×ΩT)
via the unitary map U in (2.6), given by the relation

e−tH = USe−tU
−1.(2.9)

The generator of the semi-group is a positive self-adjoint operator H with domain D(H) ⊂ L2(R × ΩT),
called the Hamiltonian of Liouville theory.

To get a more concrete representation for H we use a probabilistic Feynman-Kac representation for e−tH.
It is based on the well known fact that the GFF X(e−t+iθ) for t > 0 can be realized as a continuous Markov
process

t↦X(e−t+i⋅) = (Bt, ϕt(⋅)) ∈W
s
(T)

with s < 0. Here we decomposed W s(T) = R⊕W s
0 (T) where W s

0 (T) has the n ≠ 0 Fourier components. In this
decomposition Bt is a standard Brownian motion and the process ϕt gives rise to an Ornstein-Uhlenbeck
semigroup on W s

0 (T) (i.e.the harmonic components evolve as independent OU processes), whose generator
is a positive self-adjoint operator P. The operator P is essentially an infinite sum of harmonic oscillators
(see (4.4) for the exact definition). This leads to the expression for the Hamiltonian when µ = 0

(2.10) H0
∶= H∣µ=0 = −

1

2
∂2
c +

1

2
Q2

+P

defined on an appropriate domain where the first two terms come from the Brownian motion, see Section 4
for further details.

Using the formula (2.6) we then deduce a Feynman-Kac formula for the LCFT semigroup in Proposition
5.1) which then formally gives H as a ”Schrödinger operator”

(2.11) H = H0
+ µeγcV (ϕ)

where the potential is formally given by

(2.12) V (ϕ) = ∫
2π

0
eγϕ(θ)−

γ2

2 E[ϕ(θ)
2]dθ.

In Section 5.2, we give the rigorous definition of (2.11) which actually is quite subtle and nonstandard.

The operator (2.11) is defined as the Friedrichs extension of an associated quadratic form. For γ ∈ [0,
√

2)
V is a well defined random variable defined as the total mass of a GMC measure on T associated to ϕ.
For γ ∈ [

√
2,2) however, this GMC measure vanishes identically and V can no longer be considered as a

multiplication operator: it has to be understood as a measure on some subspace of L2(ΩT) but it still gives
rise to a positive operator.

We mention here that the operator (2.11) in the absence of the c-variable, i.e. the operator P + µV ,
was first studied in [Ho71] and was shown to be essentially self-adjoint on an appropriate domain provided
γ ∈ (0,1), condition under which V is a random variable in L2(ΩT).
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2.4. Spectral resolution of the Hamiltonian. One of the main mathematical inputs in our proof comes
from stationary scattering theory, see Section 6. It is based on the observation that the potential eγcV
vanishes as c→ −∞ so that H-eigenstates should be reconstructed from their asymptotics at c→ −∞, region
over which they should behave like H0-eigenstates.

The spectral analysis of H0 is simple. The spectrum {0 < λ1 < . . . λk < . . .} of the operator P is given by
the natural numbers λk = k and each eigenvalue has finite multiplicity, see Section 4.1. The corresponding
eigenspace ker(P − λk) is spanned by a family (hjk)j=0,...,J(k) of finite products of Hermite polynomials in

the Fourier components (ϕn)n∈Z∗ in (2.4), providing an orthonormal basis {hjk}k∈N,j 6 J(k) of L2(ΩT). The

spectrum of H0 is then readily seen to be absolutely continuous and given by the half-line [
Q2

2
,+∞) with a

complete set of generalized eigenstates

Ψ0
Q+iP,jk(c,ϕ) = e

iPchjk(ϕ),(2.13)

with P ∈ R, k ∈ N, j 6 J(k) and eigenvalue 1
2
(Q2 + P 2) + λk = 2∆Q+iP + λk where ∆Q+iP is the conformal

weight (1.9).
In physics, the spectrum of H was first elaborated by Curtright and Thorn [CuTh] (see also Teschner

[Te01] for a nice discussion of the scattering picture). To explain the intuition, let us consider a toy model
where only the c-variable enters, namely the operator 1

2
(−∂2

c + Q
2) + µeγc on L2(R). It is a Schrödinger

operator with potential tending to 0 as c→ −∞ and to +∞ as c→ +∞. Thus for c→ −∞ the eigenfunctions
should tend to eigenfunctions of the µ = 0 problem i.e. to a linear combination of e±iPc. Indeed, the operator
has a complete set of generalized eigenfunctions fP , P ∈ R+, with asymptotics

fP (c) ∼ eiPc +R(P )e−iPc as c→ −∞

and fP (c) → 0 as c → +∞. These eigenfunctions describe scattering of waves from a wall (the exponential
potential eγc acts as a wall when c→ +∞) and R(P ) is an explicit coefficient called the reflection coefficient10.

For the operator H we expect the same intuition to hold: an eigenfunction Ψ(c,ϕ) of H should, as c→ −∞,
tend to an eigenfunction of H0 of the same eigenvalue. Indeed we prove (see Theorem 6.25) which uses a
different labelling) that to each H0 eigenvector Ψ0

Q+iP,jk in (2.13) there is a corresponding H eigenvector
ΨQ+iP,jk with the same eigenvalue

HΨQ+iP,jk = (2∆Q+iP + λk)ΨQ+iP,jk,(2.14)

and these form a complete set for P ∈ R+, k ∈ N, j 6 J(k). Applying the spectral decomposition of H to
(2.7) using this basis leads to

⟨Vα1(0)Vα2(z)Vα3(1)Vα4(∞)⟩γ,µ =(2.15)

1

2π
∑
k∈N

J(k)

∑
j=0

∫

∞

0
⟨U(Vα1(0)Vα2(z)) ∣ΨQ+iP,jk⟩2⟨ΨQ+iP,jk ∣U(Vα4(0)Vα3(1))⟩2dP.

Proving this spectral resolution for H is the technical core of the paper and involves a considerable amount
of work (the whole Section 6). The main difficulty comes from the fact that the potential V appearing in
H acts on the L2-space of an infinite dimensional space R ×ΩT and moreover V is not even a function for
γ ∈ [

√
2,2) as discussed in the previous subsection. This weak regularity and unboundedness of the potential

make the problem quite non-standard.

2.5. Analytic continuation. The spectral resolution (2.15) is not yet the bootstrap formula. Indeed, it
holds under quite general assumptions on V . To get the bootstrap formula from (2.15) we need to connect the
scalar products in (2.15) to the DOZZ 3-point functions CDOZZ

γ,µ (α1, α2,Q − iP ) and CDOZZ
γ,µ (α3, α4,Q + iP )

respectively. The probabilistic 3-point function Cγ,µ(α1, α2, α) is defined only for α real and satisfying the
Seiberg bounds α1 < Q, α2 < Q, α < Q, α1+α2+α > 2Q and CDOZZ

γ,µ (α1, α2,Q−iP ) is an analytic continuation
of this probabilistic expression. Our strategy then is to analytically continue the eigenfunction ΨQ+iP,jk to
real values of Q + iP so that we can use the probabilistic construction of the LCFT and in particular its
conformal invariance to derive identities that allow to determine the above scalar products.

10This coefficient is a simplified version of the (quantum) reflection coefficient which appears in the proof of the DOZZ
formula [KRV19, KRV20].
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In Section, 6 we show that the eigenfunctions can be analytically continued to Ψα,jk which are analytic in
α in a connected region which contains both the spectrum line α ∈ Q+ iR+ and a half-line ]−∞,Ak] ⊂ R for
some Ak < Q. This analytic continuation still satisfies the eigenvalue problem (2.14) (with Q + iP replaced
by α) but it has exponential growth in the c variable as c → −∞ and it does not contribute to the spectral
resolution (compare with eigenfunctions eac of the operator −∂2

c which are associated to the L2 spectrum
only for a ∈ iR).

Q

Spectrum line

Q + iR

0

Im α

Re α

Probabilistic region

Analyticity region

Q − λk

Figure 1. Analytic continuation of eigenstates and probabilistic region.

The crucial point we show is that the analytically continued H-eigenfunctions Ψα,jk can be obtained by
intertwining the H0-eigenfunctions for α in some complex neighborhood of the half-line ] −∞,Ak] that we
call the probabilistic region (see Figure 1):

(2.16) Ψα,jk = lim
t→∞

e(2∆α+λk)te−tHΨ0
α,jk (Intertwining)

where Ψ0
α,jk = e

(α−Q)chjk are the analytically continued eigenfunctions of H0 (see Proposition 7.2 which has

a different labelling). Furthermore, combining (2.16) with the Feynman-Kac formula one finds (Section 7.1)
for λk = 0 (then J(0) = 0, h00(ϕ) = 1 and we denote Ψα,0 for Ψα,00) that

Ψα,0 = U(Vα(0))(2.17)

where U is the unitary map (2.6). Hence the “non-spectral” eigenfunctions Ψα,0 for α ∈ R have a probabilistic
interpretation in LCFT whereas the “spectral” eigenfunctions ΨQ+ip,0 do not have one. In the physical
literature the correspondence between local fields and states in the Hilbert space is called the state-operator
correspondence and in LCFT this correspondence is broken. The spectral states ΨQ+iP,0 do not correspond
to local fields and they are called macroscopic states whereas the non-normalizable states Ψα,0 correspond
to the local field Vα and are called microscopic states, see [Se90] for a lucid discussion.

The relation (2.17) leads to

(2.18) ⟨U(
n

∏
i=1

Vαi(zi)) ∣Ψα,0⟩2 = ⟨(
n

∏
i=1

Vαi(zi))Vα(∞)⟩γ,µ

for {αi}, α satisfying the Seiberg bounds (the scalar product in (2.18) still makes sense since the vector on
the left has sufficient decay in the c-variable to counter the exponential increase of Ψα,0). Note in particular
that (2.18) is defined only if n is large enough since the Seiberg bound requires ∑i αi > 2Q − α > 2Q −A0.
To understand the case k > 0 we need to discuss the conformal symmetry of LCFT.

2.6. Conformal Ward Identities. The symmetries of conformal field theory are encoded in an infinite
dimensional Lie algebra, the Virasoro algebra. In the case of GFF this means that the Hilbert space L2(R×
ΩT) carries a representation of two commuting Virasoro algebras with generators {L0

n}n∈Z and {L̃0
n}n∈Z (see

Section 4.4). In particular the GFF Hamiltonian is given by H0 = L0
0 + L̃0

0 and the H0 eigenstates Ψ0
Q+iP,jk

for fixed P can be organized to a highest weight representation of these algebras. In concrete terms the
highest weight state Ψ0

Q+iP,0 satisfies

(2.19) L0
0Ψ0

Q+iP,0 = L̃0
0Ψ0

Q+iP,0 = ∆Q+iPΨ0
Q+iP,0, L0

nΨ0
Q+iP,0 = L̃0

nΨ0
Q+iP,0 = 0, n > 0,
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and given two non-increasing sequences of positive integers ν = (ν1, . . . , νk) and ν̃ = (ν̃1, . . . , ν̃l), k, l ∈ N and

setting L0
−ν = L0

−νk⋯L0
−ν1

and L̃0
−ν̃ = L̃0

−ν̃j⋯ L̃0
−ν̃1

the states

Ψ0
Q+iP,ν,ν̃ ∶= L0

−νL̃
0
−ν̃ ΨQ+iP,0,(2.20)

are eigenstates of H0 of eigenvalue E = 2∆Q+iP +∑i νi +∑j ν̃j and, for fixed E, span that eigenspace. Thus

at each eigenspace there is a nonsingular matrix M(Q+ iP ) relating the vectors Ψ0
Q+iP,ν,ν̃ and Ψ0

Q+iP,jk and

furthermore we show (Proposition 4.9) that this matrix is analytic in the variable α = Q + iP . Setting

Ψα,ν,ν̃ ∶=∑
k,j

M(α)ν,ν̃;jkΨα,jk

the vectors ΨQ+iP,ν,ν̃ are a complete set of generalized eigenvectors of H and they can be used in the
identity (2.15) (with appropriate Gram matrices), see Section 8. Furthermore Ψα,ν,ν̃ provides an analytic
continuation of ΨQ+iP,ν,ν̃ to the half line α < Q − A for some A > 0 and it is intertwined there with the
corresponding vector Ψ0

α,ν,ν̃ by the relation (2.16).

The bootstrap formula (1.16) is a consequence of the following fundamental identity (see Proposition
7.12)

⟨ΨQ+iP,ν,ν̃ ∣U(Vα1(0)Vα2(z))⟩2 = d(α1, α2, ν, ν̃)C
DOZZ
γ,µ (α1, α2,Q + iP )z̄∣ν∣z∣ν̃∣∣z∣2(∆Q+iP−∆α1

−∆α2
)(2.21)

where the function d is an explicit function of the parameters that will contribute to the conformal blocks.
To prove (2.21) we consider the scalar product ⟨ΨQ+iP,ν,ν̃ ∣U(∏

n
i=1 Vαi(zi))⟩2 where zi ∈ D and ∑i αi > Q+A

and analytically continue it from α = Q + iP (P ∈ R+) to α ∈ (2Q −∑i αi,Q −A). For such α we prove the
Conformal Ward Identity (see Proposition 7.11)

⟨U(
n

∏
i=1

Vαi(zi)) ∣Ψα,ν,ν̃⟩2 = D(α, α, ν, ν̃)⟨
n

∏
i=1

Vαi(zi)Vα(∞)⟩γ,µ(2.22)

where α = (α1, . . . , αn) and D(α, α, ν, ν̃) is an explicit partial differential operator in the variables zi. Using
(2.18), continuing back to α = Q + iP and taking αi → 0 for i > 2 we then deduce (the complex conjugate
of) (2.21).

The proof of (2.22) occupies the whole Section 7. It is based on a representation of the states Ψ0
α,ν,ν̃

in terms of Vα(0) and the Stress-Energy-Tensor (SET) in Proposition 7.23. Let us briefly explain this for
ν = n, ν̃ = ∅ ie for the state L0

−nΨ0
α,0. We have Ψ0

α,0 = U0Vα(0) where U0 is the map 2.6 for µ = 0. The SET
is given in the GFF theory by the field

(2.23) T (z) ∶= Q∂2
zX(z) − (∂zX(z))2

+E[(∂zX(z))2
],

defined through regularization and limit. Then we prove

L0
−nΨ0

α,0 =
1

2πi
∮ z1−nU0(T (z)Vα(0))dz

where the integration contour circles the origin in D. Plugging this identity to the intertwining relation (2.16)
and using the Feynman-Kac formula one ends up with a contour integral of the SET insertion in LCFT
correlation function. This is analyzed by Gaussian integration by parts and results in the Ward identity.

2.7. Organization of the paper. The paper is organized as follows. In Section 3, we will introduce the
relevant material on the Gaussian Free Field and explain the construction of the Hilbert space as well as the
quantization of dilations; the Liouville Hamiltonian is then defined as the generator of dilations. This section
uses the concept of reflection positivity. In Section 4, we study the dynamics induced by dilations in the
GFF theory (i.e. µ = 0) and recall the basics of representation theory related to the GFF. In Section 5, we
study in more details the Liouville Hamiltonian: we establish the Feynman-Kac formula for the associated
semigroup and identify its quadratic form, which allows us to use scattering theory to diagonalize the
Liouville Hamiltonian in Section 6. In Sections 7 and 9, we will prove the Conformal Ward identities for
the correlations of LCFT: in a way, this can be seen as an identification of the eigenstates of the Liouville
Hamiltonian. In Section 8, we will prove the main result of the paper Theorem 1.1 using the material proved
in the other sections. Finally, in the appendix, we will recall the DOZZ formula and gather auxiliary results
(analyticity of vertex operators).
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2.8. Notations and conventions. We gather here the frequently used notations:

⟨.⟩γ,µ denotes the LCFT expectation (1.6).

X,φ,ϕ denote respectively the GFF (1.3), the Liouville field (1.5) and the GFF on T (2.4).

(ΩT,PT) denotes the probability space (3.5) with measure (3.6).

Lp(ΩT) for p > 1: complex valued functions ψ(ϕ) with norm ∥ ⋅ ∥Lp(ΩT).

Lp(R ×ΩT) for p > 1: complex valued functions ψ(c,ϕ) with norm ∥ ⋅ ∥p.

⟨⋅∣⋅⟩L2(ΩT): scalar product in L2(ΩT).

⟨⋅∣⋅⟩2: scalar product in L2(R ×ΩT).

eαρ(c)Lp(R ×ΩT). Weighted Lp-space equipped with the norm ∥f∥eαρ(c)Lp ∶= ∥e−αρ(c)f∥p.

C∞(D) denotes the set of smooth functions on the domain D.

C∞
c (D) denotes the set of smooth functions with compact support in D.

(., .)D denotes the scalar product (3.16) associated to reflexion positivity

HD: Hilbert space associated to (., .)D.

⟨f, g⟩T ∶= ∫
2π

0 f(θ)g(θ)dθ denotes the scalar product on L2(T).

⟨f, g⟩D ∶= ∫D f(x)g(x)dx denotes the scalar product in L2(D).

All sesquilinear forms are linear in their first argument, antilinear in their second one.

For integral operators on some measure space (M,µ) we use the notation (Gf)(x) = ∫ G(x, y)f(y)µ(dy).

GFF quantities as opposed to corresponding LCFT ones will carry a subscript or superscript 0: for example
the Hamiltonians are H0 (GFF) and H (LCFT).

3. Reflection positivity

In this section we prove the reflection positivity of the LCFT and explain the isometry U (2.6) mapping
the LCFT observables to states in the Hilbert space L2(R×ΩT) as well as the semigroup in (2.9). We start
by a discussion of the various GFF’s.

3.1. Gaussian Free Fields. We will now define the fields entering the decomposition (2.5).

GFF on the unit circle T. Given two independent sequences of i.i.d. standard Gaussians (xn)n > 1 and
(yn)n > 1, the GFF on the unit circle is the random Fourier series

(3.1) ϕ(θ) = ∑
n/=0

ϕne
inθ

where for n > 0

ϕn ∶=
1

2
√
n
(xn + iyn), ϕ−n ∶= ϕn.(3.2)

Let W s(T) ⊂ CZ be the set of sequences s.t.

(3.3) ∥ϕ∥2
W s(T) ∶= ∑

n∈Z
∣ϕn∣

2
(∣n∣ + 1)2s

<∞.

One can easily check that E[∥ϕ∥2
W s(T)] <∞ for any s < 0 so that the series (3.1) defines a random element

in W s(T). Moreover, by a standard computation, one can check that it is a centered Gaussian field with
covariance kernel given by

(3.4) E[ϕ(θ)ϕ(θ′)] = ln
1

∣eiθ − eiθ′ ∣
.

We will view ϕ as the coordinate function of the probability space

ΩT = (R2
)
N∗(3.5)
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which is equipped with the cylinder sigma-algebra ΣT = B⊗N
∗
, where B stands for the Borel sigma-algebra

on R2 and the product measure

PT ∶= ⊗
n > 1

1

2π
e−

1
2 (x

2
n+y

2
n)dxndyn.(3.6)

Here PT is supported on W s(T) for any s < 0 in the sense that PT(ϕ ∈W s(T)) = 1.

Harmonic extension of the GFF on T. The next ingredient we need for the decomposition of the GFF (2.5)
is the harmonic extension Pϕ of the circle GFF defined on z ∈ D by

(3.7) (Pϕ)(z) = ∑
n > 1

(ϕnz
n
+ ϕ̄nz̄

n
)

and on z ∈ Dc by (Pϕ)(1/z̄) so that we have

Pϕ = (Pϕ) ○ θ

where θ is the reflection in the unit circle (2.1). Pϕ is a.s. a smooth field in the complement of the unit
circle with covariance kernel given for z, u ∈ D

E[(Pϕ)(z)(Pϕ)(u)] =
1

2 ∑
n>0

1

n
((zū)n + (z̄u)n) = − ln ∣1 − zū∣

and for z ∈ D, u ∈ Dc

E[(Pϕ)(z)(Pϕ)(u)] = − ln ∣1 − z/u∣.

Dirichlet GFF on the unit disk. The Dirichlet GFF XD on the unit disk D is the centered Gaussian distri-
bution (in the sense of Schwartz) with covariance kernel GD given by

(3.8) GD(x,x
′
) ∶= E[XD(x)XD(x

′
)] = ln

∣1 − xx̄′∣

∣x − x′∣
.

Here, GD is the Green function of the negative of the Laplacian ∆D with Dirichlet boundary condition on
T = ∂D and XD can be realized as an expansion in eigenfunctions of ∆D with Gaussian coefficients. However,
it will be convenient for us to use another realization based on the following observation. Let, for n ∈ Z

Xn(t) = ∫
2π

0
e−inθXD(e

−t+iθ
) dθ

2π
.

Then we deduce from (3.8)

E[Xn(t)Xm(t′)] = {
1

2∣n∣δn,−m(e−∣t−t
′∣∣n∣ − e−(t+t

′)∣n∣) n ≠ 0

t ∧ t′ n =m = 0
.(3.9)

Thus {Xn}n > 0 are independent Gaussian processes with X−n = X̄n and X0 is Brownian motion. We can
and will realize them in a probability space (ΩD,ΣD,PD) s.t. Xn(t) have continuous sample paths. Then
for fixed t

XD(e
−t+iθ

) = ∑
n∈Z

Xn(t)e
inθ.(3.10)

takes values in W s(T) for s < 0 a.s. (defined in (3.3)) and we can take the map t ∈ R+ ↦XD(e
−t+i⋅) ∈W s(T)

to be continuous a.s. in ΩD. Decompose W s(T) = R⊕W s
0 (T) where f ∈W s

0 (T) has zero average: ∫ f(θ)dθ = 0.
Then

XD(e
−t+i⋅

) = (Bt, Yt)

where Bt is Brownian motion and Yt(θ) = ∑n≠0 Yn(t)e
inθ is a continuous process in W s

0 (T), independent of
Bt. The Dirichlet GFF XDc on the complement Dc of D can be constructed in the same way (in a probability
space (ΩDc ,ΣDc ,PDc)) and we have the relation in law

XDc
law
= XD ○ θ(3.11)

or in other words XDc(e
t+i⋅)

law
= XD(e

−t+i⋅), t > 0.
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GFF on the Riemann sphere. One can check that adding the covariances in the previous subsections we get
that the field X defined by (2.5) has the covariance

(3.12) E[X(x)X(y)] = ln
1

∣x − y∣
+ ln ∣x∣+ + ln ∣y∣+

which coincides with (1.3). In the sequel, we suppose that the GFF on the Riemann sphere X is defined on
a probability space (Ω,Σ,P) (with expectation E[.]) where Ω = ΩT ×ΩD ×ΩDc , Σ = ΣT ⊗ΣD ⊗ΣDc and P is
a product measure P = PT ⊗PD ⊗PDc . At the level of random variables, the GFF decomposes as the sum
of three independent variables

(3.13) X = Pϕ +XD +XDc

where Pϕ is the harmonic extension of the GFF restricted to the circle ϕ =X ∣T defined on (ΩT,ΣT,PT) and
XD,XDc are two independent GFFs on D and Dc with Dirichlet boundary conditions defined respectively on
the probability spaces (ΩD,ΣD,PD) and (ΩDc ,ΣDc ,PDc)

11. We will write Eϕ[⋅] for conditional expectation
with respect to the GFF on the circle ϕ (instead of ∶= E[⋅∣ΣT]). We will view X in two ways in what follows:
as a process Xt ∈W

s(T) (s < 0)

Xt(θ) =XD(e
−t+iθ

)1t>0 +XDc(e
−t+iθ

)1t<0 + (Pϕ)(e−∣t∣+iθ).(3.14)

and as a random element in D′(Ĉ). In the sequel, we will denote for t > 0:

(3.15) ϕt(θ) ∶= Pϕ(e
−t+iθ

) + Yt(θ).

3.2. Reflection positivity. Let D = {∣z∣ < 1} be the unit disk. Recall the definition of the Liouville field
(1.5) which is given on D by φ(z) = c +X(z) = c +XD(z) + Pϕ(z). Let AD be the sigma-algebra on R ×Ω
generated by the maps φ ↦, ⟨φ, g⟩D for g ∈ C∞

0 (D) and we recall the notation ⟨φ, g⟩D = ∫D g(z)φ(z)dz. Let
FD be the set of AD-measurable functions with values in R.

For F,G ∈ FD such that the following quantities make sense (see below), we define (recall (2.2))

(3.16) (F,G)D ∶= ⟨ΘF (φ)G(φ)⟩γ,µ.

Reflection positivity is the statement that this bilinear form is non-negative, namely (F,F )D > 0. In what
follows, we will study this statement separately for the GFF theory (µ = 0) and for LCFT.

Reflection positivity of the GFF. Here we assume µ = 0. Let F,G ∈ FD be nonnegative. The sesquilinear
form (3.16) becomes at µ = 0

(F,G)D,0 = ∫
R
e−2QcE[(ΘF )(φ)G(φ)]dc = ∫

R
e−2QcE[F (c +X(2)

)G(c +X(1))]dc(3.17)

where we denoted X(i) =X
(i)
D +Pϕ with X

(1)
D =XD and X

(2)
D =XDc ○ θ which are two independent GFFs in

the unit disk. Hence by independence of X
(i)
D

(F,G)D,0 = ∫
R
e−2QcE[Eϕ[F (c +X

(2)
D + Pϕ)]Eϕ[G(c +X

(1)
D + Pϕ)]]dc

= ⟨U0F ∣U0G⟩2(3.18)

where the map U0 is defined by

(U0F )(c,ϕ) = e−QcEϕ[F (c +XD + Pϕ)](3.19)

and we recall Eϕ denotes expectation over XD. Such a map is well defined on nonnegative F ∈ FD and

extended to F0,∞
D , which is defined as the space of F ∈ FD such that U0∣F ∣ <∞ dc⊗PT-almost everywhere.

Let F0,2
D = {F ∈ F

0,∞
D ∣ ∥U0F ∥2 <∞}.

11With a slight abuse of notations, we will assume that these spaces are canonically embedded in the product space (Ω,Σ)

and we will identify them with the respective images of the respective embeddings.
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Proposition 3.1. The sesquilinear form (3.17) extends to F0,2
D . This extension is non negative

∀F ∈ F
0,2
D , (F,F )D,0 > 0.(3.20)

Let F0,2
D /N 0

0 be the Hilbert space completion of the pre-Hilbert space F0,2
D /N 0

0 with N 0
0 ∶= {F ∈ F

0,2
D ∣ (F,F )D,0 =

0}. The map U0 in (3.19) descends to a unitary map U0 ∶ F
0,2
D /N 0

0 → L2(R ×ΩT).

Proof. By (3.18) U0 descends to an isometry on F0,2
D /N 0

0 so we need to show it is onto. We take F of the
form

F (c +X) = ρ(⟨c +X,g⟩D)e
⟨c+X,f⟩D− 1

2 ⟨f,GDf⟩D .(3.21)

with ρ ∈ C∞
0 (R) and g, f ∈ C∞

0 (D) with the further conditions that g is rotation invariant i.e. g(reiθ) = g(r),

and that ∫
2π

0 f(reiθ)dθ = 0 for all r ∈ [0,1]. Then ⟨c, f⟩D = 0 and ⟨Pϕ, g⟩D = 0 and we get

(U0F )(c,ϕ) = e−Qce⟨Pϕ,f⟩DE[ρ(c + ⟨XD, g⟩D)e
⟨XD,f⟩D− 1

2 ⟨f,GDf⟩D]

= e−Qce⟨Pϕ,f⟩DE[ρ(c + ⟨XD, g⟩D)](3.22)

where we observed that ⟨XD, g⟩D and ⟨XD, f⟩D are independent as their covariance vanishes. Indeed, by
rotation invariance of g, the function O(r, θ) ∶= ∫D g(x)GD(x, re

iθ)dx does not depend on θ hence

E[⟨XD, g⟩D⟨XD, f⟩D] = ∫
D
∫
D
GD(x, y)g(x)f(y)dy

= ∫

1

0
r∫

2π

0
f(reiθ)O(r, θ)dθdr

= ∫

1

0
rO(r,0)∫

2π

0
f(reiθ)dθdr = 0.

Let h ∈ C∞(T), fε ∈ C
∞
0 (D) and gε be given by gε(re

iθ) = ε−1η( 1−r
ε

), fε = hgε where η is a smooth bump

with support on [1,2] and total mass one. Then limε→0⟨Pϕ, fε⟩D = ⟨ϕ,h⟩T and limε→0E(⟨XD, gε⟩
2
D) = 0 so

that

lim
ε→0

(U0Fε)(c,ϕ) = e
−Qcρ(c)e⟨ϕ,h⟩T

where the convergence is in L2(R × ΩT). Thus the functions e−Qcρ(c)e⟨ϕ,h⟩T are in the image of U0 for all
ρ ∈ C∞

0 (R) and h ∈ C∞(T). Since the linear span of these is dense in L2(R ×ΩT) the claim follows. �

Remark 3.2. Note that this argument shows that U0 extends from F0,2
D to functionals of form F (c +X∣T)

and then

(U0F )(c,ϕ) = e−QcF (c + ϕ).

Reflection positivity of LCFT. Next we want to show reflection positivity for the LCFT expectation (1.6)
with µ > 0. The GMC measure Mγ defined in (1.4) can also be constructed as the martingale limit

(3.23) Mγ(dx) = lim
N→∞

eγXN (x)−γ
2

2
E[XN (x)2]

∣x∣−4
+ dx.

where in XN we cut off the series (3.10) and (3.7) defining X
(i)
D and Pϕ respectively to finite number of

terms ∣n∣ 6 N . We claim that

Mγ(Ĉ) =M (1)
γ (D) +M (2)

γ (D)

where M
(i)
γ are the GMC measures of the fields X(i) =X

(i)
D +Pϕ, i = 1,2. Indeed, we take the limit N →∞

in

∫
Dc
eγXN (x)−γ

2

2
E[XN (x)2]

∣x∣−4 dx = ∫
Dc
eγX

(2)
N

( 1
x̄ )−

γ2

2
E[X(2)

N
( 1
x̄ )

2]
∣x∣−4 dx = ∫

D
eγX

(2)
N

(x)−γ
2

2
E[X(2)

N
(x)2] dx.

Thus, for nonnegative F,G ∈ FD

(F,G)D = ⟨ΘFG⟩γ,µ = ⟨U0(IF ) ∣U0(IG)⟩2
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where

I = e−µe
γcMγ(D).

Let F∞D be the space of F ∈ FD such that U0(∣F ∣I) < ∞ dc ⊗ PT-almost everywhere. Let F2
D = {F ∈

F∞D ∣ ∥U0(FI)∥2 <∞}. From the above considerations, we arrive at:

Proposition 3.3. The sesquilinear form (3.16) extends to F2
D, is nonnegative and given by

(F,G)D = ⟨UF ∣UG⟩2(3.24)

for all F,G ∈ F2
D where

(UF )(c,ϕ) = (U0(FI))(c,ϕ) = e
−QcEϕ[F (c +X)e−µe

γcMγ(D)
],(3.25)

X = XD + Pϕ and Mγ is its GMC measure. Define N0 ∶= {F ∈ F2
D ∣ (F,F )D = 0}. Then U descends to a

unitary map
U ∶HD → L2

(R ×ΩT)

with HD ∶= F
2
D/N0 (the completion with respect to (., .)D).

Proof. We need to show U is onto. This follows from U(I−1F ) = U0F and the fact that U0 is onto. �

Remark 3.4. From Remark 3.2 we conclude that U extends from FD to functionals F (c +X∣T) for which

(UF )(c,ϕ) = F (c + ϕ) × (U1)(c + ϕ)

or, in other words, for f ∈ L2(R ×ΩT)

U−1f = (U1)−1f.(3.26)

3.3. Dilation Semigroup. Recall the action of the dilation map (2.8) on FD. The reason for the Q ln ∣q∣-
factor is the Möbius invariance property of LCFT [DKRV16]

Proposition 3.5. Let ψ ∶ Ĉ→ Ĉ be a Möbius map and let F be a functional on D′(Ĉ) so that ⟨∣F (φ)∣⟩γ,µ <
∞. Then

⟨F (φ ○ ψ +Q ln ∣ψ′∣)⟩γ,µ = ⟨F (φ)⟩γ,µ.(3.27)

We have then:

Proposition 3.6. The map Sq descends to a contraction Sq ∶HD →HD:

∀F ∈HD, (SqF,SqF )D 6 (F,F )D.(3.28)

The adjoint of Sq is S∗q = Sq̄ i.e. for all F,G ∈HD

(SqF,G)D = (F,Sq̄G)D.(3.29)

Finally the map q ∈ D↦ Sq is strongly continuous and satisfies the group property

SqSq′ = Sqq′(3.30)

so that q ∈ D↦ Sq is a strongly continuous contraction semigroup.

Proof. Let us start with (3.29). It suffices to consider F,G ∈ F2
D real. By definition

(SqF,G)D = ⟨F (φ ○ θ ○ sq +Q ln ∣q∣ − 2Q` ○ sq)G(φ)⟩γ,µ ∶= ⟨F̃ (φ)G(φ)⟩γ,µ

where `(z) ∶= ln ∣z∣. Applying Proposition 3.5 with ψ = sq̄ we get

⟨F̃ (φ)G(φ)⟩γ,µ = ⟨F̃ (φ ○ sq̄ +Q ln ∣q∣)G(φ ○ sq̄ +Q ln ∣q∣)⟩γ,µ

But

F̃ (φ ○ sq̄ +Q ln ∣q∣) = F (φ ○ sq̄ ○ θ ○ sq + 2Q ln ∣q∣ − 2Q` ○ sq) = F (φ ○ θ − 2Q`)

and therefore ⟨F̃ (φ)G(φ)⟩γ,µ = (F,Sq̄G)D as claimed.
The group property (3.30) is obvious.
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To prove the contraction, denote for F ∈ FD, the seminorm ∥F ∥D ∶= (F,F )
1
2

D . Then we have

∥SqF ∥D = (SqF,SqF )
1
2

D = (F,S∣q∣2F )
1
2

D 6 ∥F ∥
1
2

D ∥S∣q∣2F ∥
1
2

D .

Iterating this inequality we obtain

∥SqF ∥D 6 ∥F ∥
1−2−k

D ∥S∣q∣2kF ∥
2−k

D .

Recall that

(G,G)D = ⟨U0(IG)∣U0(IG)⟩2 = ∫
R
e−2QcE[Eϕ[IG]

2
]dc

and then by Cauchy-Schwartz applied to Eϕ[.]

E[Eϕ[IG]
2
] = E[Eϕ[I

1
2 GI

1
2 ]

2
] 6 E[Eϕ[IG

2
]Eϕ[I]]

so that

(G,G)D 6 ⟨U0(IG
2
)∣U0I⟩2 = ⟨UG2

∣U1⟩2 = ⟨G2
⟩γ,µ.

Hence

∥SqF ∥D 6 ∥F ∥
1−2−k

D ⟨(S∣q∣2kF )
2
⟩
2−k−1

γ,µ = ∥F ∥
1−2−k

D ⟨F 2
⟩
2−k−1

γ,µ

where we used again the Möbius invariance of ⟨⋅⟩γ,µ. Taking k →∞ we conclude ∥SqF ∥D 6 ∥F ∥D for F ∈ FD
which satisfy ⟨F 2⟩γ,µ < ∞. Such F form a dense set in FD. Indeed, let F ∈ FD with ∥F ∥D < ∞ and let
FR = F1∣F ∣<R. Then ⟨F 2

R⟩γ,µ <∞ and

∥F − FR∥
2
D = ∥F1∣F ∣ > R∥

2
D 6 ∥F ∥

2
D∥1∣F ∣ > R∥

2
D

and ∥1∣F ∣ > R∥
2
D = ⟨1F > RΘ1∣F ∣ > R⟩ 6

1
R2 ⟨∣F ∣θ∣F ∣⟩→ 0 as R →∞.

Hence (3.28) holds for all F ∈ FD with ∥F ∥D <∞. This implies Sq maps the null space N0 to N0 and thus
Sq extends to HD so that (3.28) holds.

Finally to prove strong continuity, by the semigroup property it suffices to prove it at q = 1 and by the
contractive property we need to prove it only on a dense set. Since

∥SqF − F ∥
2
D = ∥SqF ∥

2
D + ∥F ∥

2
D − (SqF,F )D − (F,SqF )D 6 2∥F ∥

2
D − (SqF,F )D − (F,SqF )D

it suffices to prove (SqF,F )D → (F,F )D as q → 1 on a dense set of F . Take F = GI−1 so that UF = U0G.
Then

(F,SqF )D = ∫
R
e−2QcE(ΘGGe−µe

γcMγ(D∖∣q∣D)
)dc

which converges as q → 1 to (F,F )D (use P(Mγ(D ∖ ∣q∣D) > ε)→ 0 as q → 1). �

In particular we can form two one-parameter (semi) groups from Sq. Taking q = e−t we define Tt = Se−t .
Then Tt+s = TtTs so Tt is a strongly continuous contraction semigroup on the Hilbert space HD. Hence by
the Hille-Yosida theorem

USe−tU
−1

= e−tH∗(3.31)

where the generator H∗ (in the case µ = 0, we will write H0
∗) is a positive self-adjoint operator with domain

D(H∗) consisting of ψ ∈ L2(R ×ΩT) such that limt→0
1
t
(e−tH∗ − 1)ψ exists in L2(R ×ΩT). The operator H∗

is the Hamiltonian of LCFT. Taking q = eiα we get that α ↦ Seiα is a strongly continuous unitary group so
that by Stone’s theorem

USeiαU
−1

= eiαΠ∗

where Π∗ is the self adjoint momentum operator of LCFT. As we will have no use for Π∗ in this paper we
will concentrate on H∗ from now on. Let us emphasize here that it is defined in the full range γ ∈ (0,2).
One of our next tasks will be to show that for γ ∈ (0,2): H∗ = H, where the Hamiltonian H will be defined
as the Friedrichs extension of (2.11).
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4. Gaussian Free Field: dynamics and CFT aspects

4.1. Fock space and harmonic oscillators. The Hilbert space L2(ΩT,PT) (denoted from now on by
L2(ΩT)) has the structure of Fock space. Let P ⊂ L2(ΩT) (resp. S ⊂ L2(ΩT)) be the linear span of the
functions of the form F (x1, y1,⋯, xN , yN) for some N > 1 where F is a polynomial on R2N (resp. F ∈

C∞((R2)N) with at most polynomial growth at infinity for F and its derivatives). Obviously P ⊂ S and
they are both dense in L2(ΩT).

On S we define the annihilation and creation operators

Xn = ∂xn , X∗
n = −∂xn + xn,(4.1)

Yn = ∂yn , Y∗
n = −∂yn + yn.(4.2)

They are formally adjoint of each other (see e.g. [ReSi1, VIII.11] for more about the closure of these
operators, which we will not need here) and form a representation of the algebra of canonical commutation
relations on S:

[Xn,X
∗
m] = δnm = [Yn,Y

∗
m](4.3)

with other commutators vanishing. The operator P is then given on S as

P =
∞
∑
n=1

n(X∗
nXn +Y∗

nYn)(4.4)

(only finite number of terms in the sum contributes when acting on S) and extends uniquely to an unbounded
self-adjoint positive operator on L2(ΩT): this follows from the fact that we can find a complete system of
eigenfunctions in P, as described now. Let N be the set of non-negative integer valued sequences with only
a finite number of non null integers, namely k = (k1, k2, . . . ) ∈ N iff k ∈ NN+ and kn = 0 for all n large enough.
For k, l ∈ N define the polynomials (here 1 ∈ L2(ΩT) is the constant function)

ψ̂kl =∏
n

(X∗
n)
kn(Y∗

n)
ln1 ∈ P.(4.5)

Equivalently, ψ̂kl = ∏nHekn(xn)Heln(yn) where (Hek)k > 0 are the standard Hermite polynomials. Then,
using (4.3), one checks that these are eigenstates of P:

Pψ̂kl = (∣k∣ + ∣l∣)ψ̂kl = λklψ̂kl.(4.6)

where we use the notations

(4.7) ∣k∣ ∶=
∞
∑
n=1

nkn, λkl ∶= ∣k∣ + ∣l∣

for k, l ∈ N . It is also well known that the family {ψkl = ψ̂kl/∥ψ̂kl∥L2(ΩT)} (where ∥ ⋅ ∥L2(ΩT) is the standard

norm in L2(ΩT)) forms an orthonormal basis of L2(ΩT). Finally we claim

Proposition 4.1. The operator P generates a strongly continuous semigroup of self-adjoint contractions
(e−tP)t > 0 on L2(ΩT) with probabilistic representation, for t > 0,

∀f ∈ L2
(ΩT), e−tPf = Eϕ[f(ϕt)]

with (ϕt)t > 0 the process defined by (3.15).

Proof. The fact that P generates a strongly continuous semigroup of self-adjoint contractions results from
the fact that P is self-adjoint and nonnegative. Since (ψkl)k,l form an orthonormal basis of L2(ΩT), it

suffices to study the semigroup on this basis. Obviously e−tPψkl = e
−λkltψkl. Furthermore the decomposition

(3.14) together with the covariance structure (3.9) (and recalling the decomposition (3.1)+(3.2) of the field
ϕ) entails that the law of ϕt (see (3.15)) conditionally on ϕ is given by

ϕt(θ) = ∑
n>0

xn(t) + iyn(t)

2
√
n

einθ + ∑
n<0

x−n(t) − iy−n(t)

2
√
−n

einθ
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where xn(t), yn(t) are independent Ornstein-Uhlenbeck processes. In particular for each fixed t, there are
two independent sequences of independent standard Gaussians (x̄n)n and (ȳn)n such that, for n > 1

xn(t)
law cond. on ϕ

= e−ntxn +
√

1 − e−2tnx̄n, yn(t)
law cond. on ϕ

= e−ntyn +
√

1 − e−2tnȳn.

Finally, we recall the following elementary result: given Y a standard Gaussian random variable, the standard
Hermite polynomials (Hek)k > 0 on R, x ∈ R and u, v > 0 such that u2 + v2 = 1 then

(4.8) E[Hek(ux + vY )] = ukHek(x).

Using this lemma and our description of the law of Xt, it is then plain to deduce that

e−tPψkl = Eϕ[ψkl(ϕt)] = e
−λkltψkl.

Hence our claim. �

Remark 4.2. List the eigenvalues λ = ∣k∣ + ∣l∣ of P in increasing order λ1 < λ2 < . . . and let Pi be the
corresponding spectral projectors. Since each λi is of finite multiplicity and λi →∞ as i→∞ the semigroup
e−tP = ∑i e

−tλiPi and the resolvent (z −P)−1 = ∑i(z − λi)
−1Pi are compact if t > 0 and Iz ≠ 0 since they are

norm convergent limits of finite rank operators.

4.2. Quadratic form. Introduce the bilinear form (with associated quadratic form still denoted by Q0)

(4.9) ∀u, v ∈ C, Q0(u, v) ∶=
1
2
E∫

R
(∂cu∂cv̄ +Q

2uv̄ + 2(Pu)v̄)dc

with

(4.10) C = Span{ψ(c)F ∣ψ ∈ C∞
c (R) and F ∈ S}.

We claim

Proposition 4.3. The quadratic form (4.9) is closable (and we still denote its closure by Q0 with domain
D(Q0)) and lower semibounded: Q(u) > Q2∥u∥2

2/2. It determines uniquely a self-adjoint operator H0, called
the Friedrichs extension, with domain denoted by D(H0) such that:

D(H0
) = {u ∈ D(Q0) ∣∃C > 0,∀v ∈ D(Q0), ∣Q0(u, v)∣ 6 C∥v∥2}

and for u ∈ D(H0), H0u is the unique element in L2(R ×ΩT) satisfying

Q0(u, v) = ⟨H0u∣v⟩2.

Proof. Recall that the closability of the quadratic form means that its completion with respect to the
Q0-norm embeds continuously and injectively in L2(R ×ΩT). Its completion is the vector space consisting
of equivalence classes of Cauchy sequences of C for the Q0-norm under the equivalence relation u ∼ v iff
Q0(un − vn) → 0 as n → ∞. This space is a Hilbert space. Let us show that it embeds injectively and
continuously in L2(R × ΩT) by the map j ∶ [u] ↦ limn→∞ un. Indeed, un is Cauchy for L2(R × ΩT) since
∥un − um∥2

2 6 2Q−2Q0(un − vn), it thus converges in L2(R ×ΩT). Moreover ∥ limn un∥
2
2 6 2Q−2 limnQ0(un)

thus j is bounded. Finally if j([u]) = 0, then for (un)n a representative Cauchy sequence of [u], we have
un → 0 in L2(R ×ΩT) and using

1

2
∥∂c(un − um)∥

2
2 + ∥P1/2

(un − um)∥
2
2 6 Q0(un − um, un − um),

one has the convergence in L2(R ×ΩT) of ∂cun → v and P1/2un → w for some v,w ∈ L2(R ×ΩT). For each
ϕ ∈ C, we have as n→∞

⟨∂cun, ϕ⟩2 = ⟨un,−∂cϕ⟩→ 0, ⟨P1/2un, ϕ⟩2 = ⟨un,P
1/2ϕ⟩2 → 0,

thus v = w = z = 0 by density of C in L2(R ×ΩT). This implies that Q0(un)→ 0 and thus j is injective.
Let us now consider the closure Q0 with domain D(Q0). Obviously it is closed and lower semi-bounded

Q0(u) > Q2∥u∥2
2/2 so that the construction of the Friedrichs extension then follows from [ReSi1, Theorem

8.15]. �
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If we let D(Q0)
′ be the dual to D(Q0) (i.e. the space of bounded conjugate linear functionals on D(Q0)),

the injection L2(R × ΩT) ⊂ D(Q0)
′ is continuous and the operator H0 can be extended as a bounded

isomorphism

H0
∶ D(Q0)→ D(Q0)

′.

We alsohave D(H0) = {u ∈ D(Q0) ∣H
0u ∈ L2(R × ΩT)} and (H0)−1 ∶ L2(R × ΩT) → D(H0) is bounded.

Furthermore, by the spectral theorem, it generates a strongly continuous contraction semigroup of self-

adjoint operators (e−tH
0

)t > 0 on L2(R ×ΩT).

4.3. Dynamics of the GFF. The goal of this subsection is to prove the relation H0
∗ = H0, i.e. we want to

show

Proposition 4.4. For all f ∈ L2(R ×ΩT) and all t > 0

U0Se−tU
−1
0 f = e−tH

0

f = e−
Q2t

2 Eϕ[f(c +Bt, ϕt)](4.11)

Proof. Recalling (3.10), we have the independent sum

XD(e
−t+iθ

) = Bt + Yt(θ)

where Bt is a Brownian motion and Yt has zero average on the circle. We then have

(U0Se−tU
−1
0 f)(c,ϕ) =e−QcEϕ[e

Q(c+Bt−Qt)f(c +Bt −Qt,Pϕ(e
−t+i⋅

) + Yt(⋅))]

=e−
Q2

2 tEϕ[f(c +Bt, Pϕ(e
−t+i⋅

) + Yt(⋅))]

where we have used the Girsanov transform to obtain the last equality. Since Bt and Yt are independent

conditionally on ϕ, this last quantity is also equal to e−t(
Q2

2 − ∂
2
c
2 )e−tPf by using Proposition 4.1. Furthermore,

for f ∈ C, it is plain to see that the mapping t ↦ e−t(
Q2

2 − ∂
2
c
2 )e−tPf solves the Cauchy problem ∂tu = −H0u

with u(0) = f . Hence e−t(
Q2

2 − ∂
2
c
2 )e−tPf = e−tH

0

f . �

Finally, we have the simple:

Proposition 4.5. The following properties hold:

(1) The measure dc ×PT is invariant for e
Q2t

2 e−tH
0

.

(2) e−tH
0

extends to a continuous semigroup on Lp(R ×ΩT) for all p ∈ [1,+∞] with norm e−
Q2

2 t and it
is strongly continuous for p ∈ [1,+∞).

(3) e−tH
0

extends to a strongly continuous semigroup on e−αcL2(R × ΩT) for all α ∈ R with norm

e(
α2

2 −Q
2

2 )t.

Proof. 1) This is a consequence of (4.11): indeed the processes B and Y are independent and describe
two dynamics for which the measures dc and P are respectively invariant. 2) follows from (4.11), Jensen’s
inequality and the fact that dc ⊗ PT is invariant for H0. 3) The map K ∶ f ↦ e−αcf is unitary from

L2(R ×ΩT)→ e−αcL2(R ×ΩT). We have Ke−tH
0

K−1 = et(
α2

2 −α∂c)e−tH
0

which implies the claim. �

Remark 4.6. Using the decomposition L2(ΩT) =⊕k,l ker(P−λk,l), the operator H0 is unitarily equivalent

to the direct sum ⊕k,l(−
1
2
∂2
c +

Q2

2
+λk,l), each of these operators being a shifted Laplacian on the real line R.

Consequently (using Fourier transform in c), H0 has no L2-eigenvalue, its spectrum is absolutely continuous
and the family (eiPcψk,l)P,k,l form a complete family of generalized eigenstates diagonalizing H0.
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4.4. Diagonalization of the free Hamiltonian using the Virasoro algebra. We start by explaining
the diagonalization of the free (i.e. non interacting) Hamiltonian H0 which corresponds to the case µ = 0 in
(2.11). As explained in Remark 4.6, that can be done directly by using the orthonormal basis of Hermite
polynomials ψkl of L2(ΩT) combined with the Plancherel formula for the Fourier transform on the real line:
for each u1, u2 ∈ L

2(R ×ΩT), one has

(4.12) ⟨u1 ∣u2⟩2 =
1

2π
∑

k,l∈N
∫
R
⟨u1 ∣ eiPcψkl⟩2⟨e

iPcψkl ∣u2⟩2 dP.

It will be useful however to use another basis for L2(ΩT) which respects its underlying complex analytic
structure; this new basis, made up of H0-eigenstates, will be generated by the action on L2(R×ΩT) of two
commuting unitary representations of the Virasoro algebra (as motivated in the end of Subsection 2.4). We
follow below the Segal-Sugawara construction for the Fock representation of the Heisenberg algebra. Let us
emphasize that the material we introduce here is standard; to keep the paper self-contained, we recall the
main properties of the construction and just give sketches of the proofs (see for instance [Go09, KaRa] for
more details).

Fock representation of the Heisenberg algebra. We will work on the vector space

(4.13) C∞ ∶= Span{ψ(c)F ∣ψ ∈ C∞
(R) and F ∈ S}.

(not to be confused with C which is a subset of C∞) and use the complex coordinates (3.2), i.e. we denote
for n > 0

∂n ∶=
∂

∂ϕn
=
√
n(∂xn − i∂yn) and ∂−n ∶=

∂

∂ϕ−n
=
√
n(∂xn + i∂yn).

We define on C∞ the following operators for n > 0:

An =
i
2
∂n, A−n =

i
2
(∂−n − 2nϕn)

Ãn =
i
2
∂−n, Ã−n =

i
2
(∂n − 2nϕ−n)

A0 = Ã0 =
i
2
(∂c +Q).

Their restrictions to C are closable operators in L2(R ×ΩT) satisfying (on their closed extension)

A∗
n = A−n, Ã∗

n = Ã−n.(4.14)

Furthermore An1 = 0 and Ãn1 = 0 for n > 0. It is easy to see that the space C∞ is stable by the operators
An, Ãn and we have the commutation relations on C∞

[An,Am] =
n

2
δn,−m = [Ãn, Ãm], [An, Ãm] = 0.(4.15)

Thus An and Ãn (n > 0) are annihilation operators and A−n, Ã−n creation operators. By identifying
canonically S (defined in the beginning of subsection 4.1) as a subspace of C∞, it is plain to check that S is
stable under the action of these operators. As before, let k, l ∈ N and define the polynomials

π̂kl = ∏
n>0

Akn
−nÃln

−n1.(4.16)

Then π̂kl and π̂k′l′ are orthogonal if k ≠ k′ or l ≠ l′ and the π̂kl’s with ∣k∣ + ∣l∣ = N span the eigenspace of P
in L2(ΩT) with eigenvalue N12. We denote πkl ∶= π̂kl/∥π̂kl∥L2(ΩT) the normalized eigenvectors.

12Explicitly: π̂kl =∏n>0(−in)
kn+lnϕkn

n ϕln
−n +P (ϕn, ϕ−n) where P is a polynomial in ϕn, ϕ−n spanned by monomials of the

form ∏n>0 ϕ
k′n
n ϕ

l′n
−n with k′n 6 kn, l′n, 6 ln and ∑n>0 k

′

n + l
′

n < ∑n>0 kn + ln.
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Segal-Sugawara construction. Now we use the Fock representation of the Heisenberg algebra to construct
the Virasoro representation. We define the normal ordered product on C∞ by ∶AnAm∶= AnAm if m > 0 and
AmAn if n > 0 (i.e. annihilation operators are on the right) and then for all n ∈ Z

L0
n ∶= −i(n + 1)QAn + ∑

m∈Z
∶ An−mAm ∶(4.17)

L̃0
n ∶= −i(n + 1)QÃn + ∑

m∈Z
∶ Ãn−mÃm ∶ .(4.18)

These operators are well defined on C∞ (since only a finite number of terms contribute) and their restrictions
to C are closable operators satisfying (on their closed extensions)

(L0
n)

∗
= L0

−n, (L̃0
n)

∗
= L̃0

−n.(4.19)

Furthermore the vector space C∞ is stable under L0
n and L̃0

n for all n ∈ Z; on C∞ the L0
n satisfy the

commutation relations of the Virasoro Algebra (see [KaRa, Prop 2.3]):

[L0
n,L

0
m] = (n −m)L0

n+m +
cL
12

(n3
− n)δn,−m(4.20)

where the central charge is

cL = 1 + 6Q2.

These commutation relations can be checked by using the fact that, on C∞, only finitely many terms
contribute in (4.20) and using the commutation relation (4.15). L̃0

n satisfy the same commutation relations
(4.20) and commute with the L0

n’s. Note also that

L0
0 =

1
4
(−∂2

c +Q
2
) + 2 ∑

n>0

A−nAn(4.21)

L̃0
0 =

1
4
(−∂2

c +Q
2
) + 2 ∑

n>0

Ã−nÃn,(4.22)

so that one can easily check that the µ = 0 Hamiltonian H0 ∶= − 1
2
∂2
c +

1
2
Q2+P has the following decomposition

when restricted on C∞
H0

= L0
0 + L̃0

0.

Remark 4.7. In the terminology of representation theory, we have a unitary representation of two com-
muting Virasoro Algebras on L2(R ×ΩT) (unitary in the sense that (4.19) holds) and this representation is
reducible as we will see below by constructing stable sub-representations.

Diagonalizing H0 using the Virasoro representation. Now we explain how to construct the generalized
eigenstates of the free Hamiltonian H0 using the families of operators (L0

n)n and (L̃0
n)n. Recall that, for

α ∈ C, we have defined the function

Ψ0
α(c,ϕ) ∶= e

(α−Q)c
∈ C∞.(4.23)

For α ∈ C, these are generalized eigenstates of H0: they never belong to L2(R × ΩT) but rather to some

weighted spaces eβ∣c∣L2(R ×ΩT) for β > ∣Re(α) −Q∣, hence their name “generalized eigenstates”. We have

L0
0Ψ0

α = L̃0
0Ψ0

α = ∆αΨ0
α

L0
nΨ0

α = L̃0
nΨ0

α = 0, n > 0,
(4.24)

where ∆α is the conformal weight (1.9). In the language of representation theory (or in the CFT termi-
nology), Ψ0

α is called highest weight state with highest weight ∆α for both algebras. Before defining the
so-called descendants of Ψ0

α, we introduce the following definition:

Definition 4.8. A sequence of integers ν = (νi)i > 0 is called a Young diagram if the mapping i ↦ νi is
non-increasing and if νi = 0 for i sufficiently large. We denote by T the set of all Young diagrams. We will
sometimes write ν = (νi)i∈J1,kK where k is the last integer i such that νi > 0 and denote by ∣ν∣ ∶= ∑i > 1 νi the

length of the Young diagram13. We set Tj ∶= {ν ∈ T ∣ ∣ν∣ = j} the set of Young diagrams of length j.

13This length should not be confused with the length (4.7) of a sequence of integers.
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Given two Young diagrams ν = (νi)i∈[1,k] and ν̃ = (ν̃i)i∈[1,j] we denote

L0
−ν = L0

−νk⋯L0
−ν1
, L̃0

−ν̃ = L̃0
−ν̃j⋯ L̃0

−ν̃1

and define

Ψ0
α,ν,ν̃ = L0

−νL̃
0
−ν̃ Ψ0

α,(4.25)

with the convention that Ψ0
α,∅,∅ = Ψ0

α. The vectors Ψ0
α,ν,ν̃ are called the descendants states of Ψ0

α. We gather
in the following proposition their main properties

Proposition 4.9. The following holds:
1) For each pair of Young diagrams ν, ν̃ ∈ T , the descendant state Ψ0

α,ν,ν̃ can be written as

Ψ0
α,ν,ν̃ = Qα,ν,ν̃Ψ0

α(4.26)

where Qα,ν,ν̃ ∈ P is a polynomial.
2) for all α ∈ C

L0
0Ψ0

α,ν,ν̃ = (∆α + ∣ν∣)Ψ0
α,ν,ν̃ , L̃0

0Ψ0
α,ν,ν̃ = (∆α + ∣ν̃∣)Ψ0

α,ν,ν̃

and thus since H0 = L0
0 + L̃0

0

H0Ψ0
α,ν,ν̃ = (2∆α + ∣ν∣ + ∣ν̃∣)Ψ0

α,ν,ν̃ .

3) Completeness: the inner products of the descendant states obey

(4.27) ⟨Q2Q−ᾱ,ν,ν̃ ∣Qα,ν′,ν̃′⟩L2(ΩT) = δ∣ν∣,∣ν′∣δ∣ν̃∣,∣ν̃′∣Fα(ν, ν
′
)Fα(ν̃, ν̃

′
)

where each coefficient Fα(ν, ν
′) is a polynomial in α, called the Schapovalov form. The functions (Qα,ν,ν̃)ν,ν̃∈T

are linearly independent for

α ∉ {αr,s ∣ r, s ∈ N∗, rs 6 max(∣ν∣, ∣ν̃∣)} with αr,s = Q − r
γ

2
− s

2

γ
.

4) the following holds

(4.28) Qα,ν,ν̃ ∶= ∑
k,l,∣k∣+∣l∣=N

MN
α,kl,νν̃ψkl,

for some coefficients MN
α,kl,νν̃ polynomial in α ∈ C.

5) Spectral decomposition: if u1, u1 ∈ L
2(R ×ΩT) then

⟨u1 ∣u2⟩2 =
1

2π
∑

ν,ν̃,ν′,ν̃′∈T
∫
R
⟨u1 ∣Ψ0

Q+iP,ν′,ν̃′⟩2⟨Ψ
0
Q+iP,ν,ν̃ ∣u2⟩2F

−1
P+iQ(ν, ν′)F −1

P+iQ(ν̃, ν̃′)dP.(4.29)

Proof. The decomposition (4.26) can be obtained from the definition (4.25) by using that [An, e
(α−Q)c] =

[Ãn, e
(α−Q)c] = 0 for all n /= 0, [∂c, e

(α−Q)c] = e(α−Q)c(α −Q)Id and that finitely many applications of An

and Ãn to 1 is a polynomial in P. Actually, one can even show that for ν a Young diagram

L0
−νΨ0

α = (L0,α
−ν 1)Ψ0

α

where, for a Young diagram ν = (ν1,⋯, νk), we define L0,α
ν ∶= L0,α

ν1
. . .L0,α

νk
and the operators L0,α

n , n ∈ Z act

in L2(ΩT) and are given by the expression (4.17) where we replace A0 by i
2
(α +Q) i.e.

L0,α
n ∶= {

i(α −Q − nQ)An +∑m≠n,0 An−mAm n ≠ 0
α
2
(Q − α

2
) + 2∑m>0 A−mAm n = 0

.

Hence on their closed extensions we have

(4.30) (L0,α
n )

∗
= L0,2Q−ᾱ

−n

and L0,α
n satisfies (4.20). The reader should notice here that the order in which the νj appear in previous

definition ensures that (L0,2Q−ᾱ
ν )∗ = L0,α

−ν . The operators (L̃0,α
n )n are defined in a similar fashion and

commute with (L0,α
n )n. Therefore Qα,ν,ν̃ = L0,α

−ν L̃0,α
−ν̃ 1. Then 2) results from (4.24) and the commutation

relations (4.20) with n = 0.
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Since L0,α
ν and L̃0,α

ν̃ commute we have

⟨Q2Q−ᾱ,ν,ν̃ ∣Qα,ν′,ν̃′⟩L2(ΩT) = ⟨1 ∣ L̃0,α
ν̃ L̃0,α

−ν̃′L
0,α
ν L0,α

−ν′1⟩L2(ΩT).(4.31)

Let us now compute the right-hand side. By Lemma A.1, one has for arbitrary t1, . . . , tk ∈ Z such that
t1 +⋯ + tk > 0

(4.32) L0,α
t1

⋯L0,α
tk

1 = 0, L̃0,α
t1

⋯L̃0,α
tk

1 = 0.

Therefore, if ∣ν∣ > ∣ν′∣ or ∣ν̃∣ > ∣ν̃′∣ then we get that (4.31) is equal to 0 by using (4.32). The case ∣ν∣ < ∣ν′∣
or ∣ν̃∣ < ∣ν̃′∣ can be dealt similarly and yields 0 also. Hence in what follows we suppose that ∣ν∣ = ∣ν′∣ and
∣ν̃∣ = ∣ν̃′∣.

Lemma A.2 establishes that for ∣ν∣ = ∣ν′∣

(4.33) L0,α
ν L0,α

−ν′1 = ∑
k > 0

ak(L
0,α
0 )

k1

where the coefficients ak are determined by the algebra (4.20) and are independent of α. Since (L0,α
0 )k1 = ∆k

α

and ∆α = α
2
(Q − α

2
) we conclude

L0,α
ν L0,α

−ν′1 = Fα(ν, ν
′
)

where Fα(ν, ν
′) is a polynomial in ∆α and thus in α. Repeating the argument for L̃0,α

ν̃ L̃0,α
−ν̃′1 yields (4.27).

The determinant of the matrix (Fα(ν, ν
′))∣ν∣=∣ν′∣=N is given by the Kac determinant formula (see Feigin-

Fuchs [FF84])

det(Fα(ν, ν
′
))∣ν∣=∣ν′∣=N = κN

N

∏
r,s=1; rs 6 N

(∆α −∆αr,s)
p(N−rs)(4.34)

where κN does not depend on α or cL, p(M) is the number of Young Diagrams of length M and

αr,s = Q − r
γ

2
− s

2

γ
.

Now we turn to 4). The polynomials Qα,ν,ν̃ with ∣ν∣ + ∣ν̃∣ = N belong to the space spanned by the basis
ψkl (4.6) (or equivalently the basis πkl (4.16)) above with ∣k∣ + ∣l∣ = N . Let us also stress that item 3)
entails that the space spanned by Qα,ν,ν̃ with ∣ν∣ + ∣ν̃∣ = N is exactly the same as ψkl with ∣k∣ + ∣l∣ = N as
soon as α /∈ Q −

γ
2
N∗ − 2

γ
N∗. Hence the existence of a decomposition of the type (4.28). The fact that the

coefficients of this decomposition are polynomials in α can be more easily seen in the basis πkl: in that case,
the coefficients are given by the scalar products ⟨Qα,ν,ν̃ ∣πkl⟩L2(ΩT) and one can use the expression (4.16)
together with the commutation relations

[An,L
0,α
m ] = nAα

n+m −
i

2
n(n + 1)Qδn,−m

where Aα
0 = i

2
(α +Q) and Aα

n = An for n ≠ 0 and L0,α
0 1 = ∆α. 4) follows.

Now, we specialise the above considerations to the case α = Q + iP with P ∈ R. In this case, one has

(4.35) ⟨QQ+iP,ν,ν̃ ∣QQ+iP,ν′,ν̃′⟩L2(ΩT) = δ∣ν∣,∣ν′∣δ∣ν̃∣,∣ν̃′∣FQ+iP (ν, ν′)FQ+iP (ν̃, ν̃′)

where the matrices (FQ+iP (ν, ν′))ν,ν′∈Tj are positive definite (hence invertible) for each j ∈ N and they

depend on P + iQ: more precisely they are polynomials in the weight ∆Q+iP = 1
4
(P 2+Q2) and in the central

charge cL. Item 5) then follows from the representation (4.12) and decomposing the basis ψkl in terms of
the new basis QQ+iP,ν,ν′ . �

5. Liouville CFT: dynamics and quadratic form

The goal of this section is to construct explicitly the quadratic form associated to H∗ and to obtain a
probabilistic representation of the semigroup. This probabilistic representation, i.e. a Feynman-Kac type
formula, easily follows from the definition of H∗, this is done in subsection 5.1 just below. The construction of
the quadratic form is more subtle, especially in the case γ ∈ (

√
2,2). Indeed we will construct the Friedrichs

extension of the operator (2.11) (restricted to appropriate domain) and we call it H. Then we will show
that H∗ = H. The main reason why the difficulty to construct the quadratic form increases with γ is due to



CONFORMAL BOOTSTRAP IN LIOUVILLE THEORY 27

the interpretation of the term V in (2.11). For γ ∈ (0,
√

2) only, it makes sense as a GMC random variable.
Indeed, define the regularized field for k > 0

(5.1) ϕ(k)
(θ) = ∑

∣n∣ 6 k

ϕne
inθ

which is a.s. a smooth function. Then the GMC random variable V can be defined as the following limit

(5.2) V ∶= lim
k→∞

V (k), V (k)
∶= ∫

2π

0
eγϕ

(k)(θ)− γ
2

2 E[ϕ
(k)(θ)2]dθ

where the above limit exists PT-almost surely and is non trivial for γ ∈ (0,
√

2), see [Ka85, RhVa14, Be17]

for instance on the topic, in which case V ∈ Lp(ΩT) for all p < 2
γ2 . For γ ∈ [

√
2,2), the limit V vanishes, in

which case we will rather make sense of the multiplication operator V as a measure (singular with respect
to PT): this case is more problematic, see Subsection 5.2.

5.1. Feynman-Kac formula. We consider the semigroup e−tH∗ and start by writing some form of Feynman-
Kac formula for this semigroup.

Proposition 5.1. (Feynman-Kac formula) For f ∈ L2(R ×ΩT) we have

(5.3) e−tH⋆f = e−
Q2t

2 Eϕ[f(c +Bt, ϕt)e
−µeγc ∫Dc

t
∣z∣−γQMγ(dz)

]

where (c +Bt, ϕt) is the process on W s(T) defined in subsection 3.1 and Dct ∶= {z ∈ D ∣ ∣z∣ > e−t}.

In particular, for γ ∈ (0,
√

2)

(5.4) e−tH⋆f = e−
Q2t

2 Eϕ[f(c +Bt, ϕt)e
−µ ∫ t0 e

γ(c+Bs)V (ϕs)ds].

where

V (ϕs) ∶= ∫
2π

0
eγϕs(θ)−

γ2

2 E[ϕs(θ)
2]dθ.

Proof. Let f ∈ L2(R×ΩT). By definition we have e−tH⋆F = USe−tU
−1f , where, from (3.26), we have U−1f =

(U1)−1f with

(U1)(c,ϕ) = (U0e
−µeγcMγ(D)

)(c,ϕ).

Now we claim that we have for t > 0

(5.5) E[e−µe
γcMγ(Dt)∣FDct ] = Se−t(e

QcU1)

where Dt = {z ∈ D; ∣z∣ < e−t}. Indeed, by the domain Markov property of the GFF and conditionally on FDct ,
the law of X inside Dt is given by the independent sum

X
law
= P (se−tX)(et⋅) +XD(e

t
⋅).

As a consequence and using a change of variables by dilation, we get the relation conditionally on FDct

Mγ(Dt)
law
= Se−tMγ(D),

which gives (5.5). Next, using (5.5), we get

e−tH⋆f =USe−tU
−1f

=e−QcEϕ[Se−t(U
−1f)e−µe

γcMγ(D)]

=e−QcEϕ[E[Se−t(U
−1f)e−µe

γcMγ(D)
∣FDct ]]

=e−QcEϕ[Se−t(U
−1f)e−µe

γcMγ(Dct)E[e−µe
γcMγ(Dt)∣FDct ]]

=e−QcEϕ[Se−t(e
Qcf)e−µe

γcMγ(Dct)].

We complete the argument by applying the Cameron-Martin formula to Se−t(e
Qc) to get (5.3).
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In the case when γ ∈ (0,
√

2), we write the chaos measure in terms of the process Zt = (c +Bt, ϕt). The
function V ∶W s(T)→ R+ given by

V (ϕ) = lim
k→∞∫T

eγϕ
(k)(θ)− γ

2

2 E[ϕ
(k)(θ)2]dθ

is measurable and we get that conditionally on ϕ = ϕ0 (by making the change of variables dx = rdrdθ =

e−2sdsdθ with r = ∣x∣ = e−s and −
γ2

2
E[B2

s ] − 2s = −γQs)

eγcMγ(Dct)
law
= ∫

t

0
eγ(c+Bs−Qs)V (ϕs)ds. �

As a consequence of this formula and similarly to H0 we have

Proposition 5.2. The following properties hold:

(1) e−tH∗ extends to a continuous semigroup on Lp(R ×ΩT) for all p ∈ [1,+∞] with norm e−
Q2

2 t and it
is strongly continuous for p ∈ [1,+∞).

(2) e−tH∗ extends to a strongly continuous semigroup on e−αcL2(R × ΩT) for all α ∈ R with norm

e(
α2

2 −Q
2

2 )t.

Proof. Using in turn (5.4) and V > 0, we see that ∥e−tH⋆f∥p 6 ∥e−tH
0

∣f ∣∥p so that the claim 1) follows from
Proposition 4.5. The same argument works for 2). �

5.2. Quadratic forms and the Friedrichs extension of H. Here we construct the quadratic forms
associated to (2.11) and the Friedrichs extension of H in the case γ ∈ (0,2).

Recall that the underlying measure on the space L2(R × ΩT) is dc × PT, with ΩT = (R2)N
∗
, ΣT = B⊗N

∗

(where B stands for the Borel sigma-algebra on R2) and the probability measure PT defined by (3.6). Also,
recall the GFF on the unit circle ϕ ∶ Ω →W s(T) (with s < 0) defined by (3.1). Finally recall that S is the
set of smooth functions depending on finitely many coordinates, i.e. of the form F (x1, y1, . . . , xn, yn) with
n > 1 and F ∈ C∞((R2)n), with at most polynomial growth at infinity for F and its derivatives. S is dense
in L2(ΩT).

We will construct the quadratic form associated to H as a limit (in a suitable sense) of regularized

quadratic forms associated with the regularized potential V (k).
For k > 1 and µ > 0, we introduce the bilinear form (with associated quadratic form still denoted by Qk)

(5.6) Q
(k)

(u, v) ∶= 1
2
E∫

R
(∂cu∂cv̄ +Q

2uv̄ + 2(Pu)v̄ + 2µeγcV (k)uv̄)dc.

Here u, v belong to the domain D(Q(k)) of the quadratic form, namely the completion for the Q(k)-norm

in L2(R × ΩT) of the space C defined by (4.10). Also, it is clear that D(Q(k)) embeds continuously and

injectively in L2(R×ΩT) (same argument as in the proof of Prop 4.3). Also, since V (k) > 0 it is clearly lower

semi-bounded Q(k)(u) > Q2∥u∥2
2/2 so that the construction of the Friedrichs extension then follows from

[ReSi1, Theorem 8.15]. It determines uniquely a self-adjoint operator H(k), called the Friedrichs extension,

with domain denoted by D(H(k)) such that:

D(H(k)
) = {u ∈ D(Q

(k)
);∃C > 0,∀v ∈ D(Q

(k)
), Q(k)

(u, v) 6 C∥v∥2}

and for u ∈ D(H(k)), H(k)u is the unique element in L2(R ×ΩT) satisfying

Q
(k)

(u, v) = ⟨H(k)u∣v⟩2.

We also denote by R
(k)
λ the associated resolvent family. The following result is rather standard but we found

no reference corresponding exactly to our context so that we give a short proof.

Proposition 5.3. The strongly continuous contraction semigroup (e−tH
(k)

)t > 0 of self-adjoint operators on
L2(R ×ΩT) obeys the Feynman-Kac formula

(5.7) e−tH
(k)
f = e−

Q2t
2 Eϕ[f(c +Bt, ϕt)e

−µ ∫ t0 e
γ(c+Bs)V (k)(ϕs)ds],
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where we have, after decomposing the field ϕs along its harmonics i.e. ϕs(θ) ∶= ∑n/=0 ϕs,ne
inθ,

V (k)
(ϕ) = ∫

2π

0
eγϕ

(k)
s (θ)− γ

2

2 E[ϕ
(k)
s (θ)2]dθ with ϕ(k)

s (θ) ∶= ∑
∣n∣ 6 k,n/=0

ϕs,ne
inθ.

Proof. We use Kato’s strong Trotter product formula (see [ReSi1, Theorem S.21 page 379]) applied to the

self-adjoint operators H0 and eγcV (k): since the domain D(Q(k)) of the quadratic form Q(k) is dense in

L2(R × ΩT) and satisfies D(Q(k)) = D(Q0) ∩ D(QV (k)), where D(QV (k)) = {f ∣ ∥eγc/2(V (k))1/2f∥2 < +∞}

is the domain of the quadratic form associated to the operator of multiplication by eγcV (k), we have the
identity

lim
n→∞

(e−
t
nH0e−

t
nµe

γcV (k)
)
n
= e−tH

(k)

where the limit is understood in the strong sense (i.e. convergence in L2(R×ΩT) when this relation is applied
to f ∈ L2(R ×ΩT)). Now we compute the limit in the left-hand side. For f ∈ L2(R ×ΩT) we have

(5.8) (e−
t
nH0e−

t
nµe

γcV (k)
)
nf = e−Q

2t/2Eϕ[f(c +Bt, ϕt)e
−µRn,(k)t ]

with R
n,(k)
t the Riemann sum

R
n,(k)
t ∶=

t

n

n

∑
j=1

eγ(c+Bjt/n)V (k)
(ϕjt/n).

The right-hand side of (5.8) converges in L2(R ×ΩT) towards the same expression with R
n,(k)
t replaced by

∫
t

0 e
γ(c+Bs)V (k)(ϕs)ds: indeed this can be established by using Jensen and the fact that, almost surely, the

Riemann sum R
n,(k)
t converges almost surely (for all fixed c) towards the integral ∫

t
0 e

γ(c+Bs)V (k)(ϕs)ds

since the process s ↦ eγ(c+Bs)V (k)(ϕs) is continuous. This provides the Feynman-Kac representation as
claimed. �

Now our main goal is to construct a quadratic form corresponding to the limit k → ∞ of the quadratic
forms (Q(k),D(Q(k))). For u, v ∈ C, we define

(5.9) Q(u, v) ∶= lim
k→∞
Q

(k)
(u, v).

Of course, when γ ∈ (0,
√

2), existence of the limit is trivial as (V (k)) converges towards V in Lp(ΩT)

for p < 2/γ2 and uv̄ ∈ C∞
c (R;Lq(ΩT)) for any q > 1. But treating the case γ ∈ (

√
2,2) as well requires

another argument: the existence of the limit is guaranteed by the Girsanov transform, namely that for
u = u(x1, y1 . . . , xn, yn), v = v(x1, y1 . . . , xn, yn) and k > n the term involving V (k) in Q(k) can be rewritten
as

(5.10) E∫
R
eγcV (k)uv̄dc = E∫

R
∫

2π

0
eγcushiftv̄shiftdcdθ

where the function ushift (and similarly for v) is defined by

ushift(θ, c, x1, y1 . . . , xn, yn) ∶= u(c, x1 + γ cos(θ), y1 − γ sin(θ) . . . , xn +
γ

√
n

cos(nθ), yn −
γ

√
n

sin(nθ)).

Hence the term E ∫R e
γcV (k)uv̄dc does not depend on k > n. We also denote by ushift(N) the same as above

except that the first N variables (x1, y1, . . . , xN , yN) are shifted and other variables remain unchanged.
Also, we denote by R∗,λ the resolvent family associated with the Feynman-Kac semigroup e−tH∗ . Let Q∗

denote the quadratic form associated to H∗ with domain {u ∈ L2; limt→0⟨u,
u−e−tH∗u

t
⟩2 < ∞}. Using [Sz98,

Section 1.4], Q∗ is closed. The following lemma is fundamental: though the limit (5.9) makes sense for any
value of γ ∈ R, the fact that it can be related to the quadratic form Q∗ deeply relies on GMC theory, hence
on the fact that γ ∈ (0,2).

Lemma 5.4. For u, v ∈ C, we have Q∗(u, v) = Q(u, v). In particular, Q is closable.
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Proof. Let u, v ∈ C, say depending on the first n-th harmonics. From (5.3), we have to show that, as t→ 0,

Dt ∶= e
−Q

2t
2 ∫ E[u(c +Bt, ϕt)v(c,ϕ)e

−µeγc ∫Dc
t
∣z∣−γQMγ(dz)

]dc = ⟨u, v⟩2 − tQ(u, v) + o(t).

For notational simplicity and only in this proof, let us denote Vt ∶= ∫Dct
∣z∣−γQMγ(dz). Then

Dt − ⟨u, v⟩2 =⟨e
−tH0u − u, v⟩2 + (1 + o(1))∫ E[u(c +Bt, ϕt)v(c,ϕ)(e

−µeγcVt − 1)]dc

= − tQ0(u, v) + o(t) + (1 + o(1))∫ E[(u(c +Bt, ϕt) − u(c,ϕ))v(c,ϕ)(e
−µeγcVt − 1)]dc

− (1 + o(1))∫ E[u(c,ϕ)v(c,ϕ)(1 − e−µe
γcVt)]dc

= ∶ −tQ0(u, v) + o(t) + (1 + o(1))D1
t − (1 + o(1))D2

t .

Let us show that

(5.11) D2
t = t(1 + o(1))µ∫ eγc ∫

2π

0
E[ushift(c,ϕ)vshift(c,ϕ)]dcdθ.

For this and even if it means decomposing u, v into their positive/negative parts, we may assume that u, v
are non-negative. First, we use the inequality 1 − e−x 6 x for x > 0 to get

D2
t 6 ∫ eγcE[u(c,ϕ)v(c,ϕ)µeγcVt] c.

=µ∫ eγc ∫
2π

0
∫

1

e−t
E[eγPϕ(re

iθ)− γ
2

2 E[Pϕ(re
iθ)2]u(c,ϕ)v(c,ϕ)]dcr1−γQ drdθ

=µ∫ eγc ∫
2π

0
∫

1

e−t
E[urshift(c,ϕ)v

r
shift(c,ϕ)]dcr1−γQ drdθ

where we have used the Girsanov transform in the last line and the function urshift is defined by

ushift(θ, c, x1, y1 . . . , xn, yn) ∶= u(c, x1 + a1, y1 + b1, . . . , xn + an, yn + bn),

with ak ∶=
γ√
k
rk cos(kθ) and bk ∶= −

γ√
k
rk sin(kθ). Because u, v ∈ C, it is then plain to deduce that D2

t 6 t(1+

o(1))µ ∫ e
γc
∫

2π
0 E[ushift(c,ϕ)vshift(c,ϕ)]dcdθ. Second, we use the inequality 1 − e−x > xe−x for x > 0 to

get, using again the Girsanov transform,

D2
t > ∫ eγcE[u(c,ϕ)v(c,ϕ)µeγcVte

−µeγcVt] c.

=µ∫ eγc ∫
2π

0
∫

1

e−t
E[urshift(c,ϕ)v

r
shift(c,ϕ, re)e

−µeγcV shift
t ]dcr1−γQ drdθ

with V shift
t (reiθ) ∶= ∫Dct

∣z∣−γQ∣z − reiθ ∣−γ
2

Mγ(dz). It remains to get rid of the exponential term in the last

expectation. So we split the above expectation in two parts by writing e−µe
γcV shift

t = 1+(e−µe
γcV shift

t −1). The

first part produces t(1 + o(1))µ ∫ e
γc
∫

2π
0 E[ushift(c,ϕ)vshift(c,ϕ)]dcdθ similarly as above. For the second

part corresponding to (e−µe
γcV shift

t − 1), we want to show that it is neglectable. For this, we write

µ∫ eγc ∫
2π

0
∫

1

e−t
E[urshift(c,ϕ)v

r
shift(c,ϕ)(1 − e

−µeγcV shift
t )]dcr1−γQ drdθ(5.12)

6 µ∫ eγc ∫
2π

0
∫

1

e−t
E[urshift(c,ϕ)v

r
shift(c,ϕ))

p
]
1/p
E[∣1 − e−µe

γcV shift
t (reiθ)

∣
q
]
1/q

dcr1−γQ drdθ

where we have used Hölder’s inequality in the last line for any fixed conjugate exponents p, q. The first ex-

pectation c↦ E[urshift(c,ϕ)v
r
shift(c,ϕ))

p]
1/p

is bounded uniformly with respect to r, c and has fixed compact

support in c (because v has so), say [−A,A] for some A > 0. Now we claim that the family of functions

(c, r) ↦ ft(c, r) ∶= E[∣1 − e−µe
γcV shift

t (reiθ)∣q]
1/q

(this quantity does not depend on θ by invariance in law

under rotation) converges uniformly towards 0 as t→ 0, from which one can easily deduce that the quantity
(5.12) is o(t). Since ft is increasing in c hence monotonic for c in [−A,A]) it is enough to prove this claim
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for a fixed c. Next, recall [DKRV16, Lemma 3.10] the condition of finiteness for integrals of GMC with
singularities: for any α ∈ (0,Q), p > 0 and z0 ∈ D

(5.13) E[(∫
D

1

∣z − z0∣
γα
Mγ(dz))

p

] < +∞⇔ p < 2
γ
(Q − α).

Taking α = γ and z0 = re
iθ, the finiteness of the expectation above implies that for fixed r ∈ [ 1

2
,1] (and fixed

c) limt→0 ft(c, r) = 0 by using dominated convergence. Now we claim that for fixed t and c, the mapping
r ↦ ft(c, r) is continuous. To see this, for each δ > 0 let us introduce the mapping

r ∈ [ 1
2
,1]↦ ft,δ(c, r) ∶= E[∣1 − e−µe

γcV shift
t,δ (reiθ)

∣
q
]
1/q

where V shift
t,δ is the potential with regularized singularity at scale δ

V shift
t,δ (reiθ) ∶= ∫

Dct
∣z∣−γQ(∣z − reiθ ∣ ∨ δ)−γ

2

Mγ(dz).

Obviously, ft,δ(c, r) is a continuous function of the variable r. We want to show that the family (ft,δ)δ
converges uniformly towards ft as δ → 0. By using the triangular inequality

∣ft,δ(c, r) − ft(c, r)∣ 6 E[∣e−µe
γcV shift

t,δ (reiθ)
− e−µe

γcV shift
t (reiθ)

∣
q
]
1/q

6 µeαγcE[∣V shift
t (reiθ) − V shift

t,δ (reiθ)∣αq]
1/q
.

where we have used the inequality ∣e−x − e−y ∣ 6 ∣x − y∣α for any arbitrary α ∈ (0,1] and x, y > 0. We fix α
such that αq < 2

γ
(Q−γ) to make sure that the expectation is finite using the criterion (5.13). By invariance

in law of Mγ under translation, this quantity does not depend on r and is less than (in fact this is true when
the singularity is at positive distance from the boundary: when the singularity approaches the boundary,
the above quantity is strictly less than the bound below)

(5.14) CE[(∫
∣z∣ 6 δ

∣z∣−γ
2

Mγ(dz))
αq

]
1/q
.

By multifractal scaling (see the proof of [DKRV16, Lemma 3.10]), (5.14) is equal Cδ(γ(Q−γ)α−
γ2

2 α
2q and one

can check that the exponent is positive under the condition αq < 2
γ
(Q − γ). This establishes the uniform

convergence of (ft,δ)δ towards ft as δ → 0 over r ∈ [ 1
2
,1]. In conclusion, for fixed c, the family (ft(c, ⋅))t>0

is a family of continuous functions that decrease pointwise towards 0 as t → 0. Hence the convergence is
uniform by the Dini theorem. So we have proved (5.11).

Similar arguments can be used to show that D1
t = o(t). Indeed, we use again the inequality 1 − e−x 6 x

to get the bound

∣D1
t ∣ 6 µ∫ eγcE[∣u(c +Bt, ϕt) − u(c,ϕ)∣∣v(c,ϕ)∣Vt]dc

and then the Girsanov transform and Hölder to obtain

∣D1
t ∣ 6 µ∫

2π

0
∫

1

e−t
∫ eγcE[∣ushift

(t, c +Bt, θ, ϕt) − u
shift

(0, c, θ,ϕ)∣∣vshift
(0, c, θ,ϕ)∣]dθdrdc

6 µ∫
2π

0
∫

1

e−t
∫ eγcE[∣ushift

(t, c +Bt, θ, ϕt) − u
shift

(0, c, θ,ϕ)∣p]
1/p
E[∣vshift

(0, c, θ,ϕ)∣q]1/q dθdrdc

with

ushift
(t, c, θ, x1, y1 . . . , xn, yn) ∶= u(c, x1 + a1, y1 + b1, . . . , xn + an, yn + bn)

and

ak ∶=
γk1/2

π
∫

2π

0
ln

1

∣e−t+iθ′ − e−r+iθ ∣
cos(kθ′)dθ′, bk ∶=

γk1/2

π
∫

2π

0
ln

1

∣e−t+iθ′ − e−r+iθ ∣
sin(kθ)dθ.
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Again, the second expectation has compact support in c whereas the second satisfies supr 6 tE[∣ushift(t, c +

Bt, θ, ϕt) − u
shift(0, c, θ,ϕ)∣p]

1/p
→ 0 as t → 0 since u ∈ C and Bt and the first n-th harmonics of the field

(ϕt)t are continuous. One can then easily conclude. �

From the above lemma, the quadratic form (C,Q) is closable. Let D(Q) be the completion of C for the
Q-norm. The completion is the vector space consisting of equivalence classes of Cauchy sequences of C for

the norm ∥u∥Q ∶=
√
Q(u,u) under the equivalence relation u ∼ v iff ∥un−vn∥Q → 0 as n→∞. This space is a

Hilbert space. It can be identified with the closure of the space of quadruples {(u, ∂cu,P
1/2u,ushift);u ∈ C}

in (L2)3 ×L2(R×ΩT × [0,2π], eγcdc⊗PT⊗dθ). D(Q) embeds injectively in L2 as it is closed. Now we want
to show that

Proposition 5.5. For γ ∈ (0,2), the quadratic form (D(Q),Q) defines an operator H (the Friedrichs
extension), which satisfies H∗ = H.

Proof. Take F ∈ C and consider u ∶= R∗,λF (resp. uk ∶= R
(k)
λ F ) for λ > 0. We will repeatedly use below

the fact that for k large enough uk,shift = uk,shift(k) since F ∈ C. Indeed, this follows from the Feynman-Kac
formula (by Prop. 5.3)

(5.15) uk = ∫
∞

0
e−λte−tH

(k)
f dt = ∫

∞

0
e−(λ+

Q2

2 )tEϕ[f(c +Bt, ϕt)e
−µ ∫ t0 e

γ(c+Bs)V (k)(ϕs)ds]dt.

With this expression, one can see that if f depends on the first N harmonics of the field ϕ then for k > N
we have uk,shift = uk,shift(k).

The first step of the proof is to observe that

uk → u as k →∞ in L2
(R ×ΩT).

This follows from the Feynman-Kac representation (5.15)+(5.3) and standard GMC theory that ensures that

∫
t

0 e
γ(c+Bs)V (k)(ϕs)ds converges almost surely towards eγc ∫Dct

∣z∣−γQMγ(dz) for γ ∈ (0,2). Furthermore,

since

λ∥uk∥
2
2 +Q

(k)
(uk) = ⟨F,uk⟩2

we deduce using Cauchy-Schwartz in the r.h.s. that

(5.16) sup
k
Q

(k)
(uk) < +∞.

This entails that the sequences (∂cuk)k and (P1/2uk)k weakly converge up to subsequences in L2(R ×ΩT)

and, by (5.10), that (uk,shift)k weakly converges in e−γc/2L2([0,2π] ×R ×ΩT). Strong convergence of (uk)k
towards u and weak convergence of (∂cuk)k and (P1/2uk)k implies that their respective weak limits must

be ∂cu and P1/2u. The resolvent equation associated to uk reads for v ∈ C

(5.17) λ⟨uk, v⟩2 +Q
(k)

(uk, v) = ⟨F, v⟩2.

Denote by z a possible weak limit of (uk,shift)k in e−γc/2L2([0,2π] ×R ×ΩT). Passing to the limit in k →∞

(up to appropriate subsequence) produces

(5.18) 1
2
E∫

R
(∂cu∂cv̄ + (Q2

+ 2λ)uv̄ + 2(P1/2u)P1/2v + 2µ∫
2π

0
eγczv̄shiftdθ)dc = ⟨F, v⟩2.

Taking v = uk and passing to the limit as k →∞, we get

(5.19) 1
2
E∫

R
(∣∂cu∣

2
+ (Q2

+ 2λ)∣u∣2 + 2∣P1/2u∣2 + 2µ∫
2π

0
eγc∣z∣2dθ)dc = ⟨F,u⟩2.

By weak limit we have

1
2
E∫

R
(∣∂cu∣

2
+ (Q2

+ 2λ)∣u∣2 + 2∣P1/2u∣2 + 2µ∫
2π

0
eγc∣z∣2dθ)dc

6 lim inf
k

1
2
E∫

R
(∣∂cuk ∣

2
+ (Q2

+ 2λ)∣uk ∣
2
+ 2∣P1/2uk ∣

2
+ 2µ∫

2π

0
eγc∣uk,shift∣

2dθ)dc.



CONFORMAL BOOTSTRAP IN LIOUVILLE THEORY 33

Also

1
2
E∫

R
(∣∂cuk ∣

2
+ (Q2

+ 2λ)∣uk ∣
2
+ 2∣P1/2uk ∣

2
+ 2µ∫

2π

0
eγc∣uk,shift∣

2dθ)dc = ⟨F,uk⟩2 → ⟨F,u⟩2

as k →∞. This shows that the weak convergence of the sequence (uk, ∂cuk,P
1/2uk, uk,shift)k actually holds

in the strong sense. Also, it is easy to check from (5.18) that the limit is unique. This implies the convergence
of (uk)k in Q-norm toward u, which thus belongs to D(Q). Hence R∗,λ maps C into D(Q) ⊂ L2(R × ΩT)

and it coincides on C with the resolvent associated to Q. Since C is dense in L2(R × ΩT), this shows that
both resolvent families coincide, hence their semigroups, quadratic forms and generators too. �

Again, we stress that D(H) = {u ∈ D(Q) ∣Hu ∈ L2(R ×ΩT)} and H−1 ∶ L2(R ×ΩT) → D(H) is bounded.
Furthermore, by the spectral theorem, H generates a strongly continuous contraction semigroup of self-
adjoint operators (e−tH)t > 0 on L2(R ×ΩT).

If we let D(Q)′ be the dual to D(Q) (i.e. the space of bounded conjugate linear functionals on D(Q)), the
injection L2(R×ΩT) ⊂ D(Q)′ is continuous and the operator H can be extended as a bounded isomorphism

H ∶ D(Q)→ D(Q)
′.

Remark 5.6. By adapting some argument in [ReSi1, ReSi2] one can prove that H is essentially self-adjoint
on D(H0) ∩D(eγcV ) for γ ∈ (0,1), condition that ensures that the potential V is in L2(ΩT).

6. Scattering of the Liouville Hamiltonian

In this section, we develop the scattering theory for the operator H on L2(R×ΩT) with underlying measure
dc⊗PT (where H is the generator of the dilation semigroup studied above). This operator has continuous
spectrum and cannot be diagonalized with a complete set of L2(R×ΩT)-eigenfunctions. We will rather use
a stationary approach for this operator, in a way similar to what has been done in geometric scattering
theory for manifolds with cylindrical ends in [Gu89, Me93]. The goal is to obtain a spectral resolution for
H in terms of generalized eigenfunctions, which will be shown to be analytic in the spectral parameter. In
other words, we search to write the spectral measure of H using these generalized eigenfunctions, which are
similar to plane waves (eiλω.x)λ∈R,ω∈Sn−1 in Euclidean scattering for the Laplacian ∆x on Rn. In our case,

the generalized eigenfunctions will be functions in weighted spaces of the form e−βc−L2(R × ΩT) for β > 0
with particular asymptotic expansions at c = −∞. Let us explain briefly the simplest one, corresponding to
the functions Ψα ∶= Ψα,0,0 = U(Vα(0)) defined in the Introduction and represented probabilistically by (7.5)
using the unitary map (3.25) when α < Q is real. For α ∈ (Q − γ/2,Q), they will be the only eigenfunctions
of H in e−βc−L2(R ×ΩT) for β > Q − α satisfying

(H − 2∆α)Ψα = 0, Ψα = e(α−Q)c
+ u, with u ∈ L2

(R ×ΩT).

Similarly, we will construct (in Section 6.5) some eigenfunctions Ψα,k,l of H with eigenvalue 2∆α+λkl, with
Ψα,k,l∣R+ ∈ L

2 and asymptotic (for all β ∈ (0, γ/2))

Ψα,k,l∣R− = e
(α−Q)cψkl + u, with u ∈ e(α−Q+β)cL2

(R−
×ΩT),

where we recall that λkl ∈ N are the eigenvalues of P defined in (4.7) and the corresponding eigenfunctions
ψkl of P appear in (4.5). One way to construct the Ψα, and similarly for Ψα,k,l, is to take the limit (see
Proposition 6.9)

Ψα = lim
t→∞

e−tH(e2t∆αe(α−Q)c
),

where we observe that e−tH
0

e(α−Q)c = e−2t∆αe(α−Q)c so that, formally speaking, Ψα is the limit of the

intertwining e−tHetH
0

(e(α−Q)c) as t→ +∞. An alternative expression is to write them as

(6.1) Ψα = e(α−Q)cχ(c) − (H − 2∆α)
−1

(H − 2∆α)(e
(α−Q)cχ(c))

where χ ∈ C∞(R) equal to 1 near −∞ and 0 near +∞ (see (6.20) and Lemma 6.7); here we notice that

e(α−Q)cχ(c) is not L2(R×ΩT) but one can check that (H− 2∆α)(e
(α−Q)cχ(c)) ∈ L2 if γ > Q−α (and γ < 1)

so that we can apply the resolvent R(α) ∶= (H−2∆α)
−1 to it, and (H−2∆α)

−1(H−2∆α)(e
(α−Q)cχ(c)) ∈ L2

is not equal to (e(α−Q)cχ(c)). Our goal will be to extend analytically these Ψα (and actually the whole
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family of generalized eigenstates denoted by Ψα,k,l) to Re(α) 6 Q and in particular to the line α ∈ Q + iR
corresponding to the spectrum of H. To perform this, we see that we need to extend analytically the
resolvent operator R(α) to Re(α) 6 Q, which will be the main part of this section. In fact, we shall show
that R(α) extends analytically on an open set of a Riemann surface covering the complex plane, containing
the real half-plane Re(α) 6 Q. We note that the functions Ψα,k,l will be expressed as the elements in the
range of some Poisson operator denoted P(α), mapping (some subspaces of) L2(ΩT) to weighted spaces
e−βc−L2(R ×ΩT ) for some β > 0 depending on α. The results proved here hold in some cases for geometric
scattering in finite dimension [Gu89, Me93], but we are not aware of some results of this type in quantum
field theory where the base space is infinite dimensional. The main difficulty will be to deal with the fact
that the perturbation V is quite singular (even for γ <

√
2 where V is a potential, it is not bounded) and

the fact that the eigenfunctions of P (Hermite polynomials) have Lp(ΩT) norms which blow up very fast in
terms of their eigenvalues.

In this section, we shall start by describing the resolvent of H in the probabilistic region {Re((α−Q)2) >

β2} acting on weighted spaces eβc−L2 for β ∈ R and deduce the construction of the Ψα,k,l in this region.
Next, we will show that the resolvent R(α) admits an analytic extension in a neighborhood of {Re(α) 6 Q}

(for α on some Riemann suface Σ). We shall use these results to prove the analytic continuation of the
Ψα,k,l to Re(α) 6 Q and we shall finally construct the scattering operator S(α) in Section 6.4 and write the
spectral decomposition of H in terms of the Ψα,k,l in Theorem 6.25 (written in terms of Poisson operator
in this section).

In what follows, we will mostly consider the L2 (or Lp) spaces on ΩT or on R×ΩT respectively equipped
with the measure PT or dc⊗PT, which we will denote by L2(ΩT) or L2(R×ΩT) for short. When the space
is omitted, i.e. we simply write L2, this means that we consider L2(R × ΩT): this will relieve notations in
some latter part of the paper. Recall that we denote by ⟨⋅ ∣ ⋅⟩2 the standard scalar product associated to
L2(R × ΩT, dc ⊗PT) and ∥ ⋅ ∥2 the associated norm; in general our scalar products will always be complex
linear in the left component and anti-linear in the right component. Given two normed vector space E and
F , the space of continuous linear mappings from E into F will be denoted by L(E,F ) and when E = F we
will simply write L(E). The corresponding operator norms will be denoted by ∥ ⋅ ∥L(E,F ) or ∥ ⋅ ∥L(E).

6.1. The operators H,H0, eγcV . The operator H is made up of several pieces. The first piece is the
operator P defined in (4.4), which is a self-adjoint non-negative unbounded operator on L2(ΩT). It has
discrete spectrum (λkl)k,l∈N , but to simplify the indexing we shall order them in increasing order (without
counting multiplicity) and denote them by

σ(P) = {λj ∣ j ∈ N, λj < λj+1}.

We denote by

(6.2) Ek ∶= {F ∈ L2
(ΩT) ∣1[0,λk](P)F = F} = ⊕

j 6 k

ker(P − λj)

the sum of eigenspaces with eigenvalues less or equal to λk and Πk ∶ L
2(ΩT)→ Ek the orthogonal projection.

We also will use the important fact

(6.3) Ek ⊂ L
p
(ΩT), ∀p <∞.

The quadratic form associated to H is the form Q defined in Subsection 5.2, with domain D(Q). We will
consider the self-adjoint extension associated of H obtained using the quadratic form Q. The operator
H0 ∶ D(H0) → L2 corresponds to the case µ = 0, its quadratic form has domain D(Q0) containing D(Q).
We recall that

H ∶ D(Q)→ D
′
(Q), H0

∶ D(Q)→ D
′
(Q)

if D′(Q) is the dual of D(Q). We then define eγcV ∶ D(Q)→ D′(Q) by the equation

(6.4) H = H0
+ eγcV = −

1

2
∂2
c +

1

2
Q2

+P + eγcV.
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We will define the associated quadratic form

QeγcV ∶= Q −Q0

defined on D(Q) and remark that

QeγcV (u,u) = ∫
R
eγcQV (u,u)dc

for some well-defined quadratic form QV , defined on a domain D(QV ) ⊂ L2(ΩT) containing Ek for each
k > 0.

For our study of the resolvent of H, we need to introduce the orthogonal projection

Πk ∶ L
2
(ΩT)→ Ek,

extended trivially in the c variable as Πk ∶ L
2(R ×ΩT)→ L2(R;Ek).

Lemma 6.1. Let χ ∈ L∞(R)∩C∞(R) with support in (−∞,A) for some A ∈ R and χ′ ∈ L∞(R) . Then, for
all β > − γ/2 and β′ ∈ R, the following operators are bounded

χΠk ∶ D(Q)→ D(Q), χΠk ∶ D
′
(Q)→ D

′
(Q)

χeγcVΠk ∶ e
β′cL2

(R ×ΩT)→ e(β
′−β)c
D
′
(Q),

χeγcΠkV ∶ e(β−β
′)c
D(Q)→ e−β

′cL2
(R;Ek),

χΠke
γcVΠk ∶ e

β′cL2
(R ×ΩT)→ e(β

′−β)cL2
(R;Ek).

If β > −γ/2 then one also has

χeγcVΠk ∶ e
β′cL∞(R ×ΩT)→ e(β

′−β)c
D
′
(Q).

Proof. For the first operator χΠk, it suffices to check that for u ∈ L2((−∞,A);Ek), QeγcV (u) 6 Ck∥u∥
2
L2 .

Since there is Ck > 0 depending on k such that for all F ∈ Ek, QV (F ) 6 Ck∥F ∥2
L2(ΩT), we have

QeγcV (u) 6 Ck ∫
A

−∞
eγc∥u∥2

L2(ΩT)dc 6 Ck,A∥u∥
2
L2(R×ΩT).

The extension of χΠk to D′(Q) follows by duality, using that Π∗
k = Πk on L2. Next, we analyze χeγcVΠk.

It suffices to deal with the case β′ = 0 since eβ
′c commutes with eγcV . Using that for F ∈ L2(R;Ek) and

χ ∈ L∞(R) with support in R−, we have by Cauchy-Schwarz that for all u ∈ D(Q)

∣⟨χ(c)e(γ+β)cV F,u⟩∣ 6 ∫
A

−∞
χ(c)e(γ+β)c∣QV (F,u)∣dc 6 ∥χ∥L∞(∫

A

−∞
eγcQV (u)dc)

1
2

(∫

A

−∞
e(γ+2β)c

QV (F )dc)
1
2

6 Ck,A∥χ∥L∞∥F ∥L2Q(u)1/2

for some constant Ck,A > 0, provided γ + 2β > 0. The same argument also holds for F ∈ L∞(R;Ek). Finally,

χΠke
γcV = χeγcΠkV makes sense as a map eβcD(Q) → eβcD′(Q) using the boundedness Πk ∶ D

′(Q) →

D′(Q). To prove that it actually maps to L2 if γ + 2β > 0, we note that for all u′ ∈ C

∣⟨χΠke
γcV u,u′⟩∣ = ∣⟨χeγcV u,Πku

′
⟩∣ = ∣∫

A

−∞
χ(c)eγcQV (u,Πk(u

′
))dc∣ 6 Ck,A∥χ∥L∞Q(e−βcu)1/2

∥u′∥L2

where the last bound is obtained as above by Cauchy-Schwarz and the bounds on QV on Ek. For the last
term χΠkVΠk, we take u ∈ L2(R ×Ω) and note that for u′ ∈ D(Q)

∣⟨eβcΠkVΠku,u
′
⟩∣ =∣⟨χeβcΠkVΠku,Πku

′
⟩∣ 6 ∣∫

A

−∞
χ(c)e(γ+β)cQV (Πku),Πku

′
)dc∣

6 ∣∫

A

−∞
χ(c)e(γ+β)cQV (Πku)

1
2QV (Πku

′
)

1
2 dc∣ 6 Ck,A∥u∥L2∥u′∥L2

showing that ∥eβcΠkVΠku∥2 6 Ck,A∥u∥2. �

First, we show a useful result for the spectral decomposition.

Lemma 6.2. The operator H does not have non-zero eigenvectors u ∈ D(H). If γ ∈ (0,1), the spectrum of

H is given by σ(H) = [
Q2

2
,∞) and consists of essential spectrum.
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Proof. In the case γ ∈ (0,1), the space C is included in D(H). It is then easy to check that σ(H) = [
Q2

2
,∞)

consists only of essential spectrum by using Weyl sequences (eipcχ(2−nc)/ωn)n ∈ N where χ ∈ C∞
c (R) have

support in [− 3
2
,−1] and equal to 1 on some interval, with ωn = ∥χ(2−n⋅)∥L2(R).

Let u ∈ D(H) such that Hu = λu with λ ∈ [
Q2

2
,∞). Then u ∈ D(Q) (hence ∂cu ∈ L2), and it satisfies

Q(u, v) = ⟨λu ∣ v⟩2 for all v ∈ D(Q). Now we claim

Lemma 6.3. Assume we are given f ∈ L2 such that ∂cf ∈ L2. Consider u ∈ D(Q) such that

(6.5) Q(u, v) = ⟨f ∣ v⟩2, ∀v ∈ D(Q).

Then ∂cu ∈ D(Q) and

(6.6) Q(∂cu, v) = ⟨∂cf ∣ v⟩2 − γ ∫ eγc ∫
2π

0
E[ushiftvshift]dθdc, ∀v ∈ D(Q).

We postpone the proof of this lemma and conclude first. Consider next (6.5) with f = λu and choose
v = ∂cu ∈ D(Q) to obtain Q(u, ∂cu) = ⟨λu ∣∂cu⟩2 = 0. Also, choosing v = u in (6.6) we obtain Q(∂cu,u) =

⟨λ∂cu ∣u⟩2 − γ ∫ e
γc
∫

2π
0 E∣ushift∣

2dθdc. These relations imply γ ∫ e
γc
∫

2π
0 E∣ushift∣

2dθdc = 0. In the case when

γ ∈ (0,
√

2) then V exists as a fairly defined function and this relation translates into ∥eγc/2V 1/2u∥2 = 0.
Hence u = 0 as V > 0 almost surely. In the general situation γ ∈ (0,2), the argument is as follows: the relation

γ ∫ e
γc
∫

2π
0 E∣ushift∣

2dθdc = 0 implies that Q(u, v) = Q0(u, v) for all v ∈ C. Therefore, u ∈ D(H0) and u is an
eigenfunction H0, hence u = 0 (cf. Remark 4.6). �

Proof of Lemma 6.3. For h > 0, introduce the translation operator Th ∶ L
2 → L2 by Thv ∶= v(c + h, ⋅) and

the discrete derivative operator Dh ∶ L
2 → L2 by Dhv ∶= (Thv − v)/h. Note that Th maps D(Q) into itself,

that ∥Dhv∥2 6 ∥∂cv∥2, Dhushift = (Dhu)shift and we have the discrete IPP ⟨Dhu ∣ v⟩2 = −⟨u ∣D−hv⟩2 for all
u, v ∈ L2. Now we can replace v by D−hv in (6.5) and use discrete IPP to obtain

Q(Dhu, v) =⟨Dhf, v⟩2 − ∫ ∫

2π

0
E[(The

γc
− eγc)Dhushiftvshift]dθdc(6.7)

− ∫ ∫

2π

0
E[Dh(e

γc
)ushiftvshift]dθdc, ∀v ∈ D(Q).(6.8)

Next we choose v =Dhu and, using the inequality ab 6 ε
2
a2 + 1

2ε
b2 for arbitrary ε > 0, we obtain the a priori

estimate (for some constant C > 0 depending only on γ)

Q(Dhu,Dhu) 6
1

2
(∥Dhf∥

2
2 + ∥Dhu∥

2
2) − (eγh − 1)∫ ∫

2π

0
E(eγc∣Dhushift∣

2
)dθdc

+
1

2
∣
eγh − 1

h
∣(ε−1

∫ ∫

2π

0
E(eγc∣ushift∣

2
)dθdc + ε∫ ∫

2π

0
E(eγc∣Dhushift∣

2
)dθdc)

6 (C + ε−1
)(∥∂cf∥

2
2 +Q(u,u)) +C(ε + h)Q(Dhu,Dhu)

(6.9)

for all h > 0 small, and therefore the last term can be absorded in the left hand side if ε, h > 0 are small
enough. Then, writing (6.7) for h and h′, subtracting and then choosing v =Dhu −Dh′u, we find

Q(Dhu −Dh′u,Dhu −Dh′u) 6 C(∥Dhf −D−h′f∥
2
2 + ∣h − h′∣Q(u,u) + ∣h − h′∣Q(D(h−h′)u,D(h−h′)u)).

Using (6.9) with h replaced by h−h′ to bound the last term, we obtain that the sequence (Dhu)h is Cauchy
for the Q-norm. Hence the limit ∂cu belongs to D(Q). �

Remark 6.4. When γ ∈ [1,2) the spectrum is also [Q2/2,∞) and is made of essential spectrum, and this
will follow from our analysis of the resolvent: in fact we will show for γ ∈ (0,2) that the spectrum of H is
absolutely continuous.

6.2. Resolvent of H. To describe the spectral measure of H and construct its generalized eigenfunctions,
the main step is to understand the resolvent of H as a function of the spectral parameter, in particular when
the spectral parameter approach the spectrum. Due to the fact that the spectrum of H starts at Q2/2, it
is convenient to use the spectral parameter 2∆α where ∆α = α

2
(Q − α

2
) and α ∈ C. That way we have with

α = Q + ip
H − 2∆α = − 1

2
∂2
c +P + eγcV − 1

2
p2
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where p ∈ R plays the role of a frequency: in particular 2∆α ∈ [Q2/2,∞) if and only if p ∈ R. The half-plane
{α ∈ C ∣Re(α) < Q} is mapped by ∆α to the resolvent set C∖ [Q2/2,∞) of H and will be called the physical
sheet. By the spectral theorem

R(α) = (H − 2∆α)
−1
∶ L2

(R ×ΩT)→ D(H)

is bounded if Re(α) < Q. Our goal is to extend this resolvent up to the line Re(α) = Q analytically, and we
will actually do it in an even larger region. The price to pay is that R(α) will not be bounded on L2 but
rather on certain weighted L2 spaces, where the weights are eβc in the region c 6 − 1, with β ∈ R tuned
with respect to α.

Resolvent and propagator on weighted spaces in the probabilistic region. Our first task is to understand the
resolvent on weighted spaces in a subregion of Re(α) < Q, that we call the probabilistic region due to the
fact that the resolvent can be written in terms of the semigroup e−tH.

Let ρ ∶ R→ R be a smooth non-decreasing function satisfying

ρ(c) = c + a for c 6 − 1, ρ(c) = 0 for c > 0, 0 6 ρ′ 6 1

for some a ∈ R. We have for β > 0 the inclusion of weighted spaces

eβρ(c)L2
(R ×ΩT) ⊂ L

2
(R ×ΩT) ⊂ e

−βρ(c)L2
(R ×ΩT).

The weighted spaces eβρ(c)L2(R×ΩT) are obviously Hilbert spaces with product ⟨u, v⟩eβρL2 ∶= ⟨e−βρu, e−βρv⟩2.

Lemma 6.5. Let β ∈ R. If Re((α−Q)2) > β2 and Re(α) < Q, the resolvent R(α) = (H− 2∆α)
−1 extends to

a bounded operator

R(α) ∶ e−βρL2
(R ×ΩT)→ e−βρD(H),

R(α) ∶ e−βρD′(Q)→ e−βρD(Q)

which is analytic in α in this region. The operator H ∶ e−βρL2 → e−βρL2 is closed with domain e−βρD(H), it
is a bijective mapping e−βρD(H)→ e−βρL2 with inverse R(α). Moreover, for α ∈ (−∞,Q) and 0 6 β < Q−α,
the resolvent is bounded with norm ∥R(α)∥L(e−βρL2) 6 2((α −Q)2 − β2)−1 and is equal to the integral

(6.10) R(α) = ∫
∞

0
e−tH+t2∆αdt

where e−tH is the semigroup on e−βρL2 obtained by Hille-Yosida theorem with norm

(6.11) ∀t > 0, ∥e−tH∥L(e−βρL2) 6 e
−tQ

2−β2

2 .

The integral (6.10) converges in L(e−βρL2) operator norm and e−tH ∶ e−βρL2 → e−βρL2 extends the semigroup
defined in (3.31). Finally, e−tH ∶ eβρD(Q) → eβρD(Q) and e−tH ∶ eβρD′(Q) → eβρD′(Q) are bounded and
for each ε > 0 there is some constant Cε > 0 such that for all t > 0

(6.12) ∥e−tH∥L(eβρD(Q)) + ∥e−tH∥L(eβρD′(Q)) 6 Cεe
−t(Q

2−β2

2 −ε).

Proof. Consider the operator for β ∈ R, acting on the space C (defined in (4.10)) and with value in eβρD′(Q),

Hβ ∶= e
βρ(c)He−βρ(c) = H −

β2

2
(ρ′(c))2

+
β
2
ρ′′(c) + βρ′(c)∂c.

Let u ∈ C, then we have (using integration by parts)

Re⟨Hβu ∣u⟩2 = Q(u) − β2

2
∥ρ′u∥2

2 +
β
2
⟨ρ′′u ∣u⟩2 + βRe(⟨ρ′∂cu ∣u⟩2)

= Q(u) − β2

2
∥ρ′u∥2

2

> Q(u) − β2

2
∥u∥2

2 >
Q2−β2

2
∥u∥2

2 +
1
2
∥∂cu∥

2
2 + ∥P1/2u∥2

2 +QeγcV (u,u),

(6.13)

where Q was defined in Section 5.2. Consider the sesquilinear form Qα,β(u, v) ∶= ⟨(Hβ − 2∆α)u ∣ v⟩2 defined

on C. We easily see that if −Re(2∆α) >
β2−Q2

2
, then

{u ∈ L2
(R ×ΩT) ∣Qα,β(u,u) <∞} = D(Q).
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Let D′(Q) be the dual of D(Q) (note that L2 ⊂ D′(Q)). By Lax-Milgram, if −Re(2∆α) >
β2−Q2

2
, then for

each f ′ ∈ D′(Q), there is a unique u ∈ D(Q) such that

(6.14) ∀v ∈ D(Q), Qα,β(u, v) = f
′
(v), Q(u)1/2 6 C ′

∥f ′∥D′(Q)

for all v ∈ D(Q), where C ′ > 0 depends only on Re(2∆α) and β2. This holds in particular for the linear form
f ′ ∶ v ↦ ⟨f ∣ v⟩2 with norm ∥f ′∥D′(Q) 6 C∥f∥2 for some C > 0 depending on Re(2∆α) and β2. We define

R̃(α)(e−βρf) ∶= e−βρu, this gives a bounded linear operator

(6.15) R̃(α) ∶ e−βρD′(Q)→ e−βρD(Q) ⊂ e−βρL2

inverting the bounded operator eβρ(H − 2∆α)e
−βρ ∶ D(Q) → D′(Q). Moreover, by (6.13), its weighted

L2-norm is bounded by

(6.16) ∥R̃(α)∥L(e−βρL2) 6 2(Re((α −Q)
2
− β2

))
−1

= (
Q2−β2

2
− 2Re(∆α))

−1

Using D(Q) ⊂ e−βρD(Q) and the uniqueness property above, this means that for f ∈ L2, we have R(α)f =

R̃(α)f and thus R̃(α) is a continuous extension of R(α) to the Hilbert space e−βρL2. The analyticity in α
comes from Lax-Milgram, but can also alternatively be obtained by Cauchy formula (for ε > 0 small)

R̃(α)f =
1

2πi
∫
∣z−α∣=ε

R̃(z)f

z − α
dz

which holds for all f ∈ C (since R̃(α)f = R(α)f for such f), and can then be extended to e−βρL2 by density
of C in e−βρL2. The domain D(eβρHe−βρ) = {u ∈ D(Q) ∣ eβρHe−βρu ∈ L2} of the operator eβρHe−βρ is
actually equal to D(H) = {u ∈ D(Q) ∣Hu ∈ L2} since

(6.17) e−βρH(eβρu) = Hu − β2

2
(ρ′(c))2u − β

2
ρ′′(c)u − βρ′(c)∂cu

with ρ′ ∈ C∞
c (R) (thus ρ′(c)∂cu ∈ L2 for u ∈ D(Q)). The operator H ∶ e−βρD(H) → e−βρL2 is thus closed.

By Hille-Yosida theorem, there is an associated bounded semigroup e−tH on e−βρL2, and by density of
L2 ⊂ e−βρL2 when β > 0, it is an extension of the e−tH semigroup on L2 . Let us check that the resolvent
can be written as an integral of the propagator. For f ∈ C ⊂ L2, we have

R̃(α)f = R(α)f = ∫

∞

0
e−tH+t2∆αf dt.

By Hille-Yosida theorem and (6.15), we have ∥e−tH∥L(e−βρL2) 6 e−t
Q2−β2

2 , so that the integral above con-

verges if Q−α > β (for α ∈ (−∞,Q)) as a bounded operator on e−βρL2, showing the desired claim by density
of C in e−βρL2.

We conclude with a eβρD′(Q) bound for R̃(α) and e−tH. First, we note using (6.17) that for u ∈ D(Q)

∣Im(Qα,β(u,u))∣ > (∣Im(2∆α)∣ − β
2
) ∥u∥2

2 −
1
4
∥∂cu∥

2
2,

which implies

∣(Qα,β(u,u)∣ >
1

√
2
(c∆α∥u∥

2
+ 1

4
∥∂cu∥

2
2 + ∥P1/2u∥2

2 +QeγcV (u,u)).

cz ∶= min ( − 2Re(z) + 2∣Im(z)∣ + Q2−3β2

2
,−2Re(z) + Q2−β2

2
).

This in turn gives that, provided Re(−2∆α) + ∣Im(2∆α)∣ +
Q2−3β2

2
> 0, R̃(α) ∶ e−βρL2 → e−βρL2 is also

well-defined, analytic in α and bounded, and moreover satisfies for ∣∆α∣ ≫ 1 and Re(∆α) 6
1
2
∣Im(∆α)∣

∥R̃(α)∥L(e−βρL2) 6 C ∣∆α∣
−1

where C > 0 is a uniform constant. First, for each ε > 0, there is Cε > 0 such that for all f ∈ e−βρD(Q),
u ∶= R(α)f

Q(u,u) 6 CεRe(Qα,β(u,u)) 6 Cε∣⟨u ∣ f⟩2∣ 6
Cε
c∆α

∥f∥2
2
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Re(α) = Q

Re((α −Q)2) > β2

Figure 2. The blue region corresponds to the set of parameters α ∈ C such that Re((α −
Q)2) > β2, i.e. region of validity of Lemma 6.5 (here β = 1 on the plot).

if c∆α > 0, thus for cz > 0

∥(H − z)−1
∥L(e−βρD(Q)) 6 C

1/2
ε c−1/2

z

∥(H − z)−1
∥L(e−βρL2) 6 Cεc

−1
z .

(6.18)

Let us consider a contour Γ = Γ0 ∪ Γ+ ∪ Γ− ⊂ C with a ∶=
Q2−β2

2
− ε, Γ± ∶= a ± iN + e±3iπ/8R+ ⊂ C and

Γ0 = a + i[−N,N] for some N > 0 large enough so that cz > 0 on Γ, and where Γ oriented clockwise around
[a,+∞). Using the holomorphic functional calculus, we have

e−tH =
1

2πi
∫

Γ+∪Γ−
e−tz(H − z)−1dz

and the integral converges both in L(e−βρL2) and L(e−βρD(Q)) using (6.18), with bound

∥e−tH∥e−βρD(Q) 6 Ce
−ta

for some some C depending only on ε > 0. Using duality, this gives (6.12). �

In what follows, we will always write R(α) for the resolvent, for both the operator acting on L2 or acting
on e−βρL2.

Poisson operator in the probabilistic region. For ` ∈ N, we shall define the Poisson operator P`(α) in the
resolvent set. This operator is a way to construct the generalized eigenfunctions of H: it takes an element
F ∈ E` ⊂ L

2(ΩT) and produces a function u = P`(α)F solving (H − 2∆α)u = 0 with a prescribed leading
asymptotic in terms of F as c→ −∞.

First, we explain in details our convention on square roots in C and since it will be important in the proof
and to avoid confusions for the reader. We will denote by

√
⋅ the square root defined so that Im(

√
z) > 0

if z ∈ C ∖ R+, i.e.
√
reiθ =

√
reiθ/2 for θ ∈ (0,2π) and r > 0. In particular, one has

√
z2 = z for Im(

√
z) > 0

and this extends holomorphically to z ∈ C. For λ ∈ R+, the function
√
z2 − λ will be of special interest to us:

it is well-defined and analytic in {Im(z) > 0} ∪ (−
√
λ,

√
λ) (since z2 ∉ [λ,∞) in this region) and it extends

analytically in a neighborhood of the half lines (−∞,−
√
λ) and (

√
λ,+∞), for exemple in z ∈

√
λ +R+e−iθ

and z ∈ −
√
λ + R+ei(π+θ) for θ ∈ [0, ε). With that convention, which will be used all along this Section on

scattering for H, we have
√
z2 − λ > 0 if z ∈ (

√
λ,∞) while

√
z2 − λ < 0 if z ∈ (−∞,−

√
λ). Later we will view

these functions as holomorphic functions on a Riemann surface.
We note the following elementary property, which will be useful in the following.
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Lemma 6.6. For z ∈ C ∖R+, the following map is non-decreasing

x ∈ R+
↦ Im

√
z − x.

Proof. It suffices to differentiate in x. �

Let χ ∈ C∞(R) be equal to 1 in (−∞, a − 1) and equal to 0 in (a,+∞) for some a ∈ (0,1/2), then for
α = Q + ip with Im(p) > 0 we choose

(6.19) β` > max
j=0,...,`

Im
√
p2 − 2λj − γ/2 = Im

√
p2 − 2λ` − γ/2, and β` > 0.

Then for Re((α −Q)2) > β2
` we define

(6.20)

P`(α) ∶ {
E` = ⊕

`
j=0 ker(P − λj) → e−(β`+γ/2)ρD(Q)

F = ∑0 6 j 6 ` Fj ↦ χF−(α) −R(α)(H − 2∆α)(χF−(α)),

with F−(α) ∶=
`

∑
j=0

Fje
ic
√
p2−2λj .

We will show in the following Lemma that this definition makes sense by using Lemma 6.5. Before going
to the proof of it, recall that Im

√
p2 − 2λj > 0 for Re(α) < Q by Lemma 6.6, and note that the condition

Re((α −Q)2) > β2
` implies that Im

√
p2 − 2λj > Im(p) > β` for all j = 0, . . . , `. We then emphasize that the

main reason for P`(α)F to be defined and non-trivial is that χF−(α) ∈ e
−(β`+γ/2)ρD(Q) ∖ e−β`ρD(Q) and

(H−2∆α)(χF−(α)) ∈ e
−β`ρD′(Q) so that R(α)(H−2∆α)(χF−(α)) is well-defined but not equal to χF−(α).

Lemma 6.7. For each ` ∈ N, let β` > 0, then the operator P`(α) is well-defined, bounded and holomorphic
in the region

(6.21) {α = Q + ip ∈ C ∣Re(α −Q) < 0, Re((α −Q)
2
) > β2

` , β` > Im
√
p2 − 2λ` − γ/2}

and it satisfies in e−(β`+γ/2)ρD′(Q)

(6.22) (H − 2∆α)P`(α) = 0,

and in the region c 6 − 1, one has the asymptotic behaviour, with Fj ∶= (Πj −Πj−1)F ,

(6.23) P`(α)F =
`

∑
j=0

Fje
ic
√
p2−2λj + F+(α), F+(α) ∈ e

−β`ρD(Q).

Proof. First we observe that (H0 − 2∆α)F−(α) = 0 thus

(H − 2∆α)χF−(α) = −
1
2
χ′′(c)F−(α) + e

γcV χF−(α) − χ
′
(c)∂cF−(α).

We note that χ′, χ′′ have compact support in R, and also for each u ∈ D(Q)

∣⟨χeγc+β`ρV F−(α), u⟩∣ 6 ∫
R−
eγc+β`ρ∣QV (F−(α), u)∣dc 6 (∫

R−
eγcQV (u)dc)

1
2

(∫
R−
eγcQV (eβ`ρF−)dc)

1
2

6 Q(u)1/2
QeγcV (eβ`ρF−)

1
2

and QeγcV (eβ`ρF−) <∞ by using (6.21) and the fact that QV (ψ) <∞ for all ψ ∈ E`. We obtain that

χF−(α) ∈ e
−(β`+γ/2)ρD(Q), (H − 2∆α)χF−(α) ∈ e

−β`ρD′(Q).

This shows, using Lemma 6.5, that R(α)(H − 2∆α)(χF−(α)) is well-defined as an element of e−β`ρD(Q),
with holomorphic dependence in α, provided Re((α−Q)2) > β2

` . By construction, it clearly also solves (6.22)

in e−(β`+γ/2)ρD′(Q). �

Note that the error term F+(α) in (6.23)is smaller than the bigger term in F−(α) but is not necessarily
neglectible with respect to all terms of F−(α).

We also notice that where they are defined, we have for j > 0, ` > 0

(6.24) P`+j(α)∣E` = P`(α)∣E` .
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Re(α) = Q Re(α) = Q

Probabilistic
regions (6.21)

Near spectrum
regions (6.62)

Figure 3. Left picture: regions of definition of the Poisson operator P0(α) (for the plot, we
take γ = 1/2 and β0 is optimized to obtain the largest possible region). Right picture: regions
of definition of the Poisson operator P`(α) with ` > 0 (for the plot we take λ` = 4,γ = 1/2
and β` optimized).

In (6.20), the definition of the operator P`(α) seemingly depends on the cutoff function χ. In fact, we
can show that this is not the case. We state a lemma below in this direction

Lemma 6.8. For ` ∈ N, β` satisfying (6.19) and for Re((α − Q)2) > β2
` the definition of the operator

P`(α)∣E` does not depend on χ.

Proof. Pick two functions χ, χ̂ satisfying our assumptions and denote by Pχ` (α),P
χ̂
` (α) the corresponding

Poisson operators. Set d(χ) ∶= χ − χ̂. Then observe that for F ∈ E`

P
χ
` (α)F −P

χ̂
` (α)F = d(χ)F−(α) −R(α)(H − 2∆α)(d(χ)F−(α)).

Now we note that d(χ)F−(α) ∈ D(Q) since d(χ)(c) = 0 for c ∉ (−1, a) for some a > 0 and QV is bounded on
E`. Then R(α)(H − 2∆α)(d(χ)F−(α)) = d(χ)F−(α) since (H − 2∆α) ∶ D(Q) → D′(Q) is an isomorphism,

hence Pχ` (α)F −P
χ̂
` (α)F = 0. �

We can also rewrite the construction of the Poisson operator using the propagator.

Proposition 6.9. The following properties hold true:
1) Let ` ∈ N and let F ∈ L2(ΩT) ∩ ker(P − λj) for j 6 `. Then we have the identity

P`(α)F = lim
t→+∞

et2∆αe−tH(eic
√
p2−2λjχ(c)F)

in e−(β+γ/2)ρD′(Q) provided Re((α −Q)2) > β2 with β > Im(
√
p2 − 2λj) − γ/2 and α = Q + ip. Furthermore

if Im(
√
p2 − 2λj) > γ then we can take χ = 1 in the above statement.

2) Let F ∈ L2(ΩT) ∩ ker(P). If α ∈ R with α < Q, then dc⊗P almost everywhere

P0(α)F = lim
t→+∞

et2∆αe−tH(e(α−Q)cF).

Proof. We first prove 1). Recall that H = H0 + e
γcV . We have

(H − 2∆α)(χ(c)e
iνjcF ) = χ(c)e(iνj+γ)cV F − χ̃(c)Feiνjc

where νj ∶=
√
p2 − 2λj and χ̃(c) ∶= 1

2
χ′′(c)+ iνjχ

′(c) ∈ C∞
c (R), and this belongs to e−βρD′(Q). Using Lemma

6.5,

P`(α)F = χ(c)eiνjcF −R(α)(e(iνj+γ)cV χF − χ̃eiνjcF )
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provided Re((α −Q)2) > β2 for any β > Im(νj) − γ/2. Noticing that the bound (6.11) remains valid with

V = 0, we can make sense of u(t) ∶= e−tH0(χ(c)eiνjcF ) as an element in e−β0ρL2(R;Ej) for any β0 > Im(νj).
Then

(∂t + 2∆α)u(t) = e
−tH0(−H0 + 2∆α)(χ(c)e

iνjcF ) = e−tH0(eiνjcFχ̃(c))

thus we get by integrating in t

e−t(H0−2∆α)(χ(c)eiνjcF ) =χ(c)eiνjcF + ∫

t

0
e−s(H0−2∆α)(eiνjcFχ̃(c))ds

=χ(c)eiνjcF + (1 − e−t(H0−2∆α))R0(α)(e
iνjcFχ̃(c))

(6.25)

where R0(α) ∶= (H0 − 2∆α)
−1 is defined also on e−βρL2 by taking the proof of Lemma 6.5 in the case of the

trivial potential V = 0. We also note that e−tH0(eiνjcFχ̃(c)) and e−tH0R0(α)(e
iνjcFχ̃(c)) are in L2(R;Ej)

since H0F = (Q2/2 + λj)F (and χ̃ ∈ C∞
c (R)), i.e. all terms above are functions of c with values in Ej .

We next claim that

e−tH(χ(c)eiνjcF ) = e−tH0(χ(c)eiνjcF ) − ∫

t

0
e−(t−s)HeγcV e−sH0(χ(c)eiνjcF )ds.

Indeed, first, all terms are well-defined: since e−sH0(χ(c)eiνjcF ) ∈ e−β0ρL2(R;Ej) ∩ e
−β0ρD(Q) one has

eγcV e−sH0(χ(c)eiνjcF ) ∈ e−β0ρD′(Q), and we can then use (6.12). Then the identity above is obtained since
both terms solve (∂t +H)u(t) = 0 in e−β0ρD′(Q) with u(0) = χ(c)eiνjcF in e−β0ρD(Q). By applying twice
(6.25), we thus obtain

e−t(H−2∆α)(χ(c)eiνjcF ) =χ(c)eiνjcF − et2∆α
∫

t

0
e−(t−s)HeγcV e−sH0(χ(c)eiνjcF )ds

+ (1 − e−t(H0−2∆α))R0(α)(e
iνjcFχ̃(c))

=χ(c)eiνjcF − ∫

t

0
e−(t−s)(H−2∆α)(eγcV χ(c)eiνjcF )ds

+ (1 − e−t(H0−2∆α))R0(α)(e
iνjcFχ̃(c))

− ∫

t

0
e−(t−s)(H−2∆α)eγcV (1 − e−s(H0−2∆α))R0(α)(e

iνjcFχ̃(c))ds.

Using (6.11) and (6.12) (applied with both V /= 0 and V = 0) and Re((α −Q)2) > β2, we have as bounded
operators on respectively e−βρD′(Q) and e−βρL2

lim
t→+∞∫

t

0
e−(t−s)(H−2∆α)ds = lim

t→+∞
(1 − e−t(H−2∆α))R(α) = R(α)

lim
t→+∞

(1 − e−t(H0−2∆α))R0(α) = R0(α).

This gives in particular in e−βρD′(Q)

lim
t→+∞∫

t

0
e−(t−s)(H−2∆α)(eγcV χ(c)eiνjcF )ds = R(α)(eγcV χ(c)eiνjcF ).

Similarly one has in e−βρD′(Q)

lim
t→+∞∫

t

0
e−(t−s)(H−2∆α)eγcVR0(α)(e

iνjcFχ̃(c))ds = R(α)eγcVR0(α)(e
iνjcFχ̃(c)).

Finally we claim that

lim
t→+∞∫

t

0
e−(t−s)(H−2∆α)eγcV e−s(H0−2∆α)R0(α)(e

iνjcFχ̃(c))ds = 0.

Indeed, we can apply Lebesgue theorem if one can show

∥eγcV e−s(H0−2∆α)R0(α)(e
iνjcFχ̃(c))∥eβρD′(Q) 6 e

−δs

for some δ > 0, since ∥e−(t−s)(H−2∆α)∥L(e−βρD′(Q)) → 0 by (6.12). But this estimate follows again from (6.11)

with V = 0 and the fact that R0(α)(e
iνjcFχ̃(c)) ∈ e−βρL2(R;Ej), which in turn implies that

eγcV e−s(H0−2∆α)R0(α)(e
iνjcFχ̃(c)) ∈ eβρD′(Q).
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We have thus proved that

lim
t→+∞

e−t(H−2∆α)(χ(c)eiνjcF ) =χ(c)eiνjcF −R(α)eγcV (eiνjcFχ(c) +R0(α)(e
iνjcFχ̃(c)))

+R0(α)(e
iνjcFχ̃(c)).

We conclude by observing that

R(α)(eγcV χeiνjcF − χ̃eiνjcF ) = −R0(α)(e
iνjcFχ̃) +R(α)eγcV (χeiνjcF +R0(α)(e

iνjcFχ̃(c))),

which can be established by applying (H− 2∆α) to this equation and using the injectivity of (H− 2∆α) on
e−βρD(Q) under our condition on α,β.

Notice that for Im(
√
p2 − 2λj) > γ, we have e(iνj+γ)c1(0,+∞)(c) ∈ L2(R) so that the above argument

applies with χ = 1.
Now we prove 2). As F ∈ L2(ΩT)∩ker(P−λ0), we may assume F = 1 without loss of generality. With our

assumptions, we can write α = Q + ip with p = i(Q − α) and choose (Q − α) > β > (Q − α) − γ. By applying
1), we get that

P`(α)1 = lim
t→+∞

et2∆αe−tH(e(α−Q)cχ(c))

in e−βρL2, hence dc ⊗P almost everywhere (up to extracting subsequence). We have to show that we can
replace χ by 1. For this we will use the probabilistic representation (5.4): we have

et2∆αe−tH(e(α−Q)c
(1 − χ(c))) =e−QcEϕ[Se−t(e

αc
(1 − χ(c)))e−µMγ(Dct)]

=et2∆αe(α−Q)cEϕ[e
α(Xt(0)−Qt)(1 − χ(c +Xt(0) −Qt)))e

−µMγ(Dct)].

By Girsanov’s transform this expression can be rewritten as

et2∆αe−tH(e(α−Q)c
(1 − χ(c))) =e(α−Q)cEϕ[(1 − χ(c +Xt(0) − (Q − α)t)) exp ( − µ∫

Dct
∣z∣−γαMγ(dz))].

Recalling that χ = 1 on (−∞, a − 1) and that t ↦ Xt(0) evolves as a Brownian motion independent of ϕ,
then estimating the exponential term by 1 we obtain

∣et2∆αe−tH(e(α−Q)c
(1 − χ(c)))∣ 6 e(α−Q)cP(c +Xt(0) − (Q − α)t > a − 1).

The result easily follows from this estimate. �

Meromorphic extension of the resolvent near the L2 spectrum. We denote by Z the Riemann surface on which
the functions p ↦

√
p2 − 2λj are single valued for all j. This is a ramified covering of C with ramification

points {±
√

2λj ∣ j ∈ N}, and in which we embed the region Im(p) > 0 that we call the physical sheet. We
will call π ∶ Z → C the projection of the covering. The construction of Z can be done iteratively on j, as
explained in Chapter 6.7 of Melrose’s book [Me93]. The map p ↦ α ∶= Q + ip from Im(p) > 0 to Re(α) < Q
(now called the physical sheet for the variable α) extends analytically as a map Z → Σ where Σ is an
isomorphic Riemann surface to Z (it just amounts to a linear change of complex coordinates from p to
α). We shall also denote by π ∶ Σ → C the projection. Finally we choose a specific function χ of the form
indicated previously but we further impose that χ ∈ C∞(R) is equal to 1 in (−∞,−1 + δ) and equal to 0 in
(0,+∞) (for some small δ > 0).

First, we recall the notation for the orthogonal projectors

Πk = 1[0,λk](P) ∶ L2
(ΩT,P)→ L2

(ΩT,P)

and we denote by Ek their range (which are Hilbert spaces) and E⊥k the range of 1 −Πk. The goal of this
section is to show the following:

Proposition 6.10. Assume that γ ∈ (0,
√

2) and let 0 6 β < γ/2. Then the following holds true:
1) The resolvent R(α) ∶= (H − 2∆α)

−1 is bounded as a map L2(R × ΩT) → D(H) for Re(α) < Q and for
k > 0 large enough, the operator (H − 2∆π(α))

−1 admits a meromorphic continuation to the region

{α = Q + ip ∈ Σ ∣ ∣π(p)∣2 6 λ
1
4

k ,∀j 6 k, Im
√
p2 − 2λj > −min(β, γ/2 − β)}
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as a map

R(α) ∶ eβρL2
(R ×ΩT)→ e−βρD(H),

and the residue at each pole is a finite rank operator. Moreover, for each ψ ∈ C∞(R) ∩ L∞(R) satisfying
ψ′ ∈ L∞ and supp(ψ) ⊂ (−∞,A) for some A ∈ R,

R(α)(1 −Πk)ψ ∶ D
′
(Q)→ e−βρD(Q).

2) If f ∈ eβρD′(Q) is supported in c ∈ (−∞,A) for some A > 0 and is such that Πkf ∈ eβρL2(R;Ek) and
(1 −Πk)f ∈ D′(Q), then for α as above and not a pole, one has in c 6 0

(6.26) R(α)f =
k

∑
j=0

aj(α, f)e
−ic

√
p2−2λj +G(α, f),

with aj(α, f) ∈ ker(P − λj), and G(α, f), ∂cG(α, f) ∈ eβρL2(R−;Ek) + L
2(R−;E⊥k), all depending meromor-

phically in α in the region they are defined.
3) There is no pole for R(α) in {α ∈ Σ ∣Re(α) 6 Q} ∖ ∪∞j=0{Q ± i

√
2λj} and Q ± i

√
2λj can be at most a

pole of order 1.

To prove this Proposition, we will construct parametrices for the operator H − 2∆α = H −
Q2+p2

2
in

several steps and will split the argument. More concretely, we will search for some bounded model operator
R̃(α) ∶ eβρL2(R ×ΩT)→ e−βρD(Q), holomorphic in α in the desired region of Σ, such that

(H − 2∆α)R̃(α) = 1 −K(α)

where K(α) ∈ L(eβρL2(R × ΩT)) is an analytic family of compact operators with 1 − K(α0) invertible at
some α0 belonging to the physical sheet. Then the Fredholm analytic theorem will imply that (1−K(α))−1

exists as a meromorphic family and R(α) ∶= R̃(α)(1−K(α))−1 gives us the desired meromorphic extension
of R(α). Our strategy will be based on that method with slights modifications. The continuous spectrum
of H near frequency (Q2 + p2)/2 ∈ R+ will come only from finitely many eigenmodes of P, namely those λj
for which 2λj 6 p2. This suggests, in order to construct the approximation R̃(α) to split the modes of P
depending on the value of Im(α −Q). The parametrix will be constructed in three steps as follows:

● First, we deal with the large eigenmodes for the operator P in the region c ∈ (−∞,0] of L2(R×ΩT).
We will show that this part does not contribute to the continuous spectrum at frequency (Q2+p2)/2,
and we shall obtain a parametrix for that part by energy estimates.

● Then we consider the region c > − 1 where we shall show that the model operator in that region
(essentially H on L2([−1,∞)×ΩT) with Dirichlet condition at c = 0) has compact resolvent, providing
a compact operator for the parametrix of that region.

● Finally, we will deal with the c 6 0 region corresponding to eigenmodes of P of order O(∣p∣2),
where there is scattering at c = −∞ for frequency (Q2 + p2)/2, producing continuous spectrum. The
parametrix for this part is basically the exact inverse of H0 −2∆α restricted to finitely many modes
of P.

For s > 0 and I ⊂ R an open interval, we will denote by Hs(I;L2(ΩT)) the Sobolev space of order s in
the c-variable

Hs
(I;L2

(ΩT)) ∶= {u ∈ L2
(I ×ΩT) ∣∀j 6 `, ξ ↦ ⟨ξ⟩sF(u)(ξ) ∈ L2

(I ×ΩT)}

where F denotes Fourier transform in c, and similarlyHs
0(I;L2(ΩT)) will be the completion of C∞

c (I;L2(ΩT))
with respect to the norm ∥⟨ξ⟩sF(u)∥L2(R;L2(ΩT)).

1) Large P eigenmodes in the region c 6 0. Let χ ∈ C∞(R, [0,1]) which satisfies χ(c) = 1 for c 6 −1+δ
for some δ ∈ (0, 1

2
) and χ(c) = 0 in [−1/2,∞) and χ̃ ∈ C∞(R, [0,1]) such that χ̃ = 1 on the support of

χ and supp(χ̃) ⊂ R−, and we now view these functions as multiplication operators by χ(c) on the spaces
eβρL2(R− ×ΩT). We will first show the following
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Lemma 6.11. 1) There is a constant C > 0 depending only on ∣χ̃′∣∞, ∣χ̃
′′∣∞ such that for each k ∈ N, there

is a bounded operator
R⊥k(α) ∶ L

2
(R;E⊥k)→ L2

(R−;E⊥k)

holomorphic in α = Q + ip ∈ C in the region {Re(α) < Q} ∪ {∣α −Q∣2 6 λk}, with

χ̃R⊥k(α)χ ∶ L
2
(R ×ΩT)→ L2

(R;E⊥k) ∩D(H), χ̃R⊥k(α)χ ∶ D
′
(Q)→ D(Q) ∩L2

(R;E⊥k)

bounded, so that

(6.27) (H −
Q2+p2

2
)χ̃R⊥k(α)(1 −Πk)χ = (1 −Πk)χ +L⊥k(α) +K⊥

k(α) and χ̃R⊥k(α)Πkχ = 0

with L⊥k(α) ∶ D
′(Q) → L2(R−;E⊥k) and K⊥

k(α) ∶ D
′(Q) → eβρL2(R;Ek) bounded and holomorphic in α as

above for each 0 < β < γ/2. In the region where ∣p2∣ 6 λk, one has the bound

(6.28) ∥L⊥k(α)∥L(L2) 6 Cλ
−1/2
k

and K⊥
k(α) is compact as a map L2(R ×ΩT)→ eβρL2(R;Ek).

2) Let β ∈ R, then in the region Re((α − Q)2) > β2 − 2λk + 1, the operator R⊥k(α) ∶ e−βρD′(Q) →

e−βρ(L2(R−;E⊥k)∩D(Q)) is a bounded holomorphic family, K⊥
k(α) ∶ e

−βρL2(R×ΩT)→ e−βρL2(R−;Ek) is a

compact holomorphic family, L⊥k(α) ∶ e
−βρL2(R ×ΩT)→ e−βρL2(R−;E⊥k) is bounded analytic with norm

∥L⊥k(α)∥L(e−βρL2) 6
C(1 + ∣β∣)

√
Re((α −Q)2) + 2λk − β2

for some C > 0 depending only on ∣χ̃′∣∞ and ∣χ̃′′∣∞.

Proof. Let us define Q⊥k the restriction of Q to the closed subspace

D(Q
⊥
k) ∶= D(Q) ∩L2

(R−;E⊥k) = D(Q) ∩ ker Πk ∩ ker rR+

where rR± ∶ L
2(R×ΩT)→ L2(R± ×ΩT) is the restriction for c > 0. Note that this is a closed form and is thus

the quadratic form of a unique self-adjoint operator H⊥
k, which maps D(Q⊥k) → D

′(Q⊥k) and has a domain

D(H⊥
k) ⊂ D(Q⊥k). For u ∈ D(Q⊥k) we have ∥P1/2u∥2

2 > λk∥u∥
2
2, thus for each ε > 0

(6.29) Q(u) > 1
2
∥∂cu∥

2
L2 + (

Q2

2
+ (1 − ε)λk)∥u∥

2
L2 + ε∥P

1/2u∥2
L2 +QeγcV (u,u)

and therefore the quadratic form Q⊥k(u) is bounded below by λk
2
∥u∥2

L2 on D(Q⊥k) (if ε is chosen small
enough). There is a natural injection ι ∶ D(Q⊥k) → D(Q) which we view as an inclusion. Let χ, χ̃ ∈ C∞(R)

be equal to 1 in c < −1/2 and supported in (−∞,0). Let χ̃, χ defined as χ but equal to 1 on the support of
χ. We view χ as the operator of multiplication by χ(c) on L2(R × ΩT), and similarly for χ̃. Let us check
that ιχ = χι ∶ D(H⊥

k)→ D(H) and for u ∈ D(H⊥
k)

(6.30) Hι(χu) = ι(H⊥
kχu) + χe

γcΠk(V ι(u))

(note that χu ∈ D(H⊥
k) if u ∈ D(H⊥

k) since H⊥
kχu = χH⊥

ku −
1
2
χ′′u − χ′∂cu). Here we use Lemma 6.1, which

insures that χeγcΠk(V ι(u)) makes sense. First, we have for u ∈ D(Q⊥k) that ι(u) = (1−Πk)ι(u). For such u
and for v ∈ D(Q), one gets

Q(ι(χu), v) = 1
2
⟨∂c(1 −Πk)χu, ∂c(1 −Πk)χ̃v⟩L2(R−×ΩT) +

Q2

2
∥(1 −Πk)χu, (1 −Πk)χ̃v⟩L2(R−×ΩT)+

+ ⟨P1/2
(1 −Πk)χu,P

1/2
(1 −Πk)χ̃v⟩L2(R−×ΩT) + ∫R

χ(c)eγc(QV (u, (1 −Πk)v) +QV (u,Πkv))dc

=Q
⊥
k(χu, (1 −Πk)χ̃v) + ∫

R
eγcQV (χu,Πkv)dc

=⟨H⊥
kχu, (1 −Πk)χ̃v⟩2 + ∫

R
eγcQV (χu,Πkv)dc = ⟨H⊥

kχu, v⟩L2(R−×ΩT) + ∫R
eγcQV (χu,Πkv)dc

where in the last line, ṽ ∶= (1 − Πk)χ̃v is viewed as an element in D(Q⊥k). As in the proof of Lemma 6.1,
there is a uniform constant Ck depending only on k, γ such that

∣∫
R−
eγcQV (u,Πkv)dc∣ 6 Ck ∣QeγcV (i(u))∣1/2∥v∥2
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which implies that ι(χu) ∈ D(H) since ∣⟨H⊥
kχu, v⟩L2(R−×ΩT)∣ 6 ∥H⊥

kχu∥2∥v∥2. Now we also notice that

∫
R
eγcQV (χu,Πkv)dc = ⟨eγcV χι(u),Πkχ̃v⟩2

where the pairing makes sense since eγcV χι(u) ∈ D′(Q) and Πkχ̃v ∈ D(Q) by Lemma 6.1. Moreover, using
χ̃χ = χ and Π∗

k = Πk this term is also equal to

⟨eγcV χι(u),Πkχ̃v⟩2 = ⟨χeγcΠk(V ι(u)), v⟩2.

This shows the formula (6.30).

The spectrum of H⊥
k is contained in [

Q2

2
+λk,∞) due to (6.29). It will be said to have Dirichlet condition at

c = 0, by analogy with the Laplacian on finite dimensional manifolds. The resolvent R⊥k(α) ∶= (H⊥
k−

Q2+p2

2
)−1

(with α = Q + ip) is well defined as a bounded map

R⊥k(α) ∶ L
2
(R−;E⊥k)→ D(H⊥

k) R⊥k(α) ∶ D
′
(Q
⊥
k)→ D(Q

⊥
k)

if p ∈ C is such that p2 ∉ [2λk,∞), with L2 norm

(6.31) ∥R⊥k(α)∥L(L2) 6 2/λk for ∣p∣2 6 λk.

It is also holomorphic in α in {Re(α) < Q}∪{∣α−Q∣2 < λk}. We also define the dual map ιT ∶ D′(Q)→ D′(Q⊥k)

(which also maps L2(R ×ΩT)→ L2(R−;E⊥k). We get

ιχR⊥k(α)ι
T
(1 −Πk) ∶ L

2
(R−

×ΩT)→ D(H) ∩L2
(R;E⊥k) ιR⊥k(α)ι

T
∶ D

′
(Q)→ D(Q)

with the same properties. To avoid heavy notations, we shall now remove the ι, ιT maps in the notations so
that we view χR⊥k(α)(1 −Πk) as map L2(R− ×ΩT)→ D(H) ∩L2(R;E⊥k).

Using (6.29) with u = R⊥k(α)f we also obtain that

(6.32) ∥∂cR
⊥
k(α)∥L(L2) 6

√
4

λk
, for ∣p∣2 6 λk/2.

Now we fix χ, χ̃ as defined before the Lemma. Thus, using ΠkH0 = H0Πk and (6.30), we get for α = Q + ip

(H −
Q2+p2

2
)χ̃R⊥k(α)(1 −Πk)χ =(1 −Πk)χ −

1
2
[∂2
c , χ̃]R

⊥
k(α)(1 −Πk)χ + e

γcχ̃ΠkVR⊥k(α)χ(1 −Πk)

=∶(1 −Πk)χ +L⊥k(α) +K⊥
k(α).

Since [∂2
c , χ̃] is a first order operator with compact support in c commuting with Πk, we notice that

L⊥k(α) ∶ D
′(Q)→ L2(R−;E⊥k) and we can use (6.32), (6.31) to deduce that there is C > 0 depending only on

∣χ̃′∣∞, ∣χ̃
′′∣∞ such that

∥L⊥k(α)∥L(L2) 6 Cλ
−1/2
k

as long as ∣p2∣ 6 λk. Let us now deal with K⊥
k(α). First, notice that K⊥

k(α) maps D′(Q) to eγρ/2L2(R−;Ek):
indeed,

R⊥k(α)(1 −Πk)χ ∶ D
′
(Q)→ D(Q), eγcχ̃ΠkV ∶ D(Q)→ eγρ/2L2

(R−;Ek)

using Lemma 6.1 with β = β′ = −γ/2. We would like to prove some regularization property in c to deduce
that K⊥

k(α) is compact on L2 (or some weighted L2 space). First, we have

∂cH
⊥
k = H⊥

k∂c + γe
γc

(1 −Πk)V (1 −Πk)

thus applying R⊥k(α) on the left and right:

R⊥k(α)∂c = ∂cR
⊥
k(α) + γR⊥k(α)e

γcVR⊥k(α).

Here the last term really is R⊥k(α)ι
T eγcV ιR⊥k(α), viewed as a bounded map L2(R−;E⊥k) → D(Q⊥k) using

eγcV ∶ D(Q)→ D′(Q). Therefore (using [∂c, V ] = 0)

∂cK
⊥
k(α) =γK⊥

k(α) + e
γcχ̃′ΠkVR⊥k(α)(1 −Πk)χ

+ χ̃eγcΠkVR⊥k(α)∂cχ − γe
γcχ̃ΠkVR⊥k(α)e

γcVR⊥k(α)χ.
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Just as above, the first two terms map D′(Q) to eγρ/2L2(R;Ek). Next, ∂cχ ∶ L
2(R ×ΩT)→ D

′(Q), R⊥k(α) ∶
D′(Q)→ D(Q) and χ̃eγcΠkV ∶ D(Q)→ L2(R ×ΩT) are bounded (using again Lemma 6.1), so

χ̃eγcΠkVR⊥k(α)∂cχ ∶ L
2
(R ×ΩT)→ eγρ/2L2

(R;Ek)

is bounded. Finally, by Lemma 6.1

χ̃eγcΠkVR⊥k(α) ∶ D
′
(Q
⊥
k)→ eγρ/2L2

(R;Ek), eγcVR⊥k(α)χ ∶ L
2
→ D

′
(Q
⊥
k)

is bounded so

eγcχ̃ΠkVR⊥k(α)e
γcVR⊥k(α)χ ∶ L

2
(R ×ΩT)→ eγρ/2L2

(R;Ek)

is also bounded and therefore ∂cK
⊥
k(α) ∶ L

2(R ×ΩT)→ eγρ/2L2(R;Ek). This shows that

K⊥
k(α) ∶ L

2
(R ×ΩT)→ eγρ/2H1

0(R;Ek).

It is then easy to see this is a compact operator on L2 as announced since eγρ/2H1
0(R;Ek) injects com-

pactly into eβρL2(R × ΩT) for β < γ/2 by using that Ek has finite dimension. We conclude that K⊥
k(α) is

compact as a map L2(R×ΩT)→ eβρL2(R×ΩT) if β < γ/2. Moreover K⊥
k(α),L

⊥
k(α) are holomorphic in α ∈ C

in the region {Re(α) < Q} ∪ {∣α −Q∣2 < λk} since R⊥k(α) is. This concludes the proof of 1).

Let us next consider the region {Re(α) 6 Q}, and we proceed as in Lemma 6.5. Let H⊥
k,β ∶= e

βρH⊥
ke

−βρ

for β ∈ R which is also given by

H⊥
k,β = H⊥

k + (1 −Πk)( −
β2

2
(ρ′(c))2

+
β
2
ρ′′(c) + βρ′(c)∂c)

and the associated sesquilinear form on D(Q⊥k)

Q
⊥
k,β(u) ∶= Q

⊥
k(u) −

β2

2
∥ρ′u∥2

2 +
β
2
⟨ρ′′u,u⟩2 + β⟨∂cu, ρ

′u⟩2.

Note that on D(Q⊥k), we have

Re(Q⊥k,β(u)) > Q
⊥
k(u) −

β2

2
∥u∥2

2 >
1
2
∥∂cu∥

2
2 + (

Q2−β2

2
+ λk)∥u∥

2
2 + ∥e

γc
2 V

1
2u∥2

2.

This implies by Lax-Milgram, just as in the proof of Lemma 6.5, that if Re((α −Q)2) > β2 − 2λk, then for
each f ∈ D′(Q⊥k), there is a unique u ∈ D(Q⊥k) such that

eβρ(H⊥
k − 2∆α)e

−βρu = f, and if f ∈ L2(6.33)

∥u∥2 6
2∥f∥2

Re((α −Q)2) + 2λk − β2
, ∥∂cu∥2 6

2∥f∥2
√

Re((α −Q)2) + 2λk − β2
.(6.34)

In particular, this shows that, for Re((α −Q)2) > β2 − 2λk, R⊥k(α) extends as a map

R⊥k(α) ∶ e
−βρ
D
′
(Q
⊥
k)→ e−βρD(Q

⊥
k)

with ∥R⊥k(α)∥L(eβρL2) 6 2(Re((α−Q)2)+2λk −β
2)−1. If we further impose that Re((α−Q)2) > β2 −2λk +1

then, since eβρ[∂c, e
−βρ] = −βρ′ and using (6.34),

∥L⊥k(α)∥L(e−βρL2) 6
2∣χ′∣∞(1 + ∣β∣) + ∣χ′′∣∞

√
Re((α −Q)2) + 2λk − β2

.

Finally, the same argument as above for K⊥
k(α) shows that for Re((α −Q)2) + 2λk − β

2 > 1, the operator

K⊥
k(α) is compact from e−βρL2(R ×ΩT) to e−βρL2(R−;Ek). �

Remark 6.12. We notice that the operators R⊥k(α), K⊥
k(α), L⊥k(α) lift as holomorphic family of operators

to the region {α ∈ Σ ∣Re(π(α)) < Q, ∣π(α) −Q∣2 < λk} by simply composing with the projection π ∶ Σ→ C.

2) The region c > − 1. Next, consider the operator H −
Q2+p2

2
on L2([−1,∞);L2(ΩT)) with Dirichlet

condition at c = −1 (i.e. the extension associated to the quadratic form on functions supported in c > − 1),
and χ̂ ∈ C∞(R; [0,1]) such that (1− χ̂) = 1 on supp(1−χ) and 1− χ̂ supported in (−1,∞) (otherwise stated,
χ̂ = 0 on (−1 + δ,+∞) and χ̂ = 1 on (−∞,−1) ).
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We will construct a quasi-compact approximate inverse to H in [−1,∞) by using energy estimates and
the properties of V , in particular the fact the region where V > 0 is small are somehow small. We show the
following:

Lemma 6.13. There is a uniform constant C > 0 and a bounded operator, independent of α,

R+ ∶ L
2
(R ×ΩT)→ D(H),

satisfying

(1 − χ̂)R+(1 − χ) ∶ D
′
(Q)→ D(Q)

and for α = Q + ip ∈ C and k > 1

(H −
Q2+p2

2
)(1 − χ̂)R+(1 − χ) = (1 − χ) +K+,k(α) +L+,k(α)

where K+,k(α) ∶ L2(R × ΩT) → L2([−1,∞) × ΩT) compact and holomorphic in α ∈ C, and the operator
L+,k(α) ∶ L

2(R ×ΩT)→ L2([−1,∞) ×ΩT) is bounded and holomorphic in α ∈ C, such that

(6.35) ∥L+,k(α)∥L(L2) 6 C(1 + ∣p∣2λ
−1/2
k ), ∥L+,k(α)

2
∥L(L2) 6 C(1 + ∣p∣2)λ

−1/2
k +C(1 + ∣p∣4)λ−1

k

for some uniform constant C depending only on χ̂. Moreover L+,k(α) and K+,k(α) are bounded as maps
D′(Q)→ L2([−1,∞) ×ΩT).

Proof. We consider R+ ∶= (H −
Q2

2
+ 1)−1 ∶ L2 → D(H), which we also view as a map D′(Q) → D(Q). We

have

(6.36) 1
2
∥∂cR+f∥

2
2 + ∥R+f∥

2
2 + ∥P1/2R+f∥

2
2 +QeγcV (R+f) 6 ∥f∥2

2,

We write

(H −
Q2+p2

2
)(1 − χ̂)R+(1 − χ) =(1 − χ) +

1
2
[∂2
c , χ̂]R+(1 − χ) − (

p2

2
− 1)(1 − χ̂)R+(1 − χ).

=∶(1 − χ) +K1
+ +K2

+(α).
(6.37)

Notice that K1
+,K

2
+(α) are bounded as maps D′(Q)→ L2(R×ΩT) by using that [∂2

c , χ̂] ∶ D(Q)→ L2(R×ΩT)
is bounded. By Lemma 6.14, there is β > 0 such that have (here c+ ∶= c1c>0.)

(6.38) ΠkR+ ∶ L
2
(R ×ΩT)→ e−βc+L2

(R;Ek)

is bounded. Let ψ ∈ C∞
c (R) non-negative, equal to 1 in [−A,A] and 0 for ∣c∣ > 2A and so that ∥ψ∥∞+∥ψ′∥∞+

∥ψ′′∥∞ 6 1 (we shall take A→∞ later). By using Lemma 6.1, we have

Πkψ ∶ D(Q)→ D(Q)

is bounded: indeed, ∂c(ψu) = ψ
′u + ψ∂cu ∈ L

2 if u ∈ D(Q) and

∫
R
ψ2

(c)eγcQV (u,u)dc 6 Cγ,ψQ(u,u)

for some Cγ,ψ depending on γ and ψ.
We are going to show that for all such ψ,

(6.39) ∥(1 −Πk)ψR+∥L2→L2 6 3/
√
λk,

which by taking A → ∞ shows that (1 − Πk)R+ has L(L2) norm bounded by 3/
√
λk. Let u = R+f with

f ∈ L2, then we claim that

(6.40)
λk∥(1 −Πk)ψu∥

2
2 +

1
2
∥∂c(1 −Πk)ψu∥

2
2 +

1
2
QeγcV ((1 −Πk)ψu)

6 ∥(1 −Πk)ψf∥2∥(1 −Πk)ψu∥2 +
1
2
QeγcV (Πkψu) + 2∥f∥2

2

To prove this, we note that, in D′(Q)

(H −
Q2

2
+ 1)(1 −Πk)ψu = ψ(1 −Πk)f + ψ(Πke

γcV − eγcVΠk)u −
1
2
ψ′′(1 −Πk)u − ψ

′
(1 −Πk)∂c
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thus pairing with (1 −Πk)ψu ∈ D(Q), this gives

Q((1 −Πk)ψu, (1 −Πk)ψu) =⟨(1 −Πk)ψf, (1 −Πk)ψu⟩2 −QeγcV (ψΠku,ψ(1 −Πk)u)

− 1
2
⟨ψ′′(1 −Πk)u, (1 −Πk)ψu⟩2 − ⟨ψ′(1 −Πk)∂cu, (1 −Πk)ψu⟩2

This gives the bound (6.40), using Cauchy-Schwarz, ∥P1/2(1−Πk)u∥
2
L2(ΩT) > λk∥u∥

2
L2(ΩT) and the fact that

∥u∥D(Q) 6 ∥f∥2 (by (6.36)). Now we do the same computation with (1 −Πk) replaced by Πk:

(6.41)
∥Πkψu∥

2
2 +

1
2
∥∂cΠkψu∥

2
2 +

1
2
QeγcV (Πkψu)

6 ∥Πkψf∥2∥Πkψu∥2 +
1
2
QeγcV ((1 −Πk)ψu) + 2∥f∥2

2.

Combining (6.41) and (6.40) and using ∥u∥2 6 ∥f∥2, we obtain

(6.42) ∥(1 −Πk)ψR+f∥2 = ∥(1 −Πk)ψu∥2 6
3

√
λk

∥f∥2

Since [∂2
c , χ̂] = χ̂

′′ + 2χ̂′∂c and χ̂′ = 0 on supp(1 − χ), we have (K1
+)

2 = 0 and ∥K1
+∥L(L2) 6 C (using (6.36))

for some uniform C depending only on χ̂. By combining with (6.42), we deduce that

∥(K1
+ + (1 −Πk)K

2
+(α))∥L(L2) 6 C(1 + ∣p∣2λ

−1/2
k ),

∥(K1
+ + (1 −Πk)K

2
+(α))

2
∥L(L2) 6 C((1 + ∣p∣2)λ

−1/2
k + (1 + ∣p∣2)2λ−1

k )

for some uniform C depending only on χ̂. Next we consider the operator ΠkK
2
+(α). Recall that, by (6.36),

(6.43) ∂cΠkR+ = Πk∂cR+ ∶ L
2
(R ×ΩT)→ L2

(R ×ΩT)

is bounded. Now we claim that the injection

(6.44) Fk ∶= {u ∈ e−βcL2
([−1,∞);Ek) ∣∂cu ∈ L

2
([−1,∞);Ek)}→ e−

βc
2 L2

([−1,∞) ×ΩT)

is compact if we put the norm ∥u∥Fk ∶= ∥eβcu∥2 + ∥∂cu∥2 on Fk. Indeed, consider the operator ηT Id ∶ Fk →

e−
βc
2 L2([−1,∞);Ek) where ηT (c) = η(c/T ) if η ∈ C∞

0 ((−2,2)) is equal to 1 on (−1,1) and 0 6 η 6 1.
Since Ek has finite dimension, this is a compact operator by the compact embedding H1([−1, T );Ek) →

e−
βc
2 L2([−1,∞);Ek), and as T →∞ we have for u ∈ Fk

∥e
β
2 c(ηTu − u)∥

2
2 6 e

−βT
∫

∞

−1
(1 − ηT )

2e2βc
∥u∥2

L2(ΩT)dc 6 e
−βT

∥u∥2
Fk

thus the injection (6.44) is a limit of compact operators for the operator norm topology, therefore is compact.

By (6.38) and (6.43), the operator ΠkR+ ∶ L
2(R ×ΩT)→ e−

β
2 c+L2([−1,∞) ×ΩT) is compact. We get that

ΠkK
2
+(α) ∶ L

2
(R ×ΩT)→ L2

(R ×Ek)

is compact. This complete the proof by setting K+,k(α) ∶= ΠkK
2
+(α) and L+,k(α) ∶= K1

+ + (1 −Πk)K
2
+(α).

The holomorphy in α ∈ C is clear since K2
+(α) is polynomial in α. �

Lemma 6.14. For α = Q + ip with p ∈ iR∗, there is β > 0 such that the resolvent ΠkR(α) ∶ L2(R ×ΩT) →

e−βc+L2(R ×ΩT) is bounded.

Proof. We estimate the norm for e−βc+L2(R+ × ΩT) since the estimate for e−βc+L2(R− × ΩT) results from
Proposition 5.2. Recall (6.10) with the representation for the resolvent R(α) = ∫

∞
0 e−tH+t2∆αdt, valid for

the range of α we consider. A key observation to establish our lemma is the following estimate on e−tH,
based on the Feynman-Kac formula (5.3). Here we write for simplicity Vt ∶= ∫Dct

∣z∣−γQMγ(dz). By using the

Markov property, we get that for f ∈ L2(R ×ΩT) and a ∈ (0,1),

∣e−tHf ∣ =∣e−
Q2

2 tEϕ[f(c +Bt, ϕt)e
−µeγcVt]∣

6 e−
Q2

2 tEϕ[∣f(c +Bt, ϕt)∣e
−µeγcV(1−a)t]

=e−
Q2

2 (1−a)tEϕ[e
−atH0 ∣f ∣(c +B(1−a)t, ϕ(1−a)t)e

−µeγcV(1−a)t].(6.45)
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Now we want to exploit this relation in the integral representation of the resolvent. Take q ∈ [1,2). By
using in turn the fact that Πk has finite dimensional rank (in particular we have equivalence of norms on its
rank) and the continuity of the map Πk ∶ L

q(ΩT)→ Lq(ΩT) (see [Ja, Th 5.14]), we obtain for some constant
C = C(t0, α, k, q, µ, γ) which may change along the lines below

∫

∞

0
e2βcE[(Πk ∫

∞

0
e−tH+t2∆αfdt)

2

]dc

6 C ∫
∞

0
e2βcE[(Πk ∫

∞

0
e−tH+t2∆αfdt)

q
]
2/q

dc

6 C ∫
∞

0
e2βcE[∣∫

∞

0
e−tH+t2∆αfdt∣

q
]
2/q

dc.

We are going to estimate this quantity by splitting the dt-integral above in two parts, ∫
t0

0 . . . and ∫
∞
t0
. . .

for some t0 > 0, which we call respectively A1 and A2.
Let us first focus on the first part. Using the relation (6.45) with a = 1/2 produces the bound

A1 6 C ∫
∞

0
e2βcE[∣∫

t0

0
Eϕ[e

− t2H0 ∣f ∣(c +Bt/2, ϕt/2)e
−µeγcVt/2]dt∣

q

]
2/q

dc.

Then Jensen gives the estimate

A1 6 C ∫
∞

0
e2βc

∫

t0

0
E[(e−

t
2H0 ∣f ∣(c +Bt/2, ϕt/2))

q
e−qµe

γcVt/2]
2/q

dtdc.

Now we use Hölder’s inequality with conjugate exponents 2/q,2/(2 − q) to estimate the above quantity by

A1 6 C ∫
∞

0
∫

t0

0
e2βcE[(e−

t
2H0 ∣f ∣(c +Bt/2, ϕt/2))

2
](E[e−

2q
2−qµe

γcVt/2])

2−q
q

dtdc.

Using the elementary inequality xθe−x 6 C for θ > 0, we deduce

A1 6 C ∫
∞

0
∫

t0

0
e(2β−θ

2−q
q γ)cE[(e−

t
2H0 ∣f ∣(c +Bt/2, ϕt/2))

2
](E[V −θ

t/2])

2−q
q

dtdc.

It remains to estimate the quantity E[V −θ
t/2]. Notice that Vt/2 is a GMC over an annulus of radii 1 and e−t/2.

Hence the quantity to be investigated is less than the same expression with Vt/2 replaced by a GMC over
a ball of diameter t/2 contained in this annulus. Standard computations of GMC multifractal spectrum
[RhVa14, Th 2.14] (also valid for negative moments) then yields that

(6.46) E(V −θ
t/2) 6 Ct

ψ(−θ)

where ψ(u) ∶= (2+ γ2

2
)u− γ2

2
u2 is the multifractal spectrum. Since ψ is continuous and ψ(0) = 0, we can find

θ > 0 such that ψ(−θ) > −1. Then, for 2β =
2−q
q
θγ, we deduce that

A1 6 C ∫
∞

0
∫

t0

0
E[(e−

t
2H0 ∣f ∣(c +Bt/2, ϕt/2))

2
]tψ(−θ) dtdc

6 C ∫
t0

0
∥e−

t
2H0 ∣f ∣∥2

2t
ψ(−θ) dt

6 C∥f∥2
2 ∫

t0

0
tψ(−θ) dt,

which proves our claim for A1, namely the part corresponding to ∫
t0

0 .
Concerning A2, we start as above

A2 ∶=∫

∞

0
e2βcE[(Πk ∫

∞

t0
e−tH+t2∆αfdt)

2

]dc

6 C ∫
∞

0
e2βc

(E[(∫

∞

t0
e−tH+t2∆αfdt)

q
])

2/q
dc
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for q ∈ (1,2). For the values of α we consider, we have 2∆α 6
Q2

2
−

∣p∣2
2

so that, using Jensen,

A2 6 C ∫
∞

0
e2βc

(E[∫

∞

t0
e−

∣p∣2
2 t(Eϕ[∣f(c +Bt, ϕt)∣e

−µeγcVt])
q
dt])

2/q
dc

Let us now fix a ∈ (0,1) small enough such that aQ2 < ∣p∣2/2. Then, using (6.45), Jensen and the inequality
xθe−x 6 C for θ > 0, we deduce

A2 6 C ∫
∞

0
e2(β−γθ/q)c

(E[∫

∞

t0
e−

∣p∣2
4 tEϕ[(e

−atH0 ∣f ∣(c +B(1−a)t, ϕ(1−a)t))
q
V −θ
(1−a)t]dt])

2/q
dc.

Now we can proceed similarly as above by using the fact that for a < 1 and all q > 0 supt>t0 E[V −θ
(1−a)t] <∞

(this quantity is decreasing in t and GMC has negative moments) to get

A2 6 C ∫
∞

0
e2(β−γθ/q)c

(∫

∞

t0
e−

∣p∣2
4 tE[(e−atH0 ∣f ∣(c +B(1−a)t, ϕ(1−a)t))

2
]
q/2
E[V

− 2θ
2−q

(1−a)t]
2−q
2 dt)

2/q
dc

6 C ∫
∞

0
e2(β−γθ/q)c

(∫

∞

t0
e−

∣p∣2
4 tE[(e−atH0 ∣f ∣(c +B(1−a)t, ϕ(1−a)t))

2
]
q/2

dt)
2/q

dc.

For β = θγ/q and using Jensen, the above quantity is less than

C ∫
∞

t0
e−

∣p∣2
4 t

∥e−atH0 ∣f ∣∥2
2dt 6 C∥f∥2

2 ∫

∞

t0
e−

∣p∣2
4 t dt.

Hence the result. �

Remark 6.15. As above, the operators R+,K+,k(α) and L+,k(α), lift as holomorphic family of operators
to Σ.

3) Small P eigenmodes in the region c 6 0, where there is scattering. We will view the operator

H as a perturbation of the free Hamiltonian H0 ∶= −
1
2
∂2
c +

Q2

2
+P on L2(R− ×ΩT) with Dirichlet condition

at c = 0. We show (recall that π ∶ Σ→ C is the covering map)

Lemma 6.16. 1) Fix k and 0 < β < γ/2. The operators

(6.47) Rk(α) ∶= (H0 −
Q2+p2

2
)
−1Πk ∶ e

βρL2
(R−

×ΩT)→ e−βρL2
(R−;Ek)

defined for Im(p) > 0 can be holomorphically continued to the region

(6.48) {α = Q + ip ∈ Σ ∣∀j 6 k, Im
√
p2 − 2λj > −β}.

This continuation, still denoted Rk(α) ∶ e
βρL2(R ×ΩT)→ e−βρL2(R−;Ek), satisfies

χ̃Rk(α)χ ∶ e
βρL2

(R ×ΩT)→ e−βρ(L2
(R−;Ek) ∩D(Q)),

(H −
Q2+p2

2
)χ̃Rk(α)χ = Πkχ +Kk,1(α) +Kk,2(α)

where Kk,1(α), Kk,2(α) are such that for Im
√
p2 − 2λj > −min(β, γ/2 − β)

Kk,1(α) ∶ e
βρL2

(R ×ΩT)→ eβρL2
(R ×ΩT)

Kk,2(α) ∶ e
βρL2

(R ×ΩT)→ eβρD′(Q)

are holomorphic families of compact operators in (6.48), and we have Kk,i(α)(1 − Πk) = 0 for i = 1,2,
(1 −Πk)Kk,1(α) = 0 and ΠkKk,2(α) = 0.

2) If f ∈ eβρL2, then there is Ck > 0 depending on k, some aj(α, f) and G(α, f) ∈ H1(R;Ek) depending

linearly on f and holomorphic in {α = Q+ ip ∈ Σ ∣∀j 6 k, Im
√
p2 − 2λj > −min(β, γ/2−β)} such that in the

region c 6 0

(6.49) (Rk(α)f) = ∑
λj 6 λk

aj(α, f)e
−ic

√
p2−2λj +G(α, f),

∥G(α, f)(c)∥L2(ΩT) + ∥∂cG(α, f)(c)∥L2(ΩT) 6 Cke
βρ

∥e−βρΠkf∥2.
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3) For each β ∈ R, the operator Rk(α) extends as a bounded analytic family

Rk(α) ∶ e
−βρL2

(R−
×ΩT)→ e−βρ(L2

(R−;Ek) ∩D(Q))

in the region Im(p) > ∣β∣ and Kk,1(α) ∶ e
−βρL2(R × ΩT) → e−βρL2(R × ΩT), Kk,2(α) ∶ e

−βρL2(R × ΩT) →

e−βρD′(Q) are compact analytic families in that same region.

Proof. We first consider H0 on (−∞,0] with Dirichlet condition at c = 0. Using the diagonalisation of P

on Ek, we can compute the resolvent (H0 −
Q2+p2

2
)−1 on Ek by standard ODE methods (Sturm-Liouville

theory): for Im(p) > 0, this is the diagonal operator given for j 6 k and f ∈ L2(R−) and φj ∈ ker(P − λj)

(H0 −
Q2+p2

2
)
−1f(c)φj =

2
√
p2 − 2λj

φj(∫
c

−∞
sin(c

√
p2 − 2λj)e

−ic′
√
p2−2λjf(c′)dc′

+ ∫

0

c
e−ic

√
p2−2λj sin(c′

√
p2 − 2λj)f(c

′
)dc′)

where our convention is that
√
z is defined with the cut on R+, so that

√
p2 = p if Im(p) > 0. For j = 0, that

is φ0 = 1, for each β > 0 the resolvent restricted to E0 admits an analytic continuation from Im(p) > 0 to
Im(p) > −β, as a map

(H0 −
Q2+p2

2
)
−1Π0 ∶ e

−β∣c∣L2
(R−

×ΩT)→ eβ∣c∣L2
(R−;E0).

This is easy to see by using Schur’s lemma and the analyticity in p for the Schwartz kernel

κ0(c, c
′
) ∶= 1l{c > c′} e

−β(∣c∣+∣c′∣) sin(cp)e−ic
′p
+ 1l{c′ > c} e

−β(∣c′∣+∣c∣) sin(c′p)e−icp

of the operator Π0e
−β∣c∣(H0−

Q2+p2

2
)−1e−β∣c∣Π0 that we view as on operator on L2(R−). Moreover, one directly

also obtains that it maps e−β∣c∣L2(R− ×ΩT)→ e−β∣c∣H2(R−;E0) ∩H
1
0(R−;E0). Similarly, the operators

(H0 −
Q2+p2

2
)
−1φj⟨φj , ⋅⟩ ∶ e

−β∣c∣L2
(R−

×ΩT)→ eβ∣c∣L2
(R−;Cφj)

are analytic in p, which implies that

Rk(α) ∶= (H0 −
Q2+p2

2
)
−1Πk ∶ e

−β∣c∣L2
(R−

×ΩT)→ eβ∣c∣H2
(R−;Ek) ∩H

1
0(R

−;Ek)

admits an analytic extension in p to the region {p ∈ Z ∣∀j > 0, Im(
√
p2 − 2λj) > −β} of the ramified Riemann

surface Z. The proof of Lemma 6.1 also shows that QeγcV (χ̃Πku) < ∞ if u ∈ L2(R × ΩT) and clearly also

P
1
2 Πk ∈ L(L

2(ΩT)), thus we deduce that

χ̃Rk(α)χ ∶ e
−β∣c∣L2

(R−
×ΩT)→ eβ∣c∣(L2

(R−;Ek) ∩D(Q))

is bounded. We have (using ΠkRk(α) = Rk(α) and Lemma 6.1)

(H −
Q2+p2

2
)χ̃Rk(α)χ =Πkχ −

1
2
[∂2
c , χ̃]ΠkRk(α)χ + e

γcVΠkχ̃Rk(α)χ.

=Πkχ +
1
2
[∂2
c , χ̃]ΠkRk(α)χ +Πke

γcVΠkχ̃Rk(α)χ + χ̃(1 −Πk)e
γcVΠkχ̃Rk(α)χ

=Πkχ +Kk,1(α) +Kk,2(α)

where Kk,2(α) ∶= χ̃(1 − Πk)e
γcVΠkχ̃Rk(α)χ satisfies ΠkKk,2(α) = 0. The operator [∂2

c , χ̃]ΠkRk(α)χ is

compact on e−β∣c∣L2(R;L2(ΩT)) since eβ∣c∣[∂2
c , χ̃] is a compactly supported first order operator in c, Ek =

Im(Πk) is finite dimensional in L2(ΩT) and Rk(α) ∶ e
−β∣c∣L2(R− ×ΩT) → eβ∣c∣H2(R−;Ek) (this amounts to

the compact injection H2([−1,0];Ek)→H1(R−;Ek)).

The operator e(β−γ/2)∣c∣Πkχ̃Rk(α)χe
−β∣c∣ is also compact as maps L2(R×ΩT)→ L2(R;Ek) and L2 → D(Q)

by using the same type of argument as for proving the compact injection (6.44): indeed, one has the pointwise
bound on its Schwartz kernel restricted to ker(P − λj)

∣κj(c, c
′
)∣ 6 Ce(β−γ/2)∣c∣−β∣c

′∣
(eIm(

√
p2−2λj)(∣c∣−∣c′∣) + e−Im(

√
p2−2λj)(∣c∣+∣c′∣))1l∣c′∣ > ∣c∣

+Ce(β−γ/2)∣c
′∣−β∣c∣

(eIm(
√
p2−2λj)(∣c′∣−∣c∣) + e−Im(

√
p2−2λj)(∣c∣+∣c′∣))1l∣c∣ > ∣c′∣ .



CONFORMAL BOOTSTRAP IN LIOUVILLE THEORY 53

We see that for Im(
√
p2 − 2λj) > 0, if 0 < β < γ/2, this is bounded by Cmax(e(β−γ/2)∣c∣−β∣c

′∣, e(β−γ/2)∣c
′∣−β∣c∣),

and is thus the integral kernel of a compact operator on L2(R−) since it is Hilbert-Schmidt (the kernel being

in L2(R×R)). If now Im(
√
p2 − 2λj) < 0, the same argument shows that a sufficient condition to be compact

is that

Im
√
p2 − 2λj > −β and Im

√
p2 − 2λj > β − γ/2.

Combining with Lemma 6.1, we deduce that if 0 < β < γ/2, then

eγcVΠkχ̃Rk(α)χ ∶ e
βρL2

(R ×ΩT)→ eβρD′(Q)

and Πke
γcVΠkχ̃Rk(α)χ ∶ e

βρL2
(R ×ΩT)→ eβρL2

(R−;Ek)

are compact operators. Thus Kk,1(α) ∶ e
βρL2(R ×ΩT)→ eβρL2(R−;Ek) is also compact. This proves 1).

Now, if f ∈ eβρL2(R;Ek) we have for c 6 0 and writing f = ∑j 6 k fj with fj ∈ ker(P − λj)

(Rk(α)χf)(c) =2 ∑
j 6 k

e−ic
√
p2−2λj

√
p2 − 2λj

∫

0

−∞
sin (c′

√
p2 − 2λj)χ(c

′
)fj(c

′
)dc′

+ 2 ∑
j 6 k

e−ic
√
p2−2λj

√
p2 − 2λj

∫

c

−∞
sin ((c − c′)

√
p2 − 2λj)fj(c

′
)dc′

(6.50)

and the term in the second line, denoted G(c), satisfies for c < −1

∥G(c)∥L2(ΩT) 6 2 ∑
j 6 k

∫

c

−∞
e∣Im

√
p2−2λj ∣(c−c′)+βc′∥e−βρ(c

′)fj(c
′
)∥L2(ΩT)dc

′

6 Ck∥e
−βρf∥2e

−β∣c∣.

and the same bounds hold for ∥∂cG(c)∥L2(ΩT); this completes the proof of 2).
We remark that if Im(p) > 0, then the operator

(H0 −
Q2+p2

2
)
−1Πk ∶ e

β∣c∣L2
(R−

×ΩT)→ eβ∣c∣L2
(R−;Ek)

is bounded and analytic in p, provided 0 < β < minj 6 k Im(
√
p2 − 2λj) = Im(p). Indeed, this follows again

from Schur’s lemma applied to the Schwartz kernel

1l{c > c′} e
−β(∣c∣−∣c′∣) sin(c

√
p2 − 2λj)e

−ic′
√
p2−2λj + 1l{c′ > c} e

−β(∣c′∣−∣c∣) sin(c′
√
p2 − 2λj)e

−ic
√
p2−2λj .

Using again that Πk ∶ Ek → L2(ΩT) is bounded, this implies that

Rk(α) ∶ e
β∣c∣L2

(R−
×ΩT)→ eβ∣c∣(L2

(R−;Ek) ∩D(Q))

is an analytic bounded family in p in the region 0 < β < Im(p). The same argument works with 0 < −β < Im(p)
in case β < 0. The operator Kk,1(α) ∶ e

−βρL2(R ×ΩT) → e−βρL2(R ×ΩT) is compact by the same argument

as above since it is Hilbert-Schmidt and Kk,2(α) ∶ e
−βρL2(R ×ΩT)→ e−βρD′(Q) is compact. �

4) Proof of Proposition 6.10. For β ∈ R, define the Hilbert space for fixed k

Hk,β ∶= e
βρL2

(R;Ek)⊕L
2
(R;E⊥k)

with scalar product

⟨f, f ′⟩Hk,β ∶= ∫R
e−2βρ(c)

⟨Πkf,Πkf
′
⟩L2(ΩT)dc + ⟨(1 −Πk)f, (1 −Πk)f

′
⟩L2(R×ΩT).

We now fix β and β′ as in the statement of Proposition 6.10. We now use the operators of Lemma 6.11,
Lemma 6.13 and Lemma 6.16: let χ; χ̃, χ̂ be the cutoff functions of these Lemmas and let χ̌ ∈ C∞(R) equal
to 1 on supp(χ̃) and supported in R−. We define

R̃(α) ∶= χ̃R⊥k(π(α))χ + (1 − χ̂)R+(1 − χ) + χ̃Rk(α)χ − χ̌R⊥k(α)Kk,2(α)
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which in {α = Q + ip ∈ Σ ∣∀j 6 k, Im
√
p2 − 2λj > −β} is bounded and holomorphic (in α) as a map

R̃(α) ∶Hk,β →Hk,−β ∩ e
−βρD(Q). It moreover satisfies the identity

(H − 2∆π(α))R̃(α) =1 +L⊥k(π(α)) +K⊥
k(π(α)) +K+,k(π(α)) +L+,k(π(α)) +Kk,1(α)

− (Ľ⊥k(π(α)) + Ǩ⊥
k(π(α)))Kk,2(α)

where Ľ⊥k(π(α)) and Ǩ⊥
k(π(α)) are the operators of Lemma 6.11 with χ̃ (resp. χ) is replaced by χ̌ (resp.

χ̃). Let us define

(6.51) K̃k(α) ∶= Kk,1(α) +K+,k(π(α)) +K⊥
k(π(α)) − (Ľ⊥k(π(α)) + Ǩ⊥

k(π(α)))Kk,2(α).

By Lemma 6.11, Lemma 6.13 and Lemma 6.16, K̃k(α) ∶ Hk,β → Hk,β is compact and holomorphic in α
(recall that Kk,j(α)(1 − Πk) = 0). We claim that for each ψ ∈ C∞(R) ∩ L∞(R) satisfying ψ′ ∈ L∞ and
supp(ψ) ⊂ (−∞,A) for some A ∈ R,

(6.52) K̃k(α)(1 −Πk) ∶ D
′
(Q)→Hk,β and R̃(α)(1 −Πk)ψ ∶ D

′
(Q)→ e−βρD(Q)

are bounded. Indeed, Lemma 6.11 and Lemma 6.13 show that K+,k(π(α))+K⊥
k(π(α)) is bounded as a map

D′(Q)→Hk,β and that χ̃R⊥k(π(α))χ+ (1− χ̂)R+(1−χ) is bounded as a map D′(Q)→ D(Q), while Lemma
6.1 shows that (1 −Πk)ψ ∶ D′(Q)→ D′(Q).

Now if ∣π(α)−Q∣2 6 λ1/4
k and if k is large enough, the operator L̃k(α) ∶= L⊥k(π(α))+L+,k(α) is bounded

as map

L̃k(α) ∶Hk,β → L2
(R;E⊥k) L̃k(α) ∶ D

′
(Q)→Hk,β(6.53)

with holomorphic dependance in α, and with bound (recall (6.28) and (6.35))

∥L̃k(α)
2
∥Hk,β→L2(R;E⊥

k
) < 1/2.

In particular, (1+ L̃k(α))(1− L̃k(α)) = 1− L̃k(α)
2 is invertible on Hk,β with holomorphic inverse given by

the Neumann series ∑
∞
j=0 L̃k(α)

2j ; we write (1+Tk(α)) ∶= (1− L̃k(α))(1− L̃k(α)
2)−1, with Tk(α) mapping

boundedly Hk,β →Hk,β . Moreover we have

(H − 2∆π(α))R̃(α)(1 +Tk(α)) = 1 + K̃k(α)(1 +Tk(α))

and the remainder K̂(α) ∶= K̃k(α)(1 +Tk(α)) is now compact on Hk,β , and 1 + K̂(α) is thus Fredholm of
index 0.

Let p0 = iq for some q ≫ β, the operator H−
Q2

2
being self-adjoint on its domain D(H) and non-negative,

H −
Q2+p2

0

2
is invertible with inverse denoted R(α0) if α0 = Q + ip0 = Q − q. Now, let (ψj)j 6 J ⊂ Hk,β be

an orthonormal basis of ker(1 + K̂(α0)
∗), and (ϕj)j 6 J ⊂ Hk,β an orthonormal basis of ker(1 + K̂(α0)).

For each j, there is wj ∈ D(H) such that (H −
Q2+p2

0

2
)wj = ψj . If θ ∈ C∞(R) equal 1 in c ∈ (−∞,−1) and is

supported in c ∈ R−, we have in D′(Q)

(6.54) (H0 −
Q2+p2

0

2
)θwj = θψj − θe

γcV wj −
1
2
[∂2
c , θ]wj

and this implies by projecting this relation on Ek with Πk that, setting ψj,k = Πkψj and ψ⊥j,k = (1 −Πk)ψj ,

similarly wj,k = Πkwj and w⊥j,k = (1 −Πk)wj

(6.55) (H0 −
Q2+p2

0

2
)θwj,k = θψj,k − θΠk(e

γcV wj) −
1
2
[∂2
c , θ]wj,k.

By Lemma 6.1 with β′ = β = γ/2, we see that Πk(e
γcV wj) ∈ e

γρ/2L2. Since [∂2
c , θ] is a first order differential

operator with compact support, we get [∂2
c , θ]wj,k ∈ L

2 as θ̃wj,k ∈ D(Q) if θ̃ ∈ C∞
c (R) by Lemma 6.1. The

right hand side of (6.55) is then in eβρL2. This shows in particular that θwj,k ∈ H
2(R−;Ek) ∩H

1
0(R−;Ek)

and since Ek is finite dimensional, it is direct to check that

Rk(Q + ip0)(H0 −
Q2+p2

0

2
)θwj,k = θwj,k

with Rk(Q + ip0) the operator of Lemma 6.16. We obtain in the region c ∈ R−

θwj,k = Rk(Q + ip0)(θψj,k − θe
γcΠk(V wj) −

1
2
[∂2
c , θ]wj,k).
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Using the properties of Rk(α) in Part 3) of Lemma 6.16 (applied with −β instead of β), we see that for
each 0 < β < γ/2

θwj,k ∈ e
βρL2

(R−;Ek)

and thus we deduce that

wj ∈ e
βρL2

(R;Ek)⊕L
2
(R;E⊥k) =Hk,β .

If we consider the finite rank operator W defined by Wf ∶= ∑
J
j=1wj⟨f,ϕj⟩Hk,β for f ∈Hk,β , we have

(H −
Q2+p2

0

2
)W = Y with Yf ∶=

J

∑
j=1

ψj⟨f,ϕj⟩Hk,β .

But now it is direct to check that 1 + K̂(α0) +Y is invertible on Hk,β and we obtain that

(H − 2∆π(α))(R̃(α)(1 +Tk(α)) +W) = 1 + K̂(α) +Y − 2(∆π(α) −∆α0)W.

The remainder K(α) ∶= K̂(α)+Y−2(∆π(α)−∆α0)W is compact on Hk,β , analytic in α in the desired region
and 1 +K(α) is invertible for α = α0, therefore we can apply the Fredholm analytic theorem to conclude
that the family of operator (1 +K(α))−1 exists as a meromorphic family of bounded operators on Hk,β for

α in {α = Q + ip ∈ Σ ∣ ∣π(α) −Q∣2 6 λ
1/4
k ,∀j 6 k, Im

√
p2 − λj > −β} except on a discrete set of poles with

finite rank polar part. We can thus set

(6.56) R(α) ∶= (R̃(α)(1 +Tk(α)) +W)(1 +K(α))−1

which satisfies the desired properties. To prove the boundedness of R(α)(1−Πk)ψ ∶ D′(Q)→ e−βρD(Q) for
ψ ∈ L∞(R) ∩C∞(R) with ψ′ ∈ L∞ and supp(ψ) ⊂ (−∞,A) for A ∈ R, we write

R(α) = R̃(α) −R(α)(K̃k(α) + L̃k(α))

and we have seen in (6.52) and (6.53)that (K̃k(α)+ L̃k(α)) ∶ D
′(Q)→Hk,β is bounded and R̃(α)(1−Πk)ψ ∶

D′(Q) → e−βρD(Q) is bounded, while (1 − Πk)ψ ∶ D′(Q) → D′(Q) by Lemma 6.1. Finally R(α) ∶ Hk,β →

eβρD(Q) and the same holds for W. This shows the announced property of R(α)(1 − Πk)ψ. We can use

the mapping properties of R̃(α) and W, together with (6.49) and (6.56)to deduce (6.26).
We finally need to prove that there is no pole in the half plane Re(α) 6 Q except possibly at the points

α = Q ± i
√

2λj . First, by the spectral theorem, one has for each f ∈ eβρL2 ⊂ L2 with β > 0 and each α
satisfying Re(α) < Q

∥R(α)f∥eβρL2 6 C∥R(α)f∥2 6
C∥f∥2

∣Im(α)∣.∣Re(α) −Q∣

which implies that a pole α0 = Q + ip0 with p0 ∉ {±
√

2λj ∣ j > 0} on Re(α) = Q must be at most of order

1, while at p0 = ±
√

2λj it can be at most of order 2 on Σ. Since R̃(α)(1 +Tk(α)) +W is analytic, a pole

of R̃(α) can only come from a pole of (1 + K(α))−1, with polar part being a finite rank operator. We

now assume that p0 ∉ {±
√

2λj ∣ j > 0}. Let us denote by Z the finite rank residue Z = Resα0R(α). Then

(H−
Q2+p2

0

2
)Z = 0, which means that each element in Ran(Z) is a w ∈ e−βρD(H) such that (H−

Q2+p2
0

2
)w = 0.

There are finite rank operators Z0, . . . ,ZN on Hk,β so that for ψ ∈ C∞((−∞,−2)c; [0,1])

ψZ =
N

∑
n=0

ψ∂nαR̃(α0)Zn =
N

∑
n=1

ψ∂nαRk(α0)χZn + ψR̃(α0)Z0 + ψZL2

where ZL2 is a finite rank operator mapping to Hk,β ⊂ L2. For f ∈ Hk,β , the expression of ∂jαRk(α0)f is
explicit from (6.50), and one directly checks by differentiating (6.50) in α that it is of the form (for c < −2)

(∂nαR̃(α0)f)(c) = ∑
λj 6 λk

∑
m 6 n

ãj,m(α, f)cme−ic
√
p2

0−2λj + G̃(α0, f)
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for some ãj,m(α0, f) ∈ ker(P − λj) and χ̃G̃(α0, f) ∈ Hk,β satisfying Hχ̃G̃(α0, f) ∈ Hk,β . This implies that,
in c < −2, w ∈ Ran(Z) is necessarily of the form

w = ∑
j 6 k

∑
m 6 N

bj,mc
me−ic

√
p2

0−2λj + Ĝ

for some bj,m ∈ ker(P − λj) and Ĝ ∈Hk,β with HĜ ∈Hk,β . Using that χ̃(c)eγcΠk(V w) ∈ eβcL2, we see from

the equation (H0 −
Q2+p2

0

2
)Πk(w) = −eγcΠk(V w) that

(H0 −
Q2+p2

0

2
)( ∑

λj 6 λk

∑
m 6 N

bj,mc
me−ic

√
p2

0−2λj)∣
c 6 0

∈ eβcL2

and by using the explicit expression of H0, it is clear that necessarily bj,m = 0 for all m /= 0. Then we may
apply Lemma 6.18 with u1 = u2 = w to deduce that bj,0 = 0, and therefore w ∈ D(H), which implies w = 0
by Lemma 6.2.

It remains to show that α = Q ± i
√

2λj is a pole of order at most 1. To simplify, we write the argument
for α = Q, the proof is the same for all j. The method is basically the same as in the proof of [Me93,
Proposition 6.28]: the resolvent has Laurent expension R(α) = (α − Q)−2Q + (α − Q)−1R′(α) for some
holomorphic operator R′(α) near α = Q and Q has finite rank, then we also have ∥R(α)φ∥L2 6 ∣Q − α∣−2

for α < Q and all φ ∈ C, thus we can deduce that

Qφ = lim
α→Q−

(α −Q)
2R(α)φ.

The limit holds in e−δρL2 for all δ > 0 small, but the right hand side has actually a bounded L2-norm, so
Qφ ∈ L2 and thus Ran(Q) ⊂ L2. Since we also have HQ = 0 from Laurent expanding (H − 2∆α)R(α) = Id
at α = Q, we conclude that Q = 0 by using Lemma 6.2. �

The resolvent in the physical sheet on weighted spaces. We shall conclude this section on the resolvent of
H by analyzing its boundedness on weighted spaces e−βρL2 in the half-plane {Re(α) < Q}. We recall that
Lemma 6.5 was precisely proving such boundedness but the region of validity in α of this Lemma was not
covering the whole physical-sheet, and in particular not the region close to the line Re(α) = Q. Just as in
Lemma 6.7, the main application of such boundedness on weighted spaces is to define the Poisson operator
P`(α), and we aim to define it in a large connected region of {Re(α) 6 Q} relating the probabilistic region
and the line α ∈ Q + iR corresponding to the L2-spectrum of H.

Proposition 6.17. Let β ∈ R and Re(α) < Q, then the resolvent R(α) of H extends as an analytic family
of bounded operators

R(α) ∶ e−βρL2
(R ×ΩT)→ e−βρD(Q)

in the region Re(α) < Q− ∣β∣, and it satisfies for each ψ ∈ C∞(R)⋒L∞(R) such that ψ′ ∈ L∞ and supp(ψ) ⊂
(−∞,A) for some A ∈ R,

R(α)(1 −Πk)ψ ∶ e−βρD′(Q)→ e−βρD(Q).

Proof. We proceed as in the proof of Proposition 6.10: we let for Re(α) < Q

R̃(α) ∶= χ̃R⊥k(α)χ + (1 − χ̂)R+(1 − χ) + χ̃Rk(α)χ − χ̌R⊥k(α)Kk,2(α)

and we get

(H −
Q2+p2

2
)R̃(α) = Id + K̃k(λ) + L̃k(α)

where we used the operators of the proof of Proposition 6.10 (see (6.51) and (6.53)). Now we take Re(α) < Q
and ∣Q − α∣ < A0 for some fixed constant A0 > 0 that can be chosen arbitrarily large, and we let k > 0 large
enough so that

(6.57) A2
0 + 1 < min(

λ
1/2
k

16(1 +C2)
, λ

1/4
k ), λk > (162C2

1(1 +C
2
2) + 1)(∣β∣ + 1)2,

where the constant C1, C2 above are the constants respectively given in Lemma 6.11 and Lemma 6.13. The
conditions in (6.57) ensures both the condition Re((α −Q)2) > β2 − 2λk + 1 of Lemma 6.11 is satisfied and
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the operator χ̃R⊥k(α)χ ∶ e
−βρD′(Q) → e−βρ(L2(R−;E⊥k) ∩D(Q)) is a bounded holomorphic family, and the

norm estimate appearing in 2) of Lemma 6.11 gives

(6.58) ∥L⊥k(α)∥L(e−βρL2) 6
C1(1 + ∣β∣)

√
Re((α −Q)2) + 2λk − β2

6
1

16(1 +C2)
.

The condition ∣β∣ < Q −Re(α) (equivalent to Im(p) > ∣β∣) makes sure that we can apply 3) of Lemma 6.16:
in particular the operator Rk(α) ∶ e

−βρL2(R− ×ΩT)→ e−βρ(L2(R−;Ek) ∩D(Q)) is a bounded holomorphic
family. Also, Lemma 6.13 ensures that (1− χ̂)R+(1−χ) ∶ e

−βρD′(Q)→ e−βρD(Q) is a bounded holomorphic
family (note that both cutoff functions (1 − χ̂) and (1 − χ) kill the c → −∞ behaviour and this is why
Lemma 6.13 extends to weighted spaces e−βρL2(R×ΩT)). Also the first condition in (6.57) ensures the norm
estimate (as given by (6.35))

(6.59) ∥L+,k(α)∥L(L2) 6 2C2, ∥L+,k(α)
2
∥L(L2) 6

1

8
.

As a consequence

R̃(α) ∶ e−βρL2
→ e−βρD(Q)

is bounded and holomorphic in U ∶= {α ∈ C ∣ ∣Q − α∣ < A0,Re(α) < Q − ∣β∣}. Furthermore (6.58) and (6.59)
provide the estimate

∥(L+,k(α) +L⊥k(α))
2
∥L(e−βρL2) < 1/2.

Moreover, 2) of Lemma 6.11, Lemma 6.13 and 3) of Lemma 6.16 also give that K̃k(α) is compact on the
Hilbert space e−βρL2(R ×ΩT). Exactly the same argument as in the proof of Proposition 6.10 gives that

(H −
Q2 + p2

2
)R̃(α)(1 +Tk(α)) = 1 + K̃k(α)(1 +Tk(α))

for some Tk bounded holomorphic on e−βρL2 in U . Since by Lemma 6.5 we know that (H−2∆α) is invertible
on e−βρL2 for some α0 ∈ U , one can always add a finite rank operator W ∶ e−βρL2 → e−βρD(H), so that

(H − 2∆α)(R(α)(1 +Tk(α)) +W) = 1 +K(α)

for some compact remainder K(α) on e−βρL2, analytic in α ∈ U in the desired region and 1 +K(α) being
invertible for α = α0 ∈ U . This implies by analytic Fredholm theorem that

R(α) = (R̃(α)(1 +Tk(α)) +W)(1 +K(α))−1
∶ e−βρL2

(R ×ΩT)→ e−βρD(Q)

is meromorphic for α ∈ U . Now, using the density of the embeddings e∣β∣ρL2 ⊂ L2 ⊂ e−∣β∣ρL2 and using that
R(α) is holomorphic in U as a bounded operator on L2, it is direct to check that R(α) ∶ e−βρL2 → e−βρD(Q)

is analytic in U . Since A0 (and thus U) can be chosen arbitrarily large as long as the constraint Re(α) < Q−∣β∣
is satisfied, we obtain our desired result. To prove that R(α)(1 −Πk)ψ maps e−βρD′(Q) to e−βρD(Q), we
proceed as in the proof of Proposition 6.10 and write

R(α) = R̃(α) −R(α)(K̃k(α) + L̃k(α)).

We have seen that R̃(α)(1 − Πk)ψ ∶ e−βρD′(Q) → e−βρD(Q). The same arguments (just as in the proof

of Proposition 6.10) also prove that that operators K̃k(α), L̃k(α) are bounded as operators e−βρD′(Q) →

e−βρL2, thus we obtain that R(α)(1 −Πk)ψ ∶ e−βρD′(Q)→ e−βρD(Q) is bounded. �

6.3. The Poisson operator. We have seen in Lemma 6.7 that it is possible to construct a family of
Poisson operators P`(α) in what we called the probabilistic region, which contains a half line (−∞,Q − c`)
for some c` > 0 depending on `. The construction was using the resolvent acting on weighted L2-spaces. In
this section, we will use Proposition 6.10 and Proposition 6.17 to prove that the Poisson operators extend
holomorphically in α in a connected region of Re(α) 6 Q containing the probabilistic region and the line
Q + iR.
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Regime close to the continuous spectrum of H. We first start with a technical lemma that allows to define
the Poisson operator on the continuous spectrum Q + iR:

Lemma 6.18. Let p ∈ R and for m = 1,2, let um ∈ e−δρL2(R ×ΩT) with δ > 0 such that:
1) for each θ ∈ C∞(R; [0,1]) supported in (a,+∞) for some a ∈ R then θum ∈ D(Q)

2) um satisfies

(H −
Q2+p2

2
)um = rm ∈ eδρL2

(R ×ΩT).

Set k = max{j > 0 ∣2λj 6 p2}. Then um has asymptotic behaviour

(6.60) um = ∑
j,2λj 6 p2

(ajme
−ic

√
p2−2λj + bjme

ic
√
p2−2λj) +Gm

with ajm, b
j
m ∈ ker(P − λj), and both Gm, ∂cGm ∈ eδρL2(R ×ΩT) +L

2(ΩT;E⊥k). Then we have

⟨u1 ∣ r2⟩ − ⟨r1 ∣u2⟩ = i ∑
j,2λj 6 p2

√
p2 − 2λj(⟨a

j
1 ∣aj2⟩L2(ΩT) − ⟨bj1 ∣ bj2⟩L2(ΩT)).

Proof. Let θ ∈ C∞(R) be non-negative satisfying θT = 1 on [−T,∞) and supp(θT ) ⊂ [−T −ε,∞) where T > 0

is a large parameter and ε > 0 small, and let θ̃T (⋅) = θT (⋅ + 1). In particular we have θ̃T θT = θT . First,

θ̃Tum ∈H1(R;L2(ΩT)) satisfies

(H −
Q2+p2

2
)(θ̃Tum) = θ̃T rm − 1

2
[∂2
c , θ̃T ]um ∈ L2

(R ×ΩT)

thus θ̃Tum ∈ D(H) (we used that [∂2
c , θ̃T ] is a first order differential operator with compactly supported

coefficients). This implies, using [H, θ̃T ]θT = 0 = θT [H, θ̃T ], that

⟨u1, r2⟩ − ⟨r1, u2⟩ = lim
T→∞

⟨θTu1,H(θ̃Tu2)⟩ − ⟨H(θ̃Tu1), θTu2⟩

= − lim
T→∞

1
2
⟨[∂2

c , θT ]u1, u2⟩.
(6.61)

We write um = u0
m +Gm by using (6.60). Then we claim that, as T →∞,

∣⟨[∂2
c , θT ]u

0
1,G2⟩∣ + ∣⟨[∂2

c , θT ]G1, u2⟩∣→ 0.

Indeed, we have (∣u0
1∣+ ∣∂cu

0
1∣)G2 ∈ L

1(R×ΩT) and (∣G1∣+ ∣∂cG1∣)u2 ∈ L
1(R×ΩT), and the support of [∂2

c , θT ]
is contained in [−T − 1,−T ]. We are left in (6.61) to study the limit of ⟨[∂2

c , θT ]u
0
1, u

0
2⟩. But now we have

[∂2
c , θT ]u

0
1 = θ

′′
Tu

0
1 + 2θ′T∂cu

0
1 and for fixed T > 0 it is direct to check, using integration by parts and the fact

that (H0 −
Q2+p2

2
)u0
m = 0 that

⟨[∂2
c , θT ]u

0
1, u

0
2⟩ =∫

−T

−T−1
∂c(θT ⟨∂cu

0
1, u

0
2⟩L2(ΩT) − θT ⟨u

0
1, ∂cu

0
2⟩L2(ΩT))dc

=⟨∂cu
0
1(−T ), u0

2(−T )⟩L2(ΩT) − ⟨u0
1(−T ), ∂cu

0
2(−T )⟩L2(ΩT).

A direct computation gives that this is equal to

2i ∑
j,λj 6 p2

√
p2 − 2λj(⟨b

j
1, b

j
2⟩L2(ΩT) − ⟨aj1, a

j
2⟩L2(ΩT)).

This completes the proof. �

Now we extend the construction of the Poisson operator (6.20) in a neighborhood of the line spectrum
α ∈ Q + iR.

Proposition 6.19. Let 0 < β < γ/2 and ` ∈ N. Then there is an analytic family of operators P`(α)

P`(α) ∶ E` → e−βρD(Q)

in the region

(6.62) {α ∈ C ∣Re(α) < Q, Im
√
p2 − 2λ` < β} ∪ {Q + ip ∈ Q + iR ∣ ∣p∣ ∈ ⋃

j > `

(
√

2λj ,
√

2λj+1)},
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continous at each Q ± i
√

2λj for j > `, satisfying (H −
Q2+p2

2
)P`(α)F = 0 and

(6.63) P`(α)F = ∑
j 6 `

(F −
j e

ic
√
p2−2λj + F +

j (α)e
−ic

√
p2−2λj) +G`(α,F )

with F −
j = Πker(P−λj)F , F +

j (α) ∈ ker(P − λj), and G`(α,F ), ∂cG`(α,F ) ∈ e
β
2 ρ(c)L2(R ×ΩT) +L

2(R;E⊥` ). In

particular, P`(α) ∈ e
−(Im(

√
p2−λ`)+ε)ρD(Q) for all ε > 0. Moreover, for each θ ∈ C∞

c (R), one has θP`(α)F ∈

D(H). Such a solution u ∈ e−βρL2(R ×ΩT) to the equation (H −
Q2+p2

2
)u = 0 with the asymptotic expansion

(6.63) is unique. The operator P`(α) admits a meromorphic extension to the region

(6.64) {α = Q + ip ∈ Σ ∣∀j ∈ N ∪ {0}, Im
√
p2 − 2λj ∈ (β/2 − γ, β/2)}

and P`(α)F satisfies (6.63) in that region. Finally, F +
j (α) depends meromorphically on α in the region

above.

Proof. We start by setting u−(α) ∶= ∑
`
j=0 F

−
j e

ic
√
p2−2λj , and let χ ∈ C∞(R) equal to 1 in (−∞,−1) and with

supp(χ) ⊂ R−. We get

(H −
Q2+p2

2
)(χu−(α)) = −

1

2
χ′′(c)u−(α) − χ

′
(c)∂cu−(α) + e

γcV χu−(α).

The first two terms are in eNρL2(R × ΩT) for all N , the term eγcV χu−(α) can be decomposed (for each
k > `) as

Πk(e
γcV χu−(α)) + (1 −Πk)(e

γcV χu−(α)).

Using that u−(α) = Πku−(α) if k > ` together with Lemma 6.1, we see that the first term satisfies
Πk(e

γcV χu−(α)) ∈ e
βρL2(R−;Ek) and the second term (1 − Πk)(e

γcV χu−(α)) ∈ e
βρD′(Q), provided that

β < γ/2 and that Im
√
p2 − λj) 6 γ/2 for j 6 `. We can thus define, using Proposition 6.10 (with k ≫ ` large

enough), if Im(
√
p2 − 2λj) ∈ (−min(β, γ

2
− β), γ/2) for all j 6 k and ∣π(p)∣2 6 λ1/4

k

u+(α) ∶= R(α)(H −
Q2+p2

2
)(χu−(α)) ∈ e

−βρ
D(Q)

so that u(α) ∶= χu−(α) − u+(α) solves (H −
Q2+p2

2
)u(α) = 0 in e−

γ
2 ρD′(Q). We use Proposition 6.10 with

k ≫ ` large enough, and we see that u+(α) is of the form, in c 6 0,

u+(α) = ∑
j 6 k

ãj(α,F )e−ic
√
p2−2λj +G(α,F ) = ∑

j 6 `

ãj(α,F )e−ic
√
p2−2λj +G`(α,F )

with ãj(α,F ) ∈ ker(P−λj) andG(α,F ), ∂cG(α,F ) ∈ eβρL2(R−×ΩT)+L
2(R−;E⊥k) andG`(α,F ) ∈ eβρL2(R−×

ΩT) + L
2(R−;E⊥` ) if Re(α) < Q. Here we have used the fact that Im

√
p2 − 2λj > 0 (since either Re(α) < Q

or p2 < 2λj for all j > ` if α = Q + ip with p ∈ R ∖ [−
√

2λ`,
√

2λ`]) to place all terms corresponding to all
` < j 6 k, which belong to L2(R;E⊥` ), in the remainder term G`(α,F ). This shows that

(6.65) P`(α)F ∶= u(α) = χ(c) ∑
j 6 `

F −
j e

ic
√
p2−2λj −R(α)(H − 2∆α)(χ(c) ∑

j 6 `

F −
j e

ic
√
p2−2λj)

satisfies all the required properties. The analyticity in α except possibly at the points Q ± i
√

2λj for j ∈ N0

follows from Proposition 6.10, in particular 3) of that Proposition. At the points Q± i
√

2λj , the analyticity

on the surface Σ is a consequence of the Lemma 6.20, in particular (6.67) and the fact that Q± i
√

2λj is at
most a pole of ordre 1 of R(α) and aj(α,ϕ). We notice that the expression of P`(α) is the same as in (6.20),
thus when the regions of α considered in Lemma 6.7 and here have an intersection, then this corresponds
to the same operator, by analytic continuation.

The uniqueness of the solution with such an asymptotic is direct if Re(α) < Q: the difference of two such
solutions would be in D(Q) and the operator H has no L2 eigenvalues (Lemma 6.2), hence the difference is
identically 0. For the case α = Q + ip with p ∈ R, denote by û(α) the difference of two such solutions. Then
û(α) can be written under the form

û(α) = ∑
j 6 `

F̂ +
j (α)e

−ic
√
p2−2λj + Ĝ`(α,F )
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where F̂ +
j (α) ∈ ker(P − λj) and Ĝ`(α,F ) ∈ eβρ(c)L2(R × ΩT) + L

2(R;E⊥` ). We can split the sum above as

∑j,2λj 6 p2 ⋯+∑j,p2<j 6 2λ` ⋯. The sum ∑j,p2<j 6 2λ` ⋯ belongs to some eδρL2 as well as its ∂c derivative. We

can use Lemma 6.18 to see that ∑j,2λj 6 p2 ∥F̂ +
j (α)∥

2
L2(ΩT) = 0, hence again û(α) ∈ L2 and we can conclude

as previously.
The meromorphic extension of P`(α) is a direct consequence of the meromorphic extension of R(α) in

Proposition 6.10. �

We notice that for α = Q + ip with p ∈ R, the function P(α)F is another solution of (H −
Q2+p2

2
)u = 0

satisfying

P`(α)F = ∑
j 6 `

(F −
j e

−ic
√
p2−λj + F +

j (α)e
ic
√
p2−λj) +G`(α,F ).

This implies that for each F = ∑j 6 ` F
−
j ∈ E`, there is a unique solution u = P̂`(α)F to (H −

Q2+p2

2
)u = 0 of

the form

(6.66) P̂`(α)F = ∑
j 6 `

(F −
j e

−ic
√
p2−λj + F̂ +

j (α)e
ic
√
p2−λj) + Ĝ`(α,F )

with Ĝ`(α,F ) ∈ e
β
2 ρ(c)L2(R × ΩT) + L

2(R;E⊥` ) and F̂ +
j ∈ Cρj , and P̂`(α) extends meromorphically on an

open set of Σ just like P`(α).

Lemma 6.20. Let ` ∈ N, 0 < β < γ and α in (6.62), the Poisson operator P`(α) can be obtained from the
resolvent as follows: for F = ∑j 6 ` F

−
j ∈ E` and ϕ ∈ eβρL2

(6.67) ⟨P`(α)F,ϕ⟩2 = i ∑
j 6 `

√
p2 − 2λj⟨F

−
j , aj(α,ϕ)⟩

L2(ΩT)

where aj(α,ϕ) are the functionals obtained from (6.26), holomorphic in α and linear in ϕ.

Proof. Let α = Q + ip with p ∈ R ∖ ([−
√

2λ`,
√

2λ`] ∪j > ` {±
√

2λj}) and let us take F = ∑j 6 ` F
−
j with

F −
j ∈ Ker(P − λj) for j 6 `. Then from the construction of P`(α)F (with a function χ = χ(c)) in the proof

of Proposition 6.19

⟨P`(α)F,ϕ⟩ = ⟨ ∑
j 6 `

F −
j e

ic
√
p2−2λjχ,ϕ⟩ − ⟨R(α)(H − 2∆α) ∑

j 6 `

F −
j e

ic
√
p2−2λjχ,ϕ⟩

= ⟨ ∑
j 6 `

F −
j e

ic
√
p2−2λjχ,ϕ⟩ − ⟨(H − 2∆α) ∑

j 6 `

F −
j e

ic
√
p2−2λjχ,R(α)ϕ⟩.

Here we used R(α)∗ = R(α) = R(2Q − α). Let θT be as in the proof of Lemma 6.18. We have

lim
T→∞

⟨θT (c)(H − 2∆α) ∑
j 6 `

F −
j e

ic
√
p2−2λjχ,R(α)ϕ⟩

=⟨ ∑
j 6 `

F −
j e

ic
√
p2−2λjχ,ϕ⟩ −

1

2
lim
T→∞

⟨ ∑
j 6 `

F −
j e

ic
√
p2−2λjχ, θ′′TR(α)ϕ⟩

− lim
T→∞

⟨ ∑
j 6 `

F −
j e

ic
√
p2−2λjχ, θ′T∂cR(α)ϕ⟩.

Using now the asymptotic form (6.26), the last two limits above can be rewritten as

lim
T→∞

⟨ ∑
j 6 `

F −
j e

ic
√
p2−2λjχ, θ′′TR(α)ϕ⟩ = lim

T→∞
∑
j 6 `

⟨F −
j e

ic
√
p2−2λj , θ′′Taj(α,ϕ)e

ic
√
p2−2λj ⟩

lim
T→∞

⟨ ∑
j 6 `

F −
j e

ic
√
p2−2λjχ, θ′T∂cR(α)ϕ⟩ = lim

T→∞
∑
j 6 `

⟨F −
j e

ic
√
p2−2λj , θ′Taj(α,ϕ)∂c(e

ic
√
p2−2λj)⟩

and this easily yields

⟨P`(α)F,ϕ⟩ = i ∑
j 6 `

√
p2 − λj⟨F

−
j , aj(α,ϕ)⟩

L2(ΩT)
.

where aj are the functional obtained from (6.26). The result then extends holomorphically to the region
(6.62) and meromorphically to (6.64) �
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The Poisson operator far from Re(α) = Q. We have seen in Lemma 6.7 that the Poisson operator can be
defined far from the spectrum. The problem is that the region of analyticity of P`(α) in Lemma 6.7 does
not intersect (for ` large at least) the region of analyticity of P`(α) from Proposition 6.19. The proposition
below extends the construction of the Poisson operator to a region overlapping both regions in Lemma 6.7
and Proposition 6.19 (see figure 4).

Proposition 6.21. For ` fixed, the Poisson operator P`(α) of Lemma 6.7 extends analytically to the region

(6.68) {α = Q + ip ∈ C ∣ Re(α) < Q, Im(p) > Im(
√
p2 − 2λ`) − γ/2}

as an function in e−(Im(
√
p2−2λ`)+ε)ρD(Q) for all ε > 0.

Proof. As before, for F = ∑
`
j=0 F

−
j ∈ E` with F −

j ∈ Ker(P − λj), we set u−(α) ∶= ∑j 6 ` F
−
j e

ic
√
p2−2λj , and let

χ ∈ C∞(R) equal to 1 in (−∞,−1) and with supp(χ) ⊂ R−. We get

(H −
Q2+p2

2
)(χu−(α)) = −

1
2
χ′′(c)u−(α) − χ

′
(c)∂cu−(α) + e

γcV χu−(α).

The first two terms in the right hand side are in eNρL2(R×ΩT) for all N > 0 (indeed, compactly supported
in c), while the last term can be decomposed as

Πke
γcV χu−(α) + (1 −Πk)χe

γcV u−(α) ∈ e
(−Im

√
p2−2λ`+γ/2)ρL2

(R;Ek) + e
(−Im

√
p2−2λ`+γ/2)ρD′(Q)

by using Lemma 6.1. Using Proposition 6.17, we can thus define, with the same formula as in Lemma 6.20
and Proposition 6.19, the Poisson operator

u+(α) ∶= R(α)(H −
Q2+p2

2
)(χu−(α)) ∈ e

(−Im
√
p2−2λ`+γ/2)ρD(Q),

P`(α)F ∶= u−(α)χ − u+(α)

in the region

Im(p) = Re(Q − α) > max
j 6 `

Im
√
p2 − 2λj − γ/2 = Im

√
p2 − 2λ` − γ/2.

�

Remark 6.22. Notice that this region of holomorphy is non-empty and connected, as for ` and ∣p∣ = R≫ λ`

Im(p) − Im
√
p2 − 2λ` + γ/2 = γ/2 +O(

λ`
R2

) > 0.

6.4. The Scattering operator.

Definition 6.23. Let ` ∈ N and α = Q+ ip with p ∈ R∖(−
√

2λ`,
√

2λ`). The scattering operator S`(α) ∶ E` →
E` for the `-th layer (also called `-scattering operator) is the operator defined as follows: let F = ∑j 6 ` Fj ∈ E`
(with Fj ∈ Ker(P − λj)) and let F −

j ∶= (p2 − 2λj)
−1/4Fj, then we set

S`(α)F ∶= {
∑j 6 ` F

+
j (α)(p

2 − 2λj)
1/4, if p >

√
2λ`,

∑j 6 ` F̂
+
j (α)(p

2 − 2λj)
1/4, if p < −

√
2λ`.

where F +
j (α), F̂

+
j (α) are the functions in (6.63) and (6.66). We will call more generally

S(α) ∶= {
⋃`,2λ`<p2 ker(P − λj) → ⋃`,2λ`<p2 ker(P − λj)
F ∈ E` ↦ S`(α)F

the scattering operator, where we use S`(α)∣E`′ = S`′(α) for `′ < `.

Let us define the map ω` ∶ Σ→ Σ by the following property: if rj(α) =
√
p2 − 2λj are the analytic functions

on Σ used to define this ramified covering (with α = Q+ ip in the physical sheet), then ω`(α) is the point in
Σ so that

rj(ω`(α)) = {
−rj(α) if j 6 `,
rj(α) if j > `

.

As a consequence of Proposition 6.19 and Lemma 6.18, we obtain the
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Re(α) = Q

Probabilistic
region (6.21)

Near spectrum
region (6.62)

Analyticity
region (6.68) for

P`(α)

Figure 4. The green colored region correspond to the region (6.68) of validity of Lemma
6.21 for the analyticity of the Poisson operator P`(α) with ` > 0 (for the plot, we take
λ` = 4, γ = 1/2). It overlaps the probabilistic (6.21) and near spectrum (6.62) regions.

Corollary 6.24. For each ` ∈ N, the `-th scattering operator S`(α) is unitary on E` if α = Q + ip (p ∈ R)
is such that λ` < p

2 < min{λj ∣λ` < λj}. It also satisfies the functional equation

(6.69) S`(α)S`(ω`(α)) = Id.

Moreover it extends meromorphically in (6.64) if β < γ. It also satisfies the following functional equation

for each F = ∑
`
j=0 Fj ∈ E`

(6.70) P`(α)
`

∑
j=0

(p2
− 2λj)

−1/4Fj = P`(ω`(α))S`(α)
`

∑
j=0

Fj .

Proof. The unitarity of S`(α) on the line Re(α) = Q follows directly from Lemma 6.18 applied with u` =
P`(α)F . The functional equation (6.69) reads S`(α)S`(2Q − α) = Id on the line Re(α) = Q and that comes
directly from the uniqueness statement in Proposition 6.19 on the line. The extension of S(α) with respect to
α comes directly from the meromorphy of the aj(α,F ) in Proposition 6.10. The functional identity extends
meromorphically under the formula (6.69). The functional equation (6.69) also comes from uniqueness of
the Poisson operator. �

Theorem 6.25. For each j ∈ N, let (hjk)k=1,...,k(j) be an orthonormal basis of kerL2(ΩT)(P − λj). The

spectral resolution holds for all ϕ,ϕ′ ∈ eβρL2(ΩT ×R) with β > 0

(6.71) ⟨ϕ ∣ϕ′⟩2 =
1

2π

∞
∑
j=0

k(j)

∑
k=1

∫

∞

0
⟨ϕ ∣Pj(Q + i

√
p2 + 2λj)hjk⟩⟨Pj(Q + i

√
p2 + 2λj)hjk ∣ϕ

′
⟩dp.

As a consequence the spectrum of H is absolutely continuous.
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Proof. We recall the Stone formula: for ϕ,ϕ′ ∈ eβρL2 for β > 0

⟨ϕ ∣ϕ′⟩2 =
1

2πi
lim
ε→0+

∫

∞

0
⟨[(H −

Q2

2
− t − iε)−1

− (H −
Q2

2
− t + iε)−1

]ϕ ∣ϕ′⟩dt

=
1

2πi
lim
ε→0+

∫

∞

0
⟨[(H −

Q2+p2

2
− iε)−1

− (H −
Q2+p2

2
+ iε)−1

]ϕ ∣ϕ′⟩pdp

=
1

2πi
∫

∞

0
⟨[(R(Q + ip) −R(Q − ip))]ϕ ∣ϕ′⟩pdp.

Here α = Q + ip (with p > 0) has to be viewed as an element in Σ obtained by limit Q + ip − ε as ε → 0+

and, if ` is the largest integer such that 2λ` 6 p2, we write α for the point ω`(α) on Σ. For α = Q + ip with
p ∈ R+, we have for ϕ ∈ eβρL2 with β > 0

1

2i
⟨(R(α) −R(α))ϕ ∣ϕ⟩ = Im⟨R(α)ϕ ∣ϕ⟩

= Im⟨R(α)(H − 2∆α)R(α)ϕ ∣ϕ⟩

= Im⟨(H − 2∆α)R(α)ϕ ∣R(α)ϕ⟩

.

Here we have used that (H − 2∆α)R(α) = Id on eβρL2 provided p ∈ R and that ⟨R(α)ϕ ∣ϕ′⟩ = ⟨ϕ,R(α)ϕ′⟩
for ϕ ∣ϕ′ ∈ eβρL2, this last fact coming from the identity R(α) = R(α)∗ for Re(α) < Q and passing to the
limit Re(α)→ Q. Let θT (c) as in the proof of Lemma 6.18. We have

⟨(H − 2∆α)R(α)ϕ,R(α)ϕ⟩ = lim
T→+∞

⟨θT (H − 2∆α)R(α)ϕ,R(α)ϕ⟩

= lim
T→+∞

⟨θTR(α)ϕ ∣ϕ⟩ + lim
T→∞

1
2
⟨[∂2

c , θT ]R(α)ϕ ∣R(α)ϕ⟩.

Using (6.26) and arguing as in the proof of Lemma 6.18, as T →∞ we get

⟨(H − 2∆α)R(α)ϕ,R(α)ϕ⟩ =⟨R(α)ϕ,ϕ⟩ + 1
2

lim
T→∞

∑
j 6 `

∥aj(α,ϕ)∥
2
L2(ΩT)∂c(e

ic
√
p2−2λj)∣c=−T e

iT
√
p2−2λj

− 1
2

lim
T→∞

∑
j 6 `

∥aj(α,ϕ)∥
2
L2(ΩT)e

−iT
√
p2−2λj∂c(e

−ic
√
p2−2λj)∣c=−T

=⟨R(α)ϕ,ϕ⟩ − i ∑
j 6 `

√
p2 − 2λj∥aj(α,ϕ)∥

2
L2(ΩT).

We conclude that

(6.72) − Im⟨R(α)ϕ,ϕ⟩ = 1
2 ∑
j 6 `

√
p2 − 2λj∥aj(α,ϕ)∥

2
L2(ΩT).

By Lemma 6.20, we have

(6.73) P`(α)
∗ϕ = −i ∑

j 6 `

aj(α,ϕ)
√
p2 − 2λj .

By polarisation and by denoting Πj the orthogonal projectors on Ker(P − λj), we deduce from (6.72) and
(6.73) that

−Im⟨R(α)ϕ,ϕ⟩ = 1
2 ∑
j 6 `

1
√
p2 − 2λj

⟨ΠjP`(α)
∗ϕ,ΠjP`(α)

∗ϕ′⟩L2(ΩT).

Rewriting P`(α)
∗ϕ = ∑

`
j=0∑

k(j)
k=1 ⟨ϕ,P`(α)hjk⟩2hjk, we obtain

⟨ϕ,ϕ′⟩2 =
1

2π
∫

∞

0

∞
∑
`=0

1l[
√

2λ`,
√

2λ`+1)(p)
`

∑
j=0

k(j)

∑
k=1

⟨ϕ,P`(Q + ip)hjk⟩2⟨ϕ′,P`(Q + ip)hjk⟩2
p

√
p2 − 2λj

dp.
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This finally can be rewritten, using (6.24), as

⟨ϕ,ϕ′⟩2 =
1

2π

∞
∑
j=0

∑
` > j

∫

∞

0
1l[

√
2λ`,

√
2λ`+1)(p)

k(j)

∑
k=1

⟨ϕ,P`(Q + ip)hjk⟩⟨ϕ′,P`(Q + ip)hjk⟩
p

√
p2 − 2λj

dp

=
1

2π

∞
∑
j=0
∫

∞
√

2λj

k(j)

∑
k=1

⟨ϕ,Pj(Q + ip)hjk⟩⟨ϕ′,Pj(Q + ip)hjk⟩
p

√
p2 − 2λj

dp

=
1

2π

∞
∑
j=0

k(j)

∑
k=1

∫

∞

0
⟨ϕ,Pj(Q + i

√
r2 + 2λj)hjk⟩⟨ϕ′,Pj(Q + i

√
r2 + 2λj)hjk⟩dr

where we performed the change of variables in the last line r =
√
p2 − 2λj . �

6.5. Holomorphic parametrization of the eigenstates. We conclude this section by defining the gener-
alized eigenfunctions Ψα,k,l by using the standard orthonormal basis (ψkl)k,l∈N of L2(ΩT) made of Hermite
polynomials and introduced below (4.7). We set

Ψα,k,l ∶= Pj(Q −
√

(Q − α)2 − 2λkl)ψkl

where ` is defined by λ` = λkl and
√
z is used here with the convention that the cut is on R− (ie.

√
Reiθ =

√
Reiθ/2 for θ ∈ (−π,π)). These are eigenfunctions of H with eigenvalues 2∆α +λkl. Using (6.62) and (6.68)

for the holomorphy of P`(⋅), we obtain the

Proposition 6.26. Let ` > 0 such that λkl = ∣k∣+ ∣l∣ = λ`. For each ε > 0, the function Ψα,k,l ∈ e
−βρD(Q) is

an eigenfunction of H with eigenvalue 2∆α + λ` for all β > Q −Re(α), it is holomorphic on the set

(6.74) W` ∶= {α ∈ C ∖D` ∣Re(α) 6 Q,Re
√

(Q − α)2 − 2λ` > Re(Q − α) − γ/2}

where D` ∶= ⋃j > `{Q ± i
√

2(λj − λ`)} is a discrete set where Ψα,k,l is continuous in α with square root
singularities. The set W` is a connected subset of the half-plane Re(α) 6 Q, containing (Q + iR) ∖D` and

the real half-line (−∞,Q −
2λ`
γ
−
γ
4
).

Finally, one has for P ∈ R, ΨQ+iP,k,l = Pj(Q + i
√
P 2 + 2λkl)ψkl and one can rewrite (6.71) as

(6.75) ⟨ϕ ∣ϕ′⟩2 =
1

2π
∑

k,l∈N
∫

∞

0
⟨ϕ ∣ΨQ+iP,k,l⟩⟨ΨQ+iP,k,l ∣ϕ

′
⟩dP.

7. Probabilistic representation of the Poisson operator

In Section 6, we constructed the generalized eigenstates Ψα,k,l by means of the Poisson operator (see Prop
6.26) of the Liouville Hamiltonian H on the spectrum line α ∈ Q + iR and showed that these generalized
eigenstates can be analytically continued in the parameter α over the region W` defined by (6.74) for
∣k∣+ ∣l∣ = λ`. As in the case of the H0-eigenstates, we will need to perform a change of basis. So, similarly to
Prop 4.9 item 4, we set for ν, ν̃ ∈ T Young diagrams, with N ∶= ∣ν∣ + ∣ν̃∣,

(7.1) Ψα,ν,ν̃ ∶= ∑
k,l,∣k∣+∣l∣=N

MN
α,kl,νν̃Ψα,k,l,

with the convention that Ψα,∅,∅ = Ψα,0,0, which will be denoted by Ψα. The (Ψα,ν,ν̃)ν,ν̃ (with ν /= ∅ or
ν̃ /= ∅) will be called descendant states. Since the coefficients MN

α,kl,νν̃ are analytic in α ∈ C (see Prop 4.9),

Ψα,ν,ν̃ satisfy the same holomorphy properties (namely Prop 6.26) as Ψα,k,l provided that ∣k∣+ ∣l∣ = ∣ν∣+ ∣ν̃∣.
The main goal of this section is to compute the correlation functions of these descendant states and our
strategy can be summarized as follows.

It turns out that for α real in the physical region, which we will call probabilistic region, we will be
able to give a probabilistic representation for the descendant states thanks to the intertwining construction
based on the descendant states Ψ0

α,ν,ν̃ of the GFF theory µ = 0:

(7.2) lim
t→+∞

et(2∆α+∣ν∣+∣ν̃∣)e−tHΨ0
α,ν,ν̃ = Ψα,ν,ν̃
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for α real and negative enough (see Proposition 7.2). Indeed, in Subsection 7.3, we express the free descendant
states in terms of contour integrals of the Stress Energy Tensor (SET) of the GFF theory, which we plug then
in (7.2). Applying the Feynman-Kac formula for the propagator e−tH in the expression (7.2), we obtain a
probabilistic expression for the descendant states Ψα,ν,ν̃ in terms of contour integrals of SET in LCFT14 (see
Corollary 7.10). The Ward identities (Proposition 7.11) then allows us to translate these contour integrals
in terms of differential operators: more precisely, correlation functions of descendant states Ψα,ν,ν̃ can be
obtained in terms of differential operators acting on the correlation functions of primary states Ψα. Finally
we will analytically continue these relations from the region {α ∈ R;α < Q} back to the spectrum line and
obtain the consequences in Subsection 7.5 about the structure of 3 point correlation functions involving
descendant states.

7.1. Highest weight states. Recall the definition (4.23) of the highest weight state Ψ0
α(c,ϕ) = e

(α−Q)c for
α ∈ C of the µ = 0 theory. From Proposition 6.9 item 2 (applied with F = 1), we know that for α ∈ R with
α < Q, the state

Ψα = P0(α)1(7.3)

is given by the large time limit

(7.4) Ψα = lim
t→∞

e2t∆αe−tHΨ0
α, dc⊗PT a.e.

where ∆α denotes the conformal weight (1.9). In physics (or representation theory) terminology the state Ψα

is the highest weight state corresponding to the primary field Vα. Combining (7.4) with the Feynman-Kac
formula (5.4) leads to the probabilistic representation for α < Q

(7.5) Ψα(c,ϕ) ∶= e
(α−Q)cEϕ[ exp ( − µeγc ∫

D
∣x∣−γαMγ(dx))].

We recall here that the integrability of ∣x∣−γα with respect to Mγ(dx) is detailed in [DKRV16].

Remark 7.1. In forthcoming work, we will show that, for α ∈ ( 2
γ
,Q), we have as c→ −∞

Ψα(c,ϕ) = e
(α−Q)c

+ e(Q−α)cR(α) + e(Q−α)co(1)

with o(1)→ 0 in L2(ΩT) as c→ −∞ with R the reflection coefficient defined in [KRV20], which thus appears
as the scattering coefficient of constant functions: for ` = 0 we have S0(α) = R(α)Id. More generally, we
will show that the scattering matrix is diagonal.

7.2. Descendant states. Recall (Subsection 4.4) that for µ = 0 we have descendant states given by

Ψ0
α,ν,ν̃(c,ϕ) = Qα,ν,ν̃(ϕ)e

(α−Q)c

where Qα,ν,ν̃ are eigenstates of the operator P:

PQα,ν,ν̃ = (∣ν∣ + ∣ν̃∣)Qα,ν,ν̃

so that

H0Ψ0
α,ν,ν̃ = (2∆α + ∣ν∣ + ∣ν̃∣)Ψ0

α,ν,ν̃ .

From Proposition 6.9 we infer the following

Proposition 7.2. Let α < (Q −
2(∣ν∣+∣ν̃∣)

γ
−
γ
4
) ∧ (Q − γ). Then the limit

(7.6) lim
t→+∞

et(2∆α+∣ν∣+∣ν̃∣)e−tHΨ0
α,ν,ν̃ = Ψα,ν,ν̃

holds in e−(β+γ/2)ρL2(R ×ΩT) for β > Q − α − γ/2.

14Recast in the language of CFTs, this is somewhat equivalent to stating that descendant states can be obtained via the

action of Virasoro generators on primary states.
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Proof. Write ∣ν∣ + ∣ν̃∣ = λj for some j. We apply Proposition 6.9 item 1 but we have to make a small
notational warning: indeed recall that in Section 6, eigenvalues are parametrized by 2∆α whereas here
eigenvalues correspond to 2∆α + ∣ν∣ + ∣ν̃∣ = 2∆α + λj . So let us call α′ the α in the statement of Proposition
6.9, and write it as α′ = Q + ip with p2 = 2λj − (Q − α)2 (p ∈ iR) in such a way that

2∆α′ = 2∆α + λj , otherwise stated
√
p2 − 2λj = i(Q − α).

In particular Im
√
p2 − 2λj = Q−α > γ so that we can choose χ = 1 in Proposition 6.9 item 1. Let ` > 1, j 6 `

and F = Qα,ν,ν̃ . Then the limit (7.6) exists in e−(β+γ/2)ρL2 if β > Im
√
p2 − 2λj − γ/2 = Q − α − γ/2 > 0 and

−p2 > β2. In conclusion we get α < Q − γ/2 = 2/γ and −p2 > (Q − α − γ/2)2. Substituting p2 = 2λj − (Q − α)2

in the latter, we arrive at the relation (Q − α)2 − 2λj > (Q − α − γ/2)2, which can be solved to find our
condition. �

7.3. Stress Energy Field. In this section we construct a probabilistic representation for the Virasoro
descendants (4.25). This can be done in terms of a local field, the stress-energy tensor, formally given for
z ∈ D by

(7.7) T (z) ∶= Q∂2
zX(z) − (∂zX(z))2

+E[(∂zX(z))2
].

The stress tensor does not make sense as a random field but can be given sense at the level of correlation
functions as the limit of Tε(z) defined by (7.7) with X replaced by a regularized field Xε which we take in
the form

Xε(z) ∶= ⟨X,fε,z⟩D(7.8)

for suitable test function fε,z. We will use two regularizations in what follows. For the first one we take
fε,z(u) =

1
ε2
%( z−u

ε
) with non-negative % ∈ C∞

c (C) with %(0) = 1 and ∫C %(x)dx = 1. For this regularization we
have for t > 0 the following scaling relation

S−tTε(z) = e
−2tTe−tε(e

−tz).(7.9)

For the second regularization we write z = e−t+iθ and take fε,z(e
−s+iθ′) = 1

2πε
ρ( t−s

ε
)∑∣n∣<ε−1 ein(θ−θ

′) with

ρ ∈ C∞
c (R), ρ(0) = 1 and ∫R ρ(x)dx = 1. This regularization has the property that Tε(z) depends only on

the Fourier components ϕn with ∣n∣ < 1/ε when we decompose X = Pϕ +XD. We denote also by T̄ (z) the
complex conjugate of T (z).

Our goal is to express the action of the Virasoro generators (4.17) and (4.18) on the state U0F in terms
of the states

U0(
k

∏
i=1

T (ui)
l

∏
j=1

T̄ (vj)F)(7.10)

which will be defined as limits of regularized expressions. We start by specifiying a suitable class of F for
which (7.10) makes sense. Let δ < 1 .We introduce the set Eδ defined by
(7.11)

Eδ ∶= {f ∈ C∞
0 (δD) ∣ f(e−t+iθ) = ∑

n∈Z
fn(t)e

inθ, with fn ∈ C
∞
0 ((− ln δ,∞)) and fn = 0 for ∣n∣ large enough}.

Define Fδ ⊂ FD by

(7.12) Fδ = span {
l

∏
i=1

⟨gi, c +X⟩De
⟨f,c+X⟩D ; l > 0, f, gi ∈ Eδ}.

with l > 0, f, gi ∈ Eδ. We note that U0F ∈ eβ∣c∣L2(R × ΩT) for β > ∣f0 −Q∣ where f0 = ⟨f,1⟩D and is in the

domain of the Virasoro operators L0
−νL̃

0
−ν̃ defined in Subsection 4.4 since it depends on a finite number of

ϕn. Let

Oδ = {(u,v) ∈ Cm+n
∣ δ < ∣uj ∣, ∣vj ∣ < 1, ∀j ≠ j′, ∣uj ∣ ≠ ∣uj′ ∣, ∣vj ∣ ≠ ∣vj′ ∣, ∣uj ∣ ≠ ∣vj′ ∣}.(7.13)

We have the simple:
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Proposition 7.3. Let F ∈ Fδ. Then the functions

(u,v)→ U0(
k

∏
i=1

Tεi(ui)
l

∏
j=1

T̄ε′j(vj)F)

are continuous on Oδ with values in eβ∣c∣L2(R × ΩT) for β > ∣f0 −Q∣ and converge uniformly on compact
subsets of Oδ as (εi)i and (ε′j)j tend successively to 0 in whatever order. The limit is independent of the
regularization or the order along which limits have been taken and denoted by (7.10) and it defines a function

holomorphic in u and anti-holomorphic in v in the region Oδ taking values in eβ∣c∣L2(R ×ΩT).

Proof. To keep the notation simple we consider only the case j = 0 in (7.10) and the case where F ∈ Fδ is

of the form F = e⟨f,c+X⟩D with f ∈ Eδ. By replacing f by f +∑i λigi with gi ∈ Eδ and differentiating at λi = 0
we can deduce the result for general F . For such F we have

(U0F )(c,ϕ) = e(f0−Q)ce⟨Pϕ,f⟩De
1
2 ⟨f,GDf⟩D .(7.14)

By Gaussian integration by parts (see (9.4)) the right-hand side of (7.10) is a sum of terms

const ×∏
i

(∂aiPϕεi(ui))
bi∏
j<k

(∂
bjk
uj ∂

cjk
uk (fεj ,uj ,GDfεk,uk)

djk
D )∏

l

∂dlul(fεl,ul ,GDf)
el
D U0F(7.15)

where ai, bjk, cjk ∈ {1,2}, bi, djk, el ∈ {0,1,2}, dl ∈ {1,2} and GD is the Dirichlet Green function (3.8). The
functions (fεj ,uj ,GDfεk,uk)D and (fεl,ul ,GDf)D converge uniformly on compacts of Oδ to smooth functions.
From (3.8) we get

∂zGD(z, u) = −
1

2
(

1

z − u
−

1

z − 1
ū

).(7.16)

Hence the limit of the second product in (7.15) is holomorphic since bjk, cjk > 0. For the third product, we
get convergence to terms of the form

∫
D
∂uGD(u, z)f(z)dz = −

1
2

∞
∑
n=0

(fnu
−n−1

+ f−n−1u
n
)

or its ∂u derivative where fn = ⟨f, un⟩D and f−n = ⟨f, ūn⟩D and the sum is finite and holomorphic. Finally,
recalling (3.7) it is easy to check that the first product converges in L2(ΩT) uniformly on compacts of Oδ
to a holomorphic function g(u) and g(u)U0F ∈ eβ∣c∣L2(R ×ΩT). �

Now we will consider contour integrals of observables of the type (7.10), for which we use the following
notation: for f ∶ D→ C and δ > 0

∮
∣z∣=δ

f(z)dz ∶= iδ∫
2π

0
f(δeiθ)eiθdθ, ∮

∣z∣=δ
f(z)dz̄ ∶= iδ∫

2π

0
f(δeiθ)e−iθdθ.

Then we have

Lemma 7.4. Let F ∈ Fδ and δ′ > δ. Then for all n > 0

1
2πi ∮∣z∣=δ′

z1−nU0(T (z)F )dz = L0
−nU0F,

1
2πi ∮∣z∣=δ′

z̄1−nU0(T̄ (z)F )dz̄ = L̃0
−nU0F.(7.17)

Proof. Here again (for simplicity) we consider the case where F ∈ FδD is of the form F = e⟨f,c+X⟩D with
f ∈ Eδ. Let us write the integration by parts terms explicitly. First

U0(∂zX(z)F ) =∂zPϕ(z)U0F + ∫
D
∂zGD(z, u)f(u)duU0F.

From (7.16) we get

∂zGD(z, u) = −
1

2

∞
∑
n=0

(unz−n−1
+ ūn+1zn)(7.18)

which converges since ∣u∣ < δ < δ′ = ∣z∣ < 1. Therefore

∫
D
∂zGD(z, u)f(u)du = −

1
2

∞
∑
n=0

(fnz
−n−1

+ f−n−1z
n
)
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where fn = ⟨f, un⟩D and f−n = ⟨f, ūn⟩D for n > 0. Recalling (3.7), we have obtained

U0(∂zX(z)F ) = ∑
n > 0

(nϕnz
n−1

−
1

2
(fnz

−n−1
+ f−n−1z

n
))U0F(7.19)

= ∑
n∈Z

zn−1
(nϕn1n>0 −

1

2
f−n)U0F.

By (7.14)

(U0F )(c,ϕ) = e(f0−Q)ce∑n>0(ϕnfn+ϕ−nf−n)e
1
2 ⟨f,GDf⟩D(7.20)

so that

U0(∂zX(z)F ) = (−
1

2
f0z

−1
+ ∑
n≠0

zn−1
(nϕn1n>0 −

1

2
∂−n))U0F

= i∑
n∈Z

zn−1A−nU0F(7.21)

where we recall that A0 =
i
2
(∂c +Q). Hence

U0(Q∂
2
zX(z)F ) = − iQ∑

n∈Z
(n + 1)z−n−2AnU0F.(7.22)

Next consider the quadratic terms in T and use Gaussian integrating by parts twice to get

U0(((∂zX(z))2
−E[(∂zX(z))2

])F ) = (∂zPϕ(z) + ∫
D
∂zGD(z, u)f(u)du)

2

U0F

= (∑
n∈Z

zn−1
(nϕn1n>0 −

1

2
f−n))

2U0F

= ∑
n,m

zn+m−2
(−A−nA−m + m

2
δm,−n1m>0)U0F

= − ∑
n,m

zn+m−2
∶ A−nA−m ∶ U0F

where we used (7.19) in the second step, (7.21) in the third step and AmA−m = A−mAm + m
2

for m > 0 in

the last step. The sum converges in eβ∣c∣L2(R × ΩT). Combining this with (7.22) the claim (7.17) follows
upon doing the contour integral. The claim for T̄ is proved in the same way. �

Let us now introduce some notation for the general correlations (7.10). Denote u = (u1, . . . uk) ∈ Dk. We
define nested contour integrals for f ∶ Dk ×Dj → C by

∮
∣u∣=δ

∮
∣v∣=δ̃

f(u,v)dv̄du ∶= ∮
∣uk ∣=δk

⋯∮
∣u1∣=δ1

∮
∣vj ∣=δ̃j

⋯∮
∣v1∣=δ̃1

f(u,v)dv̄1 . . .dv̄jdu1 . . .duk.(7.23)

where δ ∶= (δ1, . . . , δk) with 0 < δ1 < ⋅ ⋅ ⋅ < δk < 1 and similarly for δ̃. Furthermore we always suppose δi ≠ δ̃j
for all i, j. Next, for ε ∈ (R+)k and ε′ ∈ (R+)j we set Tε(u) ∶= ∏

k
i=1 Tεi(ui) (and similarly for the anti-

holomorphic part) and given two Young diagrams ν = (νi)1 6 i 6 k, ν̃ = (ν̃i)1 6 i 6 j , we denote u1−ν =∏u1−νi
i

and v̄1−ν̃ =∏ v̄1−ν̃i
i . With these notations we have:

Proposition 7.5. Let F ∈ Fδ and δ < δ1 ∧ δ̃1. Then

(2πi)−k−j ∮
∣u∣=δ

∮
∣v∣=δ̃

u1−ν v̄1−ν̃U0(T (u)T̄ (v)F )dv̄du = L0
−νL

0
−ν̃U0F.(7.24)

Proof. For simplicity consider again the case with only T insertions. We proceed by induction in k. By
Lemma 7.4 the claim holds for k = 1. Suppose it holds for k−1. We use the second regularization introduced
above. This entails that Tε(ul) ∈ Fδl+1

for ε small enough. By Proposition 7.3 we have

∮
∣u∣=δ

u1−νU0(T (u)F)du = lim
ε(k)→0

lim
εk→0

∮
∣u∣=δ

u1−νU0(Tεk(uk)Tε(k)(u
(k)

)F)du

= lim
ε(k)→0

∮
∣u∣=δ

u1−νU0(T (uk)Tε(k)(u
(k)

)F)du
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where we introduced the notation ε(k) = (ε1, . . . , εk−1), u(k) = (u1, . . . , uk−1). We have, for ε(k) small enough

that Tε(k)(u
(k))F ∈ Fδk . Hence by Lemma 7.4

1

2πi
∮
∣uk ∣=δk

u1−νk
k U0(T (uk)Tε(k)(u

(k)
)F)duk = L−νkU0(Tε(k)(u

(k)
)F).

From (7.15) we infer that U0(Tε(k)(u
(k))F ) = Pk(ε

(k), ϕ)U0F where Pk(ε
(k), ϕ) is a polynomial in finitely

many variables ϕn (depending on k) with coefficients continuous in u(k) (and depending on ε(k)). Therefore
we may commute L−νk and the integration to get

(2πi)−k ∮
∣u∣=δ

u1−νU0(T (uk)Tε(k)(u
(k)

)F)du = L−νk ((2πi)
−k+1

∮
∣u(k)∣=δ(k)

(u(k)
)
1−ν(k)U0(Tε(k)(u

(k)
)F)du(k)

) .

By the induction hypothesis the term

(7.25) Iε(k) ∶= (2πi)−k+1
∮
∣u(k)∣=δ(k)

(u(k)
)
1−ν(k)U0(Tε(k)(u

(k)
)F )du(k)

converges to L−ν(k)U0F as ε(k) goes to 0. Moreover we claim that, for all fixed k, there exists M,N < ∞

s.t. Iε(k) = Qk(ε
(k), ϕ)U0F where Qk(ε

(k), ϕ) is a polynomial in ϕn with ∣n∣ < N and of degree less than M .

Furthermore the coefficients of Qk(ε
(k), ϕ) converge as ε(k) → 0. Therefore we can commute L−νk and the

limit to get

lim
ε(k)→0

L−νkIε(k) = L−νk lim
ε(k)→0

Iε(k) = L−νkL−ν(k)U0(F ) = L−νU0(F )

which completes the induction step.
To prove the above claim we use (7.15). Let G be the graph with vertex set {1, . . . , k} and edges {i, j}

with dij > 0. Let Γ be a connected component of G. Then the number of vertices i in Γ s.t. bi > 0 is no more
than two. Consider a connected component for which the number is two. This corresponds to a subproduct
in (7.15) of the form

fε(ui1 , . . . , uil) = ∂Pϕεi1 (ui1)∂Pϕεil (uil)
l−1

∏
a=1

∂uia∂uia+1
(fεia ,uia ,GDfεia+1

,uia+1
)D.(7.26)

We have

∂Pϕε(u) =
Mε

∑
n=1

an(ε)ϕnu
n−1

where Mε <∞ if ε > 0 and an(ε) converges as ε→ 0. Similarly, for ∣u∣ < ∣u′∣,

∂u∂u′(fε,u,GDfε′,u′)D =

Nε,ε′

∑
m=0

bm(ε, ε′)umu′
−m−2

where Nε,ε′ < ∞ if ε, ε′ > 0 and bn(ε, ε
′) converge as ε, ε′ → 0. Insert these to (7.26). To simplify notation

denote uia = va, εia = εa, δia = da and νia = ηa. The contour integral of fε becomes

∮
∣v∣=d

v1−ηfε(v)dv = ∑
n1,nl

ϕn1ϕnlan1,nl(ε)

where

an1,nl(ε) = ∑
m1,...,ml−1>0

an1,nl(m,ε)∫
[0,2π]l

ei(n1θ1+nlθl+∑l−1
i=1 αi(miθi−(mi+2)θi+1)+∑li=1(1−ηi)θidθ

and αi = ±1 depending on whether ∣va∣ < ∣va+1∣ or the opposite. The θ integral gives the constraints n1 +

α1m1 + 1 − η1 = 0, nl − αl−1(ml−1 + 2) + 1 − ηl = 0 and αimi − αi−1(mi−1 + 2) + (1 − ηi) = 0 for i = 2, . . . , l − 1.
The last two imply nl −α1m1 +C(α,η) = 0 and combining this with the first constraint we get an1,nl = 0 if
∣n1∣, ∣nl∣ > C(α,η), where C(α,η) denotes a generic constant depending only on α,η. Convergence of the
an1,nl(ε) as ε → 0 then follows from the convergence of the (an)n’s and (bm)’s and the fact that an1,nl(ε)
is a polynomial of these coefficients. This finishes the proof for the case Γ has two vertices with bi > 0. The
two other cases are similar. �
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In the sequel we will apply Proposition 7.5 to the function

F = Se−tU
−1
0 Ψ0

α = eα ∫
2π
0 (c+X(e−t+iθ)) dθ2π −αQt

where Ψ0
α(c,ϕ) = e

(α−Q)c (in this case integration against a function f ∈ Eδ is replaced by an average on a

circle but the previous considerations apply also). Then U0F = e−tH
0

Ψ0
α = e−2t∆αΨ0

α. Thus we arrive to the
representation for the Virasoro descendants

Ψ0
α,ν,ν̃ = e

2t∆α(2πi)−k−j ∮
∣u∣=δ

∮
∣v∣=δ̃

u1−ν v̄1−ν̃U0(T (u)T̄ (v)Se−tU
−1
0 Ψ0

α)dv̄du(7.27)

where now e−t < δ1 ∧ δ̃1.

7.4. Conformal Ward Identities. In this section we state the main identity relating a LCFT correlation
function with a Vα insertion to a scalar product with the descendant states Ψα,ν,ν̃ given by (7.1). We have

Lemma 7.6. We have

e−tHU0(T (u)T̄ (v)Se−sU
−1
0 Ψ0

α) = lim
ε→0

lim
ε′→0

e−tHU0(Tε(u)T̄ε′(v)Se−sU
−1
0 Ψ0

α)

where the limit is in e−βρL2(R × ΩT) for all β > Q − α, uniformly in (u,v) ∈ Oe−s (recall (7.13)) and the
LHS is analytic in u and anti-analytic in v on Oe−s .

Proof. This follows from Proposition 7.3 and (6.11) applied with β > Q − α. �

The following lemma gives a probabilistic expression for e−tHΨ0
α,ν,ν̃ (recall our convention for contour

integrals in (7.23)):

Lemma 7.7. Let δk ∧ δ̃k̃ < e
−t. Then

e−tHΨ0
α,ν,ν̃ =

e−(2∆α+∣ν∣+∣ν̃∣)t

(2πi)k+j
∮
∣u∣=δ

∮
∣v∣=δ̃

u1−ν v̄1−ν̃e−QcEϕ(T (u)T̄ (v)Vα(0)e
−µeγcMγ(D∖Dt))dv̄du

where

Eϕ(T (u)T̄ (v)Vα(0)e
−µeγcMγ(D∖Dt)) ∶= lim

ε→0
lim
ε′→0

Eϕ(Tε(u)T̄ε′(v)Vα(0)e
−µeγcMγ(D∖Dt))

and the limit exists in e−βρL2(R ×ΩT) for all β > Q − α and is analytic in u and anti-analytic in v in the
region Oe−t .

Proof. For the sake of readability we write the proof in the case when ν̃ = 0. Thus, consider

(7.28) Ψ0
α,ν,0 =

e2∆αs

(2πi)k
∮
∣u∣=δ

u1−νU0(T (u)Se−sU
−1
0 Ψ0

α)du.

We use the regularisation Tε where (7.9) holds. By Lemma 7.6

e−tHU0(T (u)Se−sU
−1
0 Ψ0

α) = lim
ε→0

e−tHU0(Tε(u)Se−sU
−1
0 Ψ0

α)

= lim
ε→0

e−tHU(Tε(u)(Se−sU
−1
0 Ψ0

α)e
µeγcMγ(D)

)

= lim
ε→0

U(Se−t(Tε(u)(Se−sU
−1
0 Ψ0

α)e
µeγcMγ(D)

))

= lim
ε→0

e−2tU(Te−tε(e
−tu)(Se−s−tU

−1
0 Ψ0

α)Se−t(e
µeγcMγ(D)

))

=e−2te−Qc lim
ε→0

Eϕ(Te−tε(e
−tu)(Se−s−tU

−1
0 Ψ0

α)e
−µeγcMγ(D∖Dt)))

∶=e−2te−QcEϕ(T (e−tu)(Se−s−tU
−1
0 Ψ0

α)e
−µeγcMγ(D∖Dt)))

where we used (7.9) in the fourth identity. By Lemma 7.6 the last expression is analytic in u and since

e2∆αse−tHU0(T (u)Se−sU
−1
0 eα) is independent on s we can take the limit s→∞. For this we note that

Se−s−tU
−1
0 Ψ0

α = eα(c−(t+s)Q)eα(1,X(e−t−s ⋅))T = e−2∆α(s+t)eαceα(1,X(e−t−s ⋅))T− 1
2 α

2E(1,X(e−t−s ⋅))2
T
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so that

e2∆αsEϕ(T (e−tu)(Se−s−tU
−1
0 Ψ0

α)e
−µeγcMγ(D∖Dt))) = e−2∆αtEϕ(T (e−tu)Vα(0)e

−µeγcMγ(D∖Dt)))

and the last expression is analytic in u. Hence by a change of variables in the u-integral

e−tHΨ0
α,ν,0 =

e2∆αs

(2πi)k
∮
∣u∣=δ

u1−νe−tHU0(T (u)Se−sU
−1
0 Ψ0

α)du

=
e−(2∆α+∣ν∣)t

(2πi)k
∮
∣u∣=e−tδ

u1−νe−QcEϕ(T (u)Vα(0)e
−µeγcMγ(D∖Dt))du

=
e−(2∆α+∣ν∣)t

(2πi)k
∮
∣u∣=δ

u1−νe−QcEϕ(T (u)Vα(0)e
−µeγcMγ(D∖Dt))du

where in the last step we used analyticity to move the contours to ∣u∣ = δ. �

In what follows, for fixed n > 1, we will denote

(7.29) Z ∶= {z = (z1, . . . , zn) ∣∀i /= j, zi /= zj and ∀i, ∣zi∣ < 1}.

Denoting θ(z) = (θ(z1), . . . , θ(zn)) ∈ Cn we have θZ = {(z1, . . . , zn) ∣∀i /= j, zi /= zj and ∀i, ∣zi∣ > 1}.
For α = (α1, . . . , αn) ∈ Rn such that αi < Q for all i we define the function Uα(z) ∶ R ×ΩT → R by

Uα(z, c, ϕ) ∶= lim
ε→0

e−QcEϕ[(
n

∏
i=1

Vαi,ε(zi))e
−µeγcMγ(D)

], for z ∈ Z(7.30)

where Vαi,ε stands for the regularized vertex operator (1.8). Let us set

(7.31) s ∶=
n

∑
i=1

αi.

Remark 7.8. It follows directly from the construction of correlation functions that for z ∈ θZ

⟨Vα(0)
n

∏
i=1

Vαi(zi)⟩γ,ν = (
n

∏
i=1

∣zi∣
−4∆αi )⟨Ψα∣Uα(θ(z))⟩2

and these expressions are finite if α + s > 2Q and α,αi < Q.

Lemma 7.9. Let z ∈ θZ. Then almost everywhere in c,ϕ and for all R > 0

Uα(θ(z))(c,ϕ) 6 e
(s−Q)(c∧0)−R(c∨0)A(ϕ)

where A ∈ L2(ΩT).

Proof. Let r = maxi ∣θ(zi)∣ and ι(ϕ) = infx∈Dr Pϕ(x) and σ(ϕ) = supx∈Dr Pϕ(x) with Dr the disk centered
at 0 with radius r. Then

Uα(θ(z))(c,ϕ) 6 Ce
−Qce(c+σ(ϕ))sEe−µe

γ(c+ι(ϕ))Z

where the expectation is over the Dirichlet GFF XD and

Z = ∫
Dr

(1 − ∣z∣2)
γ2

2 e∑i γαiGD(z,θ(zi))Mγ,D(dz)

where Mγ,D is the GMC of XD. For c < 0 we use the trivial bound

Uα(θ(z))(c,ϕ) 6 Ce
(s−Q)ceσ(ϕ)s

and for c > 0 we note that Z has all negative moments so that for a > 0

Ee−aZ = E(aZ)
−n

(aZ)
ne−aZ 6 n!E(aZ)

−n 6 Cna
−n

implying

Uα(θ(z))(c,ϕ) 6 Cne
c(s−Q−γn)esσ(ϕ)−nγι(ϕ)

Since esσ(ϕ)−nι(ϕ) is in L2(P) for all s, n the claim follows. �
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Define now the modified Liouville expectation (with now Dt the disk centered at 0 with radius e−t)

⟨F ⟩t = ∫
R
e−2QcE[F (c,X)e−µe

γcMγ(C∖Dt)]dc.(7.32)

Also, in the contour integrals below, for vectors δ, δ̃ defining the radii of the respective contours, we will
put a subscript t when these variables are multiplied by e−t, namely δt ∶= e

−tδ and similarly for δ̃t. Then
we get

Corollary 7.10. Let z ∈ θZ. For α ∈ R such that α < (Q −
2(∣ν∣+∣ν̃∣)

γ
−
γ
4
) ∧ (Q − γ) and α +∑i αi > 2Q, we

have

⟨Ψα,ν,ν′ ∣Uα(θ(z))⟩2

=(
n

∏
i=1

∣zi∣
4∆αi ) ×

1

(2πi)k+j
lim
t→∞∮∣u∣=δt

∮
∣v∣=δ′t

u1−ν v̄1−ν′
⟨T (u)T̄ (v)Vα(0)

n

∏
i=1

Vαi(zi)⟩t dv̄du.

Proof. Combining Proposition 7.2 and Lemma 7.9 the existence of the limit

⟨Ψα,ν,ν′ ∣Uα(θ(z))⟩2 = lim
t→∞

e(2∆α+∣ν∣+∣ν′∣)t⟨e−tHΨ0
α,ν,ν′ ∣Uα(θ(z))⟩2

follows. By Lemma 7.7 the RHS is given by the RHS of (7.10). �

Here is the main result of this section:

Proposition 7.11. Let z ∈ θZ. For α ∈ R such that α < (Q−
2(∣ν∣+∣ν̃∣)

γ
−
γ
4
)∧ (Q− γ) and α+∑i αi > 2Q and

for all i αi < Q, we have in the distributional sense

⟨Ψα,ν,ν̃ ∣Uα(θ(z))⟩2 = (
n

∏
i=1

∣zi∣
4∆αi ) ×DνD̃ν̃⟨Vα(0)

n

∏
i=1

Vαi(zi)⟩γ,µ

where the differential operators Dν , D̃ν̃ are defined by

(7.33) Dν = Dνk . . .Dν1 and D̃ν̃ = D̃ν̃j . . . D̃ν̃1

where for n ∈ N

Dn =
n

∑
i=1

( −
1

zn−1
i

∂zi +
(n − 1)

zni
∆αi)(7.34)

D̃n =
n

∑
i=1

( −
1

z̄n−1
i

∂z̄i +
(n − 1)

z̄ni
∆αi)(7.35)

Proof. Section 9 will be devoted to the proof of this proposition. �

7.5. Computing the 3-point correlation functions of descendant states. Now we exploit Proposition
7.11 to give exact analytic expressions for the 3-point correlation functions of descendant states. For this,
we first need to introduce some notation: for ν = (νi)i∈J1,kK a Young diagram and some real ∆,∆′,∆′′ we set

(7.36) v(∆,∆′,∆′′, ν) ∶=
k

∏
j=1

(νj∆
′
−∆ +∆′′

+∑
u<j

νu).

With this notation, we can state the following key result:

Proposition 7.12 (Conformal Ward identities). Assume α1, α2 < Q with α1 + α2 > Q and ∣z∣ < 1. For all
P > 0, the scalar product ⟨ΨQ+iP,ν,ν̃ ∣Uα1,α2(0, z)⟩2 is explicitly given by the following expression

⟨ΨQ+iP,ν,ν̃ ∣Uα1,α2(0, z)⟩2 = v(∆α1 ,∆α2 ,∆Q+iP , ν̃)v(∆α1 ,∆α2 ,∆Q+iP , ν)(7.37)

×
1

2
CDOZZ
γ,µ (α1, α2,Q + iP )z̄∣ν∣z∣ν̃∣∣z∣2(∆Q+iP−∆α1

−∆α2
)

where ∆α are conformal weights (1.9) and CDOZZ
γ,µ (α1, α2,Q + iP ) are the DOZZ structure constants (see

appendix B for the definition).
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The remaining part of this subsection is devoted to the proof of this proposition. We first need the
following lemma concerning analycity of Uα(z) in the parameter α ∈ Cn, proved in Appendix C.1.

Lemma 7.13. For fixed z ∈ Z the mapping α ↦ Uα(z) ∈ e
β′ρL2(R ×ΩT) extends analytically to a complex

neighborhood AnU in Cn of the set {α ∈ Rn ∣ ∀i, αi < Q}, for arbitrary β′ < Re(s) −Q (recall (7.31)). This
analytic extension is continuous in (α,z) ∈ AnU ×Z.

The first conclusion we want to draw is the fact that the pairing of Ψα with Uα(θ(z)) (in the case n = 2)
is related to the DOZZ formula when α is on the spectrum line Q + iR.

Lemma 7.14. Here we fix n = 2 and we consider z ∈ θZ. The mapping (α,α) ↦ ⟨Ψα∣Uα(θ(z))⟩2 is
continuous in the set

Ξ ∶= {(α,α) ∈ C ×A
2
U ∣ Re(α) 6 Q,Re(α + α1 + α2) > 2Q}

and analytic in the set Ξ ∩ {α ∈ C ∖D0}. Moreover, in the set Ξ, we have the relation

⟨Ψα∣Uα(θ(z))⟩2 = ∣z1∣
2∆α2

−2∆α+2∆α1 ∣z1 − z2∣
2∆α−2∆α1

−2∆α2 ∣z2∣
2∆α1

−2∆α+2∆α2 1
2
CDOZZ
γ,µ (α,α1, α2).

In particular this relation holds for α = Q + iP with P ∈ (0,+∞) and α1, α2 ∈ (−∞,Q) with α1 + α2 > Q.

Proof. By Proposition 6.26 the mapping α ↦ Ψα ∈ e−
β
2 ρL2(R × ΩT) is analytic on W0, i.e. in the region

{α ∈ C ∖D0 ∣ Q − Re(α) < β} and continuous on D0. Combining with Lemma 7.13 (with n = 2) produces
directly the region of analycity/continuity we claim. Furthermore when all the parameters α,α1, α2 are real,
by Remark 7.8 we have

⟨Vα(0)Vα1(z1)Vα2(z2)⟩γ,ν = (
2

∏
i=1

∣zi∣
−4∆αi )⟨Ψα∣Uα(θ(z))⟩2.

Also, for real parameters, the LHS coincide with the DOZZ formula [KRV20], namely

⟨Vα(0)Vα1(z1)Vα2(z2)⟩γ,ν = ∣z1∣
2∆α2

−2∆α−2∆α1 ∣z1 − z2∣
2∆α−2∆α1

−2∆α2 ∣z2∣
2∆α1

−2∆α−2∆α2 1
2
CDOZZ
γ,µ (α,α1, α2).

This proves the claim. �

Now we would like to use the Ward identities, i.e. Proposition 7.11, to express the correlations of de-
scendant fields with two insertions ⟨Ψα,ν,ν̃ ∣Uα(θ(z))⟩2 (here with n = 2) in terms of differential operators
applied to to correlation of primaries ⟨Ψα∣Uα(θ(z))⟩2 when the parameter α is close to the spectrum line
α ∈ Q + iR. This is not straightforward because Proposition 7.11 is not only restricted to real values of the
parameter but also because the constraint on α, which forces it to be negatively large, implies to have n
large in order for the global Seiberg bound α+∑i αi > 2Q to be satisfied. Transferring Ward’s relations close
to the spectrum line is thus our next task.

For this, fix a pair of Young diagrams ν, ν̃ and ` such that λ` = ∣ν∣ + ∣ν̃∣. By Proposition 6.26 there
exists a connected open set Aν,ν̃ ∶=W0 ∩W` ⊂ C such that the mappings α ↦ Ψα,ν,ν̃ ∈ e

−βρL2(R ×ΩT) and

α ↦ Ψα ∈ e−βρL2(R ×ΩT) for β > Q −Re(α) are analytic on Aν,ν̃ and furthermore

● Aν,ν̃ contains a complex neighborhood of the spectrum line {α = Q + iP ∣ P ∈ (0,+∞)}, with the
discrete set D0 ∪D` removed and the mappings extend continuously to D0 ∪D`.

● Aν,ν̃ contains a complex neighborhood of the real half-line (−∞,Q −
2λ`
γ
−
γ
4
)

Therefore, for arbitrary fixed n and z ∈ θZ, the pairings (α,α) ↦ ⟨Ψα,ν,ν̃ ∣Uα(θ(z))⟩2 and (α,α) ↦

⟨Ψα∣Uα(θ(z))⟩2 are holomorphic in the region Aν,ν̃ ⊙ A
n
U ∶= {(α,α) ∈ Aν,ν̃ × A

n
U ∣ 2Q < Re(s + α)}. Let

us consider the subsets

S ∶= {(α,α) ∣ ∀i αi ∈ R and αi < Q,s −Q > 0, α ∈ Q + i(0,∞)}, S⋆ = S ∩ {(α,α) ∣ α /∈ D0 ∪D`}

and

Rν,ν̃ ∶= {(α,α) ∣ ∀i αi ∈ R and αi < Q,α + s − 2Q > 0, α ∈ R, α < (Q −
2λ`
γ

−
γ

4
) ∧ (Q − γ)}.

They are both in the same connected component of Aν,ν̃ ⊙A
n
U . Furthermore, S⋆ is obviously non-empty

whereas the condition (n− 2)Q > −(Q−
2λ`
γ
−
γ
4
)∧ (Q−γ) ensures that Rν,ν̃ is non-empty, which we assume

from now on.
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Now we exploit the Ward identities, valid onRν,ν̃ . Let us consider a smooth compactly supported function
ϕ on θZ. The mapping

(α,α) ∈ Aν,ν̃ ⊙A
n
U ↦ ∫ ⟨Ψα,ν,ν̃ ∣Uα(θ(z))⟩2ϕ̄(z)dz

is thus analytic. Furthermore on Rν,ν̃ and by Proposition 7.11, it coincides with the mapping

(α,α) ∈ Aν,ν̃ ⊙A
n
U ↦∫ ⟨Vα(0)

n

∏
i=1

Vαi(zi)⟩γ,µD̃∗
ν̃D

∗
ν(ϕ(z)

n

∏
i=1

∣zi∣
4∆αi )dz

=∫ (
n

∏
i=1

∣zi∣
−4∆αi )⟨Ψα∣Uα(θ(z))⟩2D̃∗

ν̃D
∗
ν(ϕ(z)

n

∏
i=1

∣zi∣
4∆αi )dz

where we have introduced the (adjoint) operator D∗
ν by

∫
Cn

Dνf(z)ϕ̄(z)dz = ∫
Cn
f(z)D∗

νϕ(z)dz

for all functions f in the domain of Dν and all smooth compactly supported functions ϕ in Cn (and similarly

for D̃ν̃). Therefore both mappings are analytic and coincide on Rν,ν̃ , thus on the connected component of
Aν,ν̃ ⊙AU containing Rν,ν̃ , therefore on S⋆ and finally on S by continuity. Notice that, on S, we can take
all the αi’s equal to 0 but the first two of them provided they satisfy α1 + α2 > Q. This fact being valid for
all test function ϕ, we deduce that the relation

⟨ΨQ+iP,ν,ν̃ ∣U(Vα1(θ(z1))Vα2(θ(z2)))⟩2

= 1
2
CDOZZ
γ,µ (Q + iP,α1, α2)∣z1∣

4∆α1 ∣z2∣
4∆α2

×DνD̃ν̃(∣z1∣
2∆α2

−2∆Q+iP−2∆α1 ∣z1 − z2∣
2∆Q+iP−2∆α1

−2∆α2 ∣z2∣
2∆α1

−2∆Q+iP−2∆α2 )

holds for almost every z1, z2 and α1, α2 < Q such that α1 + α2 > Q, and thus for every z1, z2 ∈ θZ as both
sides are continuous in these variables. From this relation and after some elementary algebra to compute
the last term, sending z2 →∞, we end up with the claimed relation. �

8. Proof of Theorem 1.1

8.1. Definition of Conformal Blocks. Before proving Theorem 1.1, we give the definition of the confor-
mal blocks (1.19) which is based on material introduced in subsections 4.4 and 7.5. The conformal blocks
are defined as the formal power series

(8.1) FQ+iP (∆α1 ,∆α2 ,∆α3 ,∆α4z) =
∞
∑
n=0

βn(∆Q+iP ,∆α1 ,∆α2 ,∆α3 ,∆α4)z
n

with

(8.2) βn(∆Q+iP ,∆α1 ,∆α2 ,∆α3 ,∆α4) ∶= ∑
∣ν∣,∣ν′∣=n

v(∆α1 ,∆α2 ,∆Q+iP , ν)F
−1
Q+iP (ν, ν′)v(∆α4 ,∆α3 ,∆Q+iP , ν

′
).

where the matrix (F −1
Q+iP (ν, ν′))∣ν∣,∣ν′∣=n is the inverse of the scalar product matrix (4.27) and the function

v is explicitely defined by expression (7.36). The definition of βn is not explicit because there is no known
explicit formula for the inverse matrix F −1

Q+iP and the convergence of (8.1) is an open problem. Below we’ll
prove the series converges in the unit disc a.e. in P .

8.2. Proof of Theorem 1.1. We start with a Lemma on the spectral decompostion:

Lemma 8.1. Let u1, u2 ∈ e
δc−L2(R ×ΩT) with δ > 0. Then

⟨u1 ∣u2⟩2 =
1

2π
lim

N,L→∞
∑

∣ν′∣=∣ν∣ 6 N

∑
∣ν̃′∣=∣ν̃∣ 6 N

∫

L

0
⟨u1 ∣ΨQ+iP,ν,ν̃⟩2⟨ΨQ+iP,ν′,ν̃′ ∣u2⟩2F

−1
Q+iP (ν, ν′)F −1

Q+iP (ν̃, ν̃′)dP.
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Proof. We write the spectral representation (6.75) as

⟨u1 ∣u2⟩2 = lim
N,L→∞

1

2π
∑

∣k∣+∣l∣ 6 N
∫

L

0
⟨u1 ∣ΨQ+iP,k,l⟩2⟨ΨQ+iP,k,l ∣u2⟩2dP.(8.3)

Let F
−1/2
Q+iP (ν, ν′) be the square root of the positive definite matrix (F −1

Q+iP (ν, ν′))∣ν∣=∣ν′∣=N and set for ∣ν∣ = N ,

∣ν̃∣ = N ′

HQ+iP,ν,ν̃ ∶= ∑
∣ν1∣=N,∣ν2∣=N ′

F
−1/2
Q+iP (ν, ν1)F

−1/2
Q+iP (ν̃, ν2)ΨQ+iP,ν1,ν2 .

where ΨQ+iP,ν1,ν2 are defined in (7.1). We get the identity

∑
∣k∣+∣l∣=N

⟨u1 ∣ΨQ+iP,k,l⟩2⟨ΨQ+iP,k,l ∣u2⟩2 = ∑
∣ν∣+∣ν̃∣=N

⟨u1 ∣HQ+iP,ν,ν̃⟩2⟨HQ+iP,ν,ν̃ ∣u2⟩2.

Hence we have

∑
∣ν∣+∣ν̃∣ 6 N

∫

L

0
⟨u1 ∣HQ+iP,ν,ν̃⟩2⟨HQ+iP,ν,ν̃ ∣u2⟩2dP = ∑

∣k∣+∣l∣ 6 N
∫

L

0
⟨u1 ∣ΨQ+iP,k,l⟩2⟨ΨQ+iP,k,l ∣u2⟩2dP.(8.4)

On the other hand

∑
∣ν∣,∣ν̃∣ 6 N

∫

L

0
⟨u1 ∣HQ+iP,ν,ν̃⟩2⟨HQ+iP,ν,ν̃ ∣u2⟩2dP(8.5)

= ∑
∣ν1∣=∣ν3∣ 6 N

∑
∣ν2∣=∣ν4∣ 6 N

∫

L

0
⟨u1 ∣ΨQ+iP,ν1,ν2⟩2⟨ΨQ+iP,ν3,ν4 ∣u2⟩2F

−1
Q+iP (ν1, ν3)F

−1
Q+iP (ν2, ν4)dP.

Let u1 = u2 = u. Then
(8.6)

∫

L

0
∑

∣ν∣+∣ν̃∣ 6 N

∣⟨u ∣HQ+iP,ν,ν̃⟩2∣
2dP 6 ∫

L

0
∑

∣ν∣ 6 N,
∣ν̃∣ 6 N

∣⟨u ∣HQ+iP,ν,ν̃⟩2∣
2dP 6 ∫

L

0
∑

∣ν∣+∣ν̃∣ 6 2N

∣⟨u ∣HQ+iP,ν,ν̃⟩2∣
2dP.

By (8.4) and (8.3) the limits as L,N →∞ of all the three sums in (8.6) are 2π⟨u ∣u⟩2. Hence by polarisation
the limits as L,N →∞ of the left hand sides of (8.5) and (8.4) exist and equal 2π⟨u1 ∣u2⟩2. This proves the
claim. �

Let ∣z∣ < 1, t ∈ (0,1) and ∣u∣ > 1 with u ≠ t−1 .The 4-point correlation function is given as a scalar product

(8.7) ⟨Vα1(0)Vα2(z)Vα3(t
−1

)Vα4(u)⟩γ,µ = t
4∆α3 ∣u∣−4∆α4 ⟨Uα1,α2(0, z) ∣Uα4,α3

(ū−1, t)⟩
2

where Uα1,α2 is defined in (7.30). As in (1.14) we have

⟨Vα1(0)Vα2(z)Vα3(t
−1

)Vα4(∞)⟩γ,µ = t
4∆α3 ⟨Uα1,α2(0, z) ∣Uα4,α3

(0, t)⟩
2
.

Recall from Lemma 7.9 that for ∣z∣ < 1 the vector Uα1,α2(0, z) ∈ e
δc−L2(R×ΩT) for some δ > 0 if α1 +α2 > Q,

and the same holds for Uα4,α3(0, t) if α3 + α4 > Q. Using Lemma 8.1 we get

⟨Uα1,α2(0, z) ∣Uα4,α3
(0, t)⟩

2
=

1

2π
lim

N,L→∞
IN,L(α, z, t)(8.8)

where

IN,L(α, z, t) = ∑
∣ν′∣=∣ν∣ 6 N,
∣ν̃′∣=∣ν̃∣ 6 N

∫

L

0
⟨Uα1,α2(0, z) ∣ΨQ+iP,ν,ν̃⟩2⟨ΨQ+iP,ν′,ν̃′ ∣Uα4,α3(0, t)⟩2F

−1
Q+iP (ν, ν′)F −1

Q+iP (ν̃, ν̃′)dP.

(8.9)
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Using Proposition 7.12 for the scalar products we can write this as

IN,L(α, z, t) =
1
4
t4∆α3 t−2∆α3

−2∆α4 ∣z∣−2∆α1
−2∆α2 ∫

L

0
CDOZZ
γ,µ (α1, α2,Q + iP )CDOZZ

γ,µ (α4, α3,Q + iP )

∣tz∣2∆Q+iP ∑
∣ν′∣=∣ν∣ 6 N

z∣ν∣t∣ν
′∣v(∆α1 ,∆α2 ,∆Q+iP , ν)F

−1
Q+iP (ν, ν′)v(∆α4 ,∆α3 ,∆Q+iP , ν

′
)

∑
∣ν̃′∣=∣ν̃∣ 6 N

z̄∣ν̃∣t∣ν̃
′∣v(∆α1 ,∆α2 ,∆Q+iP , ν̃)F

−1
Q+iP (ν̃, ν̃′)v(∆α4 ,∆α3 ,∆Q+iP , ν̃

′
)dP

= 1
4
t2∆α3

−2∆α4 ∣z∣−2∆α1
−2∆α2 ∫

L

0
CDOZZ
γ,µ (α1, α2,Q + iP )CDOZZ

γ,µ (α4, α3,Q + iP )∣tz∣2∆Q+iP

∣
N

∑
n=1

βn(∆Q+iP ,∆α1 ,∆α2 ,∆α3 ,∆α4)(zt)
n
∣

2

dP

where we noted that the v factors are real. The coefficients βn are given by (8.1) so formally the bootstrap
formula follows now by taking N,L → ∞. Yet, rigorously, there is still a gap to bridge since we do not
know the convergence of the series (8.1). We adapt here a Cauchy-Schwarz type argument 15 to establish
the convergence a.s. in P . For this, we take first α3 = α2 and α1 = α4, with α1 + α2 > Q. Then

IN,L(α1, α2, , α2, α1, z, t) =
1

4
t4∆α2 ∣tz∣−2∆α1

−2∆α2

∫

L

0
∣CDOZZ
γ,µ (α1, α2,Q − iP )∣

2
∣tz∣2∆Q+iP ∣

N

∑
n=0

βn(∆Q+iP ,∆α1 ,∆α2 ,∆α2 ,∆α1)(zt)
n
∣

2

dP

If z ∈ (0,1) thi expression is increasing in the variables N,L and zt since βn > 0; moreover, it converges as
N,L goes to infinity. This implies that the series

∞
∑
n=0

znβn(∆Q+iP ,∆α1 ,∆α2 ,∆α2 ,∆α1)

is absolutely converging for ∣z∣ < 1 for almost all P > 0 and

⟨Vα1(0)Vα2(z)Vα2(t
−1

)Vα1(∞)⟩γ,µ =

1

8π
t4∆α2 ∣tz∣−2∆α1

−2∆α2 ∫

∞

0
∣CDOZZ
γ,µ (α1, α2,Q − iP )∣

2
∣tz∣2∆Q+iP ∣

∞
∑
n=0

βn(∆Q+iP ,∆α1 ,∆α2 ,∆α2 ,∆α1)(zt)
n
∣

2

dP.

This leads to the formula (1.18) for the case α3 = α2 and α1 = α4 by using the identity

⟨Vα1(0)Vα2(tz)Vα2(1)Vα1(∞)⟩γ,µ = t
−4∆α2 ⟨Vα1(0)Vα2(z)Vα2(t

−1
)Vα1(∞)⟩γ,µ.

For the general case we use Cauchy-Schwartz

∣βn(∆Q+iPP,∆α1 ,∆α2 ,∆α3 ,∆α4)∣ 6 βn(∆Q+iP ,∆α1 ,∆α2 ,∆α2 ,∆α1)
1
2 βn(∆Q+iP ,∆α4 ,∆α3 ,∆α3 ,∆α4)

1
2

6
1

2
(βn(∆Q+iP ,∆α1 ,∆α2 ,∆α2 ,∆α1) + βn(∆Q+iP ,∆α4 ,∆α3 ,∆α3 ,∆α4)).

so that the general case follows from the case α1 = α4 and α2 = α3. �

9. Proof of Proposition 7.11

9.1. Preliminary remarks. Before proceeding to computations, we stress that the reader should keep in
mind that the SET field T (u) is not a proper random field. In particular the expectation in (7.10) is a
notation for the object constructed in the limit as ε → 0 and t → ∞. In LCFT the construction of the
correlation functions of the SET is subtle. This was done in [KRV19] only for one or two SET insertions.
However the situation is here much simpler and we will not have to rely on [KRV19]. The reason is that we
need to deal with correlation functions with a regularized LCFT expectation ⟨⋅⟩t where we have replaced

15Communicated to us by S. Rychkov.
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Mγ(C) by Mγ(C ∖Dt) in (7.32), and all the SET insertions that we will consider are located in Dt which
as we will see makes them much more regular than in the full LCFT.

The regularized SET field Tε(u) is a proper random field and its correlation functions in the presence of
the vertex operators are defined as limits of the corresponding ones with regularized vertex operators

⟨Tε(u)T̄ε′(v)Vα(0)
n

∏
i=1

Vαi(zi)⟩t = lim
ε′′→0

⟨Tε(u)T̄ε′(v)Vα,ε′′(0)
n

∏
i=1

Vαi,ε′′(zi)⟩t.(9.1)

The existence of this limit follows from the representation of the expectation on the RHS as a GFF expec-
tation of an explicit function of a a GMC integral [DKRV16]. And in particular the limit is independent
of the regularization procedure used for the vertex operators. For simplicity we will use in this section the
following:

Vα,ε(x) = ε
α2

2 eαφε(x) = ∣x∣−4∆α
+ eαceαXε(x)−

α2

2 EXε(x)
2

(1 +O(ε))(9.2)

where Xε is the same regularization as in Tε. The O(ε) will drop out from all terms in the ε → 0 limit and
will not be displayed below.

The proof of Proposition 7.11 consists of using Gaussian integration by parts to the the Tε(u) and T̄ε′(v)

factors in (9.1) to which we now turn.

9.2. Gaussian integration by parts. (9.1) is analysed using Gaussian integration by parts. For a centered
Gaussian vector (X,Y1, . . . , YN) and a smooth function f on RN , the Gaussian integration by parts formula
is

E[X f(Y1, . . . , YN)] =
N

∑
k=1

E[XYk]E[∂kf(Y1, . . . , YN)].

Applied to the LCFT this leads to the following formula. Let φ = c +X − 2Q log ∣z∣+ be the Liouville field
and F a smooth function on RN . Define for u, v ∈ C

C(u, v) = −
1

2

1

u − v
, Cε,ε′(u, v) = ∫ ρε(u − u

′
)ρε′(v − v

′
)C(u′, v′)dudv(9.3)

with (ρε)ε a mollifying family of the type ρε(⋅) = ε
−2ρ(∣ ⋅ ∣/ε). Then for z, x1, . . . , xN ∈ C

⟨∂zφε(z)F (φε′(x1), . . . , φε′(xN))⟩t =
N

∑
k=1

Cε,ε′(z, xk)⟨∂kF (φε′(x1), . . . , φε′(xN))⟩t(9.4)

− µγ ∫
Ct
Cε,0(z, x)⟨Vγ(x)F (φε′(x1), . . . , φε′(xN))⟩tdx

where F in the applications below is such that all the terms here are well defined. Note that ∂uG(u, v) =
C(u, v) + 1

2u
−11∣u∣>1. The virtue of the Liouville field is that the annoying metric dependent terms u−11∣u∣>1

drop out from the formulae. This fact is nontrivial and it was proven in [KRV19, Subsection 3.2], for the
case t =∞ with F corresponding to product of vertex operators. The proof goes the same way to produce
(9.4) with a finite t.

The first application of this formula is a direct proof of the existence of the ε, ε′ → 0 limit of (9.1) which
will be useful also later in the proof. We have

Proposition 9.1. The functions (9.1) converge uniformly on compact subsets of (u,v,z) ∈ Dt ×Dt × θZ

lim
ε,ε′→0

⟨Tε(u)T̄ε′(v)Vα(0)
n

∏
i=1

Vαi(zi)⟩t ∶= ⟨T (u)T̄ (v)Vα(0)
n

∏
i=1

Vαi(zi)⟩t(9.5)

where the limit is analytic in u ∈ Oe−t and anti-analytic in v ∈ Oe−t .

Proof. We consider for simplicity only the case ν̃ = 0. The LHS is defined as the limit ε′′ → 0 in (9.1) but
we will for clarity work directly with ε′′ = 0 as it will be clear below that this limit trivially exists. Indeed,
the functions Cε,ε′(u, v) are smooth for ε, ε′ > 0 and they converge together with their derivatives uniformly
on ∣u∣ < e−s, ∣v∣ > e−t for all s > t to the derivatives of C(u, v).
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We will now apply (9.4) to all the φε factors in the SET tensors in(9.5) one after the other. To make this
systematic let us introduce the notation

(O1,O2,O3) ∶= (∂zφε, ∂
2
zφε, (∂zφε)

2
−E(∂zφε)

2
).

Applying the integration by parts formula to ∂zφε(uk) (or to ∂2
zφε(uk) if ik = 2 below) we obtain

⟨
k

∏
j=1

Oij(uj)Vα(0)
n

∏
i=1

Vαi(zi)⟩t =
k−1

∑
l=1

⟨{Oik(uk)Oil(ul)} ∏
j≠k,l
Oij(uj)Vα(0)

n

∏
i=1

Vαi(zi)⟩t

+
n

∑
l=0

αl⟨{Oik(uk)φ(zl)}∏
j≠k
Oj(uj)Vα(0)∏

i≠l
Vαi(zi)⟩t

−µγ ∫
Ct

⟨{Oik(uk)φ(x)}∏
j≠k
Oj(uj)Vα(0)Vγ(x)∏

i≠l
Vαi(zi)⟩tdx

where α0 = α and z0 = 0 and we introduced the following notation

{O1(u)O1(v)} ∶= ∂vCε,ε(u, v) {O2(u)O2(v)} ∶= ∂u∂
2
vCε,ε(u, v)

{O1(u)O3(v)} ∶= 2O1(v)∂vCε,ε(u, v) {O1(u)O2(v)} ∶= ∂
2
vCε,ε(u, v)

{O3(u)O1(v)} ∶= O1(u)∂vCε,ε(u, v) {O2(u)O1(v)} ∶= ∂u∂vCε,ε(u, v)

{O3(u)O3(v)} ∶= 2O1(u)O1(v)∂vCε,ε(u, v) {O2(u)O3(v)} ∶= 2O1(v)∂u∂vCε,ε(u, v)

{O3(u)O2(v)} ∶= O1(u)∂
2
vCε,ε(u, v)

etc. Similarly

{O1(u)φ(x)} ∶= Cε,0(u,x), {O2(u)φ(x)} ∶= ∂uCε,0(u,x), {O3(u)φ(x)} ∶= O1(u)Cε,0(u,x).

Since Tε = QO2 − O3 we can iterate the integration by parts formula to obtain an expression for
⟨Tε(u)Vα(0)∏

n
i=1 Vαi(zi)⟩t as a sum of terms of the form

C∏
α,β

∂iαβCε,ε(uα, uβ)∏
α,l

∂jα,lCε,0(uα, zl)∫
Cmt
∏
α,k

∂lα,kCε,0(uα, xk)⟨Vα(0)
m

∏
j=1

Vγ(xj)
n

∏
i=1

Vαi(zi)⟩tdx(9.6)

where the products run through some subsets of the index values. We have for all compact K ⊂ Dt

sup
u∈K,x∈Ct

sup
ε

∣∂lu∂
l′

ūCε,0(u,x)∣ <∞.

Hence the expression (9.6) is bounded together with all its derivatives in u uniformly in ε by

C ∫
Cmt

⟨Vα(0)
m

∏
j=1

Vγ(xj)
n

∏
i=1

Vαi(zi)⟩tdx.(9.7)

which by the lemma below is finite. The limit of (9.6) and all its derivatives exist by dominated convergence.
Clearly the ∂ū derivatives vanish so the limit is analytic in u. �

We need the following KPZ identity for the a priori bound (9.7) (recall (7.31))

Lemma 9.2. The functions x ∈ Cnt → ⟨Vα(0)∏
m
j=1 Vγ(xi)∏

n
i=1 Vαi(zi)⟩t are integrable and

∫
Cmt

⟨Vα(0)
m

∏
j=1

Vγ(xi)
n

∏
i=1

Vαi(zi)⟩tdx = C ∫
Cmt

⟨Vα(0)
n

∏
i=1

Vαi(zi)⟩tdx(9.8)

where C = (µγ)−m∏
m−1
l=0 (α + s + γl − 2Q).

Proof. See [KRV19, Lemma 3.3]. Briefly,

⟨Vα(0)
n

∏
i=1

Vαi(zi)⟩t = µ
2Q−s−α

γ ⟨Vα(0)
n

∏
i=1

Vαi(zi)⟩t∣µ=1

and the LHS of (9.8) equals (−∂µ)
m⟨Vα(0)∏

n
i=1 Vαi(zi)⟩t. �
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The representation (9.6) will not be useful for a direct proof of the Ward identity due to the Vγ insertions.
We will rather use the integration by parts inductively, first to Tε(uk) which corresponds to the largest
contour in the contour integrals in expression (7.10), and by showing then that at each step the Vγ insertions
give rise to the derivatives in the Proposition 7.11. We give now the inductive step to prove this claim, stated
for simplicity for the case ν̃ = 0. For this, we introduce the (adjoint) operator D∗

n defined (by duality) by

∫
Cn

Dnf(z)ϕ̄(z)dz = ∫
Cn
f(z)D∗

nϕ(z)dz

for all functions f in the domain of Dn and all smooth compactly supported functions ϕ in Cn. Then

Proposition 9.3. Let ϕ ∈ C∞
0 (θZ) be a smooth compactly supported function in θZ ⊂ Cn and define

Tt(ν,ϕ) ∶= ∫ (
1

(2πi)k
∮
∣u∣=δt

u1−ν
⟨T (u)Vα(0)

n

∏
i=1

Vαi(zi)⟩tdu) ϕ̄(z)dz.

Then for ν(k) = (ν1, . . . , νk−1)

Tt(ν,ϕ) = Tt(ν
(k),D∗

νk
ϕ) + Bt(ν,ϕ)

where

∣Bt(ν,ϕ)∣ 6 Ce
(α+∣ν∣−2)t

∫ ⟨Vα(0)
n

∏
i=1

Vαi(zi)⟩t ∣ϕ(z)∣dz.(9.9)

Proof of Proposition 7.11. Iterating Proposition 9.3 we get

Tt(ν,ϕ) = ∫ ⟨Vα(0)
n

∏
i=1

Vαi(zi)⟩tD
∗
νϕ(z)dz + Bt(ϕ)

where Bt(ϕ) satisfies

Bt(ϕ) 6 Ce
(α+∣ν∣−2)t

k

∑
`=1
∫ ⟨Vα(0)

n

∏
i=1

Vαi(zi)⟩t ∣D
∗
ν`+1

⋯D∗
νk
ϕ(z)∣dz

where by convention D∗
ν`+1

⋯D∗
νk
ϕ = ϕ if ` = k. The functions z → ⟨Vα(0)∏

n
i=1 Vαi(zi)⟩t are continuous on

θZ and converge uniformly as t→∞ on compact subsets of θZ to the function ⟨Vα(0)∏
n
i=1 Vαi(zi)⟩. Hence

Tt(ν, ⋅) converges in the Frechet topology of D′(θZ) to the required limit since Bt(ϕ) goes to 0 as t goes to
infinity (recall that α + ∣ν∣ − 2 < 0). �

9.3. Proof of Proposition 9.3. We start the proof of Proposition 9.3 by applying Gaussian integration
by parts formula twice to the T (uk). This produces plenty of terms which we group in four contributions:

⟨T (u)Vα(0)
n

∏
i=1

Vαi(zi)⟩t = R(u,z) +M(u,z) +N(u,z) +D(u,z).(9.10)

In R(u) we group all the contractions with C(uk, ul) between uk and ul, l < k and uk and 0. These terms
do not contribute to the contour integral of the uk variable since they give rise to integrals of the form

∮
∣uk ∣=e−tδk

u1−νk
k (uk − v)

−a
(uk −w)

−bduk

where v,w ∈ {0, u1, . . . , uk−1} and a + b > 2. Since ∣v∣, ∣w∣ < e−tδk and νk > 0, this integral vanishes. We
conclude

∮
∣uk ∣=e−tδk

u1−νk
k R(u,z)duk = 0.(9.11)

For the benefit of the reader we display all the terms in R(u,z) in the Appendix C.

Let us now introduce the notations u(k) ∶= (u1, . . . , uk−1) and u(k,`) ∶= (u1, . . . , u`−1, u`+1, . . . , uk−1). The
second contribution in (9.10) collects the contractions hitting only one Vαp :

M(u,z) =
n

∑
p=1

(
Qαp

2
−
α2
p

4
)

1

(uk − zp)2
⟨T (u(k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t.(9.12)
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We can then do the uk integral explicitly to obtain

∫ (
1

(2πi)k
∮
∣u∣=δt

u1−νM(u,z)du)ϕ̄(z)dz(9.13)

= ∫
⎛

⎝

n

∑
p=1

νk − 1

zνkp
∆αp

⎞

⎠
⟨T (u(k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩tϕ̄(z)dz(9.14)

Note that this term contains the constant part of the differential operator Dνk .
The third contribution is given by terms where all contractions hit Vγ :

N(u,z) =(
µγ2

4
−
µγQ

2
)∫

Ct

1

(uk − x)2
⟨T (u(k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx

= − µ∫
Ct

1

(uk − x)2
⟨T (u(k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx.(9.15)

Finally D gathers all the other terms

D(u,z) =
9

∑
i=1

Ti(u,z)(9.16)

with

T1(u,z) = −
k−1

∑
`=1

n

∑
p=1

Qαp

(uk − u`)3(uk − zp)
⟨T (u(`,k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t

T2(u,z) =
k−1

∑
`=1

n

∑
p=1

αp

(uk − u`)2(uk − zp)
⟨∂zX(u`)T (u(`,k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t

T3(u,z) = −
n

∑
p=1

ααp

2

1

(uk − zp)uk
⟨T (u(k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t

T4(u,z) =
µγ

2

n

∑
p=1

αp ∫
Ct

1

(uk − zp)(uk − x)
⟨T (u(k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx

T5(u,z) = −
n

∑
p/=p′=1

αpαp′

4

1

(uk − zp)(uk − zp′)
⟨T (u(k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t

T6(u,z) = µQγ
k−1

∑
`=1
∫
Ct

1

(uk − u`)3(uk − x)
⟨T (u(`,k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx

T7(u,z) = −µγ
k−1

∑
`=1
∫
Ct

1

(uk − u`)2(uk − x)
⟨∂zX(u`)T (u(`,k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx

T8(u,z) =
µγα

2
∫
Ct

1

uk(uk − x)
⟨T (u(k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx

T9(u,z) = −
µ2γ2

4
∫
Ct
∫
Ct

1

(uk − x)(uk − x′)
⟨T (u(k)

)Vα(0)Vγ(x)Vγ(x
′
)
n

∏
i=1

Vαi(zi)⟩t dx.(9.17)

We need to show that N and D will give rise (after contour integration) to the ∂zi-derivatives in the
expression Dνk⟨T (uk)Vα(0)∏

n
i=1 Vαi(zi)⟩t. To show this we need to analyse N further.

Regularizing the vertex insertions (beside the Vγ insertion, we also regularize the Vαi ’s for later need) in
N(u,z) given by (9.15), and performing an integration by parts (Green formula) in the x integral we get

N(u,z) = − µ lim
ε→0

∫
Ct
∂x

1

uk − x
⟨T (u(k)

)Vα(0)Vγ,ε(x)
n

∏
i=1

Vαi,ε(zi)⟩t dx

=Bt(u,z) + µγ lim
ε→0

∫
Ct

1

uk − x
⟨T (u(k)

)Vα(0)∂xφε(x)Vγ,ε(x)
n

∏
i=1

Vαi,ε(zi)⟩t dx

=∶Bt(u,z) + Ñ(u,z)
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where the boundary term appearing in Green formula has ε→ 0 limit given by

Bt(u,z) ∶= iµ∮
∣x∣=e−t

1

uk − x
⟨T (u(k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx̄(9.18)

and we used (1.8) to write

∂xVγ,ε(x) = α∂xφε(x)Vγ,ε(x).

In Ñ(u,z) we integrate by parts the ∂xφε(x) and end up with

Ñ(u,z) = − µQγ
k−1

∑
`=1
∫
Ct

1

(uk − x)(x − u`)3
⟨T (u(`,k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx

+ µγ
k−1

∑
`=1
∫
Ct

1

(uk − x)(x − u`)2
⟨∂zX(u`)T (u(`,k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx

−
µγα

2
∫
Ct

1

(uk − x)x
⟨T (u(k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx

+
µ2γ2

2
∫
Ct
∫
Ct

1

(uk − x)(x − x′)
⟨T (u(k)

)Vα(0)Vγ(x)Vγ(x
′
)
n

∏
i=1

Vαi(zi)⟩t dx

+ µγ lim
ε→0

n

∑
p=1
∫
Ct

αp

uk − x
Cε,0(x, zp)⟨T (u(k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi,ε(zi)⟩t dx

=∶ T ′6(u,z) + T
′
7(u,z) + T

′
8(u,z) + T

′
9(u) + T ′4(u,z)(9.19)

where again we took the ε → 0 limit in the terms where it was obvious. In particular this identity proves
that the limit on the RHS, denoted by T ′4(u,z), exists. The numbering of these terms and the ones below
will be used when comparing with (9.17).

Derivatives of correlation functions. We want to compare the expression (9.10) to derivatives of the function

⟨T (u(k))Vα(0)∏
n
i=1 Vαi(zi)⟩t. We need to treat separately the cases νk > 2 and νk = 1.

Case νk > 2. We have

Lemma 9.4. Let

Iε(u,z) ∶=
n

∑
p=1

1

uk − zp
∂zp⟨T (uk)Vα(0)

n

∏
i=1

Vαi,ε(zi)⟩t.

Then limε→0 Iε(u,z) ∶= I(u,z) exists and defines a continuous function in z ∈ θZ satisfying

∫ (
1

(2πi)k
∮
∣u∣=δt

u1−νI(u,z)du)ϕ̄(z)dz = Tt(ν
(k), D̂νkϕ)(9.20)

for all ϕ ∈ C∞
0 (θZ) with D̂n = D∗

n − (n − 1)∑i∆αiz
−n
i .

Proof. We have

Iε(u,z) =
n

∑
p=1

αp

uk − zp
⟨T (u(k)

)Vα(0)∂zpφε(zp)
n

∏
i=1

Vαi,ε(zi)⟩t =Kε(u,z) +Lε(u,z)
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where we integrate by parts the ∂zpφε(zp) and Kε(u,z) collects the terms with an obvious ε → 0 limit
K(u,z):

K(u,z) = −
n

∑
p=1

k−1

∑
`=1

Qαp

(uk − zp)(zp − u`)3
⟨T (u(`,k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t

+
n

∑
p=1

k−1

∑
`=1

αp

(uk − zp)(zp − u`)2
⟨∂zX(u`)T (u(`,k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t

−
n

∑
p=1

αpα

2

1

(uk − zp)zp
⟨T (u(k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t

−
n

∑
p/=p′=1

αpαp′

2

1

(uk − zp)(zp − zp′)
⟨T (u(k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t

=∶D1(u,z) +D2(u,z) +D3(u,z) +D5(u,z),

whereas

Lε(u,z) = −µγ
n

∑
p=1

αp ∫
Ct

1

uk − zp
Cε,0(zp, x)⟨T (u(k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi,ε(zi)⟩t dx.

Since C0,0(zp, x) = −
1
2

1
zp−x and since it is not clear that 1

zp−x ⟨T (uk)Vα(0)Vγ(x)∏
n
i=1 Vαi(zi)⟩t is integrable

the ε→ 0 limit of Lε is problematic16. However, we can compare it with the term T ′4 in (9.19). Writing

1

uk − zp
=

1

uk − x
+

zp − x

(uk − zp)(uk − x)
,

we conclude that Lε converges:

lim
ε→0

Lε(u,z) = − µγ lim
ε→0

n

∑
p=1

αp(∫
Ct

1

uk − x
Cε,0(zp, x)⟨T (u(k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi,ε(zi)⟩t dx

+ ∫
Ct

zp − x

(uk − zp)(uk − x)
Cε,0(zp, x)⟨T (u(k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx)

=T ′4(u,z) + T4(u,z).

Indeed, setting z = zp − x the function

(zp − x)Cε,0(zp, x) = −
1

2 ∫ ρε(y)
z

z + y
dy =

i

2ε2
∫
R+
ρ( r

ε
)∮

∣u∣=1

z

z + ru

du

u
rdr = −π∫

R+
ρ(r)1r<∣z∣/εrdr

is uniformly bounded and converges almost everywhere to − 1
2 .

The same argument can be repeated to the smeared functions to show that (because convergence is
uniform over compact subsets of θZ)

lim
ε→0

n

∑
p=1
∫ (

αp

uk − zp
∂zp⟨T (u(k)

)Vα(0)
n

∏
i=1

Vαi,ε(zi)⟩t)ϕ̄(z)dz ∶= `(ν,ϕ)

exists. Then integrating ∂zp by parts and using that limε→0⟨T (uk)Vα(0)∏
n
i=1 Vαi,ε(zi)⟩t exists we conclude

`(ν,ϕ) = −∫ ⟨T (uk)Vα(0)
n

∏
i=1

Vαi,ε(zi)⟩t
n

∑
p=1

∂zp(
αp

uk − zp
ϕ(z))dz

which proves (9.20). �

We have obtained the relation

N(u,z) − I(u,z) = Bt(u,z) +
9

∑
i=6

Ti(u,z) −
3

∑
i=1

Di(u,z) −D5(u,z) − T4(u,z).(9.21)

16Actually, this fact was shown in [KRV20] without the SET insertions and could be proven here as well but we will follow

another route because the recursion to prove this extension is painful.
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Let us consider the expression

K(u,z) ∶=⟨T (u)Vα(0)
n

∏
i=1

Vαi(zi)⟩t − I(u,z) −M(u,z)

=R(u,z) +N(u,z) +D(u,z) − I(u,z).

By (9.13) and (9.20) we have

∫ (∮
∣u∣=δt

u1−νK(u,z)du)ϕ(z)dz = T (ν,ϕ) − T (ν(k),D∗
νk
ϕ).(9.22)

On the other hand combining (9.10), (9.16) and (9.21) we obtain

K = R +
3

∑
i=1

(Ti −Di) + T5 −D5 +
9

∑
i=6

(Ti + T
′
i ) +Bt.(9.23)

Now some simple algebra, see Appendix C gives:

T ′9 = −T9, T5 =D5(9.24)

∮
∣uk ∣=e−tδk

u1−νk
k (Ti(u,z) + T

′
i(u,z))duk = 0 i = 6,7,8,(9.25)

∮
∣uk ∣=e−tεk

u1−νk
k (Ti(u,z) −Di(u,z))duk = 0 i = 1,2,3.(9.26)

Hence using these relations and (9.11) we conclude

∫ (∮
∣u∣=δt

u1−νK(u,z)du)ϕ̄(z)dz = ∫ (∮
∣u∣=δt

u1−νBt(u,z)du)ϕ̄(z)dz =∶ Bt(ν,ϕ).

Thus to prove Proposition 7.11 for νk > 2 we need to prove the bound (9.9) for Bt(ν,ϕ). Recalling (9.18)
we get by residue theorem

∮
∣u∣=δt

u1−νBt(u,z)du = −2π∮
∣u(k)∣=δ(k)t

(u(k)
)
1−ν(k)

∮
∣x∣=e−t

x1−νk⟨T (u(k)
)Vα(0)Vγ(x)

n

∏
i=1

Vαi(zi)⟩t dx̄du.

By (9.6) (at ε = 0 and an extra Vαn+1(zn+1) = Vγ(x)) the expectation on the RHS is a sum of terms of the
form

∫
Cmt

I(u(k),x,z, x)⟨Vα(0)Vγ(x)
m

∏
`=1

Vγ(x`)
n

∏
i=1

Vαi(zi)⟩tdx

where

I(u(k),x,z, x) = C∏
α,β

1

(uα − uβ)kαβ
∏
α,i

1

(uα − zi)lαi
∏
α,`

1

(uα − x`)mα`
∏
α

1

(uα − x)nα

where ∑kαβ +∑ lαk +∑mαl +∑nα = 2(k − 1). Performing the u-integrals in the order uk−1, uk−2, . . . by the
residue theorem we get

∮
∣u(k)∣=δ(k)t

(u(k)
)
1−ν(k)I(u(k),x,z, x)du =∑C(a,b,c)x−a∏

`

x−b`` ∏
i

z−cii

with a +∑ b` +∑ ci = ∣ν(k−1)∣. Since ∣x`∣ > e−t and ∣x∣ = e−t we conclude

∣∮
∣u∣=δt

u1−νBt(u,z)du∣ 6 Cet(∣ν∣−2) max
m 6 2(k−1)

sup
∣x∣=e−t

∫
Cmt

⟨Vα(0)Vγ(x)
m

∏
`=1

Vγ(x`)
n

∏
i=1

Vαi(zi)⟩tdx.

By Lemma 9.2

∫
Cmt

⟨Vα(0)Vγ(x)
m

∏
`=1

Vγ(x`)
n

∏
i=1

Vαi(zi)⟩tdx = C⟨Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t 6 C ∣x∣−γα = Cetγα.

where we used the formula (1.11) and this estimate is uniform over the compact subsets of z ∈ θZ. Hence

∣∮
∣u∣=δt

u1−νBt(u,z)du∣ 6 Cet(∣ν∣+α−2)

as claimed.
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Case νk = 1. Here we need to regularize also the Liouville expectation: let ⟨−⟩t,ε be as in (7.32) except we
replace eγcMγ(Ct) by the regularized version ∫Ct Vγ,ε(x)dx. We use following variant of Lemma 9.4.

Lemma 9.5. Let I ′ε(u,z) ∶=
1
uk
∑
n
p=1 ∂zp⟨T (uk)Vα(0)∏

n
i=1 Vαi,ε(zi)⟩t,ε. Then limε→0 I

′
ε(u,z) ∶= I

′(u,z) ex-

ists and defines a continuous function in z ∈ θZ satisfying

∫ (
1

(2πi)∣ν∣
∮
∣u∣=δt

u1−νI ′(u,z)du)ϕ̄(z)dz = Tt(ν
(k),D∗

νk
ϕ)(9.27)

for all ϕ ∈ C∞
0 (θZ).

Proof. The proof is similar to Lemma 9.4 but cancellations occur for other reasons and we explain how.
First, the integration by parts gives

I ′ε(u,z) =K
′
ε(u,z) +L

′
ε(u,z)

where limε→0K
′
ε =K

′ exists and is given by

K ′
(u,z) = −

n

∑
p=1

k−1

∑
`=1

Qαp

uk(zp − u`)3
⟨T (u(`,k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t

+
n

∑
p=1

k−1

∑
`=1

αp

uk(zp − u`)2
⟨∂zX(u`)T (u(`,k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t

−
n

∑
p=1

αpα

2

1

ukzp
⟨T (u(k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t

−
n

∑
p/=p′=1

αpαp′

2

1

uk(zp − zp′)
⟨T (u(k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t

=∶ C1(u,z) +C2(u,z) +C3(u,z) +C5(u,z)

whereas

L′ε(u,z) = −
µγ

uk

n

∑
p=1

αp ∫
Ct
Cε,ε(zp, x)⟨T (u(k)

)Vα(0)Vγ,ε(x)
n

∏
i=1

Vαi,ε(zi)⟩t,ε dx

is the term that needs analysis. Let us define

B′
t(u,z) ∶= −

iµ

uk
∮
∣x∣=e−t

⟨T (u(k)
)Vα(0)Vγ(x)

n

∏
i=1

Vαi(zi)⟩t dx̄.

Then

B′
t(u,z) = −

iµ

uk
lim
ε→0

∮
∣x∣=e−t

⟨T (u(k)
)Vα(0)Vγ,,ε(x)

n

∏
i=1

Vαi,ε(zi)⟩t,ε dx̄

=
µ

uk
lim
ε→0

∫
Ct
∂x⟨T (u(k)

)Vα(0)Vγ,,ε(x)
n

∏
i=1

Vαi,ε(zi)⟩t,ε dx

= −
µQγ

uk

k−1

∑
`=1
∫
Ct

1

(x − u`)3
⟨T (u(`,k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx

+
µγ

uk

k−1

∑
`=1
∫
Ct

1

(x − u`)2
⟨∂zX(u`)T (u(`,k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx

− µ
γα

2uk
∫
Ct

1

x
⟨T (u(k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx

−
µγ

uk
lim
ε→0

n

∑
p=1

αp ∫
Ct
Cε,ε(zp, x)⟨T (u(k)

)Vα(0)Vγ,ε(x)
n

∏
i=1

Vαi,ε(zi)⟩t,ε dx

=∶ P6(u,z) + P7(u,z) + P8(u,z) + P4(u,z)
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This proves the existence of limε→0L
′
ε = L

′ = P4 and furthermore

I ′ = lim
ε→0

I ′ε = C1 +C2 +C3 +C5 +B
′
t − P6 − P7 − P8.(9.28)

The claim (9.27) follows as in Lemma 9.4. �

Let us consider the expression

K ′
(u,z) ∶=⟨T (u)Vα(0)

n

∏
i=1

Vαi(zi)⟩t + I
′
(u,z) −M(u,z)

=R(u,z) +N(u,z) +D(u,z) + I ′(u,z).

By (9.13) and (9.27) we have

∫ (∮
∣u∣=δt

u1−νK(u,z)du)ϕ̄(z)dz = T (ν,ϕ) − T (ν(k),D∗
νk
ϕ).(9.29)

On the other hand combining (9.10), (9.16) and (9.21) we obtain

K = R +N +
9

∑
i=1

Ti +
3

∑
i=1

Ci +C5 −
8

∑
i=6

Pi +B
′
t(9.30)

As before it is easy to check that the following relations hold (see Appendix C)

∳
∣uk ∣=e−tεk

Ti(u,z)duk =0 for i = 4,5,9(9.31)

∳
∣uk ∣=e−tεk

(Ti(u,z) +Ci(u,z))duk =0 for i = 1,2,3(9.32)

∳
∣uk ∣=e−tεk

(Ti(u,z) − Pi(u,z))duk =0 for i = 6,7,8(9.33)

∳
∣uk ∣=e−tεk

C5(u,z)duk =0(9.34)

∳
∣uk ∣=e−tεk

N(u,z)duk =0.(9.35)

We can now conclude as in the case νk > 1. �

Appendix A. Elementary lemmas on the Virasoro algebra

Lemma A.1. Let t1,⋯, tk ∈ Z be such that t1 +⋯ + tk > 0. Then

(A.1) L0,α
t1

⋯L0,α
tk

1 = 0, L̃0,α
t1

⋯L̃0,α
tk

1 = 0.

Proof. We will prove this relation by recursion on k and work with L0,α
n (the case of the L̃0,α

n is identical).

For k = 1, the relation comes from the fact that L0,α
t 1 = 0 for t > 0. For k > 2, let j be the biggest index

such that tj > 0. If j = k we are done. Otherwise, we have using (4.20) on L0,α
tj
,L0,α

tj+1

L0,α
t1

⋯L0,α
tk

1 =L0,α
t1

⋯L0,α
tj−1

L0,α
tj+1

L0,α
tj

L0,α
tj+2

⋯L0,α
tk

1

=(tj − tj+1)L
0,α
t1

⋯L0,α
tj−1

L0,α
tj+tj+1

L0,α
tj+2

⋯L0,α
tk

1

+
cL
12
δtj=−tj+1(t

3
j − tj)L

0,α
t1

⋯L0,α
tj−1

L0,α
tj+2

⋯L0,α
tk

1.

The second term in the above equality is equal to 0 by the recursion hypothesis. The third term in the above
equality is equal to 0 since if tj = −tj+1 then we can apply the recursion hypothesis on (t1,⋯, tj−1, tj+2,⋯, tk)
since in this case t1 +⋯ + tj−1 + tj+2 +⋯ + tk = t1 +⋯ + tk. Therefore by iterating the above procedure with
the couple (tj , tj+2), etc... we end up with

L0,α
t1

⋯L0,α
tk

1 = L0,α
t1

⋯L0,α
tj−1

L0,α
tj+1

⋯L0,α
tk

L0,α
tj

1 = 0. �
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Lemma A.2. We suppose that t1,⋯, tk ∈ Z are such that t1 +⋯tk = 0.

L0,α
t1

⋯L0,α
tk

1 = ∑
k > 0

ak(L
0,α
0 )

k1

where the ak only depend on the commutation relations and not on α.

Proof. We suppose that for all t1,⋯, tr such that ∣ti∣ /= 0 for all i, t1 + ⋯ + tr = 0 and ∣t1∣ + ⋯ + ∣tr ∣ 6 N the
lemma holds. We consider t1,⋯, tk such that t1 + ⋯ + tk = 0, ∣ti∣ /= 0 for all i and ∣t1∣ + ⋯ + ∣tk ∣ 6 N + 1. We
consider j the largest integer such that tj > 0. Hence for all l > j we have tl < 0. We have

L0,α
t1

⋯L0,α
tj

L0,α
tj+1

⋯L0,α
tk

= L0,α
t1

⋯L0,α
tj+1

L0,α
tj

⋯L0,α
tk

+ (tj − tj+1)L
0,α
t1

⋯L0,α
tj+tj+1

⋯L0,α
tk

+
cL
12

(t3j − tj)δtj=−tj+1L
0,α
t1

⋯L0,α
tj−1

L0,α
tj+2

⋯L0,α
tk
.

If tj = −tj+1 then the third term is of the desired form by the recursive assumption; if tj /= −tj+1 then the
third term is 0. If tj + tj+1 /= 0 then the second term is of the desired form by the recursive assumption. If

not then one can use L0,α
n L0,α

0 = L0,α
0 L0,α

n + nL0,α
n to get

(A.2) L0,α
t1

⋯L0,α
tj−1

L0,α
0 L0,α

tj+2
⋯L0,α

tk
= (t1 +⋯ + tj−1)L

0,α
t1

⋯L0,α
tj−1

L0,α
tj+2

⋯L0,α
tk

+L0,α
0 L0,α

t1
⋯L0,α

tj−1
L0,α
tj+2

⋯L0,α
tk

and one gets the result by the recursive assumption. To conclude the recursion step, one just needs to
iterate the above procedure of shifting the L0,α

tj
to the right on the first term L0,α

t1
⋯L0,α

tj+1
L0,α
tj

⋯L0,α
tk

and

using L0,α
tj

1 = 0.

In the general case (i.e. when some ti can be equal to 0), one can shift the L0,α
0 terms to the left using

(A.2). �

Appendix B. The DOZZ formula

We set `(z) =
Γ(z)

Γ(1−z) where Γ denotes the standard Gamma function. We introduce Zamolodchikov’s

special holomorphic function Υ γ
2
(z) by the following expression for 0 < Re(z) < Q

(B.1) ln Υ γ
2
(z) = ∫

∞

0

⎛

⎝
(
Q

2
− z)

2

e−t −
(sinh((Q

2
− z) t

2
))2

sinh( tγ
4
) sinh( t

γ
)

⎞

⎠

dt

t
.

The function Υ γ
2

is then defined on all C by analytic continuation of the expression (B.1) as expression

(B.1) satisfies the following remarkable functional relations:

(B.2) Υ γ
2
(z +

γ

2
) = `(

γ

2
z)(

γ

2
)
1−γzΥ γ

2
(z), Υ γ

2
(z +

2

γ
) = `(

2

γ
z)(

γ

2
)

4
γ z−1Υ γ

2
(z).

The function Υ γ
2

has no poles in C and the zeros of Υ γ
2

are simple (if γ2 /∈ Q) and given by the discrete set

(−
γ
2
N − 2

γ
N) ∪ (Q +

γ
2
N + 2

γ
N). With these notations, the DOZZ formula is defined for α1, α2, α3 ∈ C by the

following formula where we set ᾱ = α1 + α2 + α3

(B.3) CDOZZ
γ,µ (α1, α2, α3) = (π µ `(

γ2

4
) (
γ

2
)

2− γ
2

2 )

2Q−ᾱ
γ

Υ′
γ
2
(0)Υ γ

2
(α1)Υ γ

2
(α2)Υ γ

2
(α3)

Υ γ
2
( ᾱ

2
−Q)Υ γ

2
( ᾱ

2
− α1)Υ γ

2
( ᾱ

2
− α2)Υ γ

2
( ᾱ

2
− α3)

The DOZZ formula is meromorphic with poles corresponding to the zeroes of the denominator of expression
(B.3). Note that it is symmetric in α1, α2, α3 and real valued when αj are real.
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Appendix C. Integration by parts calculations

R-terms. Here we list explicitly the terms in the integration by parts formula in the proof of Proposition
9.3 giving zero contribution to the contour integral:

R(u,z) ∶=3Q2
k−1

∑
`=1

1

(uk − u`)4
⟨T (u(`,k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t

− 2Q
k−1

∑
`=1

1

(uk − u`)3
⟨T (u(`,k)

)∂zX(u`)Vα(0)
n

∏
i=1

Vαi(zi)⟩t

+
Qα

2

1

u2
k

⟨T (u(k)
)Vα(0)

n

∏
i=1

Vαi(zi)⟩t

−Q2
k−1

∑
`,`′ /=1

1

(uk − u`)3(uk − u`′)3
⟨T (u`,`

′,k
)Vα(0)

n

∏
i=1

Vαi(zi)⟩t

+ 2Q
k−1

∑
`,`′=1

1

(uk − u`)3(uk − u`′)2
⟨∂zX(u`′)T (u`,`

′,k
)Vα(0)

n

∏
i=1

Vαi(zi)⟩t

−Qα
k−1

∑
`=1

1

(uk − u`)3uk
⟨T (u(`,k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t

−
k−1

∑
`,`′=1

1

(uk − u`)2(uk − u`′)2
⟨∂zX(u`)∂zX(u`′)T (u(`,`′,k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t

+ α
k−1

∑
`=1

1

(uk − u`)2uk
⟨∂zX(u`)T (u(`,k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t

−
α2

4

1

u2
k

⟨T (u(k)
)Vα(0)

n

∏
i=1

Vαi(zi)⟩t.

Proof of (9.24)-(9.26). The claim T ′9 = −T9 results from the relation

1

(uk − x)(uk − x′)
=

1

x − x′
(

1

uk − x
−

1

uk − x′
)

and the fact that the mapping (x,x′)↦ ⟨T (u(k))Vα(0)Vγ(x)Vγ(x
′)∏

n
i=1 Vαi(zi)⟩t is symmetric.

Also, T5 =D5 comes from the relation

1

(uk − zp)(uk − zp′)
=

1

zp − zp′
(

1

uk − zp
−

1

uk − zp′
)

and a re-indexation of the double sum.
Using

1

(uk − u`)2(uk − x)
=

1

(uk − u`)2(u` − x)
−

1

(uk − u`)(x − u`)2
+

1

(x − u`)2(uk − x)

we find that

T7 + T
′
7 = −µγ

k−1

∑
`=1
∫
Ct

(
1

(uk − u`)2(u` − x)
−

1

(uk − u`)(x − u`)2
)⟨∂zX(u`)T (u(`,k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx

satisfies

∮
∣uk ∣=e−tδk

u1−νk
k (T7(u,z) + T

′
7(u,z))duk = 0

by moving the contour to ∞ (νk > 1 is used here).
Using that

1

uk(uk − x)
−

1

x(uk − x)
= −

1

ukx
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and ∮∣uk ∣=e−tδk u
1−νk
k

1
uk

duk = 0 for νk > 1 we deduce that

∮
∣uk ∣=e−tδk

u1−νk
k (T8(u,z) + T

′
8(u,z))duk = 0.

The relation
1

(uk − u`)3(uk − x)
=

1

(uk − u`)3(u` − x)
−

1

(uk − u`)2(x − u`)2
+

1

(uk − u`)(u` − x)3
−

1

(uk − x)(u` − x)3

entails in the same way (9.25) for i = 6.
Finally the relations (9.26) follow by computing residues at the pole uk = zp.

Proof of (9.31)-(9.35).
The relations (9.31) and (9.35) holds because all the corresponding Ti(u) are holomorphic in uk ∈ Dt.

For (9.34) we observe that

1

2πi
∳
∣uk ∣=e−tεk

C5(u)duk = −
n

∑
p/=p′=1

αpαp′

2

1

(zp − zp′)
⟨T (uk)Vα(0)

n

∏
i=1

Vαi(zi)⟩t

and that this expression is null for antisymmetry reasons. (9.32) and (9.33) follow from the residue at zp
and x respectively

∳
∣uk ∣=e−tεk

T1(u,z)duk =2πi
k−1

∑
`=1

n

∑
p=1

Qαp

(zp − u`)3
⟨T (u(`,k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t = −∳∣uk ∣=e−tεk
C1(u,z)duk

∳
∣uk ∣=e−tεk

T2(u,z)duk = − 2πi
k−1

∑
`=1

n

∑
p=1

αp

(zp − u`)2
⟨∂zX(u`)T (u(`,k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t = −∳∣uk ∣=e−tεk
C2(u,z)duk

∳
∣uk ∣=e−tεk

T3(u,z)duk =2πi
n

∑
p=1

ααp

2

1

zp
⟨T (u(k)

)Vα(0)
n

∏
i=1

Vαi(zi)⟩t = −∳∣uk ∣=e−tεk
C3(u,z)duk,

thus proving (9.32). Finally, we compute

1

2πi
∳
∣uk ∣=e−tεk

T6(u,z)duk = − µQγ
k−1

∑
`=1
∫
Ct

1

(x − u`)3
⟨T (u(`,k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx = P6(u,z)

1

2πi
∳
∣uk ∣=e−tεk

T7(u,z)duk =µγ
k−1

∑
`=1
∫
Ct

1

(x − u`)2
⟨∂zX(u`)T (u(`,k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx = P7(u,z)

1

2πi
∳
∣uk ∣=e−tεk

T8(u,z)duk = −
µγα

2
∫
Ct

1

x
⟨T (u(k)

)Vα(0)Vγ(x)
n

∏
i=1

Vαi(zi)⟩t dx = P8(u,z)

1

2πi
∳
∣uk ∣=e−tεk

C4(u,z)duk =µγ
n

∑
p=1

αp

2
∫
Ct

1

(zp − x)
⟨T (uk)Vα(0)Vγ(x)

n

∏
i=1

Vαi(zi)⟩t dx = P4(u,z).

C.1. Analyticity of the vertex operators. Recall the definition of Uα(z) in (7.30) for z ∈ Z and real
αi’s such that αi < Q. It is plain to see that Uα(z) agrees with the following slightly different regularization

Uholes
α (z) = lim

k→∞
Uholes
α,k (z)

with Uholes
α,k (z) = e∑i αi−Qce∑i αiPϕ(zi)Eϕ[(

n

∏
i=1

ε
α2
i

2

k eαiXD,εk (zi))e−µe
γcMγ(Dk)]

where εk = 2−k, XD,εk is the circle average of the Dirichlet GFF and Dk is the unit disk with small holes
removed around each insertion, namely Dk ∶= D ∖ ⋃

n
i=1B(zi, εk). Recall that we get the following explicit

expression by using the Girsanov theorem:

Uholes
α (z) = e(∑

n
j=1 αj−Q)ce∑i αiPϕ(zi)+∑i<j αiαjGD(zi,zj)Eϕ [e−µe

γc ∫D e
γ∑ni=1 αiGD(x,zi)Mγ(dx)] .(C.1)

We fix k0 such that the open balls B(zi,2
−k0) are disjoint and included in D. Set On ∶= {α ∈ Rn; αi < Q, ∀i}.

Then we have the following analyticity result:
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Proposition C.1. The (random) function α→ Uholes
α (z) admits an analytic extension in a complex neigh-

borhood of On such that for all real α ∈ On there exists some ε > 0 (depending on α) and (non random)

C, C̃ > 0 satisfying

sup
β∈[−ε,ε]n

∣Uholes
α+iβ(z) −U

holes
α+iβ,k0

(z)∣

6 C(1 + eγc)e(∑
n
j=1 αj−Q)ce

C̃ supi sup
u∈B(zi,2−k0 ) Pϕ(u)Eϕ [e

−µeγc ∫Dk0
eγ∑

n
i=1 αiGD(x,zi)Mγ(dx)

] .

Proof. To simplify we will suppose that n = 1 and z1 = 0 and set GD,k(0, u) = E[XD,εk(0)XD(u)]. This is no
restriction as the same analysis can be performed around each insertion in case n > 1. In this context, we
get by using the Markov property of the Dirichlet GFF that:

∣Uholes
α+iβ,k+1 −U

holes
α+iβ,k(z)∣

= e(α−Q)c
∣Eϕ [ε

(α+iβ)2/2
k+1 e(α+iβ)XD,εk+1

(0) (e−µe
γcMγ(Dk+1) − e−µe

γcMγ(Dk))] ∣

6 e(α−Q)c2(k+1)β2/2
∣Eϕ [(e

−µeγc ∫Dk+1
eγα1GD,k+1(x,0)Mγ(dx)

− e
−µeγc ∫Dk e

γα1GD,k+1(x,0)Mγ(dx))] ∣

= e(α−Q)c2(k+1)β2/2
∣Eϕ [(e−µe

γc(Yk+δYk) − e−µe
γcYk)] ∣.

where we have set

Yk = ∫
Dk
eγPϕ(x)eγα1GD,εk+1

(0,x)Mγ(dx) and δYk = ∫
Dk∖Dk+1

eγPϕ(x)eγα1GD,k+1(0,u)Mγ(dx).

Now, we consider the cases δYk > 1 and δYk 6 1. By FKG inequality for the Dirichlet GFF, we have

Eϕ [1δYk>1∣e
−µeγcYk − e−µe

γc(Yk+δYk)∣]

6 2Eϕ [1δYk>1e
−µeγcYk]

6 2Eϕ [1δYk>1]Eϕ [e−µe
γcYk]

6 2Eϕ [(δYk)
η
]Eϕ [e−µe

γcYk] .

Next, we choose β > 0 and η > 0 such that 2(k+1)β2/2Eϕ [(δYk)
η] 6 Ceγη sup∣u∣6 εk

Pϕ(u)2−θk with θ > 0.
In the case δYk 6 1, we get (using the inequality x1{x 6 1} 6 x

η for x > 0 and then FKG for the Dirichlet
GFF)

2(k+1)β2/2Eϕ [1δYk 6 1∣e
−µeγcYk − e−µe

γc(Yk+δYk)∣]

6 2(k+1)β2/2µeγcEϕ [1δYk 6 1δYne
−µeγcYk]

6 2(k+1)β2/2µeγcEϕ [(δYk)
ηe−µe

γcYk]

6 2(k+1)β2/2µeγcEϕ [(δYk)
η
]Eϕ [e−µe

γcYk]

6 C2−kθeγceγη sup∣u∣6 εk
Pϕ(u)

Eϕ [e−µe
γcYk] .

Gathering the above considerations, we get

∣Uholes
α+iβ,k+1 −U

holes
α+iβ,k(z)∣ 6 Ce

(α−Q)c2−kθ(1 + eγc)eγη sup∣u∣6 εn
Pϕ(u)Eϕ [e−µe

γcYn]

This shows that the (random) analytic function Uholes
α+iβ,k(z) converges as k →∞ with probability 1 and for

all c towards an analytic function that satisfies

∣Uholes
α+iβ,k+1 −U

holes
α+iβ,k0

(z)∣ 6 Ce(α−Q)c
(1 + eγc)e

γη sup∣u∣6 1
2
Pϕ(u)

Eϕ [e−µe
γcYk0 ] . �

References

[AFLT11] Alba V.A., Fateev V.A., Litvinov A.V., Tarnopolsky G.M.: On combinatorial expansion of the conformal blocks

arising from AGT conjecture, Lett.Math.Phys. 98, 33-64 (2011).
[AGT10] L. F. Alday, D. Gaiotto, and Y. Tachikawa. Liouville Correlation Functions from Four Dimensional Gauge Theories,

Lett. Math. Phys. 91, 167-197 (2010).



90 COLIN GUILLARMOU, ANTTI KUPIAINEN, RÉMI RHODES, AND VINCENT VARGAS
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Aix-Marseille University, Institut de Mathématiques de Marseille (I2M), and Institut Universitaire de France
(IUF)

E-mail address: remi.rhodes@univ-amu.fr
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