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Abstract

A base-stock inventory system for perishables with Markovian demand and general lead-time

and lifetime distributions is investigated. Using a queueing network model, we derive explicit

expressions of the stationary distribution of the inventory state together with the total expected

cost in a base-stock system with lost-sales. Next, we show some monotonicity properties of

the cost function and propose a procedure to derive the optimal base-stock. Extensions to the

backorders case and to a dual-sourcing system with multiple warehouses are also provided. Our

results generalize existing ones from the literature where the lifetime and the lead-time follow

either deterministic or exponential distributions. Finally, we investigate the effect of the lifetime

and lead-time variability on the system cost and the optimal base-stock level. In particular, we

show the substantial errors made when assuming deterministic or exponential distributions for

the lifetime. This further shows the need to have results beyond exponential or deterministic

assumptions.
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1 Introduction

Perishable products, or products with a finite lifetime, have a major role in our economy. Fruits,

vegetables, meat, and frozen food constitute the majority of supermarket sales. Progressive Grocers

magazine (2015) reported that, in 2014, perishables accounted for 59.1% of total sales in US super-

markets. Perishable products also include pharmaceuticals like drugs or vaccines, which represent

a very large industry. The blood blank is another example of perishables. The lifetime of platelets

is typically five days, while the whole blood has a legal lifetime of 21 days, after which it has to

be discarded because of contamination (Chao et al., 2017). Fontaine et al. (2009) reported that,

in 2006, 10.9% of blood platelets outdated without being transfused. Therefore, companies have a

strong need to implement an efficient inventory management of perishables to save costs and avoid

wastes. To answer these challenges, the academic literature has extensively developed mathematical

models for decision-makers. We mention for instance Karaesmen et al. (2011); Bakker et al. (2012);

Janssen et al. (2016); Minner and Transchel (2017).

In this paper, we focus on a base-stock policy for perishables. The particularity of base-stock

policies is that a replenishment order to restore the base-stock level S is made whenever the inventory

position is below S. Therefore, the reorder point is S−1 and the policy is commonly referred to as an

(S−1, S) policy in the inventory literature. The base-stock model is often used to control inventory

systems with a zero or negligible ordering cost and/or when the demand per time unit is low. This

policy is extensively implemented in practice for perishables such as pharmaceutical products or

stored blood (Olsson and Tydesjö (2010)). In blood banks, the orders are placed on a daily basis

and the demand for some rare blood types (such as B-negative) requires a continuous review base-

stock inventory policy. Haijema et al. (2007) reported that the daily demand for blood platelets can

be modelled as a Poisson process and the ordering cost can be ignored since many blood platelets

types share a common fixed transportation cost. Note also that expensive pharmaceutical products

are characterized with low demands and different expiration dates, which are often replenished using

continuous review base-stock systems.

From the theoretical point of view, the attractiveness of the base-stock policy is partially due to

its simplicity as the expected cost and the state distribution under this policy can be expressed in

closed-form. Yet, existing results in the literature are restricted to either deterministic or exponential

lifetime distributions. A deterministic lifetime corresponds to products with a specific expiry date

like meat or fish, while an exponential one may be more adapted to deteriorating products like fruits

or vegetables. The deterministic assumption has a practical reality, but the exponential one has been

chosen for tractability reasons. Recall that the product deterioration is due to a growing quantity
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of bacteria and fungi over time. Beyond a certain quantity, these products become unhealthy and

should not be consumed. Determining the appropriate distribution for the evolution of a population

is an ongoing research question. However, clearly, most studies on this question have shown that

such distribution is non-exponential (Brockwell et al., 1982; Kapodistria et al., 2016; Logachov et al.,

2019). Therefore, to overcome the limitation of existing results in the literature and have a better

fit with real lifetime distributions, we assumed that lifetimes are generally distributed.

There is a rich body of literature on perishable inventory systems. The proposed models deal

with periodic and continuous review systems. In both cases, various assumptions are considered in

the literature to develop tractable (heuristic) models. Among these assumptions, one can mention

a positive or zero replenishment lead-time, an exponential or deterministic lifetime, a lost-sales

or backordered excess demands. Interested readers can refer to the latest literature review by

Bakker et al. (2012) and Janssen et al. (2016) for more details. Our work falls into the literature

of continuous review perishable inventory systems with a positive random lead-time and a general

lifetime distribution.

Investigating a positive replenishment lead-time together with a general lifetime distribution is

rather challenging. The complexity can be understood in Chao et al. (2015), where an inventory

with a zero-replenishment lead-time and a deterministic lifetime with a fixed number of periods

is considered. When the number of periods exceeds 2, the characterization of the exact operating

costs becomes very complicated. The complexity stands in the dimension of the state space. For a

complete description of the state space, one need to keep track of the age of each items on-hand.

With N items on-hand, each with a lifetime of k periods, N × k states can be encountered. This

prohibits the direct determination of a tractable solution.

In this work, we overcome this difficulty by employing a queuing network approach. It allows

us, in the case of a Markovian demand, to characterize the stationary probabilities of the inventory

level and subsequently to determine the expression of the operating costs Specifically, we consider a

perishable base-stock inventory system under a Poisson demand where both the lifetime and lead-

time are generally distributed. The lost-sales case, the backorders case and a dual-sourcing case with

multiple warehouses are investigated. The classical approach consists in formulating and solving a

set of partial differential equations. With generally distributed lifetime and lead-time, this approach

is unlikely to be successful due to the model complexity. We overcome this difficulty by modeling

the inventory as a queueing network. This approach is first detailed in the lost-sales case and next

extended to the two aforementioned cases. For each case, we derive the stationary probabilities and

the total cost function in closed-form. In addition, we show some relevant monotonicity properties

of the total inventory cost in the lost-sales case. A procedure to compute the optimal base-stock
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level in each case is also provided. Finally, we develop an extensive numerical study to investigate

the effect of the lifetime variability on the optimal inventory level and the optimal cost. Our analysis

highlights the substantial cost error that can be made when assuming deterministic or exponential

lifetime distributions to compute the optimal base-stock level. These results further show the need

to go beyond exponential or deterministic assumptions.

Structure of the article. Section 2 presents a literature review. Sections 3, 4 and 5 are devoted

to the lost-sales case, the backorders case, and the dual-sourcing case with multiple warehouses,

respectively. Section 6 evaluates the impact of the lifetime variability and determines the errors

made when assuming exponential or deterministic distributions. Section 7 concludes the paper and

highlights avenues for future research. In the appendix, we provide a table of notations and the

details of our numerical investigations.

2 Literature review

The literature dealing with the base-stock policy in perishable inventory systems spans two main

approaches. The first is concerned with the analysis of continuous inventory review while the second

one deals with periodic inventory review systems. Our approach falls in the first category. In this

literature review, for both approaches, the contributions dealing with the base-stock policy in the

lost-sales and backorder cases are presented. Under the continuous review, for most contributions,

the lifetime is assumed to be either exponential or deterministic. We structure the presentation of

the references based on the lifetime assumption in the two first paragraphs of this section. The third

paragraph presents the references that deal with the continuous review under non-exponential and

non-deterministic lifetime. Under the periodic review, more general assumptions are encountered

for the lifetime. In the last paragraph, we present the references treating inventory models for

lost-sales and backorders.

Under the continuous review, we first present references in which a deterministic lifetime is as-

sumed. Schmidt and Nahmias (1985) analyzed a lost-sales base-stock inventory system with deter-

ministic lifetime and lead-time. They derived explicit expressions for the steady-state probabilities

and the total expected cost. Olsson and Tydesjö (2010) extended Schmidt and Nahmias (1985)’s

results to the backorders case. Olsson and Turova (2016) studied a similar model with the additional

feature of a double stochastic Poisson demand process. They showed the uniqueness of the station-

ary distribution. The approach in these studies is to solve partial differential equations and their

boundary conditions so as to obtain closed-form expressions of the cost components. In our paper,
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we instead employ a queueing network approach which significantly simplifies the analysis. Berk

and Gürler (2008) studied a lost-sales (r,Q) inventory system with a service-level constraint and a

positive lead-time. They derived the optimal system parameters using an embedded Markov process

approach of order’s lifetime and showed that the performance of the (r,Q) policy deteriorates when

the service-level increases. Under partial backorders, Olsson (2014) developed a heuristic method

to find near-optimal parameters of an (r,Q) model with a Poisson demand process. More recently,

Olsson and Turova (2016) extended the work by Olsson (2014) to the case where the demand follows

a general doubly stochastic Poisson process.

We now provide references involving an exponential lifetime distribution. Kalpakam and Sapna

(1994) pioneered the first study under the exponential lifetime distribution assumption. They

considered a lost-sales (s, S) model with a Poisson demand process, exponential lifetimes and lead-

times. By restricting the number of outstanding replenishment orders to at most one at any time,

they derived the steady-state probabilities and obtained the explicit expression of the cost function.

Kalpakam and Sapna (1995) extended this work to the base-stock system with a general lead-

time distribution. Liu and Yang (1999) analyzed the same model as the one of Kalpakam and

Sapna (1994) by considering the backorders case and no restriction on the number of outstanding

replenishment orders. Kalpakam and Shanthi (2000) considered a base-stock policy where orders are

triggered only at demand instances. With partial backordering, Liu and Cheung (1997) investigated

an (S − 1, S) inventory policy with a Poisson demand and exponential lead-times. Finally, Kouki

et al. (2018) derived the expression of the total cost of a continuous review base-stock system under

fixed and exponential lifetime distributions. The inventory system operates under a dual-sourcing

with constant lead-times.

It is worthy pointing out that Gürler and Özkaya (2008) is, to the best of our knowledge, the only

work that focuses on general lifetime distributions (e.g. Gamma, Uniform, Triangular) with zero

and constant positive lead-time. With zero-lead time, they examined the impact of a random shelf

life on the performance of the (s, S) model under a general renewal arrival process. With constant

positive lead-time, they proposed a heuristic allowing them to express the total cost. However, the

work of Gürler and Özkaya (2008) does not deal with the case of a generally distributed lead-time.

Hence, our paper bridges the gap in the above-cited literature by developing the expression of the

total cost function of a base-stock inventory system under a continuous review when both the lead-

time and the lifetime are generally distributed. The analytical results generalize the findings of the

literature for both the lost-sales and backorders cases.

Under periodic review setting, perishable inventory systems have been extensively studied. We

review here the literature that is most closely related to our work. Minner and Transchel (2010),

5



studied a dynamic order policy under service level constraints. Their policy considerably outper-

forms periodic review base-stock and constant order policies. Haijema and Minner (2016), compared

several periodic review constant order and base-stock policies with positive lead-time and determin-

istic lifetime. Through extensive numerical experiments, they determined situations in terms of

lead-time, lifetime and cost parameters under which one of the proposed policies should be used

in practice. Haijema and Minner (2019) extended their work by considering the stock-age vector

to derive the optimal age-based order quantity and the expected total cost under various policies.

They showed that the integration of the aging categories yields a higher cost saving. Broekmeulen

and Van Donselaar (2009) and Tekin et al. (2001) also proposed inventory systems that take into

account the stock-age to manage perishable inventory, they found that the age integration lead to

substantial cost savings. Ketzenberg et al. (2018) studied a periodic review inventory policy with

random lifetime and a one-period lead-time. They focused on the impact the optimal expiration

date taken from lifetime distribution on best order quantities that minimize the total expected cost

per time unit. In contrast to these existing works, we consider a base-stock system with random

lifetime and a random lead-time but under a continuous review.

3 The lost-sales case

In this section, we investigate the lost-sales case. Section 3.1 gives the model description and

explains the queueing network approach for analyzing this model. Next, Section 3.2 derives the

stationary distribution of the number of items in the inventory together with the expected cost. An

algorithm to compute the optimal base-stock level is also provided. Finally, in Section 3.3, we show

how our results allow us to retrieve those from the literature in the exponential and deterministic

cases.

Table of notations

In Table 1, we introduce the notations used throughout the paper. The index i is omitted whenever

a unique warehouse is considered (for instance, in Sections 3 and 4).

3.1 Model description and queueing network approach

We first provide the model description of the inventory model. Our aim is to obtain the inventory

cost expression with general lifetime and lead-time distributions, which extend the existing litera-

ture. The idea is to obtain a simple tool for decision-makers in perishable inventory control, and

to gain insights into the conditions under which existing models with exponential or deterministic
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Table 1: Table of notations
λi Demand rate at warehouse i (i = 1, 2, · · · , J)
fi(.) Lifetime probability density function at warehouse i (i = 1, 2, · · · , J)
Fi(.) Cumulative lifetime distribution function at warehouse i (i = 1, 2, · · · , J);

Fi(x) =
∫ x

0 fi(t) dt
mi Expected lifetime at warehouse i (i = 1, 2, · · · , J); mi =

∫∞
0 tfi(t) dt

CVi Ratio between the standard deviation and the expected value of the lifetime
at warehouse i (i = 1, 2, · · · , J)

γi Lifetime rate at warehouse i (i = 1, 2, · · · , J); γi = 1/mi
δi,n Departure rate due to items expiring at warehouse i (i = 1, 2, · · · , J)

when there are n items on-hand
g(.) Lead-time probability density function
G(.) Cumulative lead-time distribution function; G(x) =

∫ x
0 g(t) dt

L Expected lead-time; L =
∫∞

0 tg(t) dt
Le Expected lead-time of an emergency order
β Replenishment rate; β = 1/L
βn Departure rate due to the end of the lead-time given that there are n orders
h Holding cost per item and per time unit
b Cost per unsold item due to lost demand or backorder unit cost
w Outdated cost per perished item
cr Purchasing cost per regular order
ce Purchasing cost per emergency order
Si Base-stock level at warehouse i (i = 1, 2, · · · , J)
S̃i Threshold level for emergency orders at warehouse i (i = 1, 2, · · · , J)
Z Total expected cost
T Normalising constant
σe Rate of emergency orders
σr Rate of regular orders

π(n1, n2) Probability to have n1 items on-hand and n2 orders
pni(ni) Stationary probability to find ni items on-hand at warehouse i (i = 1, 2, · · · , J)

P (n1, n2, · · · , nJ) Stationary probability that warehouses 1, 2, · · · , J have n1, n2, · · · , nJ ,
on-hand items, respectively

LS Lost-sales
MLS Lost-sales with multiple warehouses
BO Backorders
DS Dual-sourcing
MDS Dual-sourcing with multiple warehouses
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distributions fail to capture the system’s real cost. The lost-sales case of this section serves as the

basis of our analysis. The backorders and the multiple warehouses cases in the following sections

can be seen as extensions of this model.

We consider an inventory model with a unique item where the product lifetime and lead-time are

generally distributed with probability-density functions f(.), and g(.), respectively. We also make

the assumptions that the demand for this item follows a Poisson process with parameter λ and that

the stored items are served under a first in, first out manner. The system manager controls the

inventory according to a base-stock policy. As such, each time a demand is satisfied from the stock

on-hand or a product has perished, an order is immediately placed.

The particularity of the lost-sales case is that excess demands are lost. For this inventory model,

the system manager is concerned by the volume of stored items, the rate of lost customers, and the

rate of outdated items. To capture these features, we assume that items on-hand incur a holding

cost per time unit, h. Moreover, a penalty, b, is counted each time a demand is lost due to item

unavailability. Finally, a cost of w is counted per outdated item. This cost is also called the

expiration cost.

Before presenting the methodological approach, we conclude our model description with two

remarks related to assumptions chosen for the tractability of the analysis. First, as mentioned

above, we consider a demand which follows a Poisson process. This assumption is restrictive as

one could consider any other arrival processes. The Poisson assumption is a common one for the

arrival process in inventory models (Silver et al., 1998). Statistical analyses have shown that the

homogeneous-Poisson assumption well models customers’ arrivals in service and inventory systems

(Lengu et al., 2014; Kim and Whitt, 2014). One of the specific advantages of the Poisson process

is that it exactly captures a similar effect as the short-term non-stationarity encountered in some

arrival processes. Finally, we may also use the characteristic that the Poisson distribution - and

a number of other distributions - approximates the normal distribution if it is accumulated over a

certain time period (Fransoo et al., 1995). Therefore, we believe that the Poisson assumption allows

us to capture or to well approximate a wide variety of arrival process.

Second, we assume that the service discipline is a first-in-first-out one. This assumption is also

restrictive as many other discipline could be implemented like the last-in-first-out, or the random

selection (Haijema et al., 2007; Minner and Transchel, 2010; Haijema, 2014; Haijema and Minner,

2019). The first-in-first-out assumption can be justified by practical reasons for its simplicity to

implement. This discipline is also optimal when the lifetime has the increasing failure rate property

(Legros, 2020). Given that the oldest item has the highest chance to perish at the next period, it

makes sense to remove this item in priority in order to avoid the outdated cost. For the analysis,
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the value of the first-in-first-out discipline is the simplicity of the offered wait distribution of a given

item when the lifetime is infinite; it follows an Erlang distribution with parameter λ. This allowed

Movaghar (1998) and Brandt and Brandt (2002) to explicitly determine the rate out of each state

in the corresponding queueing model when abandonment is involved. Their results are employed

in this paper. Extending their result for instance to the last-come-first-served case would be very

involving as the offered wait would then follow a complex distribution requiring modified Bessel

functions (Kleinrock, 1975). We therefore decided not to pursue this analysis.

In the lost-sales case, whenever an item is removed from the on-hand inventory, either due to an

item expiration or to a satisfied demand, an order is automatically generated. Each order results in

a new item in the on-hand inventory after a lead-time. Therefore, the total number of items in the

on-hand inventory plus the number of outstanding orders is constant and equal to S. The value of

S is called the base-stock level.

We employ a queueing network approach to evaluate the inventory cost. With this approach, the

base-stock level, S, is seen as a finite population which makes the network a closed network. The

population S is divided in between two parts; the on-hand inventory, and, the outstanding orders.

These two parts are viewed as connected queues, called Queue 1, and, Queue 2, respectively. Queue

1 can be understood as a single server queue of impatient customers waiting for service. The arrival

process for this queue is generated by the outstanding orders from Queue 2. The service is made by

the Poisson demand and customers’ patience is represented by the items’ lifetime. Using Kendall’s

notation, Queue 1 is referred to as the ./M/1+G queue. The outstanding orders are executed

independently and in parallel. As such, Queue 2 can then be viewed as a queue with an infinite

number of parallel servers. The service time in this queue is determined by the outstanding orders’

lead-time and the arrival process is generated by items’ removal from Queue 1. This queue is referred

in the queueing literature to as the ./G/∞ queue. This queueing network is depicted in Figure 1.

������� �����

Figure 1: Modeling the base-stock inventory systems with lost-sales as a closed network
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3.2 Stationary distribution, expected cost, and computation of the optimal

base-stock level

In this section, we first derive the steady-states probabilities of the system to express the total

cost function. Then, we provide some properties of the cost function, which are needed to develop

the algorithm we use to calculate the optimal base-stock level. Our model is not Markovian due to

the generally distributed lifetime and lead-time. However, since we have Makovian service times in

Queue 1 and an infinite number of servers in Queue 2, a state of the system can be described by

the number of items in each queue (Barrer, 1957; Movaghar, 1998) and the system performance can

be derived from a Markov chain analysis.

Let n1 and n2 be the number of items on-hand (i.e., number in Queue 1) and the number of

outstanding orders (i.e., number in Queue 2) respectively, and denote by

ΩLS =
{

(n1, n2) ∈ N2|n1 + n2 = S
}
, the set of admissible states. We are interested in calculating

the steady-states probability of the system, denoted by πLS(n1, n2). To this end, we introduce the

notations δn1 and βn2 to represent the departure rate due to items expiring given that there are

n1 > 0 items on-hand and the departure rate due to the end of the lead-time in the second queue

given that there are n2 > 0 items in this queue, respectively. To simplify the notations, we use the

convention that δ0 = β0 = 0. For 0 < n1, n2 < S, we may write
(λ+ δn1)1n1>0π

LS(n1, n2)

+

βn21n2>0π
LS(n1, n2)

 =


(λ+ δn1+1)πLS(n1 + 1, n2 − 1)

+

βn2+1π
LS(n1 − 1, n2 + 1)

 , (1)

where 1A is the indicator function of a given subset A.

Since n1 + n2 = S, we have a finite one-dimensional system. Therefore, it is simpler to redefine

the system state by n where n = n1 and n2 = S − n. The stationary probabilities are thus defined

as pLSn = πLS(n, S − n), for 0 ≤ n ≤ S. Therefore, Equation (1) can be simplified into

(λ+ δn + βS−n)pLSn = βS−n+1p
LS
n−1 + (λ+ δn+1)pLSn+1, for 0 < n < S, (2)

βSp
LS
0 = (λ+ δ1)pLS1 , and,

(λ+ δS)pLSS = β1p
LS
S−1.

Equation (2) enables us to show by induction that

pLSn = pLS0

n∏
k=1

βS−k+1

λ+ δk
, for 0 ≤ n ≤ S. (3)
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Finally, since the sum of the overall probabilities is equal to one, we get

pLS0 =

[
S∑
n=0

n∏
k=1

βS−k+1

λ+ δk

]−1

. (4)

There remains to provide the expressions of δn and βn. The expression of δn is known from Brandt

and Brandt (2002) and Movaghar (1998) for an ·/M/1 +G queue;

δi = δi(λ) =
iΦi−1(λ)

Φi(λ)
− λ, where Φi(λ) =

∫ ∞
0

(∫ x

0
(1− F (t))dt

)i
e−λx dx, (5)

for λ > 0. Queue 2 can also be viewed as a particular ·/M/1 +G queue where the abandonment is

generated by lead-times and the service process is zero. One way to obtain the βi’s is then to let

λ tend to zero in Equation (5). Interestingly, in Lemma 1, by letting λ tend to 0, we prove that

βi = iβ, where β is the expected lead-time rate. This means that the departure rate from Queue

2 only depends on the first moment of the lead-time. This shows that the heuristic in Gürler and

Özkaya (2008) is valid for a non-deterministic distribution as the distribution of the lead-time is

proven to have no impact beyond its mean. Note that the result of Lemma 1 holds only if the first

two moments of the lead-time are finite.

Lemma 1. If L < ∞ and
∫ x

0 t
2g(t)dt < ∞, the departure rate from Queue 2 when n items are

present is given by βn = nβ.

Proof. After substituting G to F in δn, one can obtain βn as the limit of δn bu letting λ tend to

zero if this limit exists. We hence have to find the limit of Φn−1(λ)
Φn(λ) as λ tends to 0. Observe that

Φn(λ) is the Laplace transform of the function H(x) =
(∫ x

0 (1−G(t))dt
)n at the point λ. Since

|e−λxH ′(x)| ≤ H ′(x), one may apply the dominated convergence theorem and write

lim
λ→0

∫ ∞
0

H ′(x)e−λx dx =

∫ ∞
0

H ′(x) dx = H(∞)−H(0) = H(∞).

Moreover, the property of derivation for Laplace transforms leads to

∫ ∞
0

H ′(x)e−λx dx = λ

∫ ∞
0

H(x)e−λx dx−H(0) = λ

∫ ∞
0

H(x)e−λx dx = λΦn(λ).

This proves that

lim
λ→0

λΦn(λ) = H(∞).

There remains to obtain the limit of H(x) as x tends to infinity. By applying an integration by
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parts to 1−G(t), we get

∫ x

0
(1−G(t)) dt = x(1−G(x)) +

∫ x

0
tg(t) dt.

The Chebyshev’s inequality indicates that 1−G(x) ≤ 1
x2
E(X2), where E(X2) is the second order

moment of the lead-time distribution. So, 0 ≤ x(1−G(x)) ≤ 1
xE(X2). This proves that lim

x→∞
x(1−

G(x)) = 0. Finally,
∫ x

0 tg(t)dt = L. This proves that H(∞) = Ln. By writing Φn−1(λ)
Φn(λ) = λΦn−1(λ)

λΦn(λ) ,

we then may write

βn = lim
λ→0

λnΦn−1(λ)

λΦi(λ)
− λ =

nLn−1

Ln
= nβ.

Lemma 1, enables us to express the steady-states probabilities as

pLSn =
LS−nΦn(λ)

n!(S − n)!Φ0(λ)TLS(S)
, for 0 ≤ n ≤ S, (6)

where TLS(S) =
S∑
n=0

LS−n

(S − n)!

Φn(λ)

n!Φ0(λ)
=

1

S!Φ0(λ)

∫ ∞
0

(
L+

∫ ξ

0
(1− F (x))dx

)S
e−λξdξ, for S > 0.

We are now in position to derive the total cost function, ZLS(S). We obtain

ZLS(S) = h
S∑
n=1

npLSn + w
S∑
n=1

δnp
LS
n + bλpLS0 (7)

= h

(
S − LTLS(S − 1)

TLS(S)

)
+ w

TLS(S − 1)

TLS(S)
+ λ

(w + b)LS

S!TLS(S)
− wλ, (8)

for S ≥ 0, with the convention TLS(−1) = 0, where the three components of the cost function

correspond to the holding cost, the outdating cost and the lost-sales cost, respectively. From

extensive numerical tests, we observed that ZLS(S) is quasi-convex in S. However, the complexity

of the components of ZLS(S) does not enable us to analytically show this result. Instead, in

Proposition 1, we show the first order monotonicity properties of the components of ZLS(S). This

result may be used as a first step to show the second order monotonicity properties of ZLS(S).

Proposition 1. The following holds:

1.
TLS(S − 1)

TLS(S)
is increasing in S and tends to infinity as S tends to infinity.

2. S − LTLS(S − 1)

TLS(S)
is increasing in S and tends to infinity as S tends to infinity.
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3.
LS

S!TLS(S)
is decreasing in S.

Proof. 1) From Equation (5), we have

TLS(S − 1)

TLS(S)
= S ·

∫∞
0

(
L+

∫ ξ
0 (1− F (x))dx

)S−1
e−λξdξ∫∞

0

(
L+

∫ ξ
0 (1− F (x))dx

)S
e−λξdξ

.

Let us define the function I(ξ) = L +
∫ ξ

0 (1 − F (x))dx. Since F (x) ≤ 1, I(ξ) is increasing in ξ.

Moreover, lim I(ξ)
ξ−→∞

= L+
∫∞

0 (1− F (x))dx = L+m. Thus, I(ξ) ≤ L+m.

Let us prove that TLS(S−1)
TLS(S) is increasing in S. To prove this result, we show that

TLS(S−1)

TLS(S)

TLS(S)

TLS(S+1)

<

S
S+1 < 1. Using Fubini’s Theorem, we have

TLS(S−1)
TLS(S)

TLS(S)
TLS(S+1)

− S

S + 1
= −1

2

S

S + 1

∫∞
0

∫∞
0 e−λ(x+y)I(x)S−1I(y)S−1 (I(x)− I(y))2 dxdy(∫∞

0 I(ξ)Se−λξdξ
)2 ≤ 0,

which proves the result.

We now show that TLS(S−1)
TLS(S) tends to infinity as S tends to infinity. We may write

1

L+m
=

∫∞
0 (L+m)S−1 e−λξdξ∫∞

0 (L+m)S e−λξdξ
.

Therefore,

∫∞
0 (I(ξ))S−1 e−λξdξ∫∞

0 (I(ξ))S e−λξdξ
−
∫∞

0 (L+m)S−1 e−λξdξ∫∞
0 (L+m)S e−λξdξ

=

∫∞
0

∫∞
0 e−λ(x+y)(L+m)S−1I(x)S−1 (L+m− I(y)) dxdy∫∞

0 (I(ξ))S e−λξdξ ·
∫∞

0 (L+m)S e−λξdξ
≥ 0.

This leads to TLS(S−1)
TLS(S) ≥

S
m+L and proves the result.

2) To prove the second statement of Proposition 1, we need to prove that TLS(S−1)
STLS(S) is decreasing

in S. For S ≥ 1, using the same approach as for 1), from Fubini’s Theorem, we may write

TLS(S − 1)

STLS(S)
− TLS(S)

(S + 1)TLS(S + 1)
=

∫∞
0 I(ξ)S−1e−λξdξ∫∞

0 I(ξ)Se−λξdξ
−

∫∞
0 I(ξ)Se−λξdξ∫∞

0 I(ξ)S+1e−λξdξ

= −1

2

∫∞
0

∫∞
0 e−λ(x+y)I(x)S−1I(y)S−1 (I(x)− I(y))2 dxdy∫∞

0 I(ξ)Se−λξdξ ·
∫∞

0 I(ξ)S+1e−λξdξ
≤ 0.
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Note that

S − LTLS(S − 1)

TLS(S)
= S

(
1− LTLS(S − 1)

STLS(S)

)
.

Since the term LTLS(S−1)
STLS(S) is decreasing in S and tends to 0 as S tends to infinity, S

(
1− LTLS(S−1)

STLS(S)

)
tends to infinity as S tends to infinity.

3) We may write

LS−1

(S−1)!TLS(S−1)

LS

S!TLS(S)

=
1

L

STLS(S)

TLS(S − 1)
.

From 2), the function STLS(S)
TLS(S−1) is increasing in S. So, 1

L
S·TLS(S)
TLS(S−1) ≥

1
L

1·TLS(1)
TLS(0) . We have TLS(0) = 1

λ

and TLS(1) =
∫∞

0 I(ξ)e−λξdξ ≥
∫∞

0 Le−λξdξ = L
λ . Therefore

LS−1

(S−1)!TLS(S−1)

LS

S!TLS(S)

=
1

L

STLS(S)

TLS(S − 1)
≥ 1,

which proves 3).

Computation of the optimal base-stock level. A classical algorithm to obtain the optimal

base-stock level would stop at the first local minimum of ZLS(S) obtained by increasing S. However,

we are not able to prove that ZLS(S) has a unique local minimum. Alternatively, we propose to

use an algorithm in the spirit of the one of Olsson and Tydesjö (2010). The idea is to limit

the search of the optimal threshold level to a finite number of iterations by computing an upper

bound for the base-stock level. The algorithm of Olsson and Tydesjö (2010) is valid under the

condition that all cost components are positive and one part of the cost function is increasing and

tends to infinity as S tends to infinity. From Proposition 1, we deduce that the term Z1
LS(S) =

h
(
S − LTLS(S−1)

TLS(S)

)
+w TLS(S−1)

TLS(S) has these properties if either w > 0 or h > 0. In the case w = h = 0,

S = 0 is optimal. The algorithm is as follows:

• Step 1: Set S := 0, S∗ := 0, and Zmin :=∞, and go to Step 2.

• Step 2: Compute ZLS(S). If ZLS(S) < Zmin then Zmin = ZLS(S) and S∗ = S. Set S := S+1,

and go to Step 3.

• Step 3: Compute Z1
LS(S). If Z1

LS(S) ≤ Zmin then go to Step 2, otherwise stop the procedure.

In Section 4, we will show that the same algorithm can be employed for the backorders case.
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3.3 Special cases: Deterministic and exponential lifetime

In this section, we retrieve the stationary probabilities found in Schmidt and Nahmias (1985)

for the deterministic case and those of Liu and Cheung (1997) for the exponential case using the

results of Section 3.2. This also shows that the expected cost in these references can be obtained

from our results. The idea is to show that our analysis generalizes existing ones.

Deterministic case. As mentioned in the introduction, the deterministic case is the most studied

one. In what follows, we use the cumulative distribution function of the deterministic distribution

to derive the stationary probabilities in this case from our results. Let us introduce the cdf of the

deterministic distribution defined as

F (x) =

{
0 if x < m,

1 if x ≥ m,

where we recall that m is the expected duration of the lifetime. After some algebra, we obtain

Φn(λ) = Γ[n+1]−Γ[n+1,mλ]
λn+1 + mne−mλ

λ , where Γ[n + 1,mλ] =
∫∞
mλ t

ne−tdt is the incomplete gamma

function. Since

Γ[n+ 1]− Γ[n+ 1,mλ] =

∫ mλ

0
tne−tdt,

we get

Φn(λ) =
1

λn+1

∫ mλ

0
tne−tdt+

mne−mλ

λ
.

In the case n = 0, we get Φ0(λ) = 1
λ . For n ≥ 1, replacing the variable t by z/λ followed by an

integration by parts leads to

Φn(λ) =
n

λ

∫ m

0
zn−1e−λzdz.

Replacing now the variable z by x− L, we obtain

Φn(λ) =
neλL

λ

∫ m+L

L
(x− L)n−1e−λxdx.

Substituting this expression into Equation (5) leads to

pLSn =
eλL

λΦ0(λ)

LS−n

(n− 1)!(S − n)!TLS(S)

∫ m+L

L
(x− L)n−1e−λxdx, for 1 ≤ n ≤ S.
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The last expression is the one derived in Schmidt and Nahmias (1985) with the appropriate nor-

malizing constant.

Exponential case. We now develop the same approach for finding the steady state probabili-

ties of the inventory level under the case of exponential lifetime distribution. For an exponential

distribution with rate γ = 1/m, we may write

F (x) = 1− e−γx, for x > 0.

Using the expression of φn(λ) in Equation (5), we obtain

Φn(λ) = n!

n∏
i=0

1

λ+ iγ
,

and

pLSn =
LS−n

(S − n)!TLS(S)

n∏
i=1

1

λ+ iγ
, for 0 ≤ n ≤ S.

This corresponds to the steady-state probability derived by Liu and Cheung (1997) as given in

Equation (2) of their paper.

4 The backorders case

In this section, we extend our analysis to the backorders case. This case can be seen as an extension

to the lost-sales case. Instead of having lost-sales due to an empty Queue 1, we assume here that

an order is generated so as to provide the item to the customer later. Therefore, the sale is not lost

but postponed after a lead-time. Whenever an item is available in Queue 1, the system behaves

as in the lost-sales case. We employ the same approach as in Section 3; our inventory model can

be depicted as a semi-open network with a minimal population equal to S (see Figure 2). As in

Section 3, the state space is defined by the couple (n1, n2), where ni is the number in Queue i, for

i = 1, 2. The set space, ΩBO, is then ΩBO =
{

(n1, n2) ∈ N2|n1 + n2 = S or n1 = 0, n2 ≥ S
}
. The
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Figure 2: Modeling a base-stock inventory systems with backorders as a queueing network

global balance equation of our queueing network is

(λ+ δS)πBO(S, 0) = β1π
BO(S − 1, 1), for n1 = S, n2 = 0, (9)

(λ+ n2β + δn1)πBO(n1, n2) = (n2 + 1)βπBO(n1 − 1, n2 + 1)

+ (λ+ δn1+1)πBO(n1 + 1, n2 − 1), for 0 < n1, n2 < S,

(λ+ Sβ)πBO(0, S) = (S + 1)βπBO(0, S + 1) + (λ+ δ1)πBO(1, S − 1), for n1 = 0, n2 = S,

(λ+ n2β)πBO(0, n2) = (n2 + 1)βπBO(0, n2 + 1) + λπBO(0, n2 − 1), for n1 = 0, n2 > S.

As in the lost-sales case, Equation (9) is a one-dimensional system. We can show by induction that

πBO(n1, n2) =


1

TBO(S)

(
n1∏
i=1

λ

λ+ δi

)
1

n2!

(
λ

β

)n2

, if n1 > 0,

1

TBO(S)

1

n2!

(
λ

β

)n2

, if n1 = 0, n2 ≥ S,
(10)

where TBO(S) is the normalizing constant;

TBO(S) =
∑

n1+n2=S

(
n1∏
i=1

λ

λ+ δi

1

n2!

(
λ

β

)n2
)

+

∞∑
n2=S+1

1

n2!

(
λ

β

)n2

= λSTLS(S) +Q(S),
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where TLS(S) is the normalizing constant given in Section 3 for the lost-sales case and Q(S) =
∞∑

n2=S+1

1

n2!

(
λ

β

)n2

. Using Equation (5), πBO(n1, n2) can be further simplified into

πBO(n1, n2) =


1

TBO(S)

λSLS−n1Φn1(λ)

n1!(S − n1)!Φ0(λ)
, if n1 > 0 and, n1 + n2 = S,

1

TBO(S)

1

n2!

(
λ

β

)n2

, if n1 = 0, n2 ≥ S.

(11)

As for the lost-sales case, Equation (11) enables us to retrieve the formula of Olsson (2014) found

under a deterministic lifetime assumption. Our stationary probabilities are an extension of those

derived in Liu and Yang (1999) under exponential lead-time and lifetime assumptions. Specifi-

cally, Liu and Yang (1999) considered a general (s, S) inventory model and used a matrix-analytic

approach to numerically derive the stationary probabilities and the total cost function. Equation

(11) in our paper provides a closed-form expression for the stationary probabilities in the case of a

base-stock policy (i.e., for s = S − 1).

We consider the same cost components as in the lost-sales case. Instead of counting a penalty

b per lost sale, we count the same penalty for backorders in order to penalize the postpone of the

service. The total cost function can be written as

ZBO(S) =
S∑
n=1

hnπBO(n, S − n) +
S∑
n=1

wδnπ
BO(n, S − n) + λb

(
1−

S∑
n=1

πBO(n, S − n)

)

= λb+
λS

TBO(S)Φ0(λ)

S∑
n=1

(
LS−n (hnΦn(λ) + wnΦn−1(λ)− λ(b+ w)Φn(λ))

(S − n)!n!

)
. (12)

As the expression of the stationary probabilities given in Equation (11) and that of the lost-sales

case are related, we can express the total cost of the backorders case, ZBO(S), as a function of the

total cost in the lost-sales case, ZLS(S) as follows:

ZBO(S) = λb

[
1− λSTLS(S)

TBO(S)

]
+
λSTLS(S)

TBO(S)
ZLS(S). (13)

Computation of the optimal base-stock level. To prove that the algorithm of Olsson and

Tydesjö (2010) can be employed for the backorders case, we need to prove that one part of the

cost function is increasing in S and tends to infinity as S tends to infinity. We consider Z2
BO(S) =

Z1
LS(S) · λ

STLS(S)
TBO(S) . As proven in Proposition 1, Z1

LS(S) is increasing in S and tends to infinity as

S tends to infinity. In Proposition 2, we prove that λSTLS(S)
TBO(S) is also increasing in S. Therefore,

by replacing the function Z1
LS(S) by Z2

BO(S) in the algorithm of Section 3, we can compute the
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optimal base-stock level after a finite number of iterations in the same way. The algorithm is as

follows:

• Step 1: Set S := 0, S∗ := 0, and Zmin :=∞, and go to Step 2.

• Step 2: Compute ZBO(S). If ZBO(S) < Zmin then Zmin = ZBO(S) and S∗ = S. Set

S := S + 1, and go to Step 3.

• Step 3: Compute Z2
BO(S). If Z2

BO(S) ≤ Zmin then go to step 2, otherwise stop the procedure.

Proposition 2. The function λSTLS(S)
TBO(S) is increasing in S.

Proof. We may write

λSTLS(S)

TBO(S)
=

1

1 + Q(S)
λSTLS(S)

.

Therefore, we need to prove that Q(S)
λSTLS(S)

is decreasing in S. We rewrite Q(S)
λSTLS(S)

as S!Q(S)
λSLS

· LS

S!TLS(S) .

From the third statement of Proposition 1, the function LS

S!TLS(S) is decreasing in S. There remains

to prove that S!Q(S)
λSLS

is also decreasing in S. We have

S!Q(S)

λSLS
− (S + 1)!Q(S + 1)

λS+1LS+1
=

∞∑
n=S+1

S!(λL)n−S

n!
−

∞∑
n=S+2

(S + 1)!(λL)n−(S+1)

n!

=

∞∑
n=S+1

S!(λL)k+1

(S + 1 + k)!

(
1− S + 1

S + 2 + k

)
≥ 0,

and proves the result.

5 Model extensions

In this section, we propose different extensions of the lost-sales case previously developed in Section

3. In particular, we consider three extensions: (i) with multiple warehouses with lost-sales, each

with a product having a different lifetime (Section 5.1), (ii) with dual-sourcing in a single-warehouse

(Section 5.2), and (iii) with dual-sourcing with multiple warehouses (Section 5.3).

5.1 Multi-warehouse with lost-sales

We first extend the analysis of Section 3 with lost-sales for a system with J local warehouses, as

shown in Figure 3. Each warehouse behaves independently from the others and apply a base-stock

policy with base-stock level Si, for 1 ≤ i ≤ J . At warehouse i, the demand is Poisson with parameter
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Figure 3: The multi-class base-stock system with different lifetime distributions

λi and the lifetime of each product follows a general distribution with cdf Fi, for 1 ≤ i ≤ J . As

in Section 3, a demand of class i is lost if no item is available at its associated local warehouse.

Once an item is consumed or expired, an order is generated. The delivery lead-time is generally

distributed with a cdf G and mean L common for all warehouses. After a lead-time, an order from

warehouse i generates a new item at the same warehouse. As such, each warehouse together with

its related outstanding orders can be viewed as a closed network as in Section 3.

Let ni be the number of class i on-hand items at warehouse i, for 1 ≤ i ≤ J . Given that

the number of items on-hand plus the number of orders for warehouse i is equal to Si, the vector

(n1, n2, · · · , nJ) completely defines the state of the system;

ΩMLS = {(n1, n2, . . . , nJ) |0 ≤ ni ≤ Si, for i = 1, · · · , J}. We denote by PMLS(n1, n2, · · · , nJ), the

stationary probability to be in state (n1, n2, · · · , nJ). Using the independence of each warehouse

and the results of Section 3, we may write

PMLS(n1, n2, · · · , nJ) =
J∏
i=1

pLSni , (14)

for (n1, n2, . . . , nJ) ∈ ΩMLS . The probability to have n items in total in the different ware-

houses, P (n), is given by P (n) =
∑∑J

j=1 nj=n

PMLS(n1, n2, . . . , nJ), and the total expected cost is

ZMLS(S1, S2, · · · , SJ) =
J∑
i=1
ZLS(Si). Due to the independence of the different warehouses, the opti-

mization of the optimal base-stock levels S1, S2, ..., SJ can be done individually for each warehouse

using the algorithm presented in Section 3.

5.2 Dual-sourcing for a single warehouse
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We further extend the model of Section 3 to a case with dual-sourcing. The idea of dual-sourcing is

that an emergency but costlier order can be sent to refill the on-hand inventory when the number

of items in the inventory becomes too low (Bijvank and Vis, 2012). The idea is to reduce the risk

of lost-sales. We consider the dual-sourcing policy of Moinzadeh and Schmidt (1991) and Song and

Zipkin (2009). In comparison with these references, we add the feature of item deterioration where

the lifetime is generally distributed. The dual sourcing policy is analyzed here for deterministic

lead-times in order to be consistent with the queueing network approach developed in this paper.

However, as shown in Section 3 of Song and Zipkin (2009), the results in this section are valid for

any distribution of the lead-time.

The regular lead-time duration, L, is decomposed into L = L−Le+Le, where Le is the duration

of an emergency lead-time, with Le < L. As such the lead-time of a regular order is decomposed

into a two-step process with duration L− Le and Le whereas the lead-time of an emergency order

follows a one-step process with duration Le. In Figure 4, we depict the queueing network associated

to the dual-sourcing inventory model. The closed queueing network associated with this model is
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Figure 4: Queueing network under dual-sourcing for a single warehouse

composed of three connected queues: the one of on-hand items called Queue 1, the one of regular

orders in the first part of the lead-time process with duration L− Le, called Queue 2, and the one

of regular orders in the second part of the lead-time process plus the emergency orders both with

duration Le, called Queue 3. Queue 1 is an ·/M/1 + G queue as in the lost-sales and backorders

cases while Queue 2 and Queue 3 are ·/D/∞ queues. We denote by ni, the number of items in

Queue i, for i = 1, 2, 3. We have n1 + n2 + n3 = S. The dual-sourcing policy is controlled by

the threshold level S̃, with 0 ≤ S̃ ≤ S, such that regular orders are made if the number of items

in Queue 2 is strictly below S − S̃ (i.e., n2 < S − S̃), otherwise emergency orders are made when

n2 = S − S̃.

We use the notations β1
n2
, and β2

n3
to represent the departure rates from Queue 2, and Queue 3,

respectively, when there are ni items in Queue i, for i = 1, 2, 3. The departure rate from Queue 1 is

identical to the one in the lost-sales case. With similar arguments as in Lemma 1, we can show that
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β1
n2

= n2
L−Le , and β

2
n3

= n3
L . We denote by πDS(n1, n2, n3) the stationary probability to be in state

(n1, n2, n3), for 0 ≤ n1, n3 ≤ S, 0 ≤ n2 +n3 ≤ S, and 0 ≤ n2 ≤ S− S̃. Given that n1 +n2 +n3 = S,

we define qDS(n2, n3) = πDS(S − n2 − n3, n2, n3), for 0 ≤ n2 + n3 ≤ S, and 0 ≤ n2 ≤ S − S̃. The

system balance equations can then be written as follows:

(
(λ+ δS−n2−n3)1n2+n3<S + β1

n2
+ β2

n3

)
qDS(n2, n3) = (λ+ δS−(n2−1)−n3

)qDS(n2 − 1, n3)1n2>0

(15)

+ β1
n2+1q

DS(n2 + 1, n3 − 1)1n3>0 + β2
n3+1q

DS(n2, n3 + 1)1n2+n3<S , for 0 ≤ n2 < S − S̃,

and,(
(λ+ δS̃−n3

)1n3<S̃
+ β1

S−S̃ + β2
n3

)
qDS(S − S̃, n3) = (λ+ δS̃−n3+1)qDS(S − S̃ − 1, n3)1S>S̃

+ (λ+ δS̃−n3+1)qDS(S − S̃, n3 − 1)1n3>0 + β2
n3+1q

DS(S − S̃, n3 + 1)1n3<S̃
, for n2 = S − S̃,

for 0 ≤ n2 +n3 ≤ S, and 0 ≤ n2 ≤ S−S̃. From Equation (5), we get
S−n2−n3∏

i=1

1
λ+δi

=
ΦS−n2−n3 (λ)

(S−n2−n3)!Φ0(λ) .

Therefore, the solution of the balance equations is given by

qDS(n2, n3) = T−1
DS(S, S̃)

ΦS−n2−n3(λ)

(S − n2 − n3)!Φ0(λ)

(L− Le)n2

n2!

Ln3
e

n3!
, (16)

where TDS(S, S̃) =
∑

0≤n2+n3≤S,0≤n2≤S−S̃

ΦS−n2−n3 (λ)

(S−n2−n3)!Φ0(λ)
(L−Le)n2

n2!
L
n3
e
n3! , for 0 ≤ n2 + n3 ≤ S, and

0 ≤ n2 ≤ S − S̃. We rewrite TDS(S, S̃) as

TDS(S, S̃) =
S−S̃∑
n2=0

(L− Le)n2

n2!

[
S−n2∑
n3=0

Φn3(λ)

n3!Φ0(λ)

LS−n2−n3
e

(S − n2 − n3)!

]
=

S−S̃∑
n2=0

(L− Le)n2

n2!
TLS(S − n2),

where TLS(S − n2) is the normalizing constant for the lost-sales case with expected lead-time Le,

and base-stock level S − n2.

We are interested in the probability to have exactly n1 items on-hands in Queue 1, pDSn1
. For

0 ≤ n1 ≤ S̃, we obtain

pDSn1
= T−1

DS(S, S̃)
Φn1(λ)

n1!Φ0(λ)

min(S−S̃,S−n1)∑
n2=0

(L− Le)n2

n2!

LS−n1−n2
e

(S − n1 − n2)!
. (17)

If S̃ ≤ n1 ≤ S, then the expression of pDSn1
can be further simplified into

pDSn1
= T−1

DS(S, S̃)
Φn1(λ)

n1!Φ0(λ)

LS−n1

(S − n1)!
.

22



Equation (17) allows us to retrieve the steady-state probability found by Kouki et al. (2018) for

deterministic or exponential lifetimes. This equation also gives the steady-state probability of

Moinzadeh and Schmidt (1991) and Song and Zipkin (2009) for cases without product deterioration.

We now provide the total expected cost. The total cost is the sum of the holding cost, the out-

dating cost, the lost-sales cost and the purchasing cost. The cost parameters for holding, outdating

and lost-sales are identical to those of Section 3. Additionally, we count a purchasing cost of cr per

regular order and ce per emergency order (ce > cr). The expected holding cost is proportional to

the expected number of items in Queue 1;
S∑

n1=1

n1p
DS
n1

. From a similar approach as in Section 3, we

obtain

S∑
n1=1

n1p
DS
n1

= T−1
DS(S, S̃)

S−S̃∑
n2=0

(L− Le)n2

n2!
((S − n2)TLS(S − n2)− LeTLS(S − 1− n2)) .

The outdating rate is given by
S∑

n1=1

δn1p
DS
n1

. It can be computed as the difference between the

rate of orders (emergency+regular) and the rate of satisfied demand. The rate of lost-sales is

λpDS0 = λT−1
DS(S, S̃)

S−S̃∑
n2=0

(L−Le)n2
n2!

L
S−n2
e

(S−n2)! . Emergency orders are triggered when Queue 1 is non-

empty and the number of items in Queue 2 is equal to S − S̃. The rate of emergency orders, σe, is

then

σe =
S̃−1∑
n3=0

qDS(S − S̃, n3)(λ+ δS̃−n3
) = T−1

DS(S, S̃)
(L− Le)S−S̃

(S − S̃)!

S̃−1∑
n3=0

ΦS̃−n3−1(λ)

(S̃ − n3 − 1)!Φ0(λ)

Ln3
e

n3!

=
(L− Le)S−S̃

(S − S̃)!

TLS(S̃ − 1)

TDS(S, S̃)
.

The rate of regular orders, σr, is

σr = T−1
DS(S, S̃)

S−S̃−1∑
n2=0

(L− Le)n2

n2!

S−1−n2∑
n3=0

ΦS−n2−n3−1(λ)

(S − n2 − n3 − 1)!Φ0(λ)

Ln3
e

n3!

=
S−S̃−1∑
n2=0

(L− Le)n2

n2!

TLS(S − 1− n2)

TDS(S, S̃)
.

23



Therefore, the total expected cost can be written as

ZDS(S, S̃) =
S−S̃∑
n2=0

(L− Le)n2

n2!

[
h · (S − n2)TLS(S − n2)− LeTLS(S − 1− n2)

TDS(S, S̃)
(18)

+w ·
(
TLS(S − 1− n2)

TDS(S, S̃)
− λ

(
1− LS−n2

e

TDS(S, S̃)(S − n2)!

))
+ bλ · LS−n2

e

TDS(S, S̃)(S − n2)!

+cr
TLS(S − 1− n2)

TDS(S, S̃)

]
+ (ce − cr)

(L− Le)S−S̃

(S − S̃)!

TLS(S̃ − 1)

TDS(S, S̃)
.

We can then relate the cost in the dual-sourcing case to the one in the lost-sales case with lead-time

Le:

ZDS(S, S̃) =
S−S̃∑
n2=0

(L− Le)n2

n2!

[
ZLS(S − n2)

TLS(S − n2)

TDS(S, S̃)
+ cr

TLS(S − 1− n2)

TDS(S, S̃)

]
(19)

+ (ce − cr)
(L− Le)S−S̃

(S − S̃)!

TLS(S̃ − 1)

TDS(S, S̃)
.

Computation of the optimal base-stock parameters. As in the previous sections, we want

to provide a numerical method to compute the base-stock parameters S and S̃. Specifically, we

want to find S and S̃ such that (S, S̃) = arg min
S≥0,0≤S̃≤S

ZDS(S, S̃). For S̃ = S and ce = cr = 0, we

obtain ZDS(S, S) = ZLS(S), with a lead-time of Le and for S̃ = 0 and ce = cr = 0, we obtain

ZDS(S, 0) = ZLS(S), with a lead-time of L. Therefore, the algorithm presented in Section 3 for

the lost-sales case is valid to obtain a maximal value for S when either S̃ = 0 or S̃ = S. However,

this only provides an upper bound for the search of the optimal base-stock in two special cases.

Supported by our numerical experiments, we conjecture that the maximal value of the base-stock

level between these two cases of upper bounds is also the upper bound for S, for any value of S̃

such that 0 ≤ S̃ ≤ S. This conjecture is however difficult to prove analytically due to the complex

expression of the cost function. Based on this conjecture, the algorithm is as follows:

• Step 1: Set S̃ := 0, and apply the algorithm of Section 3 to determine a first upper bound for

the base-stock level, S1, and go to Step 2.

• Step 2: Set S̃ := S and apply the algorithm of Section 3 to determine a second upper bound

for the base-stock level, S2, and go to Step 3.

• Step 3: Determine the optimal values for S and S̃ such that

(S, S̃) = arg min
0≤S≤max(S1,S2),0≤S̃≤S

ZDS(S, S̃).

This procedure allows us to determine the optimal values for S and S̃ after a finite number of
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iterations.

5.3 Multi-warehouse with dual-sourcing

We now extend our analysis to the case with J independent warehouses. The same dual-sourcing

policy applies at warehouse i, with parameters S̃i and Si, with 0 ≤ S̃i ≤ Si, for i = 1, 2, · · · J .

The lead-times at each warehouse are identical with expected values of L and Le for regular and

emergency orders, respectively, with Le < L. We denote by PMDS(n1, n2, n3, · · · , nJ) the stationary

probability to have ni on-hand items at warehouse i. Since the warehouses are independent, we

deduce from Equation (17) that

PMDS(n1, n2, n3, · · · , nJ) =
J∏
i=1

pDSni , (20)

and the total expected cost is ZMDS(S1, S̃1, S2, S̃2, · · · , SJ , S̃J) =
J∑
i=1
ZDS(Si, S̃i). Due to the inde-

pendence of the different warehouses, the optimization of the optimal base-stock levels S1, S̃1, S2,

S̃2, ..., SJ , S̃J can be done individually for each warehouse using the algorithm presented in the

single-warehouse case.

6 Numerical Analysis

In this section, we primarily conduct a numerical investigation to explore how the lifetime variability

affects the optimal base-stock level and the optimal cost for the different base-stock models presented

in this paper. In particular, we are interested in the errors made when making decisions based on

deterministic or exponential assumptions. We also show the impact of the cost parameters and the

base-stock policy.

For this purpose, we assume that the lifetime follows a Gamma distribution. This distribution

enables us to have full flexibility for setting the lifetime variability. Moreover, the Gamma distri-

bution is known to well model failure processes (Teunter et al., 2010). We present the optimal cost

and the optimal base-stock levels as functions of CV , defined as the ratio between the standard-

deviation and the expected value of the lifetime. For consistency, we choose the same expected

value for the expected lifetime for all numerical experiments; m = 3. We choose to vary CV from

0.001 to 5 in order to reflect a large range of variability. The effects of the holding cost, the demand

rate, and the expected lead-time are known and expected. As such, we decided not to present them

and set h = 1, λ = 4, and L = 3. The optimal base-stock level under the lost-sales case is obtained
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using the optimization procedure given in Section 3 while similar search algorithms are employed

for the backorders and dual-sourcing cases.

6.1 Sensitivity analysis

We conduct a sensitivity analysis to show the effect of the lifetime variability, the cost parameters,

and the base-stock policy on the optimal base-stock level and the related optimal cost. The results

are given in Figure 5 with b = 10, 30 and w = 1, 3, 5. The main observations can be summarized as
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Figure 5: Numerical results (h = 1, λ = 4, L = 3 and m = 3)

follows:

• Effect of CV . We observe that the optimal base-stock level and the optimal cost increase

with the lifetime variability. With a high variability, the risk of having a short life for one

item is high. For the overall items, this risk can be reduced by having a large number of

items on-hand. Thus, the risk of a short lifetime can be compensated by the chance of a long

one. This result follows from the law of large numbers. The speed convergence of a sum of

i.i.d. random variables to the sum of their expected value decreases with the variability of
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each random variable. Moreover, we observe that the sensitivity of the base-stock level and

the optimal cost to CV is the highest when CV is slightly above 1. For low values of CV , the

optimal decisions are mostly driven by the expected value of the lifetime. For high values of

CV , we observe a saturation regarding the effect of CV as the number of items in the system

seems to be sufficiently high to absorb the negative effect of the variability.

• Effect of the cost parameters. As expected, the optimal base-stock level and the optimal cost

increase with the lost-sales/backorders cost. The larger is the base-stock level, the higher

would be the quantity of expired items. Therefore, the base-stock level reduces with the

expiration/outdating cost although the system cost increases with it.

• Effect of the base-stock policy. While comparing the lost-sales case with the backorders cases,

we observe a higher sensitivity to CV and to the cost parameters in the latter case. In the

backorders case when the number of items on-hand reaches zero, all orders are used to serve

customers who couldn’t be directly satisfied. This slows down the speed of refiling of the

on-hand queue as compared to the lost-sales case where customers are rejected when there is

no available item. Consequently, the base-stock level and the optimal cost are higher in the

backorders case.

Our numerical results show the significant effect of the lifetime variability for decision-makers.

This may suggest the need of a better control of the lifetime by investing in the cold chain or in

items’ composition. In the following section, we further investigate the errors made by employing

exponential or deterministic models when deciding for the optimal base-stock level.

6.2 Exponential or deterministic models; how wrong can they be?

In this section, we numerically analyse the errors made by employing exponential or deterministic

models in both the lost-sales and the backorders cases and in an inventory system with dual-sourcing.

Lost-sales and backorders cases. We first consider the lost-sales and backorders cases. Let

∆S and ∆Cost denote the percentage of errors for the base-stock level and the total cost; ∆S =

SDeterm/Expo−SGamma
SGamma

, and ∆Cost =
Cost(SDeterm/Expo)−Cost(SGamma)

Cost(SGamma) , where SDeterm/Expo, and

Cost(SDeterm/Expo) denote the optimal base-stock level and the total cost obtained with determinis-

tic/exponential assumptions and SGamma and Cost(SGamma) are the ones obtained with a Gamma

lifetime distribution. The cost and base-stock level errors are given in Figures 6 and 7. The

errors for the optimal base-stock level and the total cost are substantial, exceeding 40% and 100%,

respectively. These errors are the highest for high values of CV . As the deterministic distribution is
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Figure 6: Cost errors (h = 1, λ = 4, L = 3 and m = 3)
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Figure 7: Base-stock level errors (h = 1, λ = 4, L = 3 and m = 3)
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an extreme case of variability, the error is significantly higher when employing this distribution for

decision making as compared to the exponential assumption. For instance, with b = 30 and w = 1,

the cost error of a deterministic assumption under the backorders case is 175% and it is 88% in

the lost-sales case. This error is reduced to 68% and 40% in the case of an exponential assumption

under the backorders case and the lost-sales case, respectively.

As the optimal base-stock increases (respectively, decreases) with the lost-sales/backorders cost

(respectively, with the expiry cost), the errors also increase (respectively, decrease) with the lost-

sales/backorders cost (respectively, with the expiry cost). This result might be surprising; it means

that when items are complicated to reprocess, then existing results of the literature may be appli-

cable. When some items can be recycled as they are still valuable, then the effective expiry cost is

reduced which in turn reduce the validity of the exponential assumption.

The dual-sourcing case. In Figure 8, we evaluate the cost errors for an inventory system with

dual-sourcing in the lost-sales case. The results are consistent with the previous ones; the errors
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Figure 8: Cost errors in the dual-sourcing case (h = 1, λ = 4, L = 3, cr = 0.5, ce = 0.75 and m = 3)

increase with the lifetime variability. However, the effect of CV is reduced with dual-sourcing as

compared to the single item case. Dual-sourcing enables to mitigate the impact of the lifetime

variability, which consequently reduce the errors when deterministic or exponential assumptions

are made. For example, with CV = 5, b = 30 and w = 1, the cost errors in Figure 8 under the

deterministic and the exponential assumptions are equal to 26% and 11% respectively, whereas these

were equal to 88% and 40% with single-sourcing.
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7 Conclusion

The perishable base-stock inventory system is nowadays used in many contexts including pharma-

ceutical industry, blood banks, and supermarkets. However, existing results in the literature are

restricted to exponential or deterministic assumptions for the lifetime and lead-time. These as-

sumptions may not cover the wide variety of deterioration processes. The aim of this work was to

extend the existing results to cases with generally distributed lifetime and lead-time. Based on a

queueing network framework, we derived explicit expressions for the stationary distribution of the

system state and for the total expected cost in the lost-sales case, the backorders case and in a more

complex case with several warehouses and a dual-sourcing policy. In addition, we showed some

monotonicity properties of the cost components in the lost-sales case. Next, employing a Gamma

distribution for the lifetime, we conducted a numerical investigation to analyze the impact of the

lifetime variability and the cost parameters on the optimal base-stock level and on the expected

cost. Our results assessed the intuition that the optimal base-stock level increases with the lifetime

variability and the lost-sales or backorders cost. Surprisingly, we showed that the base-stock level

decreases and the total cost increases with the cost per expired item. Finally, our study revealed

that the errors resulting from deterministic or exponential assumptions can be substantial.

In practice, this means that ignoring the real value of the lifetime variability can lead to sig-

nificant costs. This is particularly the case in the context of blood bank inventory management.

The lifetime of blood platelets received by a given hospital can vary considerably (Nahmias, 1977).

Therefore, assuming that all replenishment orders have the same deterministic lifetime is unreal-

istic and may lead to wrong decisions regarding the base-stock level. In the context of perishable

products sold in supermarkets or by retailers, the orders also have different shelf-lives (Gürler and

Özkaya, 2008). In practice, a periodic review base-stock policy is commonly implemented to replen-

ish inventories in supermarkets (Haijema and Minner, 2019). However, the literature assumes that

orders have the same deterministic lifetime. We believe that adjusting our results to inventory poli-

cies under different shelf-lives for items that form the same replenishment order could significantly

reduce costs in supermarkets.

An interesting avenue for future research would be to extend this work to other inventory control

policies used in the literature such as the reorder point order-up-to-level (s, S) policy. Recall that

we used a “first-in-first-out" discipline for delivering an item to a customer. This policy makes sense

when the lifetime of each item has the increasing failure rate property like in the deterministic case.

However, in general, this policy may not be optimal. It would be interesting to extend the paper

results to cases with service disciplines different from first-in-first-out, such as low perish time first.
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Our results could also be used as a first step to analyze spare parts inventory control systems with

preventive maintenance.
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Appendix

This appendix provides the tables for errors in percentages in support of the numerical analysis

provided in Section 6.

Table 2: Error in (%) of the total cost when the lifetime is assumed to be deterministic or exponen-
tially distributed

Errors from deterministic lifetime Errors from exponential lifetime
Lost-sales Backorders Lost-sales Backorders

b CV w = 1 w = 3 w = 5 w = 1 w = 5 w = 5 w = 1 w = 3 w = 5 w = 1 w = 5 w = 5

10 0.001 0 0 0 0 0 0 15 4 1 21 10 5
10 0.1 0 0 0 0 0 0 14 3 1 20 10 5
10 0.2 0 0 0 0 0 0 13 3 1 18 9 5
10 0.3 0 0 0 0 0 0 11 3 1 16 8 4
10 0.4 0 0 0 1 0 0 9 3 1 13 6 4
10 0.5 0 0 0 2 0 1 6 2 1 11 4 3
10 0.6 1 0 0 3 0 1 5 1 1 7 3 2
10 0.7 2 0 0 6 1 2 3 1 0 5 2 1
10 0.8 4 0 0 9 2 3 1 0 0 2 1 0
10 0.9 6 1 0 13 4 4 0 0 0 1 0 0
10 1 8 1 1 17 5 5 0 0 0 0 0 0
10 2 24 4 1 45 12 5 7 2 0 9 3 1
10 3 28 4 0 52 13 5 11 2 0 16 5 1
10 4 30 4 0 55 13 4 13 2 0 18 5 1
10 5 30 4 0 56 13 4 13 2 0 19 5 1
30 0.001 0 0 0 0 0 0 21 19 15 22 21 18
30 0.1 0 0 0 0 0 0 20 19 15 21 21 17
30 0.2 0 0 0 1 0 0 18 17 14 19 19 16
30 0.3 0 0 0 2 0 0 16 15 13 16 16 14
30 0.4 0 1 0 3 1 0 12 13 11 13 13 11
30 0.5 1 2 0 6 2 0 10 10 8 10 10 8
30 0.6 3 3 1 10 4 1 6 7 6 7 7 6
30 0.7 5 5 2 16 7 3 4 4 4 4 4 3
30 0.8 9 8 3 23 11 5 1 2 2 2 2 1
30 0.9 14 11 5 32 16 8 0 1 1 0 0 0
30 1 20 15 7 43 22 12 0 0 0 0 0 0
30 2 65 32 14 121 53 28 20 7 3 28 12 7
30 3 80 35 15 157 59 30 32 10 4 53 18 10
30 4 86 36 16 169 61 31 38 11 5 63 21 11
30 5 88 36 16 175 62 31 40 12 5 68 22 12
Deterministic parameters: λ = 4, L = 3, h = 1.
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Table 3: Error in (%) of the optimal base-stock level S when the lifetime is assumed to be deter-
ministic or exponentially distributed

Errors from deterministic lifetime Errors from exponential lifetime
Lost-sales Backorders Lost-sales Backorders

b CV w = 1 w = 3 w = 5 w = 1 w = 5 w = 5 w = 1 w = 3 w = 5 w = 1 w = 5 w = 5

10 0.001 0 0 0 0 0 0 18 6 6 21 11 11
10 0.1 0 0 0 0 0 0 18 6 6 21 11 11
10 0.2 0 0 0 0 0 0 18 6 6 21 11 11
10 0.3 0 0 0 0 0 0 18 6 6 21 11 11
10 0.4 0 0 0 -5 0 -5 18 6 6 15 11 5
10 0.5 -6 0 0 -5 0 -5 11 6 6 15 11 5
10 0.6 -6 0 0 -5 -5 -5 11 6 6 15 5 5
10 0.7 -6 0 0 -10 -5 -5 11 6 6 10 5 5
10 0.8 -11 -6 -6 -10 -5 -5 5 0 0 10 5 5
10 0.9 -11 -6 -6 -14 -10 -10 5 0 0 5 0 0
10 1 -15 -6 -6 -17 -10 -10 0 0 0 0 0 0
10 2 -29 -15 -6 -30 -21 -14 -17 -10 0 -15 -13 -5
10 3 -35 -15 -6 -34 -21 -14 -23 -10 0 -21 -13 -5
10 4 -35 -19 -6 -37 -24 -14 -23 -14 0 -23 -16 -5
10 5 -37 -19 -6 -37 -24 -14 -26 -14 0 -23 -16 -5
30 0.001 0 0 0 0 0 0 20 21 16 24 19 14
30 0.1 0 0 0 0 0 0 20 21 16 24 19 14
30 0.2 0 0 0 -5 0 0 20 21 16 18 19 14
30 0.3 0 -5 0 -5 0 0 20 15 16 18 19 14
30 0.4 -5 -5 0 -5 -5 0 14 15 16 18 14 14
30 0.5 -5 -5 0 -9 -5 -5 14 15 16 13 14 9
30 0.6 -5 -10 -5 -9 -9 -5 14 10 10 13 9 9
30 0.7 -9 -10 -5 -13 -9 -5 9 10 10 8 9 9
30 0.8 -13 -10 -10 -16 -13 -9 4 10 5 4 4 4
30 0.9 -13 -14 -10 -16 -13 -9 4 5 5 4 4 4
30 1 -17 -17 -14 -19 -16 -13 0 0 0 0 0 0
30 2 -33 -30 -24 -34 -30 -25 -20 -15 -12 -19 -17 -14
30 3 -39 -32 -27 -42 -32 -28 -27 -18 -15 -28 -19 -17
30 4 -41 -34 -27 -42 -34 -28 -29 -21 -15 -28 -22 -17
30 5 -41 -34 -27 -42 -34 -30 -29 -21 -15 -28 -22 -20
Deterministic parameters: λ = 4, L = 3, h = 1.

37



Table 4: Error in (%) of the total cost when the lifetime is assumed to be deterministic or exponen-
tially distributed under dual-sourcing and lost-sales case

Deterministic lifetime distribution Exponential lifetime distribution
b=10 b=30 b=10 b=30

CV w=1 w=3 w=5 w=1 w=3 w=5 w=1 w=3 w=5 w=1 w=3 w=5
0.001 0 0 0 0 0 0 5 0 0 7 3 1
0.1 0 0 0 0 0 0 5 0 0 7 3 1
0.2 0 0 0 0 0 0 4 0 0 7 3 1
0.3 0 0 0 0 0 0 4 0 0 6 3 1
0.4 0 0 0 0 0 0 3 0 0 6 2 1
0.5 0 0 0 0 0 0 3 0 0 4 2 1
0.6 0 0 0 1 0 0 2 0 0 3 1 1
0.7 0 0 0 1 0 0 1 0 0 2 1 0
0.8 1 0 0 2 0 0 0 0 0 1 0 0
0.9 1 0 0 3 1 0 0 0 0 0 0 0
1 2 0 0 5 1 0 0 0 0 0 0 0
2 6 1 1 19 5 1 2 0 1 5 3 1
3 7 1 2 23 6 1 3 0 2 8 4 1
4 7 1 2 25 6 2 4 0 2 10 4 1
5 8 1 2 26 7 2 4 0 2 11 4 1

Deterministic parameters: h = 1, λ = 4, L = 3, cr = 0.5, ce = 0.75
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