
HAL Id: hal-02866317
https://hal.science/hal-02866317

Submitted on 12 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A note on Ising random currents, Ising-FK, loop-soups
and the Gaussian free field

Titus Lupu, Wendelin Werner

To cite this version:
Titus Lupu, Wendelin Werner. A note on Ising random currents, Ising-FK, loop-soups and the
Gaussian free field. Electronic Communications in Probability, 2016, 21 (13), pp.1-7. �10.1214/16-
ECP4733�. �hal-02866317�

https://hal.science/hal-02866317
https://hal.archives-ouvertes.fr


Electron. Commun. Probab. 21 (2016), no. 13, 1–7.
DOI: 10.1214/16-ECP4733
ISSN: 1083-589X

ELECTRONIC
COMMUNICATIONS
in PROBABILITY

A note on Ising random currents, Ising-FK, loop-soups and
the Gaussian free field

Titus Lupu* Wendelin Werner†

Abstract

We make a few elementary observations that relate directly the items mentioned
in the title. In particular, we note that when one superimposes the random current
model related to the Ising model with an independent Bernoulli percolation model
with well-chosen weights, one obtains exactly the FK-percolation (or random cluster
model) associated with the Ising model, and we point out that this relation can be
interpreted via loop-soups, combining the description of the sign of a Gaussian free
field on a discrete graph knowing its square (and the relation of this question with the
FK-Ising model) with the loop-soup interpretation of the random current model.
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1 A simple direct Ising-random-current/Ising-FK coupling

Let us first briefly review the definitions of the basic models (Ising, random current
and FK-Ising) that we will discuss in this first section. We will consider a finite connected
graph G consisting of a set of vertices X and a set of non-oriented edges E. We will also
use a function β = (βe, e ∈ E) from the set of edges into the non-negative reals.

The Ising model. The Ising model on G with edge-weights (βe, e ∈ E) is the probability
measure on Σ := {−1,+1}X defined by

Pβ((σx, x ∈ X)) = Z−1β

∏
e∈E

exp(βeIσ(e)),

where Iσ(e) denotes the product σxσy where x and y are the two extremities of the
edge e, and Zβ is the renormalization constant (sometimes called the partition function)
chosen so that this is a probability measure on Σ.

The random current model. The random current model is closely related to the Ising
model, and has been instrumental to prove some of its important properties (see [1], [2]
and the references therein). Here, one assigns to each edge e of the graph a random
non-negative integer Ne. In fact, our set N of admissible configurations imposes the
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additional constraint that for each site x, the sum of the Ne’s over all adjacent vertices to
e is even (when e is a vertex from x to x, then Ne is counted twice). The random current
model is the probability measure on N defined by

P̂β((ne, e ∈ E)) = Ẑ−1β

∏
e∈E

(βe)
ne

ne!
.

By first expanding each term exp(βeIe(σ)) in the definition of the Ising model into∑
ne

(σxσyβe)
ne/(ne)!, and then summing over all σ’s (noting that all terms with odd

degree in σx do sum up to 0 by symmetry), one easily sees that the partition function
Ẑβ for the random current model is indeed the same as the partition function Zβ of the
Ising model.

The FK-Ising model. The FK-model (named after Fortuin and Kasteleyn) associated to
the Ising model (it is also called the random cluster model but we stick here to FK-Ising
percolation terminology in order not to confuse random currents with random clusters)
is a probability measure on {0, 1}E . The edge e is said to be open for the configuration
w = (we, e ∈ E) if we = 1, and when we = 0 it is closed. To each configuration w, one look
at the graph Gw consisting of the sites X and the set of edges that are open for w, and
denote by k(w) its number of connected components. The FK-Ising model is defined by

P̃β((we, e ∈ E)) = Z̃−1β × 2k(we) ×
∏
e∈E

[(1− exp(−2βe))
we(exp(−2βe))

1−we ]

(this is sometimes described as the FK model for q = 2 and edge-probabilities 1− e−2βe).
The FK-model is useful to study the Ising model as the connectivity properties of the
FK model correspond to the correlation functions of the Ising model. Indeed, when one
samples the FK model and then chooses in an i.i.d. way a sign for each of the clusters of
Gw, one obtains a function (assigning a sign to each site) that follows exactly Pβ (and
this leads to a simple expression for the ratio between Zβ and Z̃β), see for instance
[6] for basics about FK-percolation. One can easily check that this property (“coloring
the FK-clusters at random gives the Ising model”) in fact characterizes the law of the
FK-clusters (ie. the information that says which sites are in the same cluster, but not
necessarily the information about the state of all edges).

Bernoulli percolation. Bernoulli bond percolation with probabilities (pe, e ∈ E) is
the product probability measure on {0, 1}E , where each edge e is open with respective
probability pe. In the sequel, we will use the probabilities pe := 1− exp(−βe).

We are now ready to state and prove following coupling lemma:

The “Current+Bernoulli=FK” coupling lemma. Let us consider a random current
configuration (Ne, e ∈ E) with parameters (βe, e ∈ E), and an independent Bernoulli
percolation configuration (ξe, e ∈ E) with probabilities (pe, e ∈ E). We then define
Ve := 1− 1Ne=ξe=0 ∈ {0, 1} for each e (so that Ve is equal to 1 if and only if at least one of
Ne or ξe is non-zero). Then, the law of (Ve, e ∈ E) is exactly the FK-Ising measure on G
with weights (βe, e ∈ E).

Note that this provides a direct coupling between the Ising model and the random
current model at the level of probability measures, that somehow enlightens the identity
between the partition functions.

Proof. As one can expect for such a simple statement, the proof is fairly simple as well:
Let us first define Ue to be equal to 0, 1 or 2, depending on whether Ne is 0, odd, or
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positive even. Note that this is enough information in order to construct V , and that the
law of (Ue, e ∈ E) is the probability measure on N ∩ {0, 1, 2}E defined by

P ((ue, e ∈ E)) = Z−1β ×
∏
e∈E

fe(ue),

where fe(0) = 1, fe(1) = sinhβe and fe(2) = (coshβe)− 1.

Let us define Ve as in the statement of the lemma. We define αe to be 1 if Ne is
even, and −1 if Ne is odd. Then, we define Ṽe = αeVe. Note that Ṽe = −1 if and
only if Ue = 1 (the corresponding weight contribution in the probability is therefore
sinh(βe)), and that Ṽe = 1 if either ue = 2, or if ue = 0 = 1 − ξe (the total weight
contribution in the probability is then (coshβe) − 1 + (1 − exp(−βe)) = sinh(βe) as well
– the fact that these two quantities are equal is the key point in the proof). It therefore
follows, that the probability that (Ṽe, e ∈ E) = (ṽe, e ∈ E) for an admissible (ṽe, e ∈ E)

(meaning that each site must have an even number of incoming edges with negative ṽe),
is equal to

Z−1β ×
∏
e∈E

[(sinhβe)
|ṽe| × (exp(−βe))1−|ṽe|].

Hence, the probability that (Ve, e ∈ E) = (ve, e ∈ E) is equal to

Z−1β ×Kv ×
∏
e∈E

[(sinhβe)
ve × (exp(−βe))1−ve ]

where Kv denotes the number of admissible choices for ṽ that are compatible with v

(meaning that |ṽe| = ve). In other words, Kv is the number of ways to assign a sign
to each open edge e for the configuration v, in such a way that each site has an even
number of negative incoming signs. But this quantity is easily shown (see below) to be
equal to 2o(v)+k(v)−|X|, where o(v) is the number of open edges for v and |X| the number
of sites in the graph, so that the law of (Ve, e ∈ E) is

P ((ve, e ∈ E)) = (Z−1β × 2−|X|)× 2k(w) ×
∏
e∈E

[(2 sinh(βe))
ve × (exp(−βe))1−ve ],

which is indeed the same as the FK-Ising measure.

In order to see that Kv = 2o(v)+k(v)−|X|, one can for instance proceed by induction,
adding edges one-by-one to a forest-like graph (if Gv is a forest, all of its edges have
to be of positive sign) and to see that for each new edge that one adds to v without
joining two connected components, one gets an additional multiplicative factor 2 (this is
classical; the number o(v) + k(v)− |X| is the first Betti number, also known as Kirkhoff’s
cyclomatic number, of the graph Gv).

It is worth noticing that this property of the random current trace does in fact char-
acterize the distribution of the configuration (We, e ∈ E) := (1Ne 6=0, e ∈ E) that describes
what edges are occupied by the random current. More precisely, the distribution of
(We, e ∈ E) is the only one such that if one considers an independent Bernoulli percolation
(ξe, e ∈ E) with parameters (pe, e ∈ E), and looks at the collection (max(ξe,We), e ∈ E),
one obtains exactly the FK-Ising model with parameters (βe, e ∈ E). Indeed, one can
recover by induction over n ≥ 0, the probability of all configurations with n occupied
edges (for instance, the probability that all edges are unoccupied for W is the ratio
between the probability that they are all closed for the FK model and the probability that
they are all closed for the percolation, and then one can work out the probability of a
configuration where just given edge is occupied etc.).
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2 Relation to loop-soup clusters and the GFF

Let us now explain how the previous considerations can be embedded in the setting
of the coupling between loop-soup clusters and the Gaussian free field (GFF) as pointed
out in [10], using the relation between random currents and loop-soups described in
[17]. This will follow by combining the following observations:

• Consider a discrete GFF h on the graph G, where we view the βe’s as conductances
of an electric network. This is the Gaussian random vector (hx, x ∈ X) with
intensity proportional to

exp(−
∑
e∈E

βe|∇eh|2/2)
∏
x∈X

dhx

where |∇eh| := |h(x) − h(y)| where x and y are the two extremities of the edge
e. This GFF is in fact only defined “up to an additive constant” (ie. it is not
well-defined) because the previous quantity is invariant when one adds the same
constant to all hx’s, but we can for instance artificially (and arbitrarily for what will
follow, because we will then anyway condition this GFF by the value of its square)
add an edge to our connected graph, joining a site x0 ∈ X to a boundary site o, and
add the condition that h(o) = 0 which amounts to multiply the previous expression
by exp(−h2x0

) and ensures that it is integrable over the state space.

One can then easily make sense of the GFF conditioned by the values of its square
(h(x)2, x ∈ X) ie. by h(x)2 = u(x) for all x and a given vector (u(x), x ∈ X) in
(0,∞)X : The unknown random quantities are then the collection of signs σx of
h(x), and the conditional distribution of (σx, x ∈ X) is just proportional to the
corresponding Gaussian densities at (σxu(x), x ∈ X). One can note that for a given
(u(x), x ∈ X), this density is proportional to the product over all edges e = (x, y) of
exp(βue σxσy), where the modified weights Jue are defined by

βue := βe × u(x)× u(y).

In other words, the conditional distribution of these signs (σx, x ∈ X) given
(h(x)2, x ∈ X) = (u(x), x ∈ X) is exactly an Ising model with weight (βue , e ∈ E) on
the graph G. For instance, in the case where one conditions h(x)2 to be equal to 1

at each site, one gets exactly the Ising model with edge-weight function (βe, e ∈ E).
As explained before, one way to sample this is to choose the signs by tossing
independent fair coins for each of the clusters of an FK-model with parameters
(βe, e ∈ E).

• We now recall the relation between the square of the GFF and loop-soups on the
graph (see [9]): The squared GFF is the cumulated occupation time of a continuous-
time loop-soup defined on the discrete graph G (where one adds the boundary
point o where the process is killed). As noted in [10], these continuous-time
loop soups can be also viewed (see [10]) as the trace on the sites of a Brownian
loop-soup defined on the cable-system associated with the graph (each edge is
replaced by a one-dimensional segment on which the Brownian motion can move
continuously) – the time spent by the discrete loops at sites corresponds to the local
time spent at this site by the corresponding Brownian loop. This provides a natural
coupling between the GFF on the discrete graph, the GFF on the cable system, the
continuous-time loop-soup on the discrete graph, and the continuous loop-soup on
the cable system, that we will from now on always implicitly use. A key observation
in [10] is that conditionally on this loop-soup (that defines the square of the GFF),
the sign of the GFF is chosen to be constant and independent for each “cluster” of
the cable system loop-soup.
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• But it is also easy to make sense of the distribution of the loop-soups (on the
discrete graph and on the cable systems) conditioned by the square of the GFF
on the sites. Indeed, as explained in [17], the conditional distributions of the
number of jumps of the loop-soup on G along the unoriented edges of G, when
conditioned by (h2(x), x ∈ X) = (u(x), x ∈ X) is exactly the random current model
with edge-weights (βue ). For instance, when one conditions h2(x) to be equal to 1

at each site, one gets exactly the random current model on G with edge-weights
(βe, e ∈ E). In the loop-soup on the cable system, it is easy to see (this type of
observations is already present in [10]) that on top of the excursions made by
the loops in-between different sites (these correspond to the discrete jumps that
we just described via the random current distribution), one adds an independent
contribution in each edge e (these correspond to the excursions away from the two
extremities of the edge that do not cross the edge, and the loops that are totally
contained in this edge). When occupation time of the loop-soup at both extremities
of e is equal to one, the conditional probability that these contributions join them
into the same cluster is equal to pe. Hence, the conditional distribution (given that
h(x)2 = 1 at all sites) of the clusters created by the loop-soup on the cable-system is
exactly given by the clusters defined by superimposing of a random current (given
by (1)) and a Bernoulli percolation on the edges. Comparing this with the previous
description of the conditional distribution of σ, we conclude that the FK-clusters
are indeed distributed like the clusters of the superposition of the random current
with the Bernoulli percolation.

This therefore provides an alternative explanation to the relation between the Ising
random current and the FK-Ising + Bernoulli percolation pointed out in the previous
section. In fact, it is this interpretation of the random current in terms of loop-soups
conditioned by the values of the GFF at sites that did lead us to realize that the relation
derived in the first section should hold (and then, once one guesses that this result holds,
it is actually easy to find a direct proof).

Let us note that the notions of loop-soup clusters and their relation with GFF have a
nice SLE/CLE type properties in the two-dimensional continuous space via the Brownian
loop-soup introduced in [8], see [14, 11, 12] and the references therein.

To conclude, let us note that is quite possible that some of these random current-loop
soup-FK features have been observed before (explicitly or in some slightly hidden way) –
the study of the Ising model has proved to be prone to recurrent rediscoveries of such
simple combinatorial identities (as a matter of fact, after completion of this work, we
found out about the paper by Grimmett and Janson [7] that plays with some closely
related ideas)... As in [4, 17], the present considerations are reminiscent of some ideas
in [3, 5, 15, 9].

In the recent work of Sabot and Tarrès [13] on vertex reinforced jump processes and
Ray-Knight theorems, one can for instance find some traces of the relation between loop-
soups, fields and the Ising model. More precisely, one can interpret their “magnetized
inversed VRJP” as a reconstruction of the loop-soup conditioned on its occupation
field, that is to say on h2, that also samples a random current given the edge weights
(βe, e ∈ E): In their setting, edge weights evolve over time, and one first discovers the
loops that go through a point x1, then the loops that go through x2 without visiting x1
and so on. Loosely speaking, tracing the loops then progressively eats up the available
time at each sites, and the evolving edge-weights represent this remaining available
time.

More precisely, let x1, . . . , xk be an arbitrary enumeration of vertices of G. One
defines by induction over i ≤ k the processes (β

(i)
e (t))t≥0 and (X(i)(t))t≥0 as follows.
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They start from β
(1)
e (0) := βe, β

(i)
e (0) := limt→∞ β

(i−1)
e (t) for 2 ≤ i ≤ k, and X(i)(0) = xi.

The dynamics of the edge-weights β(i)
e (t) is described by

dβ(i)
e (t) = −1{e adjacent to X(i)(t)} × β(i)

e (t)dt

and the dynamics of the jump process X(i) is that when it is at x at time t, it jumps to a
neighbour y via the edge e, with rate

β(i)
e (t)× 〈σxi

σy〉(i)t /〈σxi
σx〉(i)t ,

where
〈σxσy〉(i)t := E

(β
(i)
e (t),e∈E)

(σxσy)

can be interpreted as the time-evolving two-point functions of the Ising model associated
to the time-evolving weights. It turns out that almost surely, X(i)(t) = xi for all large t.

Hence, for any edge e adjacent to xi, limt→∞ β
(i)
e (t) = 0. In particular limt→∞ β

(k)
e (t) = 0

for all e. The family (Ne, e ∈ E) where Ne denotes the total number of jumps across the
edge e by the k processes X(i) is then distributed like a random current with weights
(βe, e ∈ E). For details on this model, see [13].
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