
HAL Id: hal-02866180
https://hal.science/hal-02866180

Submitted on 12 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Tool support for Generating User Acceptance Tests
Guy Camilleri, Leandro Antonelli, Pascale Zaraté, Juan Cruz Gardey,

Jonathan Martin, Amir Sakka, Diego Torres, Alejandro Fernandez

To cite this version:
Guy Camilleri, Leandro Antonelli, Pascale Zaraté, Juan Cruz Gardey, Jonathan Martin, et al.. Tool
support for Generating User Acceptance Tests. ICDSST2020, University of Zaragoza, Spain, May
2020, Zaragoza, Spain. pp.41-47. �hal-02866180�

https://hal.science/hal-02866180
https://hal.archives-ouvertes.fr

1

 Tool support for Generating User Acceptance Tests

Guy Camilleri1, Leandro Antonelli2, Pascale Zarate3, Juan Cruz Gardey2, Jonathan

Martin2, Amir Sakka2,4, Diego Torres2,5,6 and Alejandro Fernandez2,6
1SMAC group, IRIT, 118 route de Narbonne, 31062 Toulouse Cedex 9, France

2LIFIA, Facultad de Informática, UNLP, Argentina

3ADRIA group, IRIT, Université de Toulouse, 2 rue du Doyen Gabriel Marty, 31042

Toulouse Cedex 9, France
4IRSTEA Clermont-Ferrand 9 Avenue Blaise Pascal, 63178 Aubiere France

5Departamento de Ciencia y Tecnologia, UNQ, Argentina
6CICPBA, Buenos Aires, Argentina

{camiller,zarate}@irit.fr,

{lanto, jcgardey, jcgardey, dtorres, casco}@lifia.info.unlp.edu.ar,

amir.sakka@irstea.fr

ABSTRACT

Software testing, in particular acceptance testing, is a very important step in the development

process of any application since it represents a way of matching the users’ expectations with

the finished product´s capabilities. Typically considered as a cumbersome activity, many

efforts have been made to alleviate the burden of writing tests by, for instance, trying to

generate them automatically. However, testing still remains a largely neglected step. In this

paper we propose taking advantage of existing requirement artifacts to semi-automatically

generate acceptance tests. This paper extends a previous paper in which we use Scenarios, a

requirement artifact used to describe business processes and requirements, and Task/Method

models, a modelling approach taken from the Artificial Intelligence field. The proposed

approach derives a Task/Method model from Scenario (through rules) and from the

Task/Method model specification, all alternatives in the flow of execution are provided.

Using the proposed ideas, we show how the semi-automated generation of acceptance tests

can be implemented by describing an ongoing development of a proof of concept web

application designed to support the full process.

Keywords: User Acceptance Tests, Scenarios, Task/Method model, Agriculture

Production

INTRODUCTION

Developing software still remains a very complex process involving several actors and

consisting of different steps. The testing step remains as one of the biggest problems, and it is

frequently avoided. As a consequence, the resulting system can fail to meet users’

expectations, rendering it useless. Our objective is to develop a strategy to make the testing

step easier, generating User Acceptance Tests (UAT) in a semi-automatic way from

requirements artifacts. Many software development methods use, in the early stages, steps to

clarify business processes and specify requirements. These processes are often used to define

the UAT. A semi-automatic generation of UAT can with few efforts support the software

ICDSST 2020 PROCEEDINGS – ONLINE VERSION

THE EWG-DSS 2020 INTERNATIONAL CONFERENCE ON DECISION SUPPORT SYSTEM TECHNOLOGY
I. Linden, M.T. Escobar, A. Turón, F. Dargam, U. Jayawickrama (editors)

Zaragoza, Spain, 27-29 May 2020

mailto:dtorres,%20casco%7d@lifia.info.unlp.edu.ar

2

engineers to elicit, to clarify and to discuss the business processes and the requirements by

showing some implications of their analysis/modeling. Theses analysis can result in new

modifications and developments of the model of business processes and requirements.

Therefore, a semi-automatic generation of UAT constitutes a decision support for the

modelling of business processes and requirements. To do this semi-automatic generation, we

combine two modelling approaches: Scenarios, from the requirement engineering field and

Task/Method models, from the Artificial Intelligence field, particularly knowledge-based

systems [3]. A first work has been done (see [1] and [2]) which proposes to use a wiki

website for describing Scenarios, and to translate these Scenarios in Task/Method model in a

semi-automatic way.

Figure 1 depicts the overall proposed process. First, the users describe scenarios thanks to

a website application after, the translation rules are applied to generate the corresponding

task/method model. These steps were already proposed in a previous work [1]. The obtained

task/method model is then executed by an execution engine which produces an Execution

Tree (ET). A ET is a data structure representing all possible executions of the task/method

model (hence, all possible flows of actions and tests). Test cases can be extracted from this

ET. In this paper, we will focus on the last two steps: execution engine and the test cases

generation.

Figure 1: Test cases generation process

This work is applied to the RUC-APS project. RUC-APS is a H2020 RISE-2015 project,

aiming at Enhancing and implementing Knowledge based ICT solutions within high Risk and

Uncertain Conditions for Agriculture Production Systems. In this context we will use a

scenario based on agriculture production. The rest of the paper is organized as follows: we

first introduce related work, then present the background introducing scenarios and the

Task/method paradigm. In the third part, we describe the two last steps of our approach (see

Figure 1) which will be illustrated by a Task/Method model generated from a scenario based

on agriculture production. Finally, we show our conclusions and future work.

RELATED WORK

Garousi et al. [4] describe six steps in test cases automations: (i) test-case design, (ii) test

scripting, (iii) test execution, (iv) test evaluation, (v) test results reporting and (vi) test

management and other test engineering activities. Our approach has the aim of designing test-

cases. So, we provide a technique to cope with the first step (test-case design). Takagi et al.

[5] describe a strategy to develop a graph that model the histories of test case execution.

Although the authors deal with low level histories related to hardware testing, their proposal

is similar to our proposal, since we generate a tree with all the different scenarios that need to

be tested. Monpratarnchai et al. [6] propose a tool to automatically generate test cases for

Java applications. They analyze the source code and derive a script using a symbolic

language. After that, Junit code is generated. Our strategy is similar, since we analyze

Scenarios, the source description of the requirements and Task / Method model language is

used to specify criteria that allow to obtain test cases. Stoyanova et al. [7] propose a

3

framework for testing web app. The framework has two main parts: (i) test case generation

and (ii) test case execution. Although we have to execute Task / Method model script, it is

needed to obtain the test cases. That is, the tree that we obtain is the final test cases that is

needed to test the application. Chatterjee et al. [8] propose an approach to automatically

generate test cases from Use Cases. Bouquet et al. [9] propose a similar although they use

class diagram and state machine to derive the tests. They explore all the alternatives in the

flow of the dialog as well as the preconditions and they generate all the tests needed. The

difference with our approach is that they rely on state while we rely on actions. We consider

that every action can be success or fail, why they rely on every state of the different elements

included in the situation.

BACKGROUND

Scenarios

Scenarios can be used in different stages of software development, from clarifying

business process and describing requirements, to providing the basis of acceptance tests [10].

There is a distinction between application domain (the real world) and the application

software (the machine) [11]: during business process modelling and requirements elicitation,

Scenarios describe events in the world, while in system specification, they describe events in

the machine. Scenarios are stories about people and the activities they perform to reach

certain goals, parting from a setting and counting with some resources. Their description

ranges from visual (storyboards) to narrative (structured text) [12]. Leite et al. [13] propose a

template with six attributes to describe Scenarios in a textual way: (i) Title, it is the name of

the scenario to identify it, (ii) Goal, conditions and restrictions to be reached after the

execution of the Scenario, (iii) Context, conditions and restrictions that are satisfied and

constitute the starting point of the Scenario execution, (iv) Actors are agents that perform

actions during the Scenario to traverse the path from the context to reach the goal, (v)

Resources, products and elements used by the actors to perform action, and (vi) Episodes:

steps executed by the actors using the resources beginning at the context to reach the goal.

The text descriptions in Scenarios follow a fixed structure. In particular, episodes must be

written with full sentences describing the subject, the action they perform, and if necessary

the resource used. The following example describes partially some Scenario for farmer

packing products. The example also includes the cases to consider for testing the scenario.

These test cases do not belong to the original structure of the scenario:

Scenario: detect stress in crops of tomatoes and

peppers
Resources: Sensors
Actors: System
Episodes:

The sensor reads the temperature
The sensor reads the level of humidity
The sensor reads the intensity of the light
The system determines if it is a stressful condition

Test cases:

If some sensor can not read the data the system
do not have the input necessary to infer a
prediction.
All the sensors can read the data, but the system
does not have historical information to infer a
prediction

Scenario: collect information
Resources: Sensors
Actors: System
Episodes:

Several sensors collects information about the
temperature

The system calculates the average to
determine the temperature
Test cases:

There is a problem collecting the information
There is a problem summarizing the date

4

Task/Method Paradigm

The task/method paradigm is a knowledge modelling paradigm (mainly from the artificial

intelligence field [14], [15]) that sees reasoning as a task. Knowledge is expressed in a

declarative way, making it easy to process by execution engines or planners [1]. A

task/method model is composed by a domain model and a reasoning model. The former

describes the objects of the world being used (directly or indirectly) by the latter, similarly to

an application ontology. It is often described in UML language and implemented with OO

languages. The reasoning model describes how a task can be performed. It uses two

modelling primitives: a task: is a transition between two world state families (an action) and

is defined by the following fields: Name, Par, Objective and Methods. A method describes

one way of performing a task. A method is characterized by the following fields: Heading,

Prec, Effects, Control and Subtask.

The task’s field Name specifies the name of the task. The field Par contains the list of

parameters, that is, all objects handled by the task. For example, in a task Read, the parameter

list could be (sensor, temperature) which are domain objects (from domain model) used by

the task Read. We will write Read(sensor, temperature). The list of methods which can be

applied to perform a task is described in the field Methods. A terminal task is a directly

executable task (without described methods). The method’s field Prec contains conditions

that must be satisfied to apply the method. The execution order of subtasks is described in the

Control field, and sub-tasks are recorded in the Subtask field. Note that, by essence,

Task/Method models are hierarchical. Here we explained only the fields used in this work,

see [2] for a full reference.

User Test Cases Generation

In this work, we make the following assumption. We consider that we dispose of a

Task/Method model obtained in the two first steps of our approach (Figure 1, see for more

details [1]). The execution of tasks in the task/method model can only succeed or fail.

Specifically, only the terminal tasks succeed or fail directly, the execution status (success or

failure) of the other tasks results only from the status of the terminal tasks. Under this

assumption, all possible executions of a task/method model will correspond to the

propagation of two possible execution status (success or failure) of terminal tasks. In the

previous example (see also Figure 2), the "Read(sensor,temperature)" task has one method

with two terminal tasks: “Collect information (system, sensors, temperature, data)” and

“Summarize data (system, data)”. These terminal tasks can succeed or fail. So if both

succeed, the “Read(sensor,temperature)” task succeeds and if one of them fails, then the

“Read(sensor,temperature)” task fails. In our approach, we consider that each user test case

corresponds to an execution path. In the "Read(sensor,temperature)" example, two user test

cases can be extracted from the following execution paths: "Collect information (system,

sensors, temperature, data)" fails therefore "Read(sensor,temperature)" fails and, "Summarize

data (system, data)" fails therefore "Read(sensor,temperature)" fails.

To generate user test cases, it is possible to generate user test cases directly from the

task/method model, or to generate all execution paths and extract user test cases from these

execution paths. We have chosen the latter option which is more flexible and separates the

execution process from the extraction process. Thus, the execution engine produces all

execution paths in the form of Execution Tree (ET). User test cases are extracted from the ET

and possibly with some natural language processing tools. An ET contains all possible

executions of one task. It is composed of two types of node: the etask nodes which represent

the executed tasks and the emethod nodes the executed method. In the figure 2, an ET is

5

drawn for the task “Detect stress”. Boxes correspond to etasks, ovals to emethods and arrows

link etasks to emethods. One task can be executed by several methods, and one method can

have several emethods according to the execution status (success or failure) of subtasks. In

the figure 2, the etasks and the emethods with gray background are etasks and emethods that

failed.

The following algorithm describes the execution engine that produces an ET for one etask.

Each etask and each emethod have a boolean attribute “failure” (true for failure and false for

success). etasks and emethod are instantiated from Tasks and Methods of the task/method

model. By default, the failure status is false for all etasks and all emethods. If an etask et is

terminal, one new emethod is added with a copy of et in which the failure status is true. In

this way, for each terminal etask, there exist two versions of this etask, one with the failure

status to false and the other with the failure status to true. If an etask is not terminal, all

applicable methods are instantiated and executed. A method is executed by launching the

code in its control field which will rerun the Execution_engine function on some etasks in the

subtasks field.

Execution_engine(et:ETask)
 if et is a terminal then
 set false to failure status of et;
 et_failure=Duplicate et with failure status to true;
 em_failure=Duplicate the emethod of et with failure status to true;
 link et_failure and em_failure to the parent task of the emethod of et;
else
 methods= all methods of et;
 for all m in methods do
 em= instantiate m;
 link em to et;
 if em is applicable then
 execute control field of em
 end if
 done
end if
return et;

As an ET contains all ways of executing an etask, user test cases can be extracted by

traversing the ET from the failed terminal etasks (leaves of ET) to the initial etask (root of

ET). The proposed process has been applied to the “detect stress in crops of tomatoes and

peppers” scenario described previously. The figure 2 presents the ET obtained by the

execution engine tool. For generating UAT, we simply traverse the ET from the leaves which

fail to the root. Each extracted branch corresponds to one UAT. In the current

implementation, UAT are generated by a direct translation from these ET branches. We

obtained the following UAT.

6

Figure 2. Execution tree for Detect stress task (success white background and failure gray

background)

● Detect stress(system, sensors, crops of tomatoes and peppers) fail because Read(sensor, temperature)

fail because Collect information(system, sensors, temperature, data) fail.

● Detect stress(system, sensor, crops of tomatoes and peppers) fail because Read(sensor, temperature)

fail because Collect information(system, sensors, temperature, data) succeed, but Summarize data(system, data)

fail.

● Detect stress(system, sensor, crops of tomatoes and peppers) fail because Read(sensor, temperature)

succeed, but Read(sensor, level of humidity) fail.

● Detect stress(system, sensor, crops of tomatoes and peppers) fail because Read(sensor, level of

humidity) succeed, Read(sensor, temperature) succeed, but Read(sensor, intensity of the light) fail.

● Detect stress(system, sensor, crops of tomatoes and peppers) fail because Read(sensor, intensity of the

light) succeed, Read(sensor, level of humidity) succeed, Read(sensor, temperature) succeed, but Determine

stressful conditions(system) fail.

CONCLUSION

In this paper we presented a way to generate UATs from a Task/method model. This work

follows previous work ([1] [2]), where users describe scenarios through a web application

and from this description, translation rules are applied to generate the corresponding

task/method model. Our approach is to use an execution engine that generates an execution

tree representing the trace of all possible executions. From this execution tree, UATs can be

extracted using graph traversing and natural language processes. In the current version of the

execution engine, only textual descriptions of tasks are processed. In future work, we want to

study how to use a domain model in the form of object-oriented model in order to integrate

UATs related to the domain model in the execution engine.

Acknowledgements

Authors of this publication acknowledge the contribution of the Project 691249, RUC-

APS: Enhancing and implementing Knowledge based ICT solutions within high Risk and

Uncertain Conditions for Agriculture Production Systems (www.ruc-aps.eu), funded by the

European Union under their funding scheme H2020-MSCA-RISE-2015

7

REFERENCES

1. Leandro Antonelli, Guy Camilleri, Julian Grigera, Mariangeles Hozikian, Cécile

Sauvage, “A Modelling Approach to Generating User Acceptance Tests”. 4th

International Conference on Decision Support Systems Technologies (ICDSST 2018),

May 2018, Heraklion, Greece. ⟨hal-02289948⟩
2. L. Antonelli et al “Wiki Support for Software Use Cases” Special Issue on Promoting

Sustainable Decision-making, Kybernetes Journal, ISSN: 0368-492X, Emerald

Publishing, Bingley, Reino Unido, accepted March 27, 2019.

3. G. Camilleri, J.-L. Soubie, and J. Zalaket, “TMMT: Tool Supporting Knowledge

Modelling,” in Knowledge-Based Intelligent Information and Engineering Systems, vol.

2773, 2003, pp. 45–52.

4. V. Garousi and F. Elberzhager, "Test Automation: Not Just for Test Execution," in IEEE

Software, vol. 34, no. 2, pp. 90-96, Mar.-Apr. 2017. doi: 10.1109/MS.2017.34

5. T. Takagi and K. Noda, "Partially developed coverability graphs for modeling test case

execution histories," 2016 IEEE/ACIS 15th International Conference on Computer and

Information Science (ICIS), Okayama, 2016, pp. 1-2. doi: 10.1109/ICIS.2016.7550886

6. S. Monpratarnchai, S. Fujiwara, A. Katayama and T. Uehara, "An Automated Testing

Tool for Java Application Using Symbolic Execution Based Test Case Generation," 2013

20th Asia-Pacific Software Engineering Conference (APSEC), Bangkok, 2013, pp. 93-

98. doi: 10.1109/APSEC.2013.121

7. V. Stoyanova, D. Petrova-Antonova and S. Ilieva, "Automation of Test Case Generation

and Execution for Testing Web Service Orchestrations," 2013 IEEE Seventh

International Symposium on Service-Oriented System Engineering, Redwood City,

2013, pp. 274-279. doi: 10.1109/SOSE.2013.9

8. R. Chatterjee, K. Johari. “A prolific approach for automated generation of test cases from

informal requirements”. SIGSOFT Softw. Eng. Notes 35, 5, October 2010, pp 1–11. doi:

https://doi.org/10.1145/1838687.1838702

9. F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux. “A test generation solution to

automate software testing”. In Proceedings of the 3rd international workshop on

Automation of software test (AST ’08). Association for Computing Machinery, New

York, NY, USA, 2008, pp 45–48. doi: https://doi.org/10.1145/1370042.1370052

10. I. Alexander and N. Maiden, “Scenarios, Stories, and Use Cases: The Modern Basis for

System Development,” IEEE Comput. Control Eng., vol. 15, no. 5, pp. 24–29, 2004.

11. M. Jackson, “The world and the machine,” in Proceedings of the 17th international

conference on Software engineering - ICSE ’95, 1995, pp. 283–292.

12. R. Young, The requirements engineering handbook. 2004.

13. J. Leite and A.P.M. Franco “A strategy for conceptual model acquisition”, In

Requirements Engineering conference. IEEE. doi:10.1109/ISRE.1993.324851, pp 243–

246.

14. F. Trichet and P. Tchounikine, “DSTM: A framework to operationalise and refine a

problem solving method modeled in terms of tasks and methods,” Expert Syst. Appl., vol.

16, no. 2, pp. 105–120, 1999.

15. G. Schreiber, H. Akkermans, A. Anjewierden, R. De Hoog, N. R. Shadbolt, and B.

Wielinga, Knowledge Engineering and Management: The CommonKADS Methodology,

vol. 99. 2000.

https://hal.archives-ouvertes.fr/hal-02289948
https://doi.org/10.1145/1838687.1838702
https://doi.org/10.1145/1370042.1370052

