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Abstract

This study compares the performances of two sampling-based strategies for

the simultaneous estimation of the first- and total-order variance-based sen-

sitivity indices (a.k.a. Sobol’ indices). The first strategy corresponds to the

current approach employed by practitioners and recommended in the liter-

ature. The second one was only recently introduced by the first and last

authors of the present article. Both strategies rely on different estimators

of first- and total-order Sobol’ indices. The asymptotic normal variances of

the two sets of estimators are established and their accuracies are compared

theoretically and numerically. The results show that the new strategy out-

performs the current one. The global sensitivity analysis of the radiative

forcing model of sulfur aerosols is performed with the new strategy. The

results confirm that in this model interactions are important and only one

input variable is irrelevant.
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1. Background

Uncertainty and sensitivity analyses are essential ingredients of modelling

[25]. They allow to point out the key uncertain assumptions (input factors

that can be random variables or random fields) responsible for the uncertainty

into the model outcome of interest. This is particularly relevant when models

are used for decision-making.

Assessing model output uncertainty requires several runs of the model.

Monte Carlo simulations allow to carry out this task by sampling the input

factors from their joint probability distribution and propagating the sample

through the model response of interest (i.e. running the model). Sensitiv-

ity analysis (SA) can then be undertaken to identify, for instance, the input

factors mostly responsible for the uncertainty in the model response. Depend-

ing on the method used, SA can be conducted directly from the Monte Carlo

sample at hand (i.e. the one generated to assess model output uncertainty)

or can require extra Monte Carlo simulations by following an appropriate

sampling design.

The method to be used depends on the sensitivity indices (also called

importance measures) that the analyst wants to compute. As recommended

in [25] (see also [24]), the sensitivity indices to assess should be related to

the question that SA is called to answer to. The authors enumerate sev-

eral questions (called SA settings) that can be addressed with the so-called

variance-based sensitivity indices. In the sequel, we focus on the estimation

of variance-based sensitivity indices, also called Sobol’ indices ([28]).

As eluded previously, a Monte Carlo sample is required to carry out un-

certainty analysis, that is, assessing the predictive uncertainty of the model

output of interest. We assume that there is only one scalar output denoted

y = f(x). The input factors are represented by a random vector of scalar
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variables x = (x1, . . . , xD) possibly grouped into two complementary vec-

tors (u,v). They are assumed independent of each other (for the case of

dependent inputs, see for instance [14, 10, 16, 17, 13, 33]).

There exist several Sobol’ indices called, first-order, (closed) second-order,

and so forth. A closed second-order Sobol’ index (and more generally a closed

d-th order Sobol’ index) can be defined as the first-order Sobol’ index of a

group of two (resp. d) inputs. In the sequel, we will use the term first- and

total-order Sobol’ indices whether they refer to an individual variable (say

xi) or a group of variables (e.g. u).

First- and total-order Sobol’ indices are respectively defined as follows,

Su =
V [E [y|u]]

V [y]
(1)

STu =
E [V [y|v]]

V [y]
(2)

where, V [·] stands for the unconditional variance operator (resp. V [·|·] the

conditional variance) and E [·] stands for the mathematical expectation (resp.

E [·|·] the conditional expectation). The Sobol’ indices range over [0, 1] and

STu ≥ Su. Eq. (1) is the first-order Sobol’ index of the group of inputs u

while Eq. (2) is the total-order Sobol’ index of u. The higher the Sobol’

indices, the more the group of inputs u is important for the model response.

The difference between Su and STu is that the latter not only accounts for

the amount of variance of y explained by the input variables within u (like Su
does) but it also contains cooperative contributions due to the interactions

between the variables in u with those in v. Therefore, a noticeable result is

that Su + STv = 1.

Let d ∈ [1, D) be the number of elements in u. Su represents in percent-

age, the expected reduction in V [y] if the variables in u where fixed to their

true value. That is why the first-order sensitivity indices of individual inputs
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(i.e d = 1) are to be estimated if the goal of the SA is to identify the input

variable that would induce the largest reduction in variance if its value was

known accurately. This SA setting is called factors prioritization. Instead,

if the goal is to identify the irrelevant inputs (called screening analysis or

factors fixing setting) then the individual total-order Sobol’ indices are to

be estimated. Indeed, we note that if STu = 0, the variables in u do not

contribute at all to the variance of y. More SA settings are discussed in [24].

There are typically two direct methods to estimate the first- and total-

order Sobol’ indices. The first one uses Monte Carlo methods (e.g. [28, 20]).

The second one casts the total variance onto orthogonal functions like the

Fourier expansion (a.k.a. the Fourier amplitude sensitivity test, [4, 26, 15])

or the polynomial chaos expansion [32, 2, 27]. Indirect methods employ

surrogate models first (also called metamodels) to mimic the input-output

relationship, and then often use one of the aforementioned direct methods

to compute the Sobol’ indices (e.g. [18]). Estimating the Sobol’ indices

with Monte Carlo estimators is rather computationally expensive, but it does

not require any assumption except that the variance of f(x) be numerically

tractable. In the present work, we study the performances of two Monte

Carlo estimators of Eq. (1) and Eq. (2) respectively that rely on two different

sampling designs.

The paper is organised as follows: in Section 2 we introduce the two

sampling strategies as well as their associated Monte Carlo estimators to

compute both the first- and total-order Sobol’ indices. Their asymptotic

normal variances, derived in the appendices, are also compared to each other.

In Section 3, the performances of the two sets of estimators are compared

through numerical exercises on well-known benchmark functions. The new

set of estimators is applied to the radiative forcing model of sulfur aerosols
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in Section 4. Finally, the key results of our work are summarized in Section

5.

2. Monte Carlo estimators

2.1. Integral approximation

When Ilya M. Sobol’ introduced the variance-based sensitivity indices

in [28], he also proposed their Monte Carlo (MC) estimators. Indeed, the

Sobol’ indices defined in Eqs. (1-2) are nothing but ratio of integrals. Ap-

proximating these integrals numerically provides estimates of the Sobol’ in-

dices. Monte Carlo (MC) estimators rely on the fact that multidimensional

integrals can be approximated via MC samples as follows,∫
RD

f q(x)px(x)dx ≈ 1

N

N∑
n=1

f q(xn,1, · · · , xn,D) (3)

where x ∼ px, meaning that px is the joint probability density of x and

xn = (xn,1, · · · , xn,D) is the n-th (out of N) MC draw of the input factors

sampled w.r.t. px. In the sequel, we assume that x is a vector of independent

input variables, that is, px =
∏D

i=1 pxi(xi), where pxi(xi) is the marginal

distribution of xi.

Let (yA,yB,yAu ,yBu) be four distinct model output samples whose n-th

element for each of them is respectively defined as follows,

yAn = f(uAn ,v
A
n ) = f(xAn )

yBn = f(uBn ,v
B
n ) = f(xBn )

yAu
n = f(uAn ,v

B
n ) = f(xAu

n )

yBu
n = f(uBn ,v

A
n ) = f(xBu

n )

where xAn and xBn are two independent input vectors identically distributed,

as well as xAu
n and xBu

n . The u-values in vector xAu
n (resp. xBu

n ) are identical

to those in xAn (resp. xBn ) while the v-values are those of xBn (resp. xAn ).

5



2.2. Current estimators

The most popular sampling design to compute simultaneously the first-

and total-order sensitivity indices as recommended by Saltelli et al. [23]

requires three samples, namely (yA,yB,yAu) (or equivalently (yA,yB,yBu)),

to compute the sensitivity indices of u. Their estimators are respectively

defined as follows,

ŜSSu =
1
N

∑N
n=1 y

A
n

(
yAu
n − yBn

)
1
2N

∑N
n=1 (y

A
n − yBn )

2
(4)

ŜT
SJ

u =
1
2N

∑N
n=1

(
yAu
n − yBn

)2
1
2N

∑N
n=1 (y

A
n − yBn )

2
. (5)

Note that we do not simplify these equations (e.g., the 2N at the numerator

and denominator cancel each other) for the purpose of the discussion that just

follows, but latter on, we will. The superscript SS stands for Sobol-Saltelli

as the former derived the integral formulation of the numerator in [30] while

Saltelli proposed an estimator similar to the numerator of Eq. (4) in [20].

The superscript SJ often refers to Sobol-Jansen although one can date back

the numerator of Eq. (5) to Šaltenis and Dzemyda [36] and Jansen et al. [8]

(see [22] page 177). Therefore, SJ can also be read Šaltenis-Jansen.

The denominators of the previous formulas are identical but they differ

from the one proposed in [20, 21]. As defined, the denominator of Eqs.

(4-5) is an MC estimator of V [y]. We find it convenient to formulate the

denominator in this way because it highlights the symmetry between (yA,yB)

in the denominator. Eq. (4) is known to provide an accurate estimate of

small first-order sensitivity indices [30] as Eq. (5) does for the total-order

sensitivity indices.

Importantly, although in theory STu ≥ Su, the previous estimators do

not satisfy this criterion. Indeed, by noticing that V̂y = 1
2N

∑N
n=1

(
yAn − yBn

)2
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at the denominator of Eqs. (4-5) is a positive scalar, we find that,

V̂y

(
ŜT

SJ

u − ŜSSu

)
=

1

N

N∑
n=1

((
yAu
n − yBn

)2 − 2yAn
(
yAu
n − yBn

))
(6)

which, because −2yAn
(
yAu
n − yBn

)
can be either positive or negative, does not

ensure that ŜT
SJ

u ≥ ŜSSu .

These observations advocate for a more symmetrical and coherent esti-

mator for the first-order sensitivity index. This is the subject of the next

subsection.

2.3. New estimators

As previously mentioned, the denominator of Eq. (5) converges towards

V [y], that is,

lim
N→∞

1

2N

N∑
n=1

(
yAn − yBn

)2
= lim

N→∞

1

2N

N∑
n=1

(
yAu
n − yBu

n

)2
= V [y]

while the numerator is such that,

lim
N→∞

1

2N

N∑
n=1

(
yBn − yAu

n

)2
= lim

N→∞

1

2N

N∑
n=1

(
yAn − yBu

n

)2
= E [V [y|v]] .

Hence, the following symmetrical estimator for the total-order sensitivity

index can be derived,

ŜT
IA

u =

∑N
n=1

((
yBn − yAu

n

)2
+
(
yAn − yBu

n

)2)∑N
n=1

(
(yAn − yBn )

2 + (yAu
n − yBu

n )2
) . (7)

This is because, as already mentioned, xAn and xBn are two independent input

vectors identically distributed, as well as xAu
n and xBu

n . Notice the perfect

symmetry of the formula which remains unchanged by switching the super-

scripts B and A. Incidentally, the superscript IA stands indifferently for

Innovative Algorithm and Ivano Azzini, the first author of this article who

initiated the work on these estimators [1].
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Interchanging (yAu ,yBu) in Eq. (7) only changes the numerator and

provides the estimator for ŜT
IA

v . The law of total variance implies that

ŜIAu + ŜT
IA

v = 1. Therefore, the first-order sensitivity index Su is estimated

as follows,

ŜIAu = 1− ŜT
IA

v = 1−

∑N
n=1

((
yBn − yBu

n

)2
+
(
yAn − yAu

n

)2)∑N
n=1

(
(yAn − yBn )

2 + (yAu
n − yBu

n )2
)

which after some developments yields,

ŜIAu =
2
∑N

n=1

(
yAu
n − yBn

) (
yAn − yBu

n

)∑N
n=1

(
(yAn − yBn )

2 + (yAu
n − yBu

n )2
) . (8)

Besides,

ŜT
IA

u −ŜIAu =

∑N
n=1

((
yBn − yAu

n

)2
+
(
yAn − yBu

n

)2 − 2
(
yAu
n − yBn

) (
yAn − yBu

n

))
∑N

n=1

(
(yAn − yBn )

2 + (yAu
n − yBu

n )2
)

which yields,

ŜT
IA

u − ŜIAu =

∑N
n=1

(
yBn − yAu

n + yAn − yBu
n

)2∑N
n=1

(
(yAn − yBn )

2 + (yAu
n − yBu

n )2
) ≥ 0 (9)

and proves that ŜT
IA

u ≥ ŜIAu for any N .

Eq. (9) also shows that ŜT
IA

u = ŜIAu if and only if f(x) is additive with

respect to u. In effect, an additive function with respect to u and v reads

in this case,

y = f(u,v) = f0 + fu(u) + fv(v)

and it is straightforward to prove that the numerator of Eq. (9) equals zero

for any sample size N .

It turns out that the numerator of Eq. (8) is very similar to the one

proposed by Owen in [19]. Apart from the factor 2 due to the denominator,

the difference is the use by the author of yCu
n = f(uCn ,v

A
n ) instead of yAu

n

or yBu
n in Eq. (8). By doing so, the symmetry of the estimator is lost.
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Interestingly, Lamboni [12] also derived unbiased estimators with minimum

variance of the non-normalized Sobol’ indices by leaning on the theory of

U -statistics (see [6, 5]). His construction led to estimators exactly equal to

the numerators of Eqs. (7-8). However, neither Lamboni in [12] nor Owen

in [19] paid attention to the estimation of the total variance. The proof that

ŜT
IA

u ≥ ŜIAu does not depend on the choice of the total variance estimator

(i.e. the denominator of Eq. (9)). Therefore, the estimators proposed by

Lamboni in [11, 12] also satisfy this property but they do not form a set

of complementary formulas contrarily to the new estimators defined by Eqs.

(7-8) (also called the IA estimators in the sequel). Indeed, thanks to the

special choice of the total variance estimator (i.e. the denominator of Eqs.

(7-8)), the IA estimators also satisfy the following equation, ŜIAu + ŜT
IA

v = 1.

To our best knowledge, there are no other estimators of first- and total-order

sensitivity indices that comply with both the equation Ŝu+ ŜT v = 1 and the

inequation Ŝu ≤ ŜT u.

2.4. Variances of the estimators

The performance of an estimator is characterized by its bias and its vari-

ance. For a given sample size N , the Sobol’ indices can be computed several

times by re-sampling the MC draws, thus, providing different estimates. Un-

biased estimators provide replicates that on average yield the true values of

the Sobol’ indices. Estimators with small variances provide estimates that

remain close to the true values of the Sobol’ indices. In the sequel, the focus

is on the variances of the estimators.
In the Appendices A and B, we establish the variances of the estimators

discussed in the present paper under the asymptotic normality assumption
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[35, 7]. They respectively read as follows,

σ2
SS =

V
[
2yA

(
yAu − yB

)
− Su

(
yA − yB

)2]
4V [y]

2 (10)

τ2SJ =
V
[(
yAu − yB

)2 − STu

(
yA − yB

)2]
4V [y]

2 (11)

and,

σ2
IA =

V
[
2
(
yA − yBu

) (
yAu − yB

)
− Su

((
yA − yB

)2
+

(
yAu − yBu

)2)]
16V [y]

2 (12)

τ2IA =
V
[(
yA − yBu

)2
+
(
yB − yAu

)2 − STu

((
yA − yB

)2
+
(
yAu − yBu

)2)]
16V [y]

2 .(13)

In Eqs. (10-13), yA, yB , yAu , and yBu are random variables. In practice, to

compute the variances of the estimators, they are replaced by their samples

yA, yB, yAu , and yBu , (see Section 3).

It can be qualitatively speculated that the Sobol-Jansen estimator is more

accurate than the one of Sobol-Saltelli. Indeed, we have (according to [28]),

y = f(u,v) = f0 + fu(u) + fv(v) + fu,v(u,v).

This implies that,(
yAu − yB

)
= −fu(uB) + fu(u

A)− fu,v(u
B,vB) + fu,v(u

A,vB)(
yA − yBu

)
= −fu(uB) + fu(u

A)− fu,v(u
B,vA) + fu,v(u

A,vA).

Therefore, the variance of
(
yAu − yB

)2 is expected to be smaller than the

one of 2yA
(
yAu − yB

)
because the former does not contain neither f0, nor

fv contrarily to the latter with yA. What is worse, we guess that Eq. (4)

may perform very poorly for high values of f0. For the same reason, the

variance of
(
yAu − yB

) (
yA − yBu

)
is expected to be smaller than the one of

2yA
(
yAu − yB

)
. Therefore, the IA estimator of the first-order Sobol’ index

should also perform better than Sobol-Saltelli, especially when f0 is high

compared to V [y].
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It is less obvious to infer whether τ 2SJ is higher or lower than τ 2IA. There-

fore, this is investigated through numerical simulations in the next section.

3. Numerical examples

It is worth noticing that the current estimators Eqs. (4-5) require N(D+

2) model calls to estimate the overall set of first- and total-order Sobol’ indices

while Eqs. (7-8) require 2N(D+1). To ensure a fair comparison, we set the

sample size of the new estimators to half the one of the current estimators. In

this way, the computational cost is 2N(D+1) for the former and 2N(D+2)

for the latter. This means that when we write that a sample of size N is

used, this refers to the actual size of the samples for the new estimators while

the sample size is 2N for the current estimators. In the following exercises,

we exclusively use the latin hypercube sampler (lhs) because it allows for

the replication of the Sobol’ indices estimate and furthermore it performs

better than random sampling. For the interested readers, more intensive

numerical exercises are undertaken in [1] with different sampling techniques

and different estimators of first-order Sobol’ index.

3.1. The Ishigami function

Let us consider the following three-dimensional function,

f(x1, x2, x3) = f0 + sinx1 + 7 sin2 x2 + 0.1x43 sinx1 (14)

where the input variables are independently and uniformly distributed over

(−π, π)3. As compared to the original Ishigami function, we introduce a con-

stant parameter f0 which has no impact on the variance of the function. This

simple function for which the exact Sobol’ indices are known has the following

features: x1 and x3 interact strongly while x2 is additively influential, that

is, S2 = ST2 ≃ 0.44. This allows to check whether, as previously guessed, we
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find ŜIA2 = ŜT
IA

2 . In this exercise, we numerically compare the performances

of Eqs. (4-5) with Eqs. (7-8). For this purpose, we set N = 64 (which means

128 for the current estimators) and we replicate one hundred estimates of

the first- and total-order Sobol’ indices with the estimators discussed in this

paper.

Each replicate is obtained as follows:

1. Generate xA and xB two independent lhs samples

2. Run the model with each sample and collect yA = f(xA) and yB =

f(xB)

3. For all input factors, i = 1 to D

a. Generate xAi (and also xBi for the IA estimators) by switching

the i-th column of the xA sample matrix and the i-th column of

the xB sample matrix

b. Run the model and collect yAi = f(xAi) (and yBi = f(xBi) for

the IA estimators)

c. Compute ŜSSi and ŜT
SJ

i from Eqs. (4-5) with the sample set

(yA,yB,yAi) (or ŜT
IA

i and ŜIAi from Eqs. (7-8) with the sample

set (yA,yB,yAi ,yBi)) by setting u = {i}

For a fair comparison, in step 1, the sample size is 2N for the current esti-

mators and N for the new estimators.

3.1.1. Case 1: f0 = 0

We first set f0 = 0. The results are depicted in Fig. 1 which clearly shows

that, as far as the first-order Sobol’ indices are concerned, the new estimator

Eq. (8) provides more robust estimates than Eq. (4); thus confirming our

comments in § 2.4. Notably, the estimated first-order Sobol’ indices of x3 can

12



be smaller than zero which is not consistent with the theory (Sobol’ indices

shall be within [0,1]). This is due to its interaction with x1. The new total-

order estimator, that is Eq. (7), has slightly lower variances for ST1 and ST2
than Eq. (5) and conversely for ST3.

Fig. 2 depicts Ŝ2 versus ŜT 2 for both sets of estimators (the current

and new ones). We can see that the pairs (ŜIA2 , ŜT
IA

2 ) spread along the

line ŜIA2 = ŜT
IA

2 contrarily to (ŜSS2 , ŜT
SJ

2 ). This is also in accordance with

our findings in § 2.4 that ŜIAi = ŜT
IA

i if xi does not interact with the other

variables. This is not the case with (ŜSS2 , ŜT
SJ

2 ). Actually for some replicates,

we even find ŜSS2 > ŜT
SJ

2 which is not consistent at all with the definition

of first- and total-order Sobol’ indices. We stress that, when xi has only an

additive effect on the response, ŜIAi = ŜT
IA

i is independent of the sample size

N . This information can be obtained at any sample size (even for N ∼ 1).

This is also illustrated in Fig. 2. The red crosses were obtained with N =

1, 2, . . . , 10 without replicate. At these sample sizes, the pairs (ŜIA2 , ŜT
IA

2 )

are also located along the diagonal ŜIA2 = ŜT
IA

2 .

3.1.2. Case 2: f0 = 100

This case illustrates the sensitivity of the current first-order estimator

to model responses with high expected value as compared with the total

variance. We set f0 = 100, which yields,

f(x1, x2, x3) = 100 + sin x1 + 7 sin2 x2 + 0.1x43 sinx1 (15)

keeping in mind that the Ishigami function has a total variance approximately

equal to Vy = 13.84. One hundred lhs replicates of size N = 64 are employed.

The results are displayed in Fig. 3. They show that while the shift in the

Ishigami function has no impact on the estimators of the total-order estima-

tors and on the new first-order estimator (namely, Eq. (8)), it significantly

13



Figure 1: Boxplot of the 100 lhs replicates of first- and total-order Sobol’ indices (resp. at

the top and the bottom) with the current and new estimators for the classical Ishigami

function. For fair comparison, the sample size is 128 for the current estimators and 64

for the new ones. The boxplot represents the following values: minimum, first-quartile,

median, third-quartile and maximum.
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Figure 2: One hundred lhs replicates of the first- versus total-order Sobol’ indices of x2

obtained with the current and new estimators (blue circles and black crosses). The new

estimators provide equal indices at any sample size N as x2 does not interact with the

other variables.
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deteriorates the performance of the current first-order estimator (Eq. (4))

when the variables highly interact with each other. Indeed, on the top of

Fig. 3 we can notice that ŜSS2 is not affected. This result is in line with our

comments in Section 2.4.

One might propose to circumvent this issue by shifting the vectors of

model responses by a factor µ ≃ E [y] before applying Eq. (4). This is in-

deed proposed in [29]. However, by doing so, one would introduce another

degree of freedom in the estimator (namely, the value of µ) that would vary

from one replicate estimate to another (unless it is left invariant). Such

a solution might impact the bias or the variance of the estimator so de-

fined. As argued in [19],
∑N

n=1

(
yAu
n − yBn

) (
yAn − yBu

n

)
(the numerator of Eq.

(8)) can be seen as a random shifting whereas a constant shifting, namely,∑N
n=1

(
µ− yBn

) (
yAn − µ

)
, is proposed in [29]. The main finding of [19] is that

the former solution outperforms the latter for small first-order Sobol’ indices.

Regarding the performance of the total-order estimators, it is not obvious

to guess which one is the best. A glance at the plot on the bottom of Fig. 3

reveals that the new estimator has lower variance for ST3 and higher or equal

variances for the two others. One might conclude that the new total-order

estimator is more accurate for high total-order Sobol’ indices. We investigate

this hypothesis further in the next numerical exercise.

3.2. The g-function

In this exercise, we study the performance of the two estimators of total-

order Sobol’ index. Specifically, we investigate whether the variance of the

new estimator is always smaller than the current one or if it depends on the

value of STi. For this purpose, we consider a ten-dimensional function whose

total-order Sobol’ indices of the input variables spread uniformly over (0, 1).

16



Figure 3: Boxplot of the 100 lhs replicates of the first- and total-order Sobol’ indices

(resp. at the top and the bottom) with the current and new estimators for the modified

Ishigami function (f0 = 100). In this case, the current estimator for first-order Sobol’

index performs poorly (top). For the represented values see Fig. 1.
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Hence, we consider the Sobol’ g-function defined as follows,

f(x) =
10∏
i=1

|4xi − 2|+ ai
ai + 1

where xi ∼ U(0, 1) for all i = 1, . . . , 10 and the coefficients are chosen as fol-

lows: a = (−1.13,−1.24,−1.33,−1.42,−1.52,−1.64,−1.79,−2.00,−2.37,+1.52).

This choice approximately yields the following total-order Sobol’ indices,

(0.95, 0.85, . . . , 0.15, 0.05). Thus x1 has the highest total-order effect and

x10 the lowest. Using negative g-function coefficients a is somewhat unusual

but in our case provides a set of total-order Sobol’ indices that evenly spreads

over (0, 1). In this way, we can investigate numerically whether the perfor-

mance of the two estimators depends on the magnitude of the total-order

Sobol’ index. Indeed, the variance of some estimators may depend on the

value of the targeted statistic while some may not.

The numerical setting is as follows: we compute one hundred lhs replicate

estimates of the total-order sensitivity indices. Samples of size N = 220 is

employed (221 for the current estimator Eq. (5)) in order to get accurate

estimates with no overlapping of the ranges of variation. For each estimate,

the asymptotic normal variances are evaluated by replacing in Eqs. (11-

13) the exact Sobol’ index (i.e. STi) and total variance (i.e., V [y]) by their

estimated value. The lhs replicates provide also the empirical variances which

can be confronted to the asymptotic normal variances.

The one hundred estimates are depicted in Fig. 4 with the exact total-

order Sobol’ indices. Despite of the very large sample size, the ranges of

variation of the high Sobol’ indices estimates are rather large but do not

overlap. This indicates that the studied function is a very difficult one for

the Monte Carlo estimators. We note that the spread of the IA estimator

for the total-order Sobol’ index is slightly narrower than the SJ estimator in
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this example.

On the top of Fig. 5, we represent the estimated variance of the new

estimator (namely, τ̂ 2IA) versus the variance of the current estimator (τ̂ 2SJ).

Because there are one hundred replicates of the sensitivity indices, for each

sensitivity index STi, i = 1, . . . , 10, we have one hundred estimates of the

asymptotic normal variances. They are depicted in different coloured circles

in the top plot. On the bottom of Fig. 5, we represent the empirical estimated

variances obtained by computing directly the variance of the one hundred lhs

replicates of each total-order Sobol’ index. First, we can note that the y- and

x-axes of the two plots (bottom and top) have the same ranges. This indicates

that the asymptotic variances Eqs. (13-11) are good proxies of the empirical

variances for the function under study.

The continuous line in Fig. 5 represents τ̂ 2IA = τ̂ 2SJ . The scatter plots

located below this line mean that τ̂ 2IA < τ̂ 2SJ . We observe that the scatter

plots associated with the highest sensitivity indices (namely, from ST1 to

ST4) are clearly below this line either for the asymptotic normal variances

(top) or the empirical variances (bottom). This confirms that, likewise the

Ishigami function, the new estimator Eq. (7) is more accurate than Eq. (5)

at least for high sensitivity indices (say STi > 0.55). Of course, this inference

has been obtained numerically and cannot be generalised.

For the sake of completeness, the results for the first-order Sobol’ indices

are depicted in Fig. 6. We note that the first-order Sobol’ indices are virtually

zero which confirm that this case is a very difficult one for global sensitiviy

analysis. Both estimators provide results rather centered on the true value.

Although one hundred replicates might not be sufficient to provide stable

results, we can notice that, for the first inputs (x1, . . . , x4) which have the

relatively highest first-order effects, the ranges of variation of the replicates of
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the Sobol-Saltelli estimator are sligthly narrower than those produced by the

IA estimator, for inputs (x5, x6, x7) their results are rather similar, and for

(x8, x9, x10) (with the smallest sensitivity indices), the IA estimator provides

narrower ranges of variation.

Figure 4: Boxplot of the 100 lhs replicates of the total-order Sobol’ indices with the current

and new estimators for the g-function. For fair comparison, the sample size is 220 for the

current estimator and 221 for the new one.

4. GSA of a radiative forcing model

4.1. Problem setting

Aerosol particles influence the Earth’s radiative balance directly by backscat-

tering and absorption of solar radiation, thus, contributing to the global cli-
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Figure 5: Estimated variances of the total-order SI estimators. On the top, by using the

asymptotic normal variance formulas, on the bottom, by evaluating the variances of the

one hundred lhs replicates. The continuous lines represent τ̂2IA = τ̂2SJ .
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Figure 6: Boxplot of the 100 lhs replicates of the first-order Sobol’ indices with the current

and new estimators for the g-function. For fair comparison, the sample size is 220 for the

current estimator and 221 for the new one. Small values indicate that interactions are

preponderant in this case study.
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mate change [3, 31]. Radiative forcing models are developed to assess the

impact of aerosols. In the present work, we study the direct forcing ∆F by

sulfate aerosols in the analytical form provided by [3],

∆F = −1

2
S0 (1− Ac)T

2 (1−Rs)
2 β̄ψefψe

3QY L

A
(16)

where, S0 is the solar constant, T is the transmittance of the atmospheric

layer above the aerosol, Ac is the fractional cloud cover, Rs is the mean

albedo, β̄ is the fraction of the radiation scattered upward by the aerosol,

ψe is the mass scattering efficiency, fψe is the scaling factor that takes into

account the dependence of ψe to the relative humidity, Q is the global input

flux of anthropogenic sulfur, Y is the fraction of SO2 oxydized to SO2−
4 , L is

the sulfate lifetime in the atmosphere, and A is the area of the Earth [34].

The negative sign in Eq. (16) indicates that the forcing has a cooling effect.

The uncertainties associated with these parameters are taken from [34]

and reported in Tab. 1. The log-normal distribution with geometric mean

µ∗ and geometric standard deviation σ∗ is denoted LN (µ∗, σ∗). If z is a

standard normal variable, that is, z ∼ N (0, 1), by setting x = µ∗ (σ∗)z

yields x ∼ LN (µ∗, σ∗). According to this transformation, the lhs samples

of the uncertain input parameters reported in Tab. 1 have been generated

to carry out the sensitivity analysis of the direct forcing model. Note that

S0 and A are treated as deterministic input parameters as they are known

accurately. Therefore, nine uncertain input variables are considered in this

study (i.e. D = 9). Samples of size N = 1, 000 have been chosen to perform

the analysis as the model is given in an analytical form. This corresponds to

a total of Nt = 2N(9 + 1) = 20, 000 model runs. The aim of the analysis is

to identify i) the irrelevant input variables and ii) possibly the inputs which

do not interact with the other ones.
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4.2. Results

The results are reported in the last column of Tab. 1. They correspond to

the point estimate of the first- and total-order Sobol’ indices at N = 1, 000.

They are associated with their 95% uncertainty range obtained from the

IA estimators’ variances as follows: ±1.96 σ̂IA for ŜIA and ±1.96 τ̂IA for

ŜT
IA

. They show that (T, ψe, Y, L) have first- and total-order Sobol’ indices

higher than 10%. Their estimated uncertainty ranges overlap which means

that it cannot be inferred which parameter is the most important one. The

backscattered fraction β̄ has a total-order effect higher than 10% and a first-

order effect slightly lower. The other variables have smaller Sobol’ indices

but, with the exception of Ac, they cannot be neglected (ŜT
IA

i + 1.96 τ̂IA >

0.05). Actually, the total-order Sobol’ index of each variable is virtually the

double of the first-order effect. Hence, although the direct forcing model of

sulfate aerosols has an apparent simple form, it entails strong interactions

between the variables (
∑
ŜIAi ≃ 0.72) and only one of them can be deemed

irrelevant, namely, Ac.

Fig. 7 depicts the point estimates of the Sobol’ indices versus the sample

size (up to 1, 000). We can notice that the IA estimators require at least lhs

samples of size N = 730 to provide stable results which is quite much for

such a low dimensional model (D = 9). This is due, as previously discussed,

to the presence of strong interactions between the variables and the relatively

high effective dimension of the model (eight out of nine inputs have a total-

order effect greater than 5%). In the denomination of [9], the direct forcing

model of sulfate aerosols can be classified as a Type C model which is a very

difficult case for variance-based global sensitivity analysis (see [9]).
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Input Baseline PDF ŜIA ± 1.96σ̂IA ŜT
IA

± 1.96τ̂IA

S0 (W.m−2) 1366 constant NA NA

A (m2) 5.1 1014 constant NA NA

T 0.76 LN (0.76,1.2) 0.13 ± 0.04 0.23 ± 0.06

1-Ac 0.39 LN (0.39,1.1) 0.009 ± 0.003 0.02 ± 0.006

1-Rs 0.85 LN (0.85,1.1) 0.03 ± 0.02 0.06 ± 0.02

β̄ 0.30 LN (0.30,1.3) 0.07 ± 0.03 0.14 ± 0.04

ψe (m2.g−1) 5.0 LN (5.0,1.4) 0.12 ± 0.04 0.23 ± 0.05

fψe 1.70 LN (1.70,1.2) 0.03 ± 0.02 0.06 ± 0.03

Q (1012 g.yr−1) 71 LN (71,1.15) 0.02 ± 0.01 0.04 ± 0.03

Y 0.5 LN (0.5,1.5) 0.15 ± 0.05 0.27 ± 0.07

L (days) 5.5 LN (5.5,1.5) 0.16 ± 0.06 0.29 ± 0.09

Table 1: Uncertainty assigned to the input parameters of the radiative forcing model

(according to [34]). The last two columns provide the estimated Sobol’ indices at N =

1, 000. See body text for further comments.
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Figure 7: First- and total-order Sobol’ indices estimate versus the sample size N . See

discussion in the body text.
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5. Conclusions

We have studied the properties of two MC estimators of the first- and

total-order Sobol’ indices. Their asymptotic variances have been derived

under the asymptotic normality assumption. The so-called IA estimators

possess interesting features. One of these features is that the estimated first-

order Sobol’ index is always smaller than or equal to the total-order Sobol’

index while forming a set of complementary formulas (unlike the current

estimators mostly in use by practitioners). By analysing their asymptotic

normal variances and by conducting numerical exercises, we have shown that

the new sampling strategy and its associated estimators perform better than

the current sampling strategy originally introduced in [20]. The improvement

is especially significant for the first-order Sobol’ index estimate. Hence, if one

wishes to estimate both the first- and total-order Sobol’ indices by Monte

Carlo integral approximations, we recommend the use of the IA estimators

and the associated sampling design.
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Appendix A Asymptotic normality of ŜSS
u and ŜT

SJ

u

The law of large numbers ensures that the estimator ŜSSu in Eq. (4) is

consistent, that is,

lim
N→∞

ŜSSu = Su

almost surely.

We denote by ŜSSu (N) the estimator for a sample size N . In the sequel,

we follow the steps of [7] to establish that the asymptotic normality of this

estimator is,

lim
N→∞

√
N

(
ŜSSu (N)− Su

)
∼ N

(
0, σ2

SS

)
(17)

with σ2
SS defined by Eq. (10).

Proof. We set,

(αn, βn) =
(
2yAn

(
yAu
n − yBn

)
,
(
yAn − yBn

)2)
.

We also denote the associated random vector,

(α, β) =
(
2yA

(
yAu − yB

)
,
(
yA − yB

)2)
since their statistics do not depend on n.

We then have,

(ᾱ, β̄) = lim
N→∞

1

N

N∑
n=1

(αn, βn) = (2SuV [y] , 2V [y])

and from Eq. (4) we can write,

Su = ϕ(ᾱ, β̄) =
ᾱ

β̄
.
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The so-called Delta method [35] allows for evaluating the variance of the

estimator as follows,

σ2
SS = gΓgt, g = ∇ϕ(ᾱ, β̄)

with

Γ =

 V [α] Cov (α, β)

Cov (α, β) V [β]


we find that,

g(α, β) =
(
1/β,−α/β2

)
⇔ g(ᾱ, β̄) = (1/2V [y] ,−Su/2V [y])

by accounting for the definition of (ᾱ, β̄) above.

Therefore, we find that the variance of this estimator is,

4V [y]2 σ2
SS = V [α]− 2SuCov (α, β) + S2

uV [β]

which can be rearranged as follows,

4V [y]2 σ2
SS = V [α− Suβ] . (18)

Replacing (α, β) by their expression provides the announced result.

Moreover, by noticing that in Eq. (18) α is the numerator of Eq. (4) and

β the denominator, it is straightforward to demonstrate that the variance

of estimator (5) is Eq. (11). This is merely established by setting α =(
yAu − yB

)2, β remaining unchanged.

Appendix B Asymptotic normality of ŜIA
u and ŜT

IA

u

In the same way, it can be established that the asymptotic normality of

ŜIAu is,

lim
N→∞

√
N

(
ŜIAu (N)− Su

)
∼ N

(
0, σ2

IA

)
(19)

with σ2
IA given by Eq. (12).
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Proof. From Eq. (8) we can write,

Su = ϕ(ᾱ, β̄, γ̄) =
ᾱ

β̄ + γ̄

with,

(αn, βn, γn) =
(
2
(
yBu
n − yAn

) (
yBn − yAu

n

)
,
(
yAn − yBn

)2
,
(
yAu
n − yBu

n

)2)
which yields,

(ᾱ, β̄, γ̄) = lim
N→∞

1

N

N∑
n=1

(αn, βn, γn) = (4SuV [y] , 2V [y] , 2V [y]) .

We also denote the associated random vector,

(α, β, γ) =
(
2
(
yBu − yA

) (
yB − yAu

)
,
(
yA − yB

)2
,
(
yAu − yBu

)2)
since their statistics do not depend on n.

The so-called Delta method [35] yields,

σ2
IA = gΓgt, g = ∇ϕ(ᾱ, β̄, γ̄)

with

Γ =


V [α] Cov (α, β) Cov (α, γ)

Cov (α, β) V [β] Cov (β, γ)

Cov (α, γ) Cov (β, γ) V [γ]

 .
We find that,

g(α, β, γ) =
(
1/(β + γ),−α/(β + γ)2,−α/(β + γ)2)

)
⇔ g(ᾱ, β̄, γ̄) = (1/4V [y] ,−Su/4V [y] ,−Su/4V [y])

by accounting for the definition of (ᾱ, β̄, γ̄) above.

Therefore, we find that the variance of the estimator is,

16V [y]2 σ2
IA =V [α]− 2Su [Cov (α, β) + Cov (α, γ)] +

S2
u

V [β] + 2Cov (β, γ) + V [γ]︸ ︷︷ ︸
V[β+γ]


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which can be rearranged as follows,

16V [y]2 σ2
IA = V [α]− 2Cov (α, Su (β + γ)) + V [Su (β + γ)]

to finally give,

σ2
IA =

V [α− Su (β + γ)]

16V [y]2
.

Furthermore, by replacing (α, β, γ) by their expression we find Eq. (12).

By changing (α, β, γ) accordingly we establish the variance of ŜT IA as,

τ 2IA =
V
[(
yA − yBu

)2
+
(
yB − yAu

)2 − STu

((
yA − yB

)2
+
(
yAu − yBu

)2)]
16V [y]2

which is Eq. (13).
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