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Abstract—Classification of transients is a difficult task. In
bioacoustics, almost all studies are still done with human labeling.
In passive acoustic monitoring (PAM), the data to label are made
up from months of continuous recordings with multiple recording
stations and the time required to label everything with human
labeling is longer than the next recording session will take to
produce new data, even with multiple experts. To help lay a
foundation for the emergence of automatic labeling of marine
mammal transients, we built a dataset using weak labels from a
3TB dataset of marine mammal transients of DCLDE 2018. The
DCLDE dataset was made for a click classification challenge.
The new dataset has strong labels and opened a new challenge,
DOCC10, whose baseline is also described in this paper. The
accuracy of 71% of the baseline is already good enough to curate
the large dataset, leaving only some regions of interest still to be
expertised. But this is far from perfect, and there remains space
for future improvement, or challenging alternative techniques. A
smaller version of DOCC10 named DOCC7 is also presented.

Index Terms—deep learning, audio, bioacoustics, challenge,
transients, CNN

I. INTRODUCTION

Passive acoustic monitoring is today a common approach for
biodiversity monitoring. Its efficiency relies on a large dataset,
and thus reliable automatic detection of species. This paper
deals with a particular type of emission, transients from odon-
tocetes, which are short-duration wide-band impulse. We will
present a case study, the CARI’MAM project, and describe
how a reference dataset could be built for such monitoring.
Then we propose a novel approach for click classification
based on an End-to-End CNN model.

The CARI’MAM project aims to create a network of
Marine Protected Area Managers spread across the whole
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Caribbean sea for the conservation of marine mammals. In
order to survey the distribution of marine mammals, a mono-
hydrophone system was to be deployed this spring during 40
days in 20 different locations, but the deployment have been
delayed . The amount of data collected will be too large to
analyse manually. To prepare for this analysis, we created a
first dataset made of clicks from the various species present in
the Caribbean. The proposed dataset contains 10 out of the 30
species that the CARI’MAM project aims to study. This first
corpus will allow us to test the different techniques of semi-
or fully automated analysis as well as train preliminary deep
learning models to solve the classification task. This dataset is
also distributed as a benchmark for click classification in the
DOCC10 (Dyni Odontocete Click Classification) challenge.1

To build a dataset large enough to train neural networks
we gathered data from different sources: i) the 2018 DL-
CDE challenge2, and ii) sperm whale clicks from the 2018
Sphyrna Odyssey expedition [1]. These existing sets con-
tain long sequences of audio with rough annotations of the
temporal regions with clicks. Our goal is to produce a set
with individual clicks associated to a particular species. In
this work we present our methodology to extract the clicks
and label them with the species identity. We also present
a preliminary analysis of the resulting corpus, a data split
useful for benchmarking and a baseline deep learning model to
classify the clicks. Even though our method to extract clicks
and labels may induce some label noise, this is a situation
encountered in a real scenario, thus increasing the ecological
validity of the dataset. Furthermore this permits exploring the
use of techniques specifically dealing with these issues, such
as negative learning [2], [3]. We thus decided to increase
the number of samples, at the cost of a possible increase of
mislabeling.

1https://challengedata.ens.fr/participants/challenges/32/
2http://sabiod.univ-tln.fr/DCLDE/challenge.html
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Fig. 1. Recording locations of the 2018 DCLDE challenge

II. CONSTRUCTION OF THE DOCC10 DATASET

A. 2018 DCLDE challenge

The high-frequency dataset from the 2018 DCLDE chal-
lenge consists of marked encounters with echolocation clicks
of species commonly found along the US Atlantic Coast and
in the Gulf of Mexico:

• Mesoplodon europaeus - Gervais’ beaked whale
• Ziphius cavirostris - Cuvier’s beaked whale
• Mesoplodon bidens - Sowerby’s beaked whale
• Lagenorhynchus acutus - Atlantic white-sided dolphin
• Grampus griseus - Risso’s dolphin
• Globicephala macrorhynchus - Short-finned pilot whale
• Stenella sp. - Stenellid dolphins
• Delphinid type A
• Delphinid type B

The goal for the DCLDE dataset is to identify the times
at which echolocating individuals of a particular species ap-
proached the area covered by the sensors. Analysts examined
the data in search of echolocation clicks and approximated the
start and end times of acoustic encounters. Any period that was
separated from another by five minutes or more was marked
as a separate encounter. Whistle activity was not considered.
Consequently, while the use of whistle information during
echolocation activity is appropriate, reporting a species based
on whistles in the absence of echolocation activity would be
considered a false positive for this classification task.

Data were recorded at different locations in the Western
North Atlantic and Gulf of Mexico as shown in Figure 1. In
the accompanying table I, we list the coordinates and depths of
the various sites. These data were collected between 2011 and

Project Site D
ep

lo
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Preamp Lat N Long W Depth
WAT HZ 1 734 41-03.7 66-21.1 850
WAT OC 1 707 40-15.8 67-59.2 1100
WAT NC 1 740 39-49.9 69-58.9 980
HAT A 4 685 35-20.8 74-50.9 840
WAT BP 1 810 32-06.4 77-05.7 945
JAX D 11 681 30-09.0 79-46.2 800
GofMX DT 8 638 25-32.3 84-37.9 1200

TABLE I
DCLDE RECORDING META DATA

2015, and the time period for each recording can be inferred
directly from the data.

B. Enhancing the weak labels of DCLDE 2018

For each of the 9 species contained in the DCLDE dataset,
the labels are lapse of time indicating the presence of the
corresponding species. The longest interval between two clicks
in a segment can last up to 5 minutes. We consider these labels
as weak, in the sense that they do not reflect precisely the
timestamp of each click. We are interested in the detection and
classification of the individual clicks, therefore annotations at
a much finer temporal scale are required. These are the labels
that we will refer to as strong.

In order to extract strong labels from the weak DCLDE
2018 weak labels, we first retain only energy components in
the frequency ranges of the clicks by applying a bandpass filter.
After this filtering step, we use a Teager-Kaiser (TK) filter [4],
[5] combined with a local maximum extractor having a half
window length of 0.02 s, to obtain the position of all these
clicks. Since most of the maxima will not be actual clicks but
background noise, a median filter is used on the logarithms
of these maxima to evaluate the background noise level. Any
maxima above the noise level plus 0.5 dB are kept. Windows
of 8192 samples are then extracted around these clicks.

We then proceed to label these maxima with the labels from
the DCLDE challenge. If a click is in the interval of two or
more weak labels, we assign it all of the corresponding labels.
We also extract multiple acoustic features to curate the new
DOCC10 dataset from mislabeled clicks. One must note that
in the DCLDE data the clicks of all present species are not
labeled. There may be segments labeled as containing a single
species that contain clicks from other species that are not part
of the DCLDE label set, such as sperm whales. We decided
to use the spectral centroid as the feature to perform the final
filtering, since it is the feature with which the outliers are better
distinguishable from actual clicks. The spectral centroid is the
weighted mean of the frequency, using the Fourier transform
amplitude as weights.

The spectral centroid is however not useful to classify clicks
on its own, as most of the DCLDE species will have clicks
with similar spectral centroids, mainly in the range 30 kHz -



40 kHz. Thus it cannot be used to chose one label for clicks
that have multiple labels.

C. Sphyrna Odyssey expedition data

Many applications, such as the one faced in the CARI’MAM
project, require the detection of species not available in the
DCLDE 2018 dataset. We consider the possibility of mixing
data from different recording experiments into the corpus.
In our case we use data obtained from the 2018 Sphyrna
Odyssey expedition. This set contains clicks from sperm
whales, Physeter Macrocephalus. All the clicks are from a
single sperm whale 3 hour encounter.

The clicks were recorded at 300 kHz by a Cetacean Re-
search C57 hydrophone and JASON sound card from SMIoT
UTLN. The sperm whale clicks were detected using a detec-
tion process similar to the one used to create strong labels
from the DCLDE dataset. We cross-correlated the signal with
one period of a 12.5 kHz sine wave which acts as a band-
pass filter (bandwidth of echolocation clicks is 10–15 kHz [6]).
We then apply a Teager-Kaiser filter [4], [5] and extract the
local maxima in 20 ms windows (twice the largest inter-pulse
interval of 10 ms [7]). For each 1 minute audio file we compute
the mean and standard deviation of the maxima values in
decibels (dB), and only keep samples over three times the
standard deviation [8]. To incorporate them in DOCC10, we
down-sampled the signal at 200 kHz to match the sampling
rate of the DCLDE datset.

Since the data added contain a single unseen species, we
are introducing a bias of high correlation between recording
configuration, environment and the species label. However this
can be seen as a usual approach to composing bioacoustics
datasets for machine learning and will evidence the issues with
such a method in the benchmark.

D. DOCC10 challenge

The new DOCC10 dataset consists of clicks centered in a
window of 8192 samples. This was motivated by the possi-
bility of analysing clicks in a window of 4096 samples while
being able to offset this shorter window. The combination of
DCLDE and Sphyrna Odyssey brought this new dataset to
a total count of 134, 080, that we split into a training set
of 113, 120 clicks and a test set of 20, 960 clicks for the
DOCC10 challenge, which produces an approximately 85-15
split. The test set is balanced with 2096 clicks per class. For
the challenge, the test set was split into a private test set (90%)
and a public test set (10%). This split was done randomly, so
that the classes are no longer perfectly balanced. The training
set is also perfectly balanced with 11, 312 clicks per class.
The class names are detailed in Table II. Figures 2 and 3
show example clicks contained in the DOCC10 dataset for
each class except for the sperm whale.

This challenge is distributed by DYNI LIS UTLN on
sabiod.fr and MADICS CNRS (http://sabiod.fr/pub/docc10)
and similarly in the DATA challenge of ENS (https://
challengedata.ens.fr/challenges/32).

Label Scientific name Common name
Gg Grampus griseus Risso’s dolphin

Gma Globicephala macrorhynchus Short-finned pilot whale
La Lagenorhynchus acutus Atlantic white-sided dolphin
Mb Mesoplodon bidens Sowerby’s beaked whale
Me Mesoplodon europaeus Gervais’ beaked whale
Pm Physeter macrocephalus Sperm whale
Ssp Stenella sp. Stenellid dolphins

UDA Delphinid type A
UDB Delphinid type B

Zc Ziphius cavirostris Cuvier’s beaked whale

TABLE II
CLASS LABELS

III. BASELINE

A large part of machine learning research is done on image
classification [9]–[11]. When working on sounds, the usage of
spectrograms or Mel-frequency cepstral coefficients (MFCC)
allows one to convert these 1D signals into images, and use
the state of the art techniques such as ResNet [12]. Even
if this trick is largely used in signal processing, it has the
disadvantage of having a number of parameters that need to
be tuned beforehand, such as the stride, the window size for
the FFT, which will affect the time/frequency resolution. Not
only choosing the right representation for each specific task
is not obvious, but choosing the wrong parameters for these
hand-crafted features might decrease the performance.

In bioacoustics, bulbul and sparrow [13], are two architec-
tures using the STFT magnitude spectrograms that were made
for the Bird audio detection challenge3 and are nowadays used
as the state of the art since bulbul won the challenge [14], [15].

The first test we did with this architecture did not work,
which is to be expected since clicks are far from the long sig-
nals of bird vocalisations. Instead of using 2D spectrograms,
which are better for the analysis of chirps or stationary signals,
we decided to learn directly from the raw signal, starting with
convolution layers similarly to what is done in the study of
ECG signals [16], [17]. The advantage of a convolution layer
over a dense layer is that it will force the learned filter to
be invariant to a translation of the signal [18]. The multiple
filters of a convolution layer will output multiple features
per time step, which can be considered as a new dimension
with one feature. Two-dimensional convolution can thus be
used on this 2D signal, reducing the amount of parameters
per layer amongst the other advantages of convolutions [19].
This can be done after the first layer, or after multiple 1D
convolution layers [20], [21]. The operation can then be
repeated to perform a 3D convolution. For convenience, we
call this increase of dimension followed by a convolution,
UpDim. This operation could then be repeated to increase
the number of dimensions to 4D and more. However, usual
deep learning libraries such as Tensorflow or PyTorch do not
support convolution on tensors with more than 3 dimension (5
if the batch and feature dimension are taken into account).

3http://machine-listening.eecs.qmul.ac.uk/bird-audio-detection-challenge

http://sabiod.fr/pub/docc10
https://challengedata.ens.fr/challenges/32
https://challengedata.ens.fr/challenges/32
http://machine-listening.eecs.qmul.ac.uk/bird-audio-detection-challenge


Fig. 2. Examples of DCLDE test instances for each class (4096 samples long)

Fig. 3. Zoom on the same examples of DCLDE test instances for each class (256 samples long)

A. Topology of the baseline

We apply the new operator UpDim in a CNN of 12 layers
using the raw audio as an input. Windows of 4096 bins are
extracted randomly from the 8192-wide samples, and random
pink, white and transient noises are added to it, each having an
independent amplitude distribution that is log-uniform (to be

uniform in dB scale). The result is then normalised and given
to the first layer of the CNN. Figure 4 shows samples of this
process, which are the inputs of the CNN for its training. The
topology of the model is given in Table III. The first layers
of this model are alternates of convolution and increase in
dimension using our proposed UpDim operator.

The activation between each layer is a leaky ReLu with



Fig. 4. Examples of DCLDE test instances for each class (4096 samples long)
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Conv-1D N ∗ 4096 5 2 1 16
Conv-2D N ∗ 2048 ∗ 16 5*3 2*1 1 16
Conv-3D N ∗ 512 ∗ 16 ∗ 16 5*3*3 4*1*1 1 16
Conv-3D N ∗ 128 ∗ 16 ∗ 16 ∗ 16 5*3*3 2*1*1 16 32
Conv-3D N ∗ 64 ∗ 16 ∗ 16 ∗ 32 5*3*3 2*2*2 32 64
MaxPool N ∗ 32 ∗ 8 ∗ 8 ∗ 64 5*3*3 4*2*2 64 64
Conv-3D N ∗ 8 ∗ 4 ∗ 4 ∗ 64 5*3*3 2*2*2 64 64
Conv-3D N ∗ 4 ∗ 2 ∗ 2 ∗ 64 5*3*3 2*2*2 64 64
Reshape N ∗ 2 ∗ 1 ∗ 1 ∗ 64

OneByOne N ∗ 2 ∗ 1 ∗ 64 1*1 1*1 64 64
Max

OneByOne N ∗ 1 ∗ 1 ∗ 64 1*1 1*1 64 64
OneByOne N ∗ 1 ∗ 1 ∗ 64 1*1 1*1 64 11

Flatten N ∗ 1 ∗ 1 ∗ 11

TABLE III
TOPOLOGY OF BASELINE MODEL

Note that the 11th class was trained to detect noise and was discarded for
DOCC10 prediction. Dimensions are given in NHWC order.

an alpha of 0.01. The loss is the cross entropy with softmax.
An L2 loss on the weights is added as regularization, with a
factor of 0.0005. The model was trained with Adam [22] with
a learning rate of 0.0005, during 16 epochs, with mini batches
of 32 samples.

IV. RESULTS

As this baseline was originally built for the CARI’MAM
project, it was trained with an additional class, the noise class,
which was trained with the artificial noise cited earlier. Hence
the network topology has 11 classes instead of the 10 of the
dataset. For the evalutation of the full DOCC10 test set, the
logit of the noise class was dropped before the softmax. The
confusion matrix shown in Figure 5 is thus obtained by the
prediction without the noise logit. Note that the confusion
matrix on a test set which includes noise sample is the same
as the one shown in this paper, with all the noise sample
being classified as noise, and one Stenellid dolphin being
classified as noise. The baseline obtains a MAP (mean Average
Precision) of 77.12% and an accuracy of 71.13% on the full
test set. On the public portion of the test set, the MAP is
77.68% and the accuracy is 70.52%.

A. First challenger results

Since the release of the DOCC10 challenge in early 2020,
26 challengers have participated. The current top 10 scores
are reported in Table IV. The full up-to-date leaderboard can
be found on the Challenge Data website (https://challengedata.
ens.fr/participants/challenges/32/ranking/public). The top two
scores were obtained by the same team, who used a semi-
supervised approach on the test set, hence the score gap with
the other participants.

For this challenge, we decided to try a modified version of
a resnet that uses the UpDim principle as shown in Table V.
The activation functions used are leaky ReLu with an alpha of
0.001. Batchnorm was also used after each convolution layer

https://challengedata.ens.fr/participants/challenges/32/ranking/public
https://challengedata.ens.fr/participants/challenges/32/ranking/public


Gg Gma La Mb Me Pm Ssp UDA UDB Zc
Predicted label
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0.29 0.0038 0.35 0 0.00095 0 0.0076 0.34 0.0072 0.0019

0.0024 0.86 0.051 0.0019 0.0019 0.013 0.0057 0.054 0.011 0.0024

0.0029 0 0.68 0.00048 0.0057 0 0 0.31 0.00048 0

0 0 0.0014 0.99 0.011 0 0 0 0 0

0.022 0.0076 0.0024 0.052 0.82 0.0024 0.0029 0.0095 0.037 0.044

0 0 0 0 0 1 0 0 0 0

0.08 0.23 0.27 0.00048 0.00048 0.00048 0.11 0.066 0.24 0

0.03 0 0.11 0 0.015 0 0 0.83 0.014 0

0.044 0.17 0.00095 0 0.015 0 0.017 0 0.71 0.038

0.014 0.027 0.012 0 0.032 0 0.012 0.017 0.066 0.82

0.0
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0.4

0.6

0.8
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Fig. 5. Baseline confusion matrix on the test set

Ranking Date User(s) Public score
1 March 22, 2020 alain.dr 0.8702

2 March 23, 2020
Judy35 & alcodias data

& levilain
0.8659

3 March 28, 2020 TBF 0.8034
4 April 21, 2020 jvasso & RaphaelGin 0.8015
5 March 28, 2020 mclergue 0.7963
6 Feb. 24, 2020 BastienD 0.7953
7 March 19, 2020 trollinou 0.7867
8 March 17, 2020 nattochaduke 0.7858
9 March 3, 2020 BastienD & morhan 0.7772
10 March 18, 2020 LeGrosTroll 0.7677

TABLE IV
TOP 10 SCORES AS OF MAY 1, 2020

except the ones of the skip connections.The loss is the cross
entropy with softmax. An L2 loss on the weights is added
as regularization, with a factor of 0.05. The model was also
trained with Adam using beta’s of (0.8, 0.999) and a epsilon
of 0.0001, with a learning rate of 0.0002. These parameters
were not optimised. A Mixup data augmentation [23] using
an alpha of 0.2 was also used. The confusion matrix of this
experiment with an accuracy of 80.62% can be seen in Fig. 6.

V. DOCC7

An alternate version of the DOCC10 dataset, called
DOCC7, has been generated. It has the same samples, but
restricted to only 7 species, which are Gg, Gma, La, Mb, Me,
Pm, and Zc. The reason for the removal of UDA and UDB
is more straightforward. When the DCLDE dataset was made,
they used clustering methods to detect the various species.
These two labels were then given to dolphin species that could
not be identified. We decided to leave them in the DOCC10
challenge since they still represent clicks that belong to groups
of dolphins, even if they do not represent only one species,

Layer name Input size Kernel St
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Conv-1D N ∗ 4096 ∗ 1 3 1 32
Conv-1D N ∗ 4096 ∗ 32 3 2 32

Skip N ∗ 4096 ∗ 1 1 2 32
Conv-1D N ∗ 2048 ∗ 32 3 2 64
Conv-1D N ∗ 1024 ∗ 64 3 2 128

Skip N ∗ 2048 ∗ 32 1 4 128
Conv-2D N ∗ 1024 ∗ 128 ∗ 1 3*3 1*1 32
Conv-2D N ∗ 1024 ∗ 128 ∗ 32 3*3 2*2 32

Skip N ∗ 1024 ∗ 128 ∗ 1 1*1 2*2 32
Conv-2D N ∗ 512 ∗ 64 ∗ 32 3*3 2*2 64
Conv-2D N ∗ 256 ∗ 32 ∗ 64 3*3 2*2 128

Skip N ∗ 512 ∗ 64 ∗ 32 1*1 4*4 128
Conv-3D N ∗ 128 ∗ 16 ∗ 128 ∗ 1 3*3*3 1*2*1 32
Conv-3D N ∗ 128 ∗ 8 ∗ 128 ∗ 32 3*3*3 2*2*2 64

Skip N ∗ 128 ∗ 8 ∗ 128 ∗ 1 1*1*1 2*4*2 64
Conv-3D N ∗ 64 ∗ 4 ∗ 64 ∗ 64 3*3*3 2*2*2 128
Conv-3D N ∗ 32 ∗ 2 ∗ 32 ∗ 128 3*3*3 2*2*2 256

Skip N ∗ 64 ∗ 8 ∗ 64 ∗ 64 1*1*1 4*4*4 256
Softmax N ∗ 16 ∗ 1 ∗ 16 ∗ 256 16*1*1
MaxPool N ∗ 16 ∗ 1 ∗ 16 ∗ 256 16*1*1
Flatten N ∗ 1 ∗ 1 ∗ 16 ∗ 256

Dense N ∗ 4096 1024
Dense N ∗ 1024 512
Dense N ∗ 512 10

TABLE V
TOPOLOGY OF UPDIMV2 MODEL

Dimensions are given in NHWC order. Horizontal line separate each
residual blocks.

unlike the other labels. These clusters are also useful to train a
classifier that would be used after a click detector, and prevent
it to classify these dolphin clicks as another species. However,
trained network (with various architectures from various labs)
have shown that, unlike the seven other classes in DOCC7, the
trained networks had lower accuracy on the UDA and UDB
labels. We believe that the networks prediction might not be
wrong, meaning that these classes have a higher label noise.
Finally, the Ssp were also removed for two reasons. Firstly,
Stenella is a genus and not a species unlike the other remaining
classes. Secondly, there seems to be a large covariate shift
between the training and test sets for this class. A slew of
reasons could explain this difference between the training and
test set, such as different species, different groups, different
types of clicks, or mislabeling. As seen in Fig. 6, these three
classes represent the majority of the confusions. The modified
resnet V was also tried on DOCC7, and it obtains an accuracy
of 95.09%.

However, this smaller version of the test dataset will not
be released until the end of the challenge, to prevent any
challenger from gaining information on the test set.
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0.64 0 0.071 0 0.00240.000480.0014 0.28 0.0067 0.0014

0.0038 0.99 0 0 0 0.00048 0 0.000480.00048 0

0.0086 0 0.92 0.00048 0 0 0 0.062 0.0043 0.0024

0 0 0.00095 1 0.0029 0 0 0.00048 0 0.00048

0.0081 0.00430.000480.0043 0.94 0.00095 0 0.0043 0.02 0.016

0 0 0 0.00048 0 1 0 0 0 0

0.099 0.28 0 0 0.000480.00048 0.065 0.00048 0.55 0.0024

0.043 0.00095 0.043 0 0.0019 0 0.00048 0.9 0.014 0.00095

0.014 0.2 0.00048 0 0.025 0 0.00048 0 0.72 0.039

0.014 0.025 0.0019 0 0.029 0 0.0076 0.0033 0.029 0.89
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Fig. 6. Confusion matrix on the test set
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0.82 0.00048 0.18 0 0.0057 0 0.00048

0.0062 0.99 0 0 0 0.00048 0

0.0086 0 0.99 0 0 0 0.00095

0.00095 0 0.00095 1 0.0014 0 0

0.014 0.012 0.0014 0.0057 0.95 0.0014 0.018

0.00048 0 0 0 0 1 0

0.019 0.031 0.0019 0 0.036 0 0.91
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Fig. 7. Confusion matrix on the test set of DOCC7

VI. CONCLUSION AND PERSPECTIVES

We created a new DOCC10 dataset with strong labels
for marine mammal transient classification. It has a total of
134,080 clicks for 10 species. Except for part of the test
reserved for the scoring of the DOCC10 challenge that has
been opened with this dataset, the dataset is publicly available.
We also proposed a new neural network model to classify
these marine mammal transients. With the new recording
from the Sphyrna Odyssey 2019-2020 mission, containing
other species, we plan to release an augmented version of
the DOCC10 dataset with more classes, such as Tursiops, or
Globicephala Macrorhynchus. We also plan to include records
from the CARI’MAM project, composed of 20 recording
stations spread over the Caribbean islands. The CARI’MAM
project targeted around 30 species. This augmented dataset
will probably be released in late 2020 or early 2021. The

increase of variety in the acoustic environment and recording
devices should allow networks trained on it to be more robust
to unseen background noise and other details linked to these
changes.
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