Taxonomic revision of the genus Xenogryllus Bolívar, 1890 (Orthoptera, Gryllidae, Eneopterinae, Xenogryllini)

Ranjana Jaiswara, Jiajia Dong, Libin Ma, Haisheng Yin, Tony Robillard

- To cite this version:

Ranjana Jaiswara, Jiajia Dong, Libin Ma, Haisheng Yin, Tony Robillard. Taxonomic revision of the genus Xenogryllus Bolívar, 1890 (Orthoptera, Gryllidae, Eneopterinae, Xenogryllini). Zootaxa, 2019, 4545 (3), pp.301. 10.11646/zootaxa.4545.3.1 . hal-02866078

HAL Id: hal-02866078

https://hal.science/hal-02866078

Submitted on 12 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Taxonomic revision of the genus Xenogryllus (Orthoptera, Gryllidae, Eneopterinae)

Page headlines: Revision of Xenogryllus

Ranjana Jaiswara* (1,2)
Jiajia Dong* $(1,3)$
Libin Ma (3)

Haisheng Yin (4)

Tony Robillard (1)

1_Institut de Systématique, Evolution et Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, 57 rue Cuvier, CP 50, 75231 Paris Cedex 05, France

2_Department of Zoology, Panjab University, Chandigarh, 160014, India
3_College of Life Science, Shaanxi Normal University, 710119, Xi'an, Shaanxi, P.R. China

4_Shanghai Entomological Museum, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China

* Equal contribution

Corresponding author: Tony Robillard, tony.robillard@mnhn.fr

Abstract

Subfamily Eneopterinae has been studied for its diversified acoustic modalities and disjunct distribution. The genus Xenogryllus Bolívar, 1890 is one of the oldest genera of the subfamily, and the first genus of the tribe Xenogryllini. Xenogryllus is known for its low-frequency calling songs and wide distribution across Africa and Asia. It is known from five species and has never been subject to formal taxonomic revision and description of acoustic features of their calling songs is lacking. Therefore, this study consists of a detailed taxonomic revision of all the species. We re-describe or append their taxonomic features using external morphological features and internal genitalic structures. We update the list of Xenogryllus by describing three new species from Africa. In addition, we provide keys to identify species and describe the calling songs of five species.

Introduction

The crickets of the subfamily Eneopterinae have been recently studied for the diversity of their communication signals and related structures (e.g., Robillard \& Desutter-Grandcolas 2004a, b; Robillard et al. 2013; ter Hofstede et al., 2015; Schneider et al., 2017), and for their biogeographical patterns (Nattier et al. 2011; Vicente et al. 2017; Dong et al. 2018). To investigate how this diversity occurred and how the original traits evolved, it is necessary to understand the context in which it happened. The tribe Xenogryllini is the sister group of the most diversified Lebinthini (Vicente et al. 2017), therefore, it serves as the best "control lineage" to understand the evolution of unique features in the Lebinthini. A taxonomic, bioacoustics and phylogenetic focus on the tribe Xenogryllini is thus particularly needed.

The Xenogryllini are currently composed of two genera, Xenogryllus Bolívar, 1890 (six species) and Pseudolebinthus Robillard, 2006 (two species) according to Orthoptera Species File Online data base (Cigliano et al. 2018), but a taxonomic revision was presented as necessary by Robillard (2006). The members of the Xenogryllini produce calling songs with low dominant frequencies (Robillard \& Desutter-Grandcolas 2011). However, their spectral and temporal features were never formally documented.

In the present study, we conduct a complete taxonomic revision of the genus Xenogryllus (Table 1) based on freshly collected specimens or procured from 17 natural history repositories. We evaluate the status, redescribe or amend description of the existing species, describe three new species, Xenogryllus lamottei Robillard n. sp., X. maniema Robillard \& Jaiswara n. sp. and X. mozambicus Robillard n. sp., and provide and a key to species.

Material and methods

Material

The material examined belongs to the collections of 17 institutions (see Appendix S1 for lists of material and abbreviations). Newly collected material comes from several field work expeditions in Mozambique (2009), India $(2015,2017)$ and China (2012, 2014, 2017). Newly collected specimens are deposited in the collections of Zoological Survey of India, Kolkata, Muséum national d'Histoire naturelle, Paris and Shaanxi Normal University, Xi'an. Political districts are mentioned for each specimen within lists of materials, and square brackets are used for additional information not mentioned on specimen labels or for translation of key information present on labels in languages other than English.

Taxonomic description

Description of studied species follows terminologies as proposed by Robillard et al. (2014). Observations of external morphological characters and dissection of male and female genitalia were performed using Leica stereomicroscopes MZ16 (at MNHN, Paris) and M205C (at IISER, Mohali). SEM observations were performed at the Plateforme de Microscopie électronique of the MNHN, using a JEOL-JSM 840 electronic microscope (7kV), after a 60 s gold-coating. Terminologies for male FW venation follow Ragge (1995) and Robillard \& Desutter-Grandcolas (2004b). Male and female genitalia were dissected either from dry preserved or freshly killed specimens. Male genitalia were dissected by making a small slit between paraproct and subgenital plate. Female copulatory papilla was dissected out by cutting the membrane between ovipositor and subgenital plate. Dissected genitalia were cleared in 10% cold KOH solution and preserved in glass vials containing glycerine. Terminologies for genitalia follow Desutter (1987), modified in Desutter-Grandcolas (2003) and Robillard \&

Desutter-Grandcolas (2004a). Imaging of male and female genitalia were made using an AmScope MU1000 digital camera () or with a Canon EOS 40D Digital SLR camera (at MNHN), or with a MC120 HD, Leica, Germany (at IISER, Mohali). To highlight the structural components of male and female genitalia, water solution containing a drop of JBL Punktol was used. To fix orientations and stabilization of genitalia for photography, a clear and viscous Power Plast Hand Sanitizer was used following Su (2016).

Abbreviations used in taxonomic descriptions

General morphology: FI, FII, FIII, fore, median, hind femur; FW, forewing; TI, TII, TIII, fore, median, hind tibia; Tarsomere I/II/III-1: basal segment of fore, median and hind leg tarsomere.

Tegminal venation: 1A-4A, first to fourth anal veins; CuA, anterior cubitus; CuA1, CuA2, ... first, second, ... branches of CuA; CuP, posterior cubitus; M, median vein; R, radial vein; Sc , subcostal vein and its branches; c1-3, first to third cells of C alignment; d1 cell (mirror), first cell(s) of D alignment; $d 2$, second cell of D alignment; e1, first cell of E alignment.

Species abbreviations used in figures: ene, Xenogryllus eneopteroides; lam, Xenogryllus lamottei n. sp.; mai, Xenogryllus maichauensis; man, Xenogryllus maniema n. sp.; mar, Xenogryllus marmoratus; moz, Xenogryllus mozambicus n. sp.; tra, Xenogryllus transversus; ulu, Xenogryllus ululiu.

Abbreviations of Institutions used in the lists of material

AMNH: American Museum of Natural History, New York, USA.
ECNU: East China Normal University, Shanghai, China.
DEI: Deutsches Entomologisches Institut, Müncheberg, Germany.

NHMUK: Natural History Museum (formerly British Museum of Natural History), London, United Kingdom.

IISERM: Indian Institute of Science Education and Research Mohali, Punjab, India.
MNCN: Museo Nacional de Ciencias Naturales, Madrid, Spain.
MNHN: Muséum national d'Histoire naturelle, Paris, France.
MRAC: Musée Royal de l'Afrique Centrale, Tervuren, Belgium.
NHMW: Naturhistorisches Museum, Vienna, Austria.
NWAFU: Entomological Museum, Northwest A \& F University, Yangling, China.
RMNH: National Natuurhistorisch Museum (formerly Rijksmuseum van Natuurlijke Historie), Leiden, The Netherlands.

SNNU: College of Life Sciences, Shaanxi Normal University, Xi'an, China.
SIPPE: Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, China.

RBINS: Royal Belgian Institute of Natural Sciences, Brussels, Belgium.
ZFMK: Zoologisches Forschungsinstitut und Museum Alexander Koenig, Bonn, Germany.

ZIN: Zoological Institute, Russian Academy of Sciences, S. Petersburg, Russia.
ZSI: Zoological Survey of India, Kolkata, India.

Measurements

BL, body length in dorsal view, from fastigium to apex of abdomen; FIIIL, length of FIII; FIIIW, width of FIII; TIIIL, length of TIII; FWL, forewing length; FWW, forewing width (at the level of maximal width at about $1 / 3$ of FWL); HWT, hind wing tail length (part of the hind wings longer than the FWs); las, inner spines on TIII dorsal side above the spurs; Ibs, inner spines on TIII dorsal side between the spurs; Oas, outer spines on TIII dorsal side above the spurs; Obs, outer spines on TIII dorsal side between the spurs; OL, ovipositor length; PronL, pronotum length; PronW, pronotum width; Tallls,
spines of third hind tarsomere, not including the apical spines: Ids, inner dorsal spines; Ods, outer dorsal spines; Ols, outer spines on lateral side of TallI.

Acoustic analyses

We document the temporal and spectral measurements of calling songs of Xenogryllus eneopteroides, X. maichauensis, X. marmoratus, X. mozambicus, X. transversus and X. ululiu. The calling songs of X. lamottei n . sp. and X. maniema n . sp . are unknown.

The basic cricket song terminology follows Ragge \& Reynolds (1998). A basic song unit is called syllable and corresponds to one opening-closure cycle of the male forewings. The calling song of X. transversus was recorded using TASCAM DR07 MKII at 44.1 k -samples/s sampling rate (RJ). Males of the species X. mozambicus n . sp . and X. marmoratus were recorded with a modified Condenser Microphone Capsule CM16 (Avisoft Bioacoustics, Berlin), with a flat frequency response from 3 to 150 kHz (R. Specht pers. comm.), connected to a Tascam HD-P2 digital recorder (96 kHz sampling frequency, 16 bit) in the field, or using Avisoft Triggering Harddisk Recorder version 2.97 and an 8-Pre MOTU sound card at a sampling frequency of 96 k -samples/s (16 bit) (TR). The calling songs of X. maichauensis and X. ululiu were obtained from the Orthoptera Species File Online (Cigliano et al. 2018) database and were recorded by Sigfrid Ingrish with a Sony WM-D3 recorder with a Universum mono microphone.

Acoustic analyses were performed using the computer softwares Avisoft-SASLab Pro version 4.40 (Specht 2009) and Audacity version 2.0.0. Acoustic features were measured either manually on Audacity or using the automatic commands of AvisoftSASLab Pro. Newly recording files are deposited in the Sound Library of the MNHN (inventory numbers mentioned as MNHN-SO*** in lists of material), and in the Orthoptera Sound Library of Indian Institute of Science Education and Research Mohali, Punjab, India.

Systematic part

Orthoptera

Gryllidae

Eneopterinae Saussure, 1874

Xenogryllini Robillard, 2004

Emended diagnosis. Crickets of contrasted sizes, generally light brown; head higher than wide in facial view; fastigium rather wide; eyes of variable sizes, usually ornamented with thin dorso-ventral dark stripes. TI with two tympana, inner one covered by a sclerotized expansion, its membrane visible along a longitudinal slit only; outer tympanum oval in shape, its surface smooth. TIII spurs characteristic of the subfamily, with four pairs of subapical spurs and three apical spurs on each side, the median the longest; subapical spurs rather straight, with curved apex as in Nisitrini. Wings variable within the tribe in males and females. Male. Metanotum with characteristic glandular structures, with a dense bunch of very long setae on scutum anterior edge. Dorsal margin of subgenital plate with baso-lateral glandular structure or dorsal edge with a median invagination. Male FW venation: 2A and 3A veins narrowly coupled at plectrum level; harp veins variable; mirror generally well developed and rounded; bases of CuA2 and CuA3 fused. Male genitalia: Pseudepiphallic lophi welldeveloped, long and sclerotized, usually with an apical hook-like expansion; pseudepiphallus with lateral membranous lobes more or less developed; rami fused with pseudepiphallic sclerite, rather short with convergent apex; ectophallic arc faintly or not sclerotized; endophallic sclerite with long latero-posterior arms connected to ectophallic fold, and short anterior region; endophallic apodeme with wide lateral lamellas. Female ovipositior apex not denticulate, variably pointed.

Distribution. Asia (Japan, China, India, Thailand, Myanmar, Vietnam, Pakistan, Bangladesh) and Sub-Saharan Africa.

Xenogryllus Bolívar, 1890

Type species: Xenogryllus eneopteroides Bolívar, 1890.
Xenogryllus Bolívar, 1890: 232; Kirby 1906: 106; Chopard 1968: 349; 1969: 307; Vasanth 1993: 130; Robillard \& Desutter-Grandcolas 2008: 67; Cigliano et al. 2018 (Orthoptera Species File Online).

Synonym names:
Dindymus Kirby, 1906: 88 - incorrect spelling of Dionymus.
Dionymus Brunner von Wattenwyl, 1893: 213 - Chopard 1968: 349.

Emended diagnosis. Genus of average to large size, differing from Pseudolebinthus by FWs as long or longer than abdomen in both sexes (shorter in Pseudolebinthus), hind wings longer than FWs, forming a short tail posterior to FWs. Eyes small and little prominent, located on face. Face with a whitish or yellowish mask with dark spots. FIII long and thin. Male. Dorsal disc of pronotum forming a wide trapezoid. FWs almost completely overlapping, widened basally, usually forming a characteristic box around abdomen, twice as wide as abdomen. FW cells with thin longitudinal wrinkles, including harp and mirror, absent in Pseudolebinthus. Left and right FWs similar in sclerotization and coloration (asymmetrical in Pseudolebinthus). Male genitalia: Pseudepiphallic sclerite longer than rami; lophi long and sclerotized (shorter in Pseudolebinthus). Lophi with apical hook-like inner expansions. Pseudepiphallic sclerite with lateral membranous lobes. Rami strong and short, their apex convergent and hook-like. Female. Dorsal disc of pronotum almost rectangular. FWs as long as in male, not widened, reaching apex of abdomen. Ovipositor flattened longitudinally as in other
eneopterine genera, its apex rounded and smooth. Female copulatory papilla: long, thin and conical.

Redescription. Genus of average to large size (Figs 1-2), generally light brown to ochre, with a few dark patterns on FWs. Vertex with five wide longitudinal dark bands (Fig. 4), including a wide median one prolonged on fastigium, two lateral bands more or less marked, made of aggregates of brown dots, and two thin stripes posterior to eyes. Eyes rather small, little prominent, ornamented with thin dorso-ventral dark stripes. Fastigium forming a wide rectangular rostrum slightly prominent on face. Scapes yellow with brown patterns, antennae light brown. Face with a whitish mask with dark spots (Fig. 3). Lateral part of head and lateral lobes of pronotum almost homogeneously brown. Legs usually homogeneously brown. TI with two tympana; inner tympanum covered by a sclerotized expansion, its membrane visible along a small longitudinal slit only; outer tympanum oval in shape, its surface smooth. TI with three apical spurs; outer dorsal apical spur absent. TII with four apical spurs (two dorsal and two ventral). FIII long and thin; TIII with four outer and four inner sub-apical spurs.

Male. Dorsal disc of pronotum forming a wide trapezoid FWs almost completely overlapping, widened basally, forming a wide box around abdomen (Fig. 5), with glandular structures on metanotum (Fig. 6). FW cells with thin longitudinal wrinkles. Left and right FWs similar in sclerotization and coloration. FWs light brown, translucent, with the following pattern of black spots on dorsal field: wide black transverse band anterior to transverse part of 1 A , including file angle in some species; four corners or mirror and median area of chords with faint dark markings (Fig. 5). Harp with two complete parallel oblique veins and one incomplete oblique vein between diagonal vein and first complete oblique; harp distal angle concave. Mirror large and rounded, separated in two sub-equal parts by a sinuous accessory vein. Cell d2 crescent-like, thin and underlying mirror. Cell e1 very long and curved, underlying posterior margin of mirror. Apical field well developed, triangular, including 4-5 cell alignments. Lateral field
crossed by numerous parallel projections of Sc. Male genitalia (Fig.7): Pseudepiphallic sclerite longer than rami; pseudepiphallic lophi very long and sclerotized, with apical hook-like inner expansions (Fig. 8). Pseudepiphallic sclerite with lateral membranous lobes. Membrane at bases of pseudepiphallus forming a sclerotized plate; basal margin with a ventral reinforcement. Rami usually strong with convergent hook-like apex; most often with a ventral posterior expansion reaching base of pseudepiphallic membranous lateral lobes. Pseudepiphallic parameres with one strong rectangular ventral lobe covered with scale-like sculptures, with a basal lobe mostly membranous. Ectophallic arc nearly membranous. Ectophallic apodemes usually strong. Ectophallic ventral expansions well developed and sclerotized. Ectophallic fold entirely sclerotized ventrally, its lateral expansions partly fused with lateral arms of endophallic sclerite. Endophallic sclerite forming a flat plate with long latero-posterior arms and a short medio-posterior triangular expansion. Endophallic apodeme with two wide lateral lamellas and no dorsal crest.

Female. Pronotum dorsal disc almost rectangular. FWs as long as in male, reaching apex of abdomen or slightly longer, not widened as in male; light brown with a dark spot of variable size between veins CuP and CuA, near lateral angle, at $1 / 4$ of FW length; with strong longitudinal veins and faint transverse ones. Lateral field crossed by numerous parallel projections of Sc; area between R and Sc most often with a thin dark brown band. Subgenital plate variably indented apically (Fig. 9). Ovipositor flattened longitudinally, its apex rounded and smooth (Fig. 10). Female copulatory papilla: long, thin and conical, its sclerotization variable (Fig. 11).

Distribution. Japan, Southern China, Taiwan, India, Sri Lanka, Thailand, Myanmar, Vietnam, Bangladesh and Sub-Saharan Africa.

Natural history. Xenogryllus species live in open areas, in grassland and savannah. Males sing at night from low bushy vegetation.

Key to species of Xenogryllus

1. Dorsal disc of pronotum carinated laterally. Eyes higher than long in lateral view, occupying half of head height
\qquad

- Dorsal disc of pronotum not carinated laterally. Eyes as long as high in lateral view, restricted to dorsal third of head
\qquad
- Face rounded in lateral view 3

3. Face bulbous in lateral view. Size rather larger. Male genitalia: Pseudepiphallic lophi (Fig. 8F) ended by a small lamella, their inner margin almost straight, membranous \qquad X. mozambicus Robillard n. sp .

- Face less rounded in lateral view. Size rather shorter. Male genitalia: Pseudepiphallic lophi (Fig. 8E) ended by a long conical apex and with a widened inner membranous margin \qquad X. maniema Robillard \& Jaiswara n. sp.

4. Male FWs well widened basally, forming a wide box around
abdomen......................... 5

[^0]5. Size larger (body length > 20 mm). Male genitalia: pseudepiphallic lophi strong, ended by a sharp apex with a dorsal preapical pointed expansion. Female subgenital plate posterior margin clearly indented .6

- Size small (body length <20 mm). Male genitalia: pseudepiphallic lophi very long and thin, ended by a lamella, without dorsal preapical pointed expansion. Female subgenital plate posterior margin not indented (Fig. 9B) X. marmoratus (Haan, 1844)

6. Male genitalia: Pseudepiphallic lophi with pseudepiphallic lophi forming curved elongate hooks widened apically (Fig. 8D). Female subgenital plate posterior margin indentation rounded laterally, as wide as long (Fig. 9C) \qquad X. maichauensis Gorochov, 1992

- Male genitalia: Pseudepiphallic lophi straight apically. Female subgenital plate posterior margin indentation pointed laterally 7

7. Size larger. Male genitalia with larger pseudepiphallic sclerite; lophi proportionally smaller (Fig. 8I), fused only basally, separated by a deep indentation. Female subgenital plate posterior margin indentation very deep, longer than wide (Fig. 9G) X. transversus (Walker, 1869)

- Size smaller. Male genitalia with smaller pseudepiphallic sclerite; lophi fused on half of their length (Fig. 8H). Female subgenital plate posterior margin indentation weak, wider than long (Fig. 9E) . X ululiu Gorochov, 1990

Xenogryllus eneopteroides Bolívar, 1890

(Figs 1A-C; 3A-B; 4A; 5A; 6; 7A-C; 8A-B; 9A; 10A; 11A-B)

Xenogryllus eneopteroides Bolívar, 1890: 232 - Karsch 1893: 204; Kirby 1906: 106; Giglio-Tos 1907: 26; Bolívar 1910: 544; Chopard 1954: 80; Chopard 1968: 349; Chiffaud \& Gillon 1984 (life history); Paris 1994[1993]: 69 (lectotype designated); Robillard \& Desutter-Grandcolas 2004a: 578; 2004b: 273 (morphological phylogeny); 2006: 644; 2008: 67; 2011: 637; Robillard 2006: 673; Robillard et al. 2007: 1267 (song frequency); Nattier et al. 2011: 2201 (molecular phylogeny); Chintauan-Marquier et al. 2016: 62 (molecular phylogeny); Vicente et al. 2017: 2203 (historical biogeography); Cigliano et al. 2018 (Orthoptera Species File Online).

Xenogryllus eucopteroides - Kevan \& Knipper 1961: 368 (misspelling); Chopard 1968: 349.

Type material. Lectotype, §̉, Angola: Duque de Bragança, Bayão (Paris, 1994) [MNCN, examined on photograph].

Additional material examined. Benin: Bas-Dahomey, plateaux de Zagnamado et de Ketou, forêt d'Aqua-queré (saison sèche), 1910 P. Ducorps, 1 q (MNHN). Cameroun: [L.] Conradt, 1才, identified Xenogryllus eneopteroides Bol. (MNHN). Reg[ion] de Kribi, 1925, littoral, saison humide, Dr. Gromier, 1 § (MNHN). Kamerun [Cameroun], Pipindi [Bipindi], Eitel ded. 1q, identified Xenogryllus eneopteroides Bol. (MNHN). 10 km N . of

Yaoundé，E．of Agronomy Station，Nkolbisson，10．vii．1975，N．D．Jago，1§，identified Xenogryllus eneopteroides Bolivar by B．C．Townsend， 1976 （NHMUK 010926525）． Central African Republic：République Centrafricaine， 75 km WNW Mbaiki，N＇Gotto ［Ngoto］，W Lobaye，savane arbustive，7．iv．1995，nuit［night］，L．Desutter－Grandcolas， 1 juvenile，$n^{\circ} 14$ ，molecular sample Xen－CA（MNHN－E0－ENSIF3159）；1 ${ }^{\text {²，}}$ \＃1，sur plant ［on plant］（MNHN）．Democratic Republic of the Congo：Congo， 20 km from L．Tumba （towards Coquilhatville）［Mbandaka］，5．iii．1964，from grassy clearing in forest， $1 \delta^{\hat{} 1}, 1$ ， Tyson Roberts，Brit．Mus．1982－71（NHMUK 010926531，010926572）．Kalembe， 15．ix．1947，Miss．Tanganika， 1 q（RBINS）．Lukafa［Lukafu］，Congo Belge，6．xii．1938， H．J．Brédo，1 ${ }^{\text {q }}$ ，R．Mus．Nat．Belg．I．G． 12.204 （RBINS）．Belgian Congo，Aru，iii．1936，5 ${ }^{\text {h }}$ ， 2中，H．J．Bredo，dry Acacia bush（NHMUK 010926536，010926527，010926578， 010926580，010926539，010926566，010926569）．Niangara，v－vi－1915， $28^{\circ} 0 \mathrm{E} 3^{\circ} 40^{\prime \prime} \mathrm{N}$ ， 1才（AMNH）．Haut－Ituri：Faradje，1才，Blommaert，Musée du Congo，identified Xenogryllus eneopteroides by L．Chopard，R．Det．N 2814 （MRAC）．S．E．Katanga： Ngaye：xi－xii．1931，1ठ̄，R．P．Claquin，Musée du Congo，identified Xenogryllus eneopteroides by L．Chopard，R．Det．N 2814 （MRAC）；1932，1 ${ }^{\text {T，}} 1$ 1 ，R．P．Claquin， Musée du Congo，identified Xenogryllus eneopteroides by L．Chopard，R．Det．DD3509 （MRAC）．Haut－Uele，vi．1925，1\＆，Musée du Congo，identified Xenogryllus eneopteroides by L．Chopard，R．Det．N 2814 （MRAC）．Kibali－lturi：Geti，ii－iv．1937，1ठ， Ch．Scops，Musée du Congo，identified Xenogryllus eneopteroides by L．Chopard，R． Det．B 5318 （MRAC）．Gabon：Plateaux Batéké，piste Ekalla， 30 km W Leconi［Lekoni］， milieu herbeux，19．vi．1994L．Desutter－Grandcolas： 1 juvenile，$n^{\circ} 61$ ，jour［day］，litière ［leaf litter］，molecular sample Xen－GA（MNHN－EO－ENSIF3442）； $1{ }^{\lambda}$ ，$n^{\circ} 3$ ，nuit［night］， sur plante－base tronc［on plant，low on tree trunk］（MNHN）．Bas Ogooué，1 ${ }^{\text {h }}$ ， identified Xenogryllus eneopteroides Bol．by L．Chopard（MNHN）．Ntoum，19．vii．［19］85， A．Pauly rec， $2 \widehat{\delta}, 2$ ， 2 juveniles，lumière（RBINS）．Ghana：Eastern region， Hansowodze， 2 mls from Kade A．R．S．［Agricultural Research Station］，19．vii．1963，I．K． Bacheampong，4 ${ }^{\wedge}$（NHMUK 010926524，010926567，010926528，010926571）．

Ghana, Togoland plateau, grassy, summit above [Nkonya] Wurupong, 23.xii.1959, N.D. Jago, 1 §, Brit. Mus. 1965-474 (NHMUK 010926535). Eastern region, Kade Agr. Res. Stn [Agricultural Research Station], 11.vii.1963, I. K. Bacheampong, 2̌, Brit. Mus. 1965-474 (NHMUK 010926526, 010926538). Transvolta, Togoland, Amedzofe: 3.v.1959, (montane grass), 1q, N.D. Jago, Brit. Mus. 1965-474 (NHMUK 010926529); 25.v.[19]59, N.D. Jago, Brit. Mus. 1965-474 (NHMUK 010926579). Western Reg.[ion] mls E of Elmina, $1^{\circ} 20 \mathrm{~W} 5^{\circ} 05.5 \mathrm{~N}$, xii. $1960,1 \widehat{\delta}^{\lambda}, 1$, , N.D. Jago, identified Xenogryllus eneopteroides by P.C. Tinning, 1966, Brit. Mus. 1965-474 (NHMUK 010926509, 010926511). T.v.T [Trans-Volta Togo], Ho-Hohoe rd. 10 miles from Volta bridge, iii. 1960, N.D. Jago, Brit. Mus. 1965-474 (NHMUK 010926553). Western Reg. Asankragua-Enchi rd., Tano R. Ferry, 24.ix.1962, 1 ${ }^{\lambda}$, N.D. Jago, Brit. Mus. 1965-474 (NHMUK 010926510). Guinea: Kaoulenta [Kéoulenta], [Mount] Nimba (Guinée), iivi.[19]42, M. Lamotte, 1 ${ }^{\text {§ }}, 1$, q $^{2} 2$ juveniles (MNHN). Nimba (Guinée), [Mount] Pierre Richaud, 900 m, M. Lamotte ii-iv.[19]42, 1q, identified Xenogryllus eneopteroides Bol. by L. Chopard; 1 ¢ (MNHN). Nimba (Guinée), Lamotte, Amiet, Vanderplaetsen, xii.56v.57: Ziéla, 17.ii.[19]57, 1 juvenile; Ziéla, 20.iv.[19]57, 1 juvenile; sav. [savannah] entre Ziéla et Gbakbré, 9.xii.1956, 1 juvenile; Zgpo. [Zouguépo], 900 m , androp, 18.iv.[1957], 2 \uparrow; sav. [savannah] Ziéla, 3.ii.[19]57, 1 juvenile; sav. [savannah] Ziéla, 2025.xii.[19]56, 4 juveniles; sav. [savannah] Kéoulenta, 5.xii.[19]56, 2 juveniles; forêt Ziéla, 19.ii.[19]57, 1 juvenile; 1 juvenile, A.V. $n^{\circ} 23$, identified Xenogryllus eneopteroides Bol. larva by L. Chopard; 1 juvenile, A.V. $n^{\circ} 38$; 1 juvenile, 87CD; 14.iii.[19]57, 1 juvenile, fge $\mathrm{n}^{\circ} 47$ (MNHN). Mt. Nimba, Mt. Leclerc [Mount Jean Charles Leclerc], 1500 m, 23.iii.1991. M. Lamotte, nº319, 1 q (MNHN); 1q, molecular sample X22-XenGU (MNHN-EO-ENSIF1494). Nimba (Guinée), M. Lamotte, xii.56-v.57, 29.x.[1956], 1 ${ }^{\text {h, }}$, herbes A2 Ziela, identified Xenogryllus eneopteroides Bol. by R. Roy, 1959 (MNHN). Guinée Française, Diéké [Diecke], P. Chabamaud, 1920, 1q, identified Xenogryllus eneopteroides Bol. by L. Chopard (MNHN). Ivory Coast: Lamto (Toumodi), Coll.

morpho；25－31．xi．［19］62，1q；15－20．viii．［19］62， 1 juvenile；iv．［19］62， 1 ¢；7．xi．［19］62， 1 ¢ 20．xi．［19］62， $1 Q$ ；vi．［19］62， $1 Q$ ；4．vii．［19］62， $1 Q$ ，mare sav．inondée［inundated savannah］（MNHN）．Forêt à 15 km de Lamto，10．ix．1968，C．Girard， 1 q， 1 juvenile （MNHN）．Forêt de Yape， $1 \circlearrowleft^{\star}(\mathrm{MNHN})$. Toumodi，xii．1930－iv．1931，Ch．Alluaud \＆P．A． Chapuis， 1 §（MNHN）．Danané，i．1939， 1 ¢（MNHN）．Lamto（Toumodi），C．Girard： 12．ii．1968，savane［savannah］，lisière forêt galerie［hedge of gallery forest］ 6 ， $3 \uparrow, 5$ juveniles；1§，identified Xenogryllus eneopteroides Bol．by R．Roy，1974；12．iii．1968， lisière，forêt，savane， 1^{λ} ，molecular sample XenCI（MNHN－EO－ENSIF1481）；8 ${ }^{\lambda}, 2$ ， 7 juveniles；1 ${ }^{\lambda}$ ，photos MEB［SEM photos］（MNHN－EO－ENSIF1518）；15－30．vii．1968， savane［savannah］，lisière forêt galerie［hedge of gallery forest］ $1 \uparrow, 2 q, 3$ juveniles；27－ 28．ii．1968， 2 ， 1 juvenile，à la lumière；10－20．iv．1968， $1 \delta^{\lambda}$ ，à la lumière（MNHN）．Lamto （Toumodi），Paul Planquette：1q，PNB 18； 1 juvenile，PNB 13B；15．i．［19］64， 1 q，PNB 64 （MNHN）．Lamto（Toumodi），30．vi．［19］62，Coll．E．N．S．Paris，Lamotte et al．1ठ，identified Xenogryllus eneopteroides by L．Chopard（MNHN）．Nimba［Mount］：Lamotte，1946，Z4， 1中，identified Xenogryllus eneopteroides by R．Roy， 1967 （MNHN）．Lamto，1963，1§ （MNHN）．Assinie，3295－85，Chaper， 1 §（MNHN）．Réserve du Banco［Banco national park］，R．Paulian \＆G．Delamare， 2 §， $2 q, 2$ juveniles（MNHN）．Bouaké（C．I．）， 22．v．［19］62，coll．E．N．S．Paris，Lamotte et collab．， 1 §（MNHN）．Taï，18．viii．1978，G． Couturier， 19 （MNHN）．Lamto，1962，P．Le Gall， $2{ }^{\top}, 2 q$（MNHN）．Kenya：CRS ［Catholic Relief Service］Tebere，0039．5S 3723E，10．i．［19］72，I．A．D．R．72／58， 1 Q，Brit． Mus．1982－71（NHMUK 010926573）．Nigeria：Lagos，Ikoyi，viii．1951，L．Bala，1才， identified Xeneogryllus eneopteroides by L．Chopard（MNHN）．U．C．［University College］ Ibadan，5．ix．1952，Tephrosia，leaf，Teph－66（MNHN）coll．G．H．Caswell， $1 \not+(\mathrm{MNHN})$ ． Ibadan，6．vi．［19］23，1才， 1605 （NHMUK 010926581）．Calabar，Nigeria，10．iv．［18］82， 10．30 A．M．，W．edge of［？t］Kwa swamp，E．edge of UNICAL staff quarters；about 50 cm up on base of tangle of turns e．g．Clitonia ？rubiginosa，notes 72,1 ，C．I．E．coll A． 15676 Pres by Comm Inst Ent B．M．1985－1（NHMUK 010926537）．Replublic of Congo：Sibiti，xi－1963，mission A．Descarpentries et A．Villiers 1963－1964，2才， 1 q
(MNHN). Baie de Lagoa, envoi H. Deyrolle, 1 ((MNHN). Mayumbe, Luki, L. Tiebers [?],
 1963, 1 q (MNHN). Ile [island] M'Bamou, 26.vii. 1968, Fidèle, 1 q (MNHN). Boma, Sundi, P. Rolin, 1 (RBINS). Banana, F. Busschodts, 4 (RBINS). Sierra Leone: Piste Bandankoro, 29.v.1963, savane de plaine ayant brûlé [burnt lowland savannah], mission ENS-IFAN aux Monts Loma, 1 , identified Xenogryllus eneopteroides by R. Roy, 1992; 2§, 3 ¢ (MNHN). Piste Keimadugu, savane [savannah], 520 m, 29.v.1963, mission ENS-IFAN aux Monts Loma, 2§̂, 1 ¢ (MNHN). Firawa, savane [savannah], 1.vi.1963, mission ENS-IFAN aux Monts Loma, $1^{\text {T, }} 1$ (1 (MNHN). Njala, E. Hargreaves: 21.vii.[19]32, B.M. 1938-149, identified X. eneopteroides Bol. by L. Chopard, pres Imp. Inst. Ent. Brit. Mus. 1965-474 (NHMUK 010926552); x.1936, 1 ${ }^{\text {T, }}$, pres Imp. Inst. Ent. Brit. Mus. 1965-474, 1 ${ }^{\text {T}}$, identified Xenogryllus eneopteroides by B. Uvarov (NHMUK 010926534); 23.v.[19]25, 1^{λ}, identified X. eneopteroides Bol. by L. Chopard, B. M. 1938-149 (NHMUK 010926530); xi.1935, 1 ${ }^{\text {T, }}$, pres Imp. Inst. Ent. Brit. Mus. 1936-252, 13², identified Xenogryllus eneopteroides by B. Uvarov (NHMUK 010926576). Uganda: Entebbe, 20.xi.1970, W.J. Bailey, B.M.1977-246, identified Xenogryllus eneopteroides by B. C. Townsend, 1978 (NHMUK 010926570). Kisaru, 19.vii.1983, 1 §, H.B. Johnson, at light (NHMUK 010926551). Zambia: Lusaka, about fifty metres from the Great East Road in Chalimbana, Chongwe Distr., 19.xii.2013, William van Niekerk, 1^{\top}, identified X. eneopteroides by William van Niekerk [online photograph]. Kapiri, 13.xi.1913, 2q, L. Charliers, Musée du Congo, identified Xenogryllus eneopteroides by L. Chopard, R. Det. N 2814 (MRAC).

Type locality. Angola, Duque de Bragança, Bayão (=Kalandula).
Distribution. Sub-Saharan Africa: Angola, Benin, Cameroun, Central African Republic, Democratic Republic of the Congo, Gabon, Ivory Coast, Kenya (one large female specimen with unclear identification), Nigeria, Republic of Congo, Sierra Leone, Uganda, Zambia.

Emended diagnosis. Species of average size, close to X. mozambicus n . sp . and X. maniema n . sp ., from which it differs by face almost flat in lateral view (more rounded in other species), shorter male FWs (short apical field), and shape of lophi in male genitalia. Differing from X. lamottei n . sp . and Asian species by following characters: well-carinated lateral angles of dorsal disc of pronotum (also carinated in X. mozambicus and X. maniema), very short ovipositor and male genitalia.

Redescription. Species of average size (Fig. 1A-C), coloration gray brown little contrasted. Eyes large, lateral, occupying almost half of head height in lateral view (Fig. 3A-B). Face almost flat in lateral view, with typical whitish mask underlined by a black line below eyes and on mandibles. Pronotum dorsal disc strongly carinated laterally (Fig. 3B), coloration dark brown or brown, most often with a median dark brown band extended laterally near anterior margin, forming a T shape; lateral lobes almost homogeneously dark brown. First article of antennae dark brown.

Male. FWs very wide, dark coloration anterior to 1A including angle of 1 A (Fig. 5A). File with 658 stridulatory teeth $(\mathrm{n}=2)$ on transverse part of 1 A. Harp longer than wide. Cell c1 narrowed posteriorly, its fusion with cell b1 slightly shorter than its individualised part. Cell c2 large, d2 long and narrow. Mirror large, wider than long and little rounded, its inner angle forming an angle. Apical field short, wider than long, including four or five cell alignments.

Male genitalia (Figs 7A-C, 8A-B). Pseudepiphallic lophi as long as rest of pseudepiphallic sclerite, forming a long rectangle, sometimes slightly widened preapically; lophi with a narrow membranous inner margin setose basally (Fig. 8A-B); their bases fused until mid-length; apex pointed and divergent, ended by a thin lamella without hook-like inner dorsal expansion (in dorsal view, anterior base of lamella suggests that lamella may partly correspond to modified inner dorsal expansion of other species); ventral blade of lophi without longitudinal wrinkles, but with a strong ventral transverse carina, as in X. mozambicus n. sp. Pseudepiphallic parameres with
a strong rectangular ventral lobe and a basal membranous lobe. Rami strong, their apex forming wide convergent hooks. Ectophallic apodemes strong, not lamellate. Ectophallic lateral expansions, lateral sclerites of ectophallic fold and endophallic sclerite partly fused, forming a wide ventral sclerotized plate, trifid apically; endophallic apodemes made of wide lateral lamellas and a narrow dorsal crest.

Female (Fig. 1C). Dorsal disc of pronotum almost rectangular, its posterior margin slightly bisinuate. FWs dorsal field with $7-10$ longitudinal veins ($m=8, n=10$). Subgenital plate with a shallow apical indentation (Fig. 9A). Ovipositor (Fig. 10A) very short, about one third of FIII length.

Female genitalia. Copulatory papilla (Fig. 11A-B) conical and narrow, its apex rounded; well-sclerotized except base and apex.

Life history traits. According to Chiffaud \& Gillon (1984), X. eneopteroides is found in Ivory Coast at the end of the dry season, in parts of savannah protected from fires. Their study revealed that the species feeds only on leaves and flowers of dicotyledones which are specific to savannah.

Calling song. According to the sonogram showed in Desutter (1983), analysed by Robillard \& Desutter-Grandcolas (2004a, 2011), the calling song of X. eneopteroides is a short echeme made of five long syllables (syllable duration $=65 \mathrm{~ms}$, period $=106.5$ ms . Echeme duration $=611 \mathrm{~ms}$, echeme period $=1062 \mathrm{~ms}$. The dominant frequency is low $(3.6 \mathrm{kHz})$ and corresponds to the first peak of the spectrum.

Measurements. See Table 2.

Taxonomic discussion. The material examined reveals numerous slight differences in male genitalia (Fig. 8A-B) and size along the wide geographic distribution of the species. In particular, specimens from Congo differ from the material from the western coast of Africa. However, these differences are not sufficiently clear or are based on
too few individuals to delimit different species yet. More information and sampling will be necessary to improve the study Xenogryllus in Africa.

Xenogryllus carmichaeli (Chopard, 1928)

Dionymus carmichaeli Chopard, 1928: 30.
Xenogryllus carmichaeli - Chopard 1968: 350; Yin \& Liu 1995; Cigliano et al. 2018 (Orthoptera Species File Online). Madasumma carmichaeli - Chopard 1969: 311. Nomen dubium - this study.

Taxonomic discussion. According to the description of Chopard (1928), the female of X. carmichaeli is similar to X. marmoratus in terms of shape, size and coloration. However, the male specimen described by Chopard possesses five oblique veins, which is not consistent with any other existing species of Xenogryllus, as noted by Chopard himself. It is probable that the type series was heterogeneous, the male belonging to another subfamily than Eneopterinae. The male type may belong to the genus Madasumma, according the subsequent identification of the species by Chopard (1969), while the female could belong to X. marmoratus. The type locality, "India, Darjeeling District, alt. 100-300 ft, West Bengal", could fit with X. marmoratus, but also X. transversus or X. maichauensis. Given these problems and the fact that the type series is missing in ZSI, Kolkata (RJ, pers. obs.), we consider this species as nomen dubium.

Xenogryllus lamottei Robillard n. sp.

(Figs 1H-I; 3C-D; 4B; 5B; 7D-E; 8C)

Type material. Holotype, ${ }^{\text {T, }}$, Guinea: Simandou [Mount], Guinée [Guinea], Cpt.[camp] Fon Yenfédou, Ifan [Institut Français d'Afrique Noire], ix.1951, [M.] Lamotte (MNHN-EO-ENSIF10685).

Type locality: Mount Simandou, Guinea.
Distribution. Species only known from the type locality in Guinea.
Etymology. The species is dedicated to the great French entomologist Marcel Lamotte who collected the type specimen.

Diagnosis. Species of average size, characterized by male FWs not widened as in other species of the genus; general morphology differing from the other African species (X. eneopteroides, X. mozambicus n . sp. and X. maniema n . sp .) and more similar to the Asian species (X. marmoratus, X. transversus, X. ululiu and X. maichauensis) by the following characters: pronotum not carinated laterally (Fig. 3D); wrinkles on surface of male FWs weak; eyes small, restricted to dorsal quarter of head (reaching $1 / 2$ of head in other African species); face almost flat in lateral view; male genitalia with short pseudepiphallic lophi (Fig. 8C), close to that of X. ululiu (Fig. 8H), their apex short and bifid, with a pre-apical dorsal hook-like expansion (absent in other African species); ectophallic fold and latero-ventral expansions shorter than in other species.

Description. In addition to the characters of the genus, species of average size (Fig. $1 \mathrm{H}-\mathrm{I}$), coloration gray brown little contrasted. Fastigium longer than wide, thinner than in other species (Fig.4B), slightly widened apically. Face almost flat in lateral view (Fig. 3D), with typical pale mask with black spots underlined by a thick black line below eyes (Fig. 3C); mandibles dark brown; clypeus and labrum mottled with yellow and dark brown; maxillary palpi dark brown. Scapes and first article of antennae dark brown,
flagellum light brown. Eyes rounded and restricted to posterior quarter of head in lateral view. Pronotum dorsal disc not carinated laterally (Fig. 3D), brown, with lateral margins underlined by a yellow line, with a median dark brown band, ticker posteriorly; posterior margin almost straight. FIII narrow, ended by a long linear region. Abdomen slightly shorter than FWs. Cerci dark brown.

Male. FWs as wide as abdomen (Fig. 5B), not widened as in other species of the genus; light brown, translucent, with weak wrinkles on surface. Dark coloration anterior to 1 A not including angle of file. CuP visible posteriorly until angle of 1 A . Angle of 1 A straight. Harp wide, with two straight parallel oblique veins and a partial one, straight and reaching harp mid-length. Cell c1 not narrowed posteriorly. Mirror almost rounded, its inner limit forming a curve; underlined posteriorly by cells e1 and d2 fused together. Apical field forming a narrow triangle made of four cell alignments (E-H). CuA thin and brown; M thick, whitish; R and Sc almost fused, brown; M-R area dark mostly brown, its dorsal margin whitish; lateral field translucent brown crossed by 22 projections of Sc.

Male genitalia (Fig. 7D-E). Pseudepiphallic lophi forming a short rectangle posterior to wide base of pseudepiphallic sclerite; lophi (Fig. 8C) with a narrow membranous inner margin, setose basally; apex with a black hook-like inner dorsal expansion; sclerotized ventral blades of lophi with longitudinal wrinkles as in X. transversus and X. ululiu, but without strong ventral carina as in X. eneopteroides and X. mozambicus. Pseudepiphallic lateral membranous lobes small. Pseudephiphallic basal margin reinforcement weak. Rami thin and straight, their apex narrowed but not hooked innerly. Pseudepiphallic parameres ventral plate r-shaped,. Ectophallic arc not sclerotized. Ectophallic apodemes thin and divergent. Ectophallic fold and latero-dorsal expansions short. Endophallic sclerite and apodeme little differentiated.

Female. Unknown.
Life history traits. Unknown.

Calling song．Unknown．
Measurements．See Table 3.

Xenogryllus maichauensis Gorochov， 1992

（Figs 1L－O；3E－F；4C；5C；7L－N；8D；9C；10B；11E－G；12A；13）

Xenogryllus maichauensis Gorochov，1992： 9 －Kim \＆Pham 2014：60；Cigliano et al． 2018 （Orthoptera Species File Online）．

Xenogryllus transversus－Yin \＆Liu 1995：96；Robillard et al．2007： 1267 （song frequency，wrong identification）；He 2018：516；Cigliano et al． 2018 （Orthoptera Species File Online）（wrong identification）．

Type material．Holotype，ô，Vietnam：Mai Châu（ZIN）［examined through photographs sent by A．Gorochov］．

Additional material examined．China：Yunnan，Mengla，E101³3＇N21²8＇，3．ix．1991， Zuyao Liu，Tianqi Wang \＆Heisheng Yin： 1 万（14062446）， 2 ㅇ（ 14062547,14062622 ） （SIPPE）．Mengla Distr．，12－23．x．2014，coll．Zhang Tao，14才，2q，（SNNU）．San Chahe，
 （14062620）（SIPPE）．Xi Shuang Ban Na， $580 \mathrm{~m}, 10 . i x .1993$ ，Xinyue Chen， 33^{λ} ， （14064963，14064964，14064966）；2§，7．ix． 1993 （14064968，no number）；1 ${ }^{\lambda}$ ， 5．ix． 1993 （14064967）（SIPPE）．Monglun Xi Shuang Ban Na，E101¹5＇N2156＇， 5．ix．1993，Longlong Yang， 2 q，（14064969，14064971）；7．ix．1993，Xinyae Chen， 1 q （14064970）（SIPPE）．Jinhong，E101¹5＇N2156 ${ }^{\circ}$ ，Zuyao Liu，Tianqi Wang，Heisheng Yin：6．ix．1991，3才（14062619，14062546，14062448）；8．ix．1991，1才（14062447） （SIPPE）．Jinghong，［N220＇6．97＂ $100^{\circ} 46^{\prime} 25.07$＂E］，9．ix．1991，Zuyao Liu，Tianqi Wang，

Heisheng Yin， 1 q（14062449）（SIPPE）．Mohan Vill．， 950 m，3－ix．2005，coll．Xue Guoxi， $2 \widehat{ }^{\wedge}$（NWAFU）．Guangdong，Shen zhen，［2233＇59．69＂N， $\left.114^{\circ} 2^{\prime} 25.53^{\prime \prime} \mathrm{E}\right]$ ，9．x．2012， Zhang Tao［online photograph］．Thailand：Tak，Doi Musoe， 700 m ，Agric．Res．Stn at night，9．x．1990，S．Ingrish：1古，1才，molecular sample XtrTh，identified Xenogryllus transversus by S．Ingrish（ZFMK）．Mae Salid，Monkrathing， $17^{\circ} 30^{\prime} \mathrm{N}, 98^{\circ} 5{ }^{\prime} \mathrm{E}, 700 \mathrm{~m}$ ， 19．ix．1989－21．ix．1989，S．Ingrisch，1才，mountain forest and agricultural land［day collecting and night collecting following stridulation，Stridulation recorded by S．Ingrisch 0295DXEN．WAV［old ID CIGxentraSW03］，identified Xenogryllus transversus by S． Ingrish（ZFMK）．Umphang，1－6 km S．， $15^{\circ} 59^{\prime} \mathrm{N}, 98^{\circ} 50^{\prime} \mathrm{E}, 16 . x .1991$ ，S．Ingrisch， $1 \mathrm{~J}^{\text {T，}}$ bamboo forest，along road and trails，stridulation recorded by S．Ingrisch 0510XENO．WAV，identified Xenogryllus transversus by S．Ingrish（ZFMK）．Chiang Mai，Roadside bw Samoeng and Mae Rim， $18^{\circ} 50^{\prime} \mathrm{N}, 99^{\circ} 0^{\prime}, 1^{1}$ ，11．x．1991， S. Ingrisch，1才，stridulation recorded by S．Ingrisch 0502XENO．WAV，［old ID CIGxentraSW05］，roadside at night，identified Xenogryllus transversus by S．Ingrish （ZFMK）．Petchabun，Nam Nao， $16^{\circ} 47^{\prime} \mathrm{N}, 101^{\circ} 27^{\prime} \mathrm{O}, 1000 \mathrm{~m}$ ，S．Ingrisch；13．ix．1989－ 14．ix．1989，S．Ingrisch，1 ${ }^{\text {® }}$ ，stridulation recorded by S．Ingrisch 0286XENO．WAV［old ID CIGxentraSW01］，mixed Oak－Pine forest，grassy undergrowth，Bamboo thicket［day collecting and night collecting following stridulation］，identified Xenogryllus transversus by S．Ingrish（ZFMK）．

Type locality．Mai Châu，Vietnam．
Distribution．Southern China，Northern Vietnam and Northern Thailand．
Emended diagnosis．Species of large size，similar in size，venation and coloration to X ． transversus，from which it differs mostly by male genitalia，with pseudepiphallic lophi forming curved elongate hooks widened apically（Fig．8D），while lophi are straight in X ． transversus（Fig．8I）．

Redescription．In addition to the characters of the genus，X ．maichauensis has a large size and a light brown or golden coloration（Fig．1L－O）．Fastigium slightly widened
apically as in X. ululiu and X. transversus (Fig. 4C). Eyes rather small, located on face, restricted to the dorsal third of head in lateral view (Fig. 3E-F). Lateral angle of dorsal disc of pronotum not carinated, with a thin yellow band underlined by a thin black line anteriorly. Hind wings tail gray brown, twice as long a pronotum.

Male. Pronotum dorsal disc more rectangular than in X. transversus, with a wide median black longitudinal band, its posterior margin slightly bisinuate. FW venation (Fig. 5C): 1A forming a straight angle, with 299 stridulatory teeth ($\mathrm{n}=1$) located on transverse part of 1A. Dark coloration anterior to 1A not including angle of file. Harp wide. Mirror large, well-rounded, its inner limit curved. Apical field forming a triangle longer than wide, with six cell alignments.

Male genitalia (Fig. 7L-N). Characteristic Y-shaped pseudepiphallic lophi forming curved elongate hooks, widened apically, with a sharp dorsal preapical expansion (Fig. 8D). Rami strong, convergent apically, with a ventral posterior expansion reaching base of pseudepiphallic lateral membranous lobes. Ectophallic apodemes long and thin. Ectophallic fold and endophallic sclerite almost fused, forming a wide sclerotized plate, trifurcate posteriorly; endophallic apodemes made of wide lateral lamellas.

Female. Head slightly wider than pronotum, with strong jaws visible from dorsal view (Fig. $1 \mathrm{~N}-\mathrm{O}$). Dorsal disc of pronotum almost rectangular, its posterior margin slightly bisinuate. FWs light brown, anterior dark spot larger than in X. ululiu, X. transversus and X. marmoratus. Dorsal field with nine strong longitudinal veins. Subgenital plate with a V-shaped apical indentation with rounded edges (Fig. 9C). Ovipositor (Fig. 10B) as long as FIII.

Female genitalia. Copulatory papilla (Fig. 11E-F) conical, its apex rounded and sclerotized.

Life history traits. In Vietnam, the type specimens were found in forest, on leaves of bushes near a stream (A. Gorochov, pers. comm.). According to the information
associated with the recordings made by S. Ingrish in Thailand (available on the Orthoptera Species Files online under the name X. transversus (Cigliano et al. 2018), the species was found in mixed oak-pine forest on grassy undergrowth with bamboo thicket. Males call at night on vegetation.

Calling song. (Figs 12A, 13) X. maichauensis was recorded in Thailand by S. Ingrish (Cigliano et al. 2018). At $24.5^{\circ} \mathrm{C}$, the calling song is made of short echemes quickly repeated and composed of $2-4$ long syllables ($m=3.02 \pm 0.63$), lasting for 179.5 ± 41.6 ms , with a period of $502 \pm 42 \mathrm{~ms}$. Within echemes, the first syllable has a lower amplitude than the next ones. Syllables are rather long (duration $=46.5 \pm 1.7 \mathrm{~ms}$) with a syllable period of $65.1 \pm 1.7 \mathrm{~ms}$ (syllable duty cycle $=71 \%$). The frequency spectrum shows a dominant frequency at $4.91 \pm 0.07 \mathrm{kHz}$ followed by two powerful harmonics.

Measurements. See Table 4.

Taxonomic discussion. The male genitalia of the specimen from Thailand shows slightly different pseudepiphallic lophi compared to the holotype from Vietnam and examined males from China, with more straight apical branches and less globular apex (Fig. 7L-M). Such differences are however based on too few observations to characterise a new species.

Xenogryllus maniema Robillard \& Jaiswara n. sp.

(Figs 1J-K; 3G-H; 4D; 5D; 7F-G; 8E)

Type material. Holotype, ${ }^{\lambda}$, Democratic Republic of the Congo: Lokandu, île [island] Biawa, vii.1939, Lt. Vissers, coll. Mus. Congo (MNHN-EO-ENSIF10686). Paratypes $\left(5 \delta^{\lambda}\right)$, Democratic Republic of the Congo: same information as holotype; $3 \delta^{\text {h }}$, identified Xenogryllus eneopteroides by L. chopard, R. Det. B. 5318 (MRAC). Katanga: Kafakumba, ix. 1924, 1 §, G. F. Overlaet, coll. Musée du Congo, identified Xenogryllus
eneopteroides by L. Chopard, R. Det. N 2814 (MRAC). Congo Belge, Musosa [Mususa], ix.1939, H. J. Brédo, 1才, I.G.13.212 (RBINS).

Type locality. Democratic Republic of the Congo, Lokandu, island Biawa.

Distribution. Species only known from forested areas in the eastern part of the Democratic Republic of the Congo.

Etymology. The species is named after the type locality. Maniema, which means "jungle" or "rain forest" in Kibangubangu dialect, is one of 26 provinces of the Democratic Republic of the Congo.

Diagnosis. Species of average size, closer to X. mozambicus n. sp., from which it differs by less rounded face in lateral view (Fig. 3H), pseudepiphallic lophi (Fig. 8E) ended by a long conical apex and with a widened inner membranous margin resembling that of in X. maichauensis. From X. eneopteroides and X. mozambicus, X. maniema differs by absence of T -shaped median band on pronotum, absence of transverse carina on ventral face of lophi, and by rami weak, without convergent hooklike apex. Differing from X. lamottei n . sp. and Asian species by strongly carinated lateral angles of pronotum dorsal disc (also carinated in X. mozambicus and X. eneopteroides).

Description. Species of average size, coloration yellow brown little contrasted (Fig. 1JK). Eyes large, lateral, higher than long, occupying almost half of head height in lateral view (Fig. 3G-H). Face well-rounded in lateral view (less than in X. mozambicus), with typical whitish mask underlined by a black line below eyes and on mandibles. Pronotum dorsal disc strongly carinated laterally (Fig. 3H), coloration light brown, with a median dark brown band, not extended laterally near anterior margin; lateral lobes almost homogeneously brown. First article of antennae dark brown.

Male. FWs very wide (Fig. 5D), longer than abdomen; dark coloration anterior to 1A including angle of 1A. FW venation as in X. eneopteroides; apical field longer, forming
a long triangle made of five ($\mathrm{n}=2$) cell alignments.

Male genitalia (Fig. 7F-G). Pseudepiphallic lophi twice longer than rest of pseudepiphallic sclerite; with a wide membranous inner margin (Fig. 8E); their bases fused until mid-length. Apex of lophi long and pointed, slightly convergent and ended by a thin lamella, without inner dorsal expansions. Ventral blade of lophi with faint longitudinal wrinkles, but without strong transverse carina as in X. eneopteroides. Pseudepiphallic parameres with a strong rectangular ventral lobe. Rami rather weak, their apex almost straight, not forming convergent hooks. Ectophallic apodemes strong, not lamellate. Ectophallic lateral expansions, lateral sclerites of ectophallic fold and endophallic sclerite partly fused, forming a wide ventral sclerotized plate, trifid apically; endophallic apodemes made of wide lateral lamellas and a narrow dorsal crest.

Female. Unknown.

Life history traits. Unknown.
Calling song. Unknown.
Measurements. See Table 5.

Xenogryllus marmoratus (Haan, 1844)

(Figs 1D-G; 3I-J; 4E; 5E; 7H-I; 8G; 9B; 11CD; 12B; 14)

Gryllus (Phalangopsis) marmoratus Haan, 1844: 235.
Calyptotrypus marmoratus - Saussure 1878: 714 (the figures do not correspond to the species X. marmoratus, which is consistent with the surprising distribution "Java, lles de la Sonde" proposed by Saussure, where the species is not distributed); Bolívar 1900[1899]: 805.

Madasumma marmorata - Chopard 1924: 56: Kirby 1906: 93.

Xenogryllus marmoratus－Chopard 1968：350；Yin \＆Liu 1995：96；Oshiro 1995：43； Walker 2010：27；Robillard \＆Desutter－Grandcolas 2004a： 578 （calling song）；2004b： 273 （morphological phylogeny）；2006： 644 （molecular phylogeny）；2008：67；2011：637； Anso et al．2016： 9 （molecular phylogeny）；Chintauan－Marquier et al．2016： 62 （molecular phylogeny）；Vicente et al．2017： 2203 （historical biogeography）；Schneider et al． 2017 （tympanum morphology）．

Xenogryllus marmoratus marmoratus Gorochov，1992，in Gorochov \＆Belokobylskij 1992： 11 （nominal subspecies）；Ichikawa et al．2000：276；2006：180；Storozhenko \＆ Paik 2007；Storozhenko et al．2015：145；Cigliano et al． 2018 （Orthoptera Species File Online）；Olivero \＆Robillard 2017： 1 （mating behavior）．

Xenogryllus marmoratus unipartitus（Karny，1915）－Gorochov \＆Belokobylskij 1992： 10 （subspecies）．

Synonym names：
Heterotrypus unipartitus Karny， 1915 －Chopard，1968： 350.
Common names：Pine cricket（English），matsumushi（Japanese＝pine insect，waiting insect）；bao ta ling（Chinese＝pagoda bell）．

Type material．Neotype，ô［new designation］，Japan：Honshu，collection Finot， identified Calyptotrypus species nova by A．Finot（MNHN－EO－ENSIF1592）．

Additional material examined．Japan：Honshu，Mie，ix．1957，F．Ohmachi，1 ${ }^{\text {T，}} 1$ q， identified Xenogryllus marmoratus de Haan，Xma Robillard morpho（MNHN）．Japon， 1中，Exposition Universelle 1869，\＃1276－69，identified Dionymus marmoratus by L． Chopard（MNHN－EO－ENSIF1593）．Japon［Japan，no precise locality and date］，1才，1q， identified Dionymus marmoratus by L．Chopard，Xma Robillard morpho；1ठत， 2 q （MNHN）；1甲（NHMW）；1 ${ }^{\text {T }}, 20.679$ ，identified X ．marmoratus unipartitus by Karny （NHMW）；4 \uparrow ，identified Calyptotrypus species nova，collection Finot（MNHN）．Kobe，H．

Fruhstorfer，1우， 24.125 （NHMW）．Kyoto，I．Yamashiro，1§，Xma Robillard morpho MEB，MEB Ziegler；1 \uparrow ；1 q，molecular sample T．Robillard 2004 （MNHN）．Kioto ［Kyoto］，Y．Hirase， $1{ }^{\lambda}$ ，identified Madasumma marmorata（Haan）and Calyptotrypus marmoratus（Haan）by Hebard， 1924 （MNHN）．Kanagawa Prefecture，Kanate，Ooi－Cho Ashigara－kami－gun［ $35^{\circ} 23^{\prime} 00 " \mathrm{~N}, 139^{\circ} 08^{\prime} 00 \mathrm{E}$ E］，H．Sakai，14．viii．2010， $1^{\text {² }}, 2$ ㅇ， 1 juvenile，identified Xenogryllus marmoratus by A．Ichikawa（MNHN）；1才， enregistrement appel TR－male2［call recording－MNHN－SO－2016－14364］，identified Xenogryllus marmoratus by A．Ichikawa（MNHN－EO－ENSIF1704）；1才，enregistrement appel TR－male1［call recording，MNHN－SO－2016－14365］，identified Xenogryllus marmoratus by A．Ichikawa（MNHN－EO－ENSIF1598）．Japon，environs de Tokyo，J． Harmand， 1906 （MNHN）．Kinki Distr．［ict］，Wakayama Pref．［ecture］，Hashimoto city， 19．x．1986，A．Ichikawa， 1 万人，identified X ．marmoratus by A．Ichikawa（RBINS）． Tsushima，H．Fruhstorfer，sept－oct［ix－x］， 24.123 （NHMW）．China：Guanxi，Jin Xiu， 10．x．1981，E110ำ $11^{\prime} \mathrm{N} 24^{\circ} 07^{\prime}, 1$＇ 1 （14062635）（SIPPE）．Longzhou，1995－viii18／23， Xianwei Liu，Weinian Zhang，Xinbao Jin， 1 （14062635）（SIPPE）．Chongqing，Beibei， E106²3＇N29³8＇，1．x．2000，Zhou， $1 \delta^{\top}$（14080765）（SIPPE）．Anhui，Huangshan， E118¹9＇N2943＇［Shanghai market］，viii．2012，T．Robillard， $10^{\text {º }}$（TR40）， enregistrement appel［call recording MNHN－SO－2018－36］（MNHN－EO－ENSIF1702）；1 ${ }^{\text {® }}$ （TR2），enregistrement appel［call recording MNHN－SO－2018－52］，molecular sample X12（MNHN－EO－ENSIF1594）．Jiangsu，Zhenjiang， $32^{\circ} 12^{\prime} 0.00^{\prime \prime N}$ N $119^{\circ} 27^{\prime} 0.00^{\prime \prime} E$ ［Shanghai market］，viii．2012，T．Robillard， $1{ }^{\text {ō }}$（TR41），enregistrement appel［call recording，MNHN－SO－2018－38］（MNHN－EO－ENSIF1707）；1才（TR3），enregistrement appel［call recording MNHN－SO－2018－］，molecular sample X13（MNHN－EO－ ENSIF3562）．Shanghai，Padang Shanghai，E121 32° N31 ${ }^{\circ} 13^{\prime}$［Shanghai market］， viii．2012，T．Robillard， 1^{λ} ，molecular sample X11，enregistrement appel［call recording， MNHN－SO－2018－37］（MNHN－EO－ENSIF1599）；1才（MNHN）．Shanghai，Prov．Klange［？］， Musée Meude，O．Piel，30．viii．［19］30，1中，\＃1623，1ठ̊，6．ix．［19］30（MNHN）． Guangdong，Shenzhen Distr．，Xichong，27．ix．2014，coll．Zhang Tao，4 ${ }^{\text {h }}, 2$（SNNU）．

Henan, Xinxian Distr., 4-8.ix.2014, coll. Ma Libin, $2 q$ (SNNU). Hainan, Wuzhishan Mt., 12;viii.2010, coll. Jiang Chaozhong, 1 (NWAFU). Zhejiang, Tianlongshan Mt., 8.vii.2009, coll. He Zhuqing, 1 (ECNU). Shaanxi, Ankang, 10.viii.2017, coll. Ma Libin, 1 § (SNNU). Taiwan, Takao, Formosa, Sauter XI.[19]07, type of Heterotrypus unipartitus, det. Karny, identified Dionymus formosanus n . sp. Type by T. Shiraki, (DEI, Eberswalde), identified Xenogryllus marmoratus unipartitus (Karny) by A. V. Gorochov (DEI) [examined on photo]. Sri Lanka: Ceylon, Kandy, H. Rolle Berlin SW.11, 1才 (MNHN). South Korea: data from website "South Korea: Orthopteroids of Korea" (http://www.jasa.pe.kr/pulmuchi/korthoptera/Xenogryllus-marmoratus.htm).

Distribution. Japan, China (including Taiwan and Hainan), South Korea (http://www.jasa.pe.kr/pulmuchi/korthoptera/Xenogryllus-marmoratus.htm), India (specimens observed by Chopard (1969)), Sri Lanka (1 male specimen).

Emmended diagnosis. Species characterised by its small size (Fig. 1E-G), head dorsal coloration with a faint median dark band on vertex, and male genitalia with very long and thin pseudepiphallic lophi (Fig. 8G); in male FWs (Fig. 5E), mirror wider than long, less rounded than in X. maichauensis, X. ululiu and X. transversus.

Redescription. Species of small to average size, the smallest for the genus (Fig. 1E-G). Coloration almost homogeneously light ochre. Median dark band on head dorsum faint on vertex (Fig. 4E), prolonged anteriorly by black fastigium, with three narrow lateral bands on each side. Fastigium straight, not widened anteriorly. Antennae light brown, first segment darker. Face relatively flat in lateral view (Fig. 3J). Pronotum dorsal disc light brown, with a median brown band variably marked prolonging head coloration; lateral margins not carinated, with a narrow yellow line; lateral lobes ochre, progressively lighter ventrally.

Male. FWs light brown, translucent (Fig. 5E); dark coloration anterior to 1A sometimes extended on angle of 1A. Transverse part of file almost straight, with 435 stridulatory teeth $(\mathrm{n}=1)$ on transverse part of 1A. Harp as wide as long. Fused part of cells c 1 and
b1 as long as individualised part of c1. Cell d2 wider than in other species. Mirror wider than long, little rounded, its inner limit forming a wide angle. Apical field short, including five cell alignments.

Male genitalia (Fig. 7H-I). Pseudepiphallic sclerite longer than rami; pseudepiphallic lophi very long (Fig. 8G), narrow and sclerotized, slightly convergent, ended by an apical lamella curved dorsally and forming a small notch. Pseudepiphallic sclerite with wide lateral membranous lobes. Basal reinforcement of pseudepiphallic sclerite strong. Rami short with convergent hook-like apex. Pseudepiphallic parameres with a ventral transverse crest absent in other species; inner apex of of pseudepiphallic parameres sharp, slightly sclerotized apically. Ectophallic apodemes strong, not lamellate. Ectophallic lateral arms strong, fused to lateral arms of ectophallic fold, and with lateral arms of endophallic sclerite, forming together a wide gutter. Ectophallic fold entirely sclerotized ventrally. Endophallic sclerite small, apodeme made of a thin anterior dorsal crest and narrow lateral lamellas.

Female. FWs dorsal field with 8-9 strong longitudinal veins ($\mathrm{m}=8, \mathrm{n}=10$) and faint transverse ones. Subgenital plate not indented apically (Fig. 9B). Ovipositor longer than FIII, its apex rounded and smooth.

Female genitalia. Copulatory papilla (Fig. 11C-D) thin and conical, widened basally; sclerotization strong basally and apically, its membrane plicate.

Life history traits. X. marmoratus lives on low vegetation in bushes and grass in secondary habitats and along roads. The species has a nocturnal activity; males call at night from the vegetation. See Olivero \& Robillard (2017) for description of peculiar mating behaviours.

Calling song (Figs 12B, 14). At $26.5^{\circ} \mathrm{C}$, the calling song of X. marmoratus is made of relatively long syllables, each corresponding to one FW closure. Syllables form a twopart echeme: 1-3 singleton syllables ($m=2, n=10$), followed by a chirp made of three
syllables, sometimes duplicated. The amplitude profile of the call shows that the singletons are usually less loud than the chirp. Total echeme duration is $711 \pm 33 \mathrm{~ms}$, for an echeme period of $6776 \pm 368 \mathrm{~ms}$ (echeme duty cycle $=10.5 \%$). The syllables have the following characteristics: $1^{\text {st }}$ syllable duration $=51.8 \pm 1.5 \mathrm{~ms}$ (period $=318.3$ $\pm 35.6 \mathrm{~ms}) ; 2^{\text {nd }}$ syllable duration $=50.3 \pm 1 \mathrm{~ms}$; chirp duration $=183.8 \pm 1 \mathrm{~ms}$; chirp syllable duration $=49.5 \pm 1.9 \mathrm{~ms}$ (period $=68 \pm 0.8 \mathrm{~ms})$. The frequency spectrum shows a pure tone fundamental peak corresponding to the dominant frequency at ca. $5.9 \pm 0.2 \mathrm{kHz}$, with a clear harmonic series, the third harmonic (ca. 18 kHz) being almost as powerful as the fundamental peak.

Measurements. See Table 6.

Taxonomic discussion. The types of De Haan, supposed to be in Leiden, were not found in RMNH in 2006 (TR, pers. obs.), with no record mentioning them as loaned (Rob De Vries, curator of the Orthopteran collection in RMNH, pers. com. 2006; confirmation by Luc Willemse, current curator of the Orthopteran collection in RMNH, pers. com. 2018). Specimens possibly belonging to the original type series were also searched for in other European museums, but could not be found. We thus designate a neotype from Japan that will serve as a reference for future systematic works.

Gorochov (1992) distinguished two subspecies, X. m. marmoratus (Haan, 1844) and X. m. unipartitus (Karny, 1915). In his study, he considered Gryllus (Phalangopsis) marmoratus Haan, 1844 (type from Japan), as the nominal subspecies Xenogryllus marmoratus marmoratus, while he established the subspecies X. m. unipartitus based on the species Heterotrypus unipartitus Karny, 1915, which was described from one female from Taiwan (Takao, examined on photo). The type of H. unipartitus clearly corresponds to a female of Xenogryllus, however, given the continuous variation observed across the wide distribution of X. marmoratus, and the limited information available based on female morphology, there is no reason to maintain these two subspecies. We thus synonymise the subspecies under X. marmoratus, and H.
unipartitus becomes a junior synonym of X. marmoratus, as previously proposed by Chopard (1968).

Xenogryllus mozambicus Robillard n. sp.

(Figs 2A-D; 3K-L; 4H; 5F; 7J-K; 8F; 9D; 11H-J; 12C; 15; 16)

Xenogryllus eniopteroides (wrong spelling of X. eneopteroides) - Toms 1984: 309.

Type material. Holotype, §, Mozambique: Cabo Delgado, Pantanos de Nhica, zone herbacée à l'Est du camp [herbaceous area E of camp], 1045'19,1"S $40^{\circ} 13^{\prime} 00^{\prime \prime E}$, 122 m, 29.xi.2009, T. Robillard, nuit, enregistrement appel [call recording MNHN-SO-2018140] (TR475) (MNHN-EO-ENSIF1517). Allotype, + , Mozambique: Cabo Delgado, mare SE de Nhica, bras mort de la Rovuma [pond SE Nhica, dead arm of Rovuma river], $10^{\circ} 45^{\prime} 41,9^{\prime \prime} S 40^{\circ} 13^{\prime} 31,7^{\prime \prime} E, 124 \mathrm{~m}, 27 . x i .2009$, T. Robillard, mort en élevage [dead in captivity], (MNHN-EO-ENSIF1539). Paratypes (8才, 4it): Mozambique: Cabo Delgado, same information as holotype: $1 \delta^{\lambda}, 1$, morts en élevage [dead in captivity] (MNHN-EO-ENSIF1576-ENSIF1556). Same information as allotype: 2 , ${ }^{\text {h }}$, mort en élevage [dead in captivity] (MNHN-EO- ENSIF1557, ENSIF1508). Mare SE de Nhica, bras mort de la Rovuma [pond SE Nhica, dead arm of Rovuma river], $10^{\circ} 45^{\prime} 41,9^{\prime \prime} \mathrm{S}$ $40^{\circ} 13^{\prime} 31,7^{\prime \prime} \mathrm{E}, 124 \mathrm{~m}$, nuit, zone herbacée en bord de piste [herbaceous area near track] T. Robillard: 22.xi.2009, $1 \widehat{o}^{\lambda 1}$ (MNHN-EO-ENSIF1554), 39 (MNHN-EOENSIF1502, ENSIF1503, ENSIF1505); 23.xi.2009, $1 \overbrace{\text { § (TR208), enregistrement appel }}$ Take 224 [call recording MNHN-SO-2018-133] (MNHN-EO-ENSIF3079); 1 § (TR206), enregistrement appel Take 222 [call recording MNHN-SO-2018-134], molecular sample X7-XenMoz (MNHN-EO-ENSIF1515). Mare SW de Nhica, bras mort de la Rovuma
[pond SW Nhica, dead arm of Rovuma river], $10^{\circ} 52^{\prime} 09,5^{\prime \prime} S 40^{\circ} 06^{\prime} 47,1^{\prime \prime} \mathrm{E}, 122 \mathrm{~m}$, 24.xi.2009, nuit, zone herbacée en bord de piste [herbaceous area near track] T. Robillard: $1 \widehat{\jmath}^{\wedge}$ (TR224), hautes herbes ($\mathrm{h}=1.3 \mathrm{~m}$) [on high grass], enregistrement appel Take 228 [call recording MNHN-SO-2018-135], molecular sample X23 (MNHN-EOENSIF1559); 1 ${ }^{\text {² }}$, mort en élevage (MNHN-EO-ENSIF1581).

Additional material examined. Mozambique: Delagoa [Maputo Bay], xii.1898, 1 万, identified Phormincter species nova by A. Finot (MNHN). South Africa: Zululand, Mtunzini, 8.i.1952, R. Toms, 1 § , R146, identified Xenogryllus eneopteroides by B. C. Townsend, 1984, B.M.1983-166 (NHMUK 010926568). Malawi: Fish Eagle Bay Lodge, herbaceous area near lake Malawi (Mal7), S13º2'21.1" E34¹9'34.8", 503 m , 6.x.2018, night, 2 , call recording, 1q, T. Robillard, K. Salazar \& R. Murphy (MNHN).

Type locality. Mozambique, Cabo Delgado, Pantanos of Nhica, $10^{\circ} 45^{\prime} 19,1{ }^{\prime \prime} \mathrm{S}$ 40ำ $13^{\prime} 00^{\prime \prime} \mathrm{E}$.

Distribution. Mozambique, South Africa, Malawi.

Etymology. Species named after the type locality.

Diagnosis. Species of average to large size, close to X. eneopteroides and X. maniema n. sp. From X. eneopteroides, the new species differs by rather larger size, face more rounded, almost globular in lateral view, absence of T-shaped median band on pronotum (also absent in X. maniema) larger mirror, and slight differences in male genitalia. From X. manieman. sp., X. mozambicus mostly differs by male genitalia with larger lophi (Fig. 8F) and presence of transverse carina on ventral face of lophi (also present in X. eneopteroides). As X. maniema and X. eneopteroides, X. mozambicus differs from X. lamottei n . sp . and Asian species by strongly carinated lateral angles of pronotum.

Description. Species of average size (Fig. 2A-D), coloration light brown little contrasted. Eyes little prominent laterally (Fig. 3K), higher than long, occupying almost half of head
height in lateral view. Face globular in lateral view (Fig. 3L), with typical whitish mask underlined by a black line below eyes and on mandibles. Pronotum dorsal disc strongly carinated laterally, coloration light brown, with a median dark brown band, not extended laterally near anterior margin; lateral lobes almost homogeneously dark brown. First article of antennae dark brown.

Male. FWs very wide, longer than abdomen; dark coloration anterior to 1 A including angle of 1A (Fig. 5F). Stridulatory file with 505 teeth ($n=1$) on transverse part of 1A. FW venation as in X. eneopteroides, mirror wider and apical field longer, forming a long triangle including 5-6 $(n=8)$ cell alignments.

Male genitalia (Fig. 7J-K). Similar to X. eneopteroides, except longer pseudepiphallic lophi (Fig 8F); transverse carina on ventral face of lophi present but weak.

Female (Fig. 2C-D). FWs dorsal field elongate, with 8 -9 longitudinal veins ($m=9, n=$ 6). Subgenital plate with a shallow apical indentation (Fig. 9D). Ovipositor short, about 0.6 times FIII length.

Female genitalia. Copulatory papilla (Fig. 11H-J) as in X. eneopteroides, conical and narrow, well-sclerotized except base and apex.

Life history traits. X. mozambicus lives in areas of wet savannah (Fig. 15). Individuals of both sexes are found only at night in herbaceous vegetation, and males sing at night from the vegetation (ca. 30-80 cm high). Toms (1984) demonstrated that this species have directional calls and turn while calling, giving rise to changes in sound intensity.

Calling song (Figs 12C, 16). At $21.5^{\circ} \mathrm{C}$, males of X. mozambicus emit almost continuously long bouts of highly musical calling songs. After a warming phase, call bouts are made of successions of echemes of 23 ± 2 syllables, barely separated from each other (echeme duration $=3.13 \pm 0.29 \mathrm{~s}$; echeme period $3.21 \pm 0.30 \mathrm{~s}$, echeme duty cycle $=97.6 \%$), with a regular amplitude profile, except for the last syllable, which is more intense. Within echemes, syllables are initially organized in 4 ± 1 doublets,
which are followed by a series of similar syllables. Syllables are very long (syllable duration $=126 \pm 5 \mathrm{~ms}$), with a relatively short syllable period of $137 \pm 8 \mathrm{~ms}$ (syllable duty cycle $=92 \%$). All syllables are characterized by a large amplitude modulation: in initial doublets within echemes, the first syllables are less intense than the second ones and they start with a lower amplitude than their end (initial amplitude < ending amplitude), contrary to the second syllables of the doublets (initial amplitude > ending amplitude); the rest of the syllables have a higher starting amplitude, except for the last syllable of each echeme, which has a higher ending amplitude. The frequency spectrum shows a pure-tone dominant frequency at $3.3 \pm 0.01 \mathrm{kHz}$, followed by a rich harmonic content including three powerful harmonics at ca. 6.6, $9.9,13.2 \mathrm{kHz}$, especially visible in ending syllables.

Measurements. See Table 7.

Taxonomic discussion. The specimens observed by Toms (1984) and identified Xenogryllus eniopteroides (wrong spelling for X. eneopteroides) from Zululand (Mtunzini and Eastern Transvaal (Clanor)), South Africa, belong to X. mozambicus n . sp. according to the male specimen observed from the series of Toms (NHMUK 010926568).

Xenogryllus transversus (Walker, 1869)

(Figs 2E-H; 3O-P; 4E; 5G; 7O-P; 8I; 9G; 11M-O; 12D; 17)

Platydactylus transversus Walker, 1869: 88.

Cardiodactylus? transversus - Saussure 1878: 665.
Madasumma transversa - Kirby 1906: 94; Chopard 1968: 350.

Xenogryllus transversus－Chopard 1969：310；Bhowmik 1976：46；1985：67；Saeed et al．1990： 309 （redescription）；Yin \＆Liu 1995：96；Nattier et al．2011： 2199 （molecular phylogeny）；Vicente et al．2017： 2203 （historical biogeography）；He 2018：516；Cigliano et al． 2018 （Orthoptera Species File Online）．

Synonym names：

Dionymus calcaratus Brunner von Wattenwyl，1893： 213 －Chopard 1968： 350.
Calyptotrypus roonwali Bhowmik，1977： 35 －Vasanth 1993： 131.

Type material．Holotype，${ }^{\lambda}$ ，Bangladesh：Silhat［＝Silhet／Sylhet］（NHMUK010362937） ［examined］．

Additional examined material．India：Meghalaya，Jaintia Hills， 1 q，Narpuh R．F． Umpyrsung－off R．Lubha Sunapor Town，N25º6．683＇E92ㅇํ 1.559^{\prime} ， 149 ft ．
 （MNHN－EO－ENSIF87）．India，1q，\＃6752（MNHN）．Sikkim，1 ${ }^{\text {T，}}$ ，identified Dionymus calcaratus Br．by L．Chopard（MNHN－EO－ENSIF1516）．Lebong， $3000 \mathrm{ft}, \mathrm{IX} .1908$ ， 1 q， H．M．L．，identified Dionymus calcaratus Br．（NHMUK010362936）．Manipur，Imphal Valley，alt 715 m．，11．x．1945，1才，HT of Calyptotrypus roonwali Bhowmik（ZSI）． Jammu，Tawi river， $32.715736^{\circ} 74.860403^{\circ}$ ，secondary area，30．VII， 11 pm, 1 $^{\text {h }}$ ， chorus，molecular sample X26（MNHN－EOENSIF4395），1才才（MNHN）．Punjab，IISER Mohali， $30.663169^{\circ} 76.724212^{\circ}$ ， $6{ }^{\text {® }}$（MJO＿765，766，411，715，413）， 2 \＆（MJO＿36， MJO＿726），molecular sample Xtr－715，765，766，R．Jaiswara（IISER Mohali）． Myanmar：Bhamo，Birmania，Fea ix．1886，Museo Civ．Genova，19．176，syntype of Dionymus calcaratus（NHMW）．Pakistan：Mansehra，34．333882 73.201062° ，27．ix， 1 ${ }^{\AA}$ ，W．A．Panhwar，molecular sample X25（MNHN－EO－ENSIF4388）．

Type locality．Bangladesh，Silhet．
Distribution．Myanmar，India（North and East），Bangladesh，Pakistan．

Emended diagnosis. Species of large size, similar in size, venation and coloration to X. maichauensis, from which it differs by male genitalia, with long sclerotized pseudepiphallic lophi ended by a sharp apex with a dorsal preapical pointed expansion (Fig. 8l); from X. ululiu, X. transversus differs by its larger size and by larger pseudepiphallic sclerite in male genitalia, with lophi proportionally smaller, separated by a deep indentation (lophi basally fused in X. ululiu).

Redescription. In addition to the characters of the genus, X. transversus has a large size and a golden coloration (Fig. 2E-H). Fastigium 1.5 times wider than scape, slightly widened apically as in X. ululiu and X. maichauensis. Eyes rather small, located on face, restricted to the dorsal third of head in lateral view (Fig. 30-P). Lateral angle of dorsal disc of pronotum not carinated, as in X. maichauensis and X. ululiu, with a thin yellow band underlined by a black line anteriorly. Hind wings tail gray brown, nearly as long as long as pronotum.

Male. Pronotum dorsal disc forming a wide trapezoid, with a wide median black longitudinal band pronlonging vertex coloration; posterior margin slightly bisinuate. FW venation (Fig. 5G): 1A forming a 90° angle, with 265 stridulatory teeth ($\mathrm{n}=1$) on transverse part of 1A. Dark coloration anterior to 1A including angle of file. Harp wide. Mirror large, well-rounded, its inner limit forming a wide curve. Apical field forming a triangle longer than wide, with six cell alignments.

Male genitalia (Fig. 7O-P). Pseudepiphallic sclerite elongate, with a wide basis; lophi separated by a large indentation (Fig. 8I), similar to that of X. ululiu, with a sharp apex and a strong dorsal preapical expansion. Rami strong, convergent apically. Ectophallic apodemes strong, lamellate apically. Ectophallic fold and endophallic sclerite almost fused, forming a long ventral gutter, wider than in X. ululiu, trifurcate posteriorly. Endophallic apodemes made of lateral lamellas.

Female (Fig. 2G-H). Head slightly wider than pronotum. Dorsal disc of pronotum almost rectangular, its posterior margin slightly bisinuate. FWs slightly longer than abdomen,
light brown, with anterior dark spot very small; dorsal field with 10-11 ($n=3$) strong longitudinal veins. Subgenital plate with a deep V-shaped apical indentation with sharp edges (Fig. 9G). Ovipositor as long as FIII.

Female genitalia. Copulatory papilla conical (Fig. 11M-O), wider than in X. maichauensis, its apex rounded and sclerotized.

Life history traits. X. transversus lives in open secondary habitats, where males usually call in chorus from 120-180 cm height dense shrubs. In IISER Mohali (Northern India), two males were seen calling from a bamboo plantation on one occasion, from a height of 60 cm , where one male was probably trying to mount the other (RJ personal obs.). In Jammu (Northern India), males were found calling from cannabis plant. Calling activity starts late in the evening, almost around 22:00 hrs and continues until 03:00 hrs in the morning. Spacing between calling males of this species is quite variable, the closest males being spaced by approximately one meter horizontally.

Calling song. (Figs 12D, 17). The calling songs of three males were recorded from IISER Mohali campus. At $25-27^{\circ} \mathrm{C}$, the calling song of X. transversus is made of short echemes quickly repeated and lasting for $197 \pm 4 \mathrm{~ms}$ (echeme period $=873 \pm 13 \mathrm{~ms}$), and composed of $4-5$ long syllables ($m=4.5 \pm 0.5$). Within echemes, the syllables usually show increasing amplitudes. Syllables are rather long (duration $=31 \pm 4 \mathrm{~ms}$) with a syllable period of $46 \pm 3 \mathrm{~ms}$ (syllable duty cycle $=71 \%$). The frequency spectrum shows a pure-tone dominant frequency at $4.5 \pm 0.5 \mathrm{kHz}$ followed by two powerful harmonics.

Measurements. See Table 8.

Taxonomic discussion. We confirm the status of junior synonyms of Calyptotrypus roonwali and Dionymus calcaratus according to re-examination of type specimens (HT of C. roonwali and one male ST of D. calcaratus).

Xenogryllus ululiu Gorochov， 1990

（Figs 2I－L；3M－N；4G；5H；7Q－R；8H；9E；11K－L；12E；18）

Xenogryllus ululiu Gorochov，1990： 14 －Gorochov 1992：10；Kim \＆Pham 2014：60； Robillard et al．2007： 1267 （song frequency）；Cigliano et al． 2018 （Orthoptera Species File Online）．

Type material．Holotype，ठ＇，Vietnam：Gia Lai，Kannack，A．V．Gorochov（ZIN）［not examined］．Paratype（1才），Vietnam：Gia Lai，Kannack，A．V．Gorochov：8－16．ii．1988， $1 \widehat{ }^{\text {§ }}$（MNHN－EO－ENSIF2809）［examined］．

Additional material examined．Vietnam：Gia Lai，2．ii．1993，1t，identified Xenogryllus ululiu by A．V．Gorochov，molecular sample XulV（MNHN－EO－ENSIF2810）；7．XI．1993， $13^{\text {² }}$ ，molecular sample XuIV2，A．V．Gorochov．Thailand：Petchabun，Nam Nao， $16^{\circ} 47^{\prime}$ N， $101^{\circ} 27^{\prime} \mathrm{O}, 1000 \mathrm{~m}, \mathrm{~S}$ ．Ingrisch；13．ix．1989－14．ix．1989，S．Ingrisch， 1^{\AA} ，Stridulation recorded by S．Ingrisch 0291XENO．WAV，mixed Oak－Pine forest，grassy undergrowth， Bamboo thicket［day collecting and night collecting following stridulation］，identified Xenogryllus ululiu by S．Ingrish，molecular sample XulTh（ZFMK）．Loei，NamNao NP at night，13（14．ix．1989，S．Ingrisch，1才，identified Xenogryllus ululiu by S．Ingrish， molecular sample XulTh（ZFMK）．Cambodia：Kampong Spoe，northern part of Elefan mts［Dâmrei Mountains］，Kiri－Rom National Park， 130 km NNE Sihanoukville，300－ 500m，27．ix－1．x．2003，A．Gorochov，M．Berezin， 1^{λ} ，molecular sample X21－XulCam2， 1 （ZIN）．Kaoh Kong，central part of Elefan mountains［Dâmrei Mountains］，vill． Styeng－Chkhral（100 km NE of Sihanoukville），300－500m，27．viii－6．ix．2003，A． Gorochov，L．Anisyutkin，1 ${ }^{\text {h }}$ ，molecular sample X20－XulCam1（MNHN－EO－ ENSIF4385）， $1 \delta^{\text {® }}$（ZIN）．Campot，environs of Sihanoukville（＝Kampong Som），14－ 21．ii．1998，A．V．Gorochov， 1 （ZIN）．Sihanoukville，citi near Siam bay，environs，22－ 26．VIII．2003，A．Gorochov，L．Anisyutkin，1才，molecular sample X19－XuISi（ZIN）．

China: Guangdong, Shenzhen District, Wutongshan Mt., 21.ix.2014, coll. Zhang Tao, 5 ${ }^{\text {® }}, 3$,

Type locality. Vietnam, Gia Lai, Kannack. Distribution (Fig. 16). Vietnam, Thailand, Cambodia, Southern China. Emended diagnosis. Species average to large size, close to X. transversus and X. maichauensis in terms of shape and coloration, from which it differs by smaller size, mirror slightly wider than long (less rounded than in in X. transversus and X. maichauensis), and male genitalia looking like a stockier version of that of X. transversus, with pseudepiphallic lophi basally fused together (Fig. 8H), with a sharp posterior apex and a strong dorsal hook-like expansion. In females, head larger than in other species, wider in dorsal view than rest of body.

Redescription. In addition to the characters of the genus, X. ululiu has an average size and a light brown or golden brown coloration (Fig. 2I-L). Head (Fig. 3M-N): Fastigium slightly widened apically, as in X. transversus and X. maichauensis (Fig. 4G); eyes rather small, restricted to the dorsal third of head in lateral view (Fig. 3N). Pronotum dorsal disc with a wide median black longitudinal band, its lateral angles not carinated, with a thin yellow band underlined by a black line ventrally. Hind wings tail gray brown, near twice as long a pronotum.

Male. FW venation (Fig. 5H): 1A forming a straight angle. Dark coloration anterior to 1A not including angle of file. Harp wide, with one short incomplete oblique vein and two complete ones slightly bisinuate. Mirror large, slightly wider than long, less rounded than in X. maichauensis and X. transversus, its inner margin curved as in these species. Apical field forming a triangle longer than wide, with 6-7 $(\mathrm{n}=5)$ cell alignments.

Male genitalia (Fig. 7Q-R). Pseudepiphallic lophi stocky, basally fused together, with a sharp apex and a strong dorsal preapical expansion (Fig. 8H). Rami strong, convergent
apically. Ectophallic apodemes strong, lamellate apically. Ectophallic fold and endophallic sclerite almost fused, forming a long ventral gutter, trifurcate posteriorly and extended anteriorly between rami. Endophallic apodemes made of anterior lateral lamellas.

Female. Head larger than in male (Fig. 2K-L), wider than rest of body in dorsal view. Dorsal disc of pronotum almost rectangular, its posterior margin slightly bisinuate. FWs light brown, anterior dark spot small. Dorsal field with nine strong longitudinal veins. Subgenital plate with a wide, apical U-shaped indentation with sharp edges (Fig. 9E). Ovipositor as long as FIII.

Female genitalia. Copulatory papilla small, conical, its apex rounded and sclerotized (Fig. 11K-L).

Life history traits. According to S. Ingrish who recorded the species' call in Thailand, males of X. ululiu sing at night in grassy undergrowth of mixed Oak-Pine forest or bamboo thicket (Cigliano et al. 2018).

Calling song (Figs 12E, 18). One male from Thailand was recorded by S. Ingrish at $21^{\circ} \mathrm{C}$. The song consists of echemes during $566 \pm 57 \mathrm{~ms}$, with a period of 2041 ± 358 ms . Echemes are made of 4 or 5 syllables $(\mathrm{m}=5)$, with syllable duration $=108 \pm 3.8 \mathrm{~ms}$ and syllable period $=120.3 \pm 3 \mathrm{~ms}$. Within echemes, the three starting syllables have a lower amplitude than the final $1-2$ syllables. Dominant frequency is $4.8 \pm 0.4 \mathrm{kHz}$ and corresponds to the fundamental frequency of the spectrum.

Measurements. See Table 9.

Discussion

The taxonomic revision of Xenogryllus is based on the thorough study of specimens from natural history collections belonging to 17 institutions and on field work in Mozambique, China and India. Our study reveals that the genus is relatively little
diversified compared to genera of other tribes of the subfamily Eneopterinae. The revision clarifies the status of all previously described species and subspecies (Table 1), and added three new species from Africa.

The large geographical coverage of the available data for Xenogryllus suggest that the most common species of the genus are now clearly defined, formally described or redescribed and included in identification keys. However two of the three new species described here are based on few specimens only (six males from three localities in Congo for X. manieman. sp. and a unique male from Guinea for X. lamottei n. sp.). As a consequence, while some species of Xenogryllus have wider distributions across Asia and Africa, where they occur mostly in savannahs and in open shrubby areas, other species may have more limited distributions, perhaps in association with more constrainted and limited forested habitats. This would involve an undefined proportion of endemic taxa yet to discover.

Acknowledgements

We acknowledge the Indo-French Centre for Promotion of Advanced Research (CEFIPRA) for funding this project (PIs: Rohini Balakrishnan \& Laure DesuterGrandcolas), and the National Biodiversity Authority of the Government of India for providing the necessary permits to allow us to carry out the fieldwork. The collaboration between France and China was facilitated by CAMPUS FRANCE and the program PHC XU GUANGQI (2012). This work was conducted in the context of the PhD thesis of JD, which was funded by China Scholarship Council (CSC), the Innovation Funds of Graduate Programs of Shaanxi Normal University [2012CXB019], the National Science Foundation of China [Grant No. 31402006] and a supporting grant from "La Société des Amis du Muséum" and the Institut de Systématique, Evolution, Biodiversité (ISYEB). We thank Jérôme Constant and Carole Paleco (RBINS) for their help during the study of the collections of the Royal Belgian Institute of Natural sciences, Brussels,
funded by the SYNTHESYS European program (BE-TAF-6640); Andrej Gorochov (ZIN) for providing samples from the collections of Saint Petersburg; Rob de Vries, Caroline Pepermans and Luc Willemse (RMNH) for their help with the Leiden collections, and the following persons for additional loans of material or photos: Merdedes Paris (MNCN), Stéphane Hanot (MRAC), Stephan Blank (Müncheberg) and Sigfrid Ingrisih (ZFMK). We also thank Simon Poulain (MNHN) for his help photographing the specimens, and Karen Salazar (MNHN) for her help with line drawing figures. We also thank Rohini Balakrishnan (CES, IISc Bangalore) and Manjari Jain, (IISER Mohali) for supporting RJ with logistics and lab space to carry out part of this work in India. We also thank the Orthopterist Society for supporting RJ with onemonth project grant to visit MNHN in 2017. We thank Jean-Yves Rasplus (CBGP, Montpellier) and Oliver Pascal for organising the 2009 expedition in Mozambique; this expedition was made possible by generous contributions from the Prince Albert II of Monaco Foundation and the Stavros Niarchos Foundation; we would like to thank ProNatura International and the Muséum national d'Histoire naturelle, Paris, for organising the expedition under their Our Planet Reviewed programme, and the Instituto de Investigação Agrária de Moçambique for helping with the administration and the collecting permits issue.

References

Anso, J., Barrabe, L., Desutter-Grandcolas, L., Jourdan, H., Grandcolas, P., Dong, J. \& Robillard, T. (2016) Pixibinthus, a new cricket genus endemic in New Caledonia: phylogenetic study of a potential relict lineage from maquis minier vegetation. PLoS One, 11, e0150920. https://doi.org/10.1371/journal.pone.0150920.

Audacity Team (2016) Audacity(R): Free Audio Editor and Recorder [Computer application]. Version 2.0.0 retrieved 12 January 2016 from https://audacityteam.org/.

Bhowmik, H.K. (1976) On the gryllid fauna (Gryllidae: Orthoptera) of the districts of the North Bengal, with description of three new species. Indian Museum Bulletin, 11, 42-48.

Bhowmik, H.K. (1977) Studies on Indian Crickets (Orthoptera: Insecta) with Descriptions of Two New Species. Records of Zoological Survey of India, 73, 368-382.

Bhowmik, H.K. (1985) Contribution to the gryllid fauna of the Western Himalayas (Orthoptera: Gryllidae). Records of the Zoological Survey of India, 73, 1-74.

Bolivar, I. (1890) Ortópteros de Africa del Museo de Lisboa. Jornal de Sciencias Mathematicas, Physicas e Naturaes, Series 2, 73-232.

Bolívar, I. (1900[1899]) Les Orthoptères de St-Joseph's College à Trichinopoly (Sud de I'Inde). Annales de la Société Entomologique de France, 68, 761-812.

Bolivar, I. (1910) Fauna de la Guinea Espanola. Memorias de la Real Sociedad Espanola de Historia Natural, Tomo 1, 525-544.

Brunner von Wattenwyl, C. (1893) Révision du système des Orthoptères et description des espèces rapportées par M. Leonardo Fea de Birmanie. Annali del Museo civico di storia naturale di Genova, 2, 13, 5-230.

Chintauan-Marquier, I.C., Legendre, F., Hugel, S., Robillard, T., Grandcolas, P., Nel, A., Zuccon, D. \& Desutter-Grandcolas, L. (2016) Laying the foundations of evolutionary and systematic studies in crickets (Insecta, Orthoptera): a multilocus phylogenetic analysis. Cladistics, 32, 54-81. https://dx.doi.org/10.1111/cla.12114 Chopard, L. (1928) Revision of the Indian Gryllidae. Records of Indian Museum, 30, 136.

Chopard, L. (1954) La Réserve naturelle intégrale du Mt. Nimba, III. Orthoptères Ensifères, Mémoires de l'Institut Français d'Afrique Noire, 40, 25-97.

Chopard L. (1968) Gryllides. Fam. Gryllidae: Subf. Mogoplistinae, Myrmecophilinae, Scleropterinae, Cachoplistinae Pteroplistinae, Pentacenturinae, Phalangopsinae, Trigonidinae, Eneopierinae; Fam.Oecanthidae, Gryllotalpidae. In: Beier, M. (Ed.), Orthopterorum Catalogus. Vol. 12. Uitgeverij Dr. W. Junk N.V.'s, Gravenhage, pp. 213-500.

Chopard, L. (1969) The fauna of India and adjacent countries. Orthoptera. Vol. 2. Grylloidea. Zoological Survey of India, Calcutta: Baptist Mission Press, 421 pp.

Cigliano, M.M., H. Braun, D.C. Eades \& Otte, D. (2018) Orthoptera Species File. Version 5.0/5.0. [Retrieved 10 May 2018]. http://Orthoptera.SpeciesFile.org

Desutter, L. (1987) Structure et évolution du complexe phallique des Gryllidea (Orthoptera) et classification des genres néotropicaux de Grylloidea. 1re partie. Annales de la Société entomologique de France, Nouvelle Série, 23, 213-239.

Desutter-Grandcolas, L. (2003) Phylogeny and the evolution of acoustic communication in extant Ensifera (Insecta, Orthoptera). Zoologica Scripta, 32, 525-561. https://doi.org/10.1046/j.1463-6409.2003.00142.x

Dong, J., Kergoat, G.J., Vicente, N., Rahmadi, C., Xu, S. \& Robillard, T. (2018) Biogeographic patterns and diversification dynamics of the genus Cardiodactylus Saussure (Orthoptera, Grylloidea, Eneopterinae) in Southeast Asia. Molecular Phylogenetics and Evolution, 129 (2018) 1-14 https://doi.org/10.1016/i.ympev.2018.06.001

Giglio-Tos, E. (1907) Ortotteri africani. Parte II, Blattodea, Mantodea, Phasmodea, Locustodea, Gryllodea. Bulletino dei Musei di Zoologia ed Anatomia comparata, della R. Universita di Torino, 22, 563, 1-26.

Gorochov, A.V. (1990) New and insufficiently studied crickets (Orthoptera, Gryllidae) from Vietnam and some other territories. In: Gorochov, A.V. [Ed.]. News of systematics and faunistics of Vietnam insects. Part 1. Trudy Zoologicheskogo

Instituta. Akademiia nauk SSSR. Leningrad [= Proceedings of the Zoological Institute, USSR Academy of Sciences, Leningrad] 209, pp. 3-28.

Gorochov, A.V. (1992) New and little known crickets (Orthoptera, Gryllidae) from Vietnam. Trudy Zoologicheskogo Instituta Akademiya Nauk SSSR, 245, 3-16.

Haan, D. (1844) Verhandelingen over de Natuurlijke Geschiedenis der Nederlansche Overzeesche Bezittingen, 24, 235. https://doi.org/10.5962/bhl.title. 114730

Ichikawa, A. Murai, T. Honda, E. (2000) Monograph of Japanese crickets (Orthoptera; Grylloidea). Bulletin of the Hoshizaki Green Foundation, 4, 257-332.

Ichikawa, M. \& Honda, E. (2000) Bulletin of the Hoshizaki Green Foundation, 4, 276.

Karny, V.H. (1915) Orthoptera et Ootbecaria. Supplementa Entomologica, 4, 56-108.

Karsch, F. (1893) Verzeichniss der von Herrn Dr. Paul Preuss in Kamerun gesammelten Grillen. Entomologische Nachrichten, 19, 199-208.

Kevan, D.K. \& Knipper, H. (1961) Geradflügler aus Ostafrika. Beiträge zur Entomologie, 11, 356-413.

Kirby, W. F. (1906) A synonymic catalogue of Orthoptera (Vol. 2). Orthoptera Saltatoria. Part I. (Achetidae et Phasgonuridae). The trustees of the British Museum, London, pp. viii+562

Nattier, R., Robillard, T., Desutter-Grandcolas, L., Couloux, A., \& Grandcolas, P. (2011) Older than New Caledonia emergence? A molecular phylogenetic study of the eneopterine crickets (Orthoptera: Grylloidea). Journal of Biogeography, 38, 2195-2209. https://doi.org/10.1111/j.1365-2699.2011.02563.x

Oki, S., Hayashi, I., Iwatsuki, N. \& Morikawa, K. (2002) Study on sound generating mechanism of Xenogryllus marmoratus. Proceedings of Dynamics \& Design Conference, 95.

Olivero, P. \& Robillard, T. (2017) Same-sex sexual behavior in Xenogryllus marmoratus (Haan, 1844) (Grylloidea: Gryllidae: Eneopterinae): Observation in the wild from YouTube. Journal of Orthoptera Research, 26,1-5. https://doi.org/10.3897/jor.26.14569

Oshiro, Y. (1995) Studies on the Gryllidae from the Ryukyu Islands. Nakimushikai, Okinawa, 131 pp.

Ragge, D.R. (1955) The wing-venation of the Orthoptera Saltatoria, with notes on Dictyopteran wing-venation. British Museum (Natural History), London, 159 pp.

Ragge, D.R., Reynolds, W.J. \& Natural History Museum (London, England) (1998). The Songs of the Grasshoppers and Crickets of Western Europe. Harley Books, Colchester, England, 612 pp. https://doi.org/10.2307/3503528

Robillard, T. \& Desutter-Grandcolas, L. (2004a) High-frequency calling in Eneopterinae crickets (Orthoptera, Grylloidea, Eneopteridae): adaptive radiation revealed by phylogenetic analysis. Biological Journal of the Linnean Society, 83, 577-584. https://doi.org/10.1111/j.1095-8312.2004.00417.x

Robillard, T. \& Desutter-Grandcolas, L. (2004b) Phylogeny and the modalities of acoustic diversification in extant Eneopterinae (Insecta, Orthoptera, Grylloidea, Eneopteridae). Cladistics, 20, 271-293. https://doi.org/10.1111/j.10960031.2004.00025.x

Robillard, T. \& Desutter-Grandcolas, L. (2006) Phylogeny of the cricket subfamily Eneopterinae (Orthoptera, Grylloidea, Eneopteridae) based on four molecular loci and morphology. Molecular Phylogenetics and Evolution, 40, 643-661. https://doi.org/10.1016/j.ympev.2005.10.019

Robillard, T. (2006) Phylogenetic systematics of Pseudolebinthus, a new genus of Eneopterinae crickets (Orthoptera, Grylloidea, Eneopteridae) from south-east

Africa. Systematic Entomology, 31, 671-683. https://doi.org/10.1111/j.13653113.2006.00347.x

Robillard, T. \& Desutter-Grandcolas, L. (2008) Clarification of the taxonomy of extant crickets of the subfamily Eneopterinae (Orthoptera: Grylloidea; Gryllidae). Zootaxa, 1789, 66-68.

Robillard, T. \& Desutter-Grandcolas, L. (2011) Evolution of calling songs as multicomponent signals in crickets (Orthoptera: Grylloidea: Eneopterinae). Behaviour, 148, 627-672.

Robillard, T., Grandcolas, P. \& Desuter-Grandcolas, L. (2007) A shift toward harmonics for high-frequency spectra in Eneopterinae crickets (Orthoptera, Grylloidea, Eneopteridae). Canadian Journal of Zoology, 85, 1264-1275. https://doi.org/10.1139/z07-106

Robillard T, Montealegre-Z, F., Desutter-Grandcolas, L., Grandcolas, P. \& Robert, D. (2013) Mechanisms of high-frequency song generation in brachypterous crickets and the role of ghost frequencies. Journal of Experimental Biology, 216, 20012011.

Saeed, A. \& Yousuf, M. (1990) New record of family Eneopteridae (Grylloidea: Orthoptera) from Pakistan. Pakistan Journal of Zoology, 22, 309.

Saussure, H. D. (1878) Mélanges Orthoptérolgiques. Memoires de la Société de physique et d'histoire naturelle de Genève, 25, 1-836.

Schneider, E.S., Römer, H., Robillard, T. \& Schmidt, A.K.D. (2017) Hearing with exceptionally thin tympana: Ear morphology and tympanal membrane vibrations in eneopterine crickets. Scientific Reports, 7, 15266. https://doi.org/10.1038/s41598-017-15282-z

Storozhenko, S.Y. \& Paik, J.C. (2007) Orthoptera of Korea. Dalnauka, Vladivostok, 232 pp.

Storozhenko, S.Y., Kim, T.W. \& Jeon, M.J. (2015) Monograph of Korean Orthoptera. National Institute of Biological Resources, 145 pp.

Su, Y.N. (2016) A simple and quick method of displaying liquid-preserved morphological structures for microphotography. Zootaxa, 4208, 592-593. https://doi.org/10.11646/zootaxa.4208.6.6
ter Hofstede, H.M., Schoneich, S., Robillard, T. \& Hedwig, B. (2015) Evolution of a communication system by sensory exploitation of startle behavior. Current Biology, 25, 1-8. https://doi.org/10.1016/j.cub.2015.10.064

Vasanth, M. (1993) Studies on crickets (Insecta: Orthoptera: Gryllidae) of northeast India. Records of the Zoological Survey of India, Occasional Paper, Calcutta, 132, 1-178.

Vicente, N., Kergoat, G.J., Dong, J., Yotoko, K., Legendre, F., Nattier, R. \& Robillard, T. (2017) In and out of the Neotropics: historical biogeography of Eneopterinae crickets. Journal of Biogeography, 44, 2199-2210. https://doi.org/10.1111/ibi. 13026

Walker, F. (1869) Catalogue of the Specimens of Dermaptera Saltatoria and Supplement to the Blattariae in the Collection of the British Museum, 224 pp . https://doi.org/10.5962/bhl.title. 8149

Walker, B.L. (2010) Toxic Archipelago: a history of industrial disease in Japan. The University of Washington press, 352 pp .

Yin, H. \& Liu, X.W. (1995) Synopsis on the classification of Grylloidea and Gryllotalpoidea from China. Shanghai Science and Technology and Literature Press, Shanghai.

Taxa	Status
Xenogryllus Bolívar 1890	valid genus (emended diagnosis, redescription)
X. eneopteroides Bolívar, 1890	valid species (redescription, type species)
X. carmichaeli (Chopard, 1928)	nomen dubium (new status)
X. lamottei Robillard n. sp.	new species
X. maichauensis Gorochov, 1992	valid species (redescription)
X. maniema Robillard \& Jaiswara n. sp.	new species
X. marmoratus (Haan, 1844)	valid species (redescription, neotype, synonymy of subspecies)
X. mozambicus Robillard n. sp.	new species
X. transversus (Walker, 1869)	valid species (redescription)
X. ululiu Gorochov, 1990	valid species (redescription)

Tables

Table 1.

List of species and revised status of Xenogryllus species based on Robillard (2006) and Orthoptera Species File Online (Cigliano et al. 2018). Junior synonym names for which the status is not updated are not considered in this list but are presented in the revision under the senior name.

1347
Table 2. Measurements of Xenogryllus eneopteroides

Males ($\mathrm{n}=6$)	BL	PronL	PronW	FWL	FWW	HWT	FIIIL		FIIIW
Males ($\mathrm{n}=6$)	20-27.1	3.4-3.9	$\begin{aligned} & \hline 6.1-7 \\ & (6.7) \end{aligned}$	21.5-24.2	8-8.3	7.4-8.3	20.0-22.4		$\begin{aligned} & 3.1-3.6 \\ & (3.4) \end{aligned}$
(Male mean)	(22.7)	(3.6)		(23.0)	(8.2)	(7.8)	(21.1)		
Females ($\mathrm{n}=5$)	16.9-22.2	3.8-4.1	5.8-6.0	20.0-20.9	4.9-5.3	7.3-8.4	22.1-22.6		2.2-3.6
(Female mean)	(19.4)	(4)	(5.9)	(20.5)	(5.1)	(7.9)	(22.4)		(3)
	TIIIL	TIIIs				Talls			OL
		las	lbs	Oas	Obs	Ids	Ods	Ols	
Males ($\mathrm{n}=6$)	20.0-21.5	9-13	9-11	18-21	8-13	0	6-7	3-6	-
(Male mean)	(20.2)	(10.5)	(9.8)	(19.3)	(10.8)	0	(6)	(5)	-
Females ($\mathrm{n}=5$)	21.6-25.5	9-10	10-13	18-20	13-14	0	6-7	3-6)	8-9
(Female mean)	(23.6)	(9.5)	(11.5)	(19.0)	(13.5)	0	(6)	(5)	(8.42)

1348
1349
Table 3. Measurements of Xenogryllus lamottei n . sp .

Table 4. Measurements of Xenogryllus maichauensis

	BL	PronL	PronW	FWL	FWW	HWT	FIIIL		FIIIW
Thailand									
Male	33.3	3.8	5.7	24	8.2	8.4	22.9		4.1
Female	23.7	3.7	5	24.6	5.5	9.4	22.5		4.2
China									
Males ($\mathrm{n}=5$)	30.6-32.8	3.3-3.9	4.8-5.1	21.3-24	7.7-8.1	4-5.8	21-22		3.5-4.6
(Male mean)	(31.4)	(3.7)	(5)	(22.7)	(7.8)	(5.2)	(21.6)		(3.9)
Females ($\mathrm{n}=2$)	24-27.4	3.4-3.9	4.8-5.3	15.5-18	4.4-5.5	5-8.5	22.1-22		3.7-5.5
(Females mean)	(25.7)	(3.6)	(5)	(18.5)	(5.1)	(6.2)	(22)		(4.9)
	TIIIL	TIIIs				Tallls			OL
		las	Ibs	Oas	Obs	Ids	Ods	Ols	
Thailand									
Male	24.4	12	11	19	13	0	3	6	-
Female	23	10	12	20	17	0	4	4	20.7
China									
Males ($\mathrm{n}=5$)	20-21	11-15	10-12	15	12-13	0	3	3	-
(Male mean)	(20.5)	(12.3)	(11)	(15)	(12)	(0)	(3)	(3)	-
Females ($\mathrm{n}=2$)	21-22	8-11	10-12	14-20	14-17	0	4-5	3-4	23.6-24.2
(Females mean)	(21.3)	(9)	(11)	(17)	(16)	(0)	(5)	(4)	(23.9)

1352
1353
Table 5. Measurements of Xenogryllus manieman. sp.

1354
1355
1356

Table 6. Measurements of Xenogryllus marmoratus

	BL	PronL	PronW	FWL	FWW	HWT	FIIIL		FIIIW
Neotype male	19.4	2.9	4.1	15.5	6.7	3.5	15.3		2.8
Males ($\mathrm{n}=4$)	18.6-22	2.5-3	3.9-4.8	15.5-17	6.4-6.7	3.1-4.3	14.2-15.8		2.6-3.4
(Male mean)	(20.4)	(2.9)	(4.3)	(16.5)	(6.5)$2.8-4$	(3.4)	(15.3)		(3)
Females ($\mathrm{n}=5$)	18.8-20	2.1-3.1	3.1-4.3	11.5-15			11.8-16		2.2-3.2
(Female mean)	(19.1)	(2.7)	(3.7)	(13.4)	(3.3)	$\begin{aligned} & 1.2-6 \\ & (3.4) \end{aligned}$	(14.4)		(2.7)
	TIIIL	TIIIs				Tallls			OL
		las	Ibs	Oas	Obs	Ids	Ods	Ols	
Neotype male	11.1	9	11	14	16	0	4	5	-
Males ($\mathrm{n}=4$)	11.1-15.8	5-12	10-12	11-20	11-16	0-2	3-7	5-7	-
(Male mean)	(14.1)	(9)	(11)	(16)	(5)	(1)	(5)	(5)	-
Females ($\mathrm{n}=5$)	12.1-14.9	4-10	7-12	13-18	9-13	0-2	2-5	5-10	14.1-19
(Female mean)	(13.3)	(8)	(9)	(16)	(11)	(1)	(3)	(7)	(16.6)

1357

Table 7. Measurements of Xenogryllus mozambicus n . sp .

	BL	PronL		PronW		FWL	FWW	HWT	FIIIL		FIIIW
Holotype male	25.5	3.3		4.5		20.5	7.3	7.5	21		3.6
Males ($n=5$)	22.5-25.5	2.9-3.3		4.3-4.5		21-22	7-7.2	7-7.5	19-20		3.1-3.9
(Male mean)	(23.8)	(3.2)		(4.4)		(21.2)	(7.2)	(7.3)	(20)		(3.5)
Female allotype	21.9	2.9		4.4		17.5	3.8	9	20.5		4
Females ($\mathrm{n}=4$) (Female mean)	$\begin{aligned} & 21.5-22.1 \\ & (21.8) \end{aligned}$	$\begin{aligned} & 3-3.3 \\ & (3) \end{aligned}$		$\begin{aligned} & 4.2-4.5 \\ & (4.3) \end{aligned}$		$\begin{aligned} & 18-21.5 \\ & (19.2) \end{aligned}$	$\begin{aligned} & 4-7.7 \\ & (5.3) \end{aligned}$	$\begin{aligned} & 7.5-8.5 \\ & (7.9) \end{aligned}$	$\begin{aligned} & 19-20 \\ & (19.9) \end{aligned}$		$\begin{aligned} & 3.5-4 \\ & (3.7) \end{aligned}$
(Female mean)	TIIIL	TIIIs						Tallls			OL
		las	Ibs		Oas		Obs	Ids	Ods	Ols	
Holotype male	20	13	10		15		19	1	8	4	-
Males ($\mathrm{n}=5$)	18-20	9-13	9-14		11-16		16-21	1-2	8-10	4-5	-
(Male mean)	(18.2)	(11)	(12)		(14)		(18)	(1)	(9)	(5)	-
Female allotype	20	9	12		14		17	0	7	6	?
Females ($\mathrm{n}=4$) (Female mean)	$\begin{aligned} & 19-20 \\ & (19.7) \end{aligned}$	$\begin{aligned} & 9-15 \\ & (16) \end{aligned}$	$\begin{aligned} & 9-12 \\ & (10) \\ & \hline \end{aligned}$		$\begin{aligned} & 14-18 \\ & (16) \\ & \hline \end{aligned}$		$\begin{aligned} & 13-18 \\ & (17) \\ & \hline \end{aligned}$	$0-2$ (1)	$6-8$ (7)	$4-6$ (5)	$\begin{aligned} & 11.5-13.4 \\ & (12.5) \\ & \hline \end{aligned}$

Table 8. Measurements of Xenogryllus transversus

	BL	PronL	PronW	FWL	FWW	HWT	FIIIL		FIIIW
Males ($\mathrm{n}=6$)	27.8-34.6	3.4-3.9	6.1-7	21.5-24.2	8-8.3	7.4-8.3	20.0-22.4		3-4
(Male mean)	(31.4)	(3.6)	(6.7)	(23.0)	(8.2)	(7.8)	(21.1)		(3.7)
Females	28.5-30	3.8-4.1	5.8-6.0	20.0-20.9	4.9-5.3	7.3-8.4	22.1-22.6		4.2-4.8
(Female	(29.3)	(4)	(5.9)	(20.5)	(5.1)	(7.9)	(22.4)		(4.5)
	TIIIL	TIIIs				Tallls			OL
		las	Ibs	Oas	Obs	Ids	Ods	Ols	
Males ($\mathrm{n}=6$)	20.0-21.5	9-13	9-11	18-21	8-13	0	2-5	2-3	-
(Male mean)	(20.2)	(10.5)	(9.8)	(19.3)	(10.8)	(0)	(3)	(3)	-
Females $(\mathrm{n}=2)$	21.6-25.5	9-10	10-13	18-20	13-14	0	2-3	4-5	25.8-27
(Female mean)	(23.6)	(9.5)	(11.5)	(19.0)	(13.5)	(0)	(3)	(5)	(26.4)

1358
1359
Table 9. Measurements of Xenogryllus ululiu

	BL	PronL	PronW	FWL	FWW	HWT	FIIIL		FIIIW
Male paratype	28.2	3.5	4.3	22.2	7.9	7.1	22		3.6
Males ($\mathrm{n}=5$)	23.3-28.2	3.3-3.5	4.2-4.8	20-22.2	7.1-8.1	3.3-7.9	19-22.7		3.3-4
(Male mean)	(26)	(3.4)	(4.5)	(21.5)	(7.7)	(5.8)	(21.3)		(3.7)
Females ($\mathrm{n}=3$)	23.7-25.9	3.4-4	4.5-5	17.2-23.1	3.3-4	5.1-8.2	20-21.5		3.4-4.3
(Female mean)	(24.5)	(3.7)	(4.8)	(20.2)	(3.8)	(6.9)	(20.5)		(3.8)
	TIIIL	TIIIs				Tallls			OL
		las	Ibs	Oas	Obs	Ids	Ods	Ols	
Male paratype	21.8	12	10	20	14	1	4	6	-
Males ($\mathrm{n}=5$)	19.9-21.8	11-12	10-11	16-20	14-16	0-1	4-7	5-8	-
(Male mean)	(20.8)	(11)	(10)	(18)	(15)	(0)	(5)	(6)	-
Females ($n=3$) (Female mean)	$\begin{aligned} & 19.8-20.7 \\ & (20.1) \\ & \hline \end{aligned}$	$\begin{aligned} & 7-10 \\ & (9) \\ & \hline \end{aligned}$	$\begin{aligned} & 10-11 \\ & (11) \end{aligned}$	$\begin{aligned} & 12-16 \\ & (14) \\ & \hline \end{aligned}$	$\begin{aligned} & 14-16 \\ & (15) \\ & \hline \end{aligned}$	0 (0)	$\begin{aligned} & 3-5 \\ & (4) \\ & \hline \end{aligned}$	$\begin{aligned} & 5-7 \\ & (6) \\ & \hline \end{aligned}$	$\begin{aligned} & 13.9-17.6 \\ & (17) \\ & \hline \end{aligned}$

Legends of figures

Figure 1. (A-C) Xenogryllus eneopteroides: male in dorsal (A) and lateral (B) views, female in dorsal view (C); (D-G) Xenogryllus marmoratus male in dorsal (D) and lateral (E) views, female in dorsal (F) and lateral (G) views; (H-I) Xenogryllus lamottei n . sp.: male holotype in dorsal (H) and lateral (I) views; (J-K) Xenogryllus maniema n . sp.: male paratype in dorsal (J) and lateral (K) views; (L-O) Xenogryllus maichauensis: male in dorsal (L) and lateral (M) views, female in dorsal (N) and lateral (O) views. Scale bar: 1 cm .

Figure 2. (A-D) Xenogryllus mozambicus n. sp.: male in dorsal (A) and lateral (B) views, female in dorsal (C) and lateral (D) views; (E-H) Xenogryllus transversus: male in dorsal (E) and lateral (F) views, female in dorsal (G) and lateral (H) views; (I-L) Xenogryllus ululiu: male in dorsal (I) and lateral (J) views, female in dorsal (K) and lateral (L) views. Scale bar: 1 cm .

Figure 3. Heads of Xenogryllus in facial (left panel) and lateral views (right panel): (AB) Xenogryllus eneopteroides; (C-D) Xenogryllus lamottei n. sp.; (E-F) Xenogryllus maichauensis; (G-H) Xenogryllus maniema n. sp.; (I-J) Xenogryllus marmoratus. (K-L); Xenogryllus mozambicus n. sp.; (M-N) Xenogryllus ululiu; (O-P) Xenogryllus transversus. Scale bar: 1 mm .

Figure 4. Heads of Xenogryllus in dorsal views: (A) Xenogryllus eneopteroides; (B) Xenogryllus lamottei n. sp.; (C) Xenogryllus maichauensis; (D) Xenogryllus maniema n. sp.; (E) Xenogryllus marmoratus; (F) Xenogryllus transversus; (G) Xenogryllus ululiu; (H) Xenogryllus mozambicus n . sp . Scale bar: 1 mm .

Figure 5. Male forewing venation in dorsal view: (A) Xenogryllus eneopteroides; (B) Xenogryllus lamottei n. sp.; (C) Xenogryllus maichauensis; (D) Xenogryllus maniema n. sp.; (E) Xenogryllus marmoratus; (F) Xenogryllus mozambicus n. sp.; (G) Xenogryllus transversus; (H) Xenogryllus ululiu. Scale bar: 5 mm .

Figure 6. Male metanotal glandular structures in Xenogryllus eneopteroides: (A) glandular pit (drawing by G. Hodebert (MNHN) modified from Robillard \& Desutter-Grandcolas, 2004b), (B-C), SEM view of glandular pores on scutum. Scale bars: $1 \mathrm{~mm}(A), 10 \mu \mathrm{~m}(B), 1 \mu \mathrm{~m}(C)$.

Figure 7. Male genitalia: (A-C) Xenogryllus eneopteroides, dorsal (A), ventral (B) and lateral (C) views; (D-E) Xenogryllus lamottei n . sp., ventral (D), lateral (E) views; (F-G) Xenogryllus maniema n. sp., ventral (F), lateral (G) views; (H-I) Xenogryllus marmoratus, ventral (H), lateral (I) views; (J-K) Xenogryllus
mozambicus n . sp., ventral (J), lateral (K) views; (L-N) Xenogryllus maichauensis, pseudepiphallic lophi in ventral (L-M) and lateral (N) views, male from South China (L), male from Thailand (M, N); (O-P) Xenogryllus transversus, dorsal (O), ventral (P) views; (Q-R) Xenogryllus ululiu, pseudepiphallic lophi in dorsal (Q) and ventral (R) views. Scale bar: 1 mm .

Figure 8. Right pseudepiphallic lophi of male genitalia in dorsal view: (A-B) Xenogryllus eneopteroides, male from Central African Republic (A), male from Ivory Coast (B); (C) Xenogryllus lamottei n. sp.; (D) Xenogryllus maichauensis; (E) Xenogryllus maniema n. sp.; (F) Xenogryllus mozambicus n. sp.; (G) Xenogryllus marmoratus; (H) Xenogryllus ululiu; (I) Xenogryllus transversus. Symbols: Preapical hook-like expansion figured in gray or with a black arrow; dotted parts represent membranous areas; thin lines represent folds and reliefs in sclerites. Scale bar: 1 mm .

Figure 9. Apex of female subgenital plate and base of ovipositor in ventral view: (A) Xenogryllus eneopteroides; (B) Xenogryllus marmoratus; (C) Xenogryllus maichauensis; (D) Xenogryllus mozambicus; (E) Xenogryllus transversus; (F) Xenogryllus ululiu. Scale bar: 1 mm .

Figure 10. Apex of female ovipositor: (A) Xenogryllus eneopteroides; (B) Xenogryllus maichauensis. Scale bar: 1 mm .

Figure 11. Female copulatory papilla: (A-B) Xenogryllus eneopteroides, in ventral (A) and lateral (B) views; (C-D) Xenogryllus marmoratus, in ventral (C) and lateral (D) views; (E-G) Xenogryllus maichauensis, in ventral (E), dorsal (F) and lateral (G) views; (H-J) Xenogryllus mozambicus n. sp., in ventral (H), dorsal (I) and lateral (J) views; (K-L) Xenogryllus ululiu, in ventral (K) and lateral (L) views; (MO) Xenogryllus transversus, in ventral (M), dorsal (N) and lateral (O) views. Scale bar: 0.5 mm .

Figure 12. Comparison of calling songs, oscillogram of five echemes: (A) Xenogryllus maichauensis; (B) Xenogryllus marmoratus; (C) Xenogryllus mozambicus; (D) Xenogryllus transversus; (E) Xenogryllus ululiu. Scale bar: 1 s.

Figure 13. Calling song of Xenogryllus maichauensis: (A) oscillogram of 5 echemes; (B) detailed oscillogram (upper panel) and sonogram (lower panel) of 1 echeme; (C) frequency spectrum.

Figure 14. Calling song of Xenogryllus marmoratus: (A) oscillogram of 5 echemes; (B) detailed oscillogram (upper panel) and sonogram (lower panel) of 1 echeme; (C) detailed oscillogram of one syllable; (D) frequency spectrum.

Figure 15. (A-D) Xenogryllus mozambicus n. sp.: Savannah habitat in Mozambique (A), male (B) and female (C) in bushy vegetation at night; male (D) predated by Reduviidae sp .

Figure 16. Calling song of Xenogryllus mozambicus: (A) oscillogram of 5 echemes; (B) detailed oscillogram (upper panel), amplitude envelope (middle panel) and sonogram (lower panel) of 1 echeme; (C) detailed oscillogram (upper panels) and sonograms (lower panels) of one the two initial syllables (left) and of the final syllable (right); (D) frequency spectrum.

Figure 17. Calling song of Xenogryllus transversus: (A) oscillogram of 5 echemes; (B) detailed oscillogram (upper panel) and sonogram (lower panel) of 1 echeme; (C) frequency spectrum.

Figure 18. Calling song of Xenogryllus ululiu: (A) oscillogram of 5 echemes; (B) detailed oscillogram (upper panel) and sonogram (lower panel) of 1 echeme; (C) frequency spectrum.

Fig. 3

1451
1452
1453

Fig. 4

Fig. 5

Fig. 6

1461
1462

Fig. 7

1467 Fig. 8

1472 Fig. 9
1473

1478

Fig. 10

1479

Fig. 11

1484

Fig. 12

1487

1490
Fig. 13

1491

Fig. 14

1494

Fig. 15

1498

Fig. 16

亳

D

Fig. 17

1504

Fig. 18

1507
1508
1509

[^0]: - Male FWs not widened, as wide as abdomen. \qquad X. lamottei Robillard n. sp.

