
HAL Id: hal-02866037
https://hal.science/hal-02866037

Submitted on 12 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Argumentation Frameworks with Higher-Order Attacks:
Labelling Semantics

Sylvie Doutre, Mickaël Lafages, Marie-Christine Lagasquie-Schiex

To cite this version:
Sylvie Doutre, Mickaël Lafages, Marie-Christine Lagasquie-Schiex. Argumentation Frameworks with
Higher-Order Attacks: Labelling Semantics. [Research Report] IRIT/RR–2020–01–FR, IRIT - Institut
de recherche en informatique de Toulouse. 2020. �hal-02866037�

https://hal.science/hal-02866037
https://hal.archives-ouvertes.fr

Argumentation Frameworks with
Higher-Order Attacks: Labelling Semantics

Sylvie Doutre
Mickaël Lafages

Marie-Christine Lagasquie-Schiex

Université de Toulouse, IRIT
{sylvie.doutre,mickael.lafages,lagasq}@irit.fr

Tech. Report
IRIT/RR – 2020 – 01 – FR

Abstract

Recursive argumentation frameworks (RAF) take into account the no-
tion of higher-order attacks. Their semantics are defined in terms of
structures. A labelling version of these semantics is defined in this re-
port, and their correspondence with structures is shown. The case of
RAF with no recursive attacks is considered, confirming that RAF are
a generalization of Dung’s argumentation frameworks. A semantics
which had not been considered so far for RAF, the eager semantics,
is in addition introduced.

4

Contents

1 Introduction 1

2 Background 3
2.1 Dung argumentation framework and semantics 3
2.2 Recursive argumentation framework and semantics 5

3 New semantics for RAF 9
3.1 The Eager semantics . 9

3.1.1 Definition and some properties 9
3.1.2 The case of RAF with no recursive attacks 11

3.2 Reinstatement RAF labellings . 13

4 RAF labellings and structure semantics 17
4.1 Complete semantics . 18
4.2 Preferred semantics . 21

4.2.1 Reinstatement RAF labellings with maximal in 21
4.2.2 Reinstatement RAF labellings with maximal out 22

4.3 Stable semantics: reinstatement RAF labellings with empty und 25
4.4 Grounded semantics . 26

4.4.1 Reinstatement RAF labellings with maximal und 26
4.4.2 Reinstatement RAF labellings with minimal in 27
4.4.3 Reinstatement RAF labellings with minimal out 28

4.5 Eager semantics . 28
4.6 A one-to-one mapping . 30

4.6.1 Structures and labellings in RAF 30
4.6.2 AF labellings and RAF labellings when no recursive attack exists 30

5 Conclusion and perspectives 32

i

ii

Chapter 1

Introduction

Argumentation frameworks with higher-order attacks are a rich extension of clas-
sical Argumentation Framework (AF) (proposed by Dung in [9]): not only they
consider arguments and attacks between arguments, but also attacks on attacks.
Among the frameworks that consider higher-order attacks (e.g. [4, 11, 12, 2, 3]),
a recent one is the Recursive Argumentation Framework (RAF) [6].

Contrarily to other higher-order attacks systems whose semantics produce sets
of arguments, RAF semantics produce sets of arguments and/or attacks. More-
over, this is done “directly”, i.e. without introducing any additional elements in
the framework and without transforming the framework into another one.1 These
characteristics make RAF particularly interesting to consider as higher-order sys-
tems.

Acceptability semantics for RAF have so far been defined respectively to the
notion of structure (a set of arguments along with a set of attacks). A correspon-
dence between Dung’s extension-based semantics for AF and structure-based se-
mantics of RAF without any attack on attacks has been shown in [6], proving that
RAF are a conservative generalisation of AF.

Dung’s extension-based semantics for AF have also been defined in terms of
labellings [5, 1]. Whereas an extension assigns to its elements an accepted or
rejected status, a labelling considers a third status, undecided, which applies to
arguments which are not accepted. This enrichment has proven useful for the
computation of acceptance statuses in AF (see [8] for a survey).

The computation of semantics of RAF has not been addressed so far. Having

1See, for instance, the flattening process used in [2, 3] in order to transform higher-order frame-
works into AF.

1

the concern of computing such semantics in the future, we adapt in this report
the notion of labellings to structures. This adaptation leads us to considering an
additional semantics for RAF, the eager semantics, originally defined for AF [5].

The report is organised as follows: the basics of Dung’s argumentation frame-
work, the definition of Recursive Argumentation Frameworks and of their structure-
based semantics is recalled in Chapter 2. Chapter 3 extends the semantics asso-
ciated to RAFs, by introducing the eager semantics and RAF labelling semantics.
Chapter 4 shows the correspondence between structure semantics and RAF la-
belling semantics. Chapter 5 concludes and opens future perspectives to be stud-
ied.

2

Chapter 2

Background

In this section is given the necessary background on Dung’s Argumentation Frame-
works (AF) and then on Recursive Argumentation Frameworks (RAF).

2.1 Dung argumentation framework and semantics
In [9], Dung introduced a framework to represent argumentation in an abstract
way.

Definition 1 (Dung’s abstract argumentation framework [9]) A Dung’s abstract
Argumentation Framework (AF for short) is a pair Γ = 〈A,K〉 where A is a set of
arguments and K ⊆ A×A is a relation representing attacks over arguments.

Definition 2 (Defeat and acceptability in Dung’s framework) Let Γ= 〈A,K〉 be
an AF and S⊆ A be a set of arguments. An argument a ∈ A is said to be:

• defeated w.r.t. S iff ∃b ∈ S s.t. (b,a) ∈ K.

• accepted w.r.t. S iff ∀(b,a) ∈ K,∃c ∈ S s.t. (c,b) ∈ K.

We define the sets of defeated and accepted arguments w.r.t. S as follows:

De f (S) = {a ∈ A|∃b ∈ S s.t. (b,a) ∈ K}

Acc(S) = {a ∈ A|∀(b,a) ∈ K,∃c ∈ S s.t. (c,b) ∈ K}

Several “semantics” defining sets of arguments (so called “extensions”) solv-
ing the argumentation have been defined on Dung’s framework. Here are some of
them.

3

Definition 3 (Semantics of Dung’s AF) Let Γ = 〈A,K〉 be an AF and S⊆ A be a
set of arguments. S is said to be an extension:

1. Conflict-free iff S∩De f (S) =∅.

2. Naive iff it is a ⊆-maximal conflict-free extension.

3. Admissible iff it is conflict-free and S⊆ Acc(S).

4. Complete iff it is conflict-free and S = Acc(S).

5. Preferred iff it is a ⊆-maximal admissible extension.

6. Grounded iff it is a ⊆-minimal complete extension.

7. Eager iff it is a complete extension such that S∪De f (S) is maximal w.r.t.
⊆.

8. Stable iff it is conflict-free and S∪De f (S) = A.

Acceptability semantics can be defined in terms of labellings [5, 1].

Definition 4 (Labelling) Let Γ = 〈A,K〉 be an AF, and S ⊆ A. A labelling of S is
a total function ` : S→{in,out,und}.

The set of all labellings of S is denoted as L (S). A labelling of Γ is a labelling
of A.

The set of all labellings of Γ is denoted as L (Γ).
We write in(`) for {a|`(a) = in}, out(`) for {a|`(a) = out} and und(`)

for {a|`(a) = und}.

Definition 5 (Legally labelled arguments, valid labelling)

• An in-labelled argument is said to be legally in iff all its attackers are
labelled out.

• An out-labelled argument is said to be legally out iff at least one of its
attackers is labelled in.

• An und-labelled argument is said to be legally und iff it does not have any
attacker that is labelled in, and one of its attackers is not labelled out.

4

A valid labelling is a labelling in which all arguments are legally labelled.

Let Γ = 〈A,K〉 be an AF, and ` ∈ L (Γ) be a labelling. Different kinds of
labelling can be defined [5, 1]:

Definition 6

• ` is an admissible labelling of Γ iff for any argument a∈ A such that `(a) =
in or `(a) = out, a is legally labelled.

• ` is a complete labelling of Γ iff for any argument a ∈ A, a is legally la-
belled.

• ` is the grounded labelling of Γ iff it is the complete labelling of Γ that
minimizes (w.r.t ⊆) the set of in-labelled arguments.

• ` is a preferred labelling of Γ iff it is a complete labelling of Γ that maxi-
mizes (w.r.t ⊆) the set of in-labelled arguments.

• ` is a stable labelling of Γ iff it is a complete labelling of Γ which has no
und-labelled argument.

• ` is an eager labelling of Γ iff it is a complete labelling of Γ that minimizes
(w.r.t ⊆) the set of und-labelled arguments.

It has been shown in [5], that there exists a one-to-one mapping between ex-
tensions and labellings for those semantics.

2.2 Recursive argumentation framework and seman-
tics

To the best of our knowledge, the first work where the idea of higher-order in-
teractions appears is [4]. Then many different works followed. For instance,
in [11, 12], second-order attacks are used in order to explicitly represent the im-
pact of the preferences between arguments in the argumentation framework. Then
[2, 3] introduce Argumentation Frameworks with Recursive Attacks (AFRA) that
take into account the attacks on attacks and propose some semantics. A more
recent variant of AFRA is given in [6] with other semantics and called Recur-
sive Argumentation Framework (RAF). One keypoint of the RAF approach is the

5

fact that semantics proposed in [6] produce sets of arguments and/or attacks and
not only sets of arguments (as it is done for instance in [2, 3] and more recently
in [10]). RAF semantics need neither the introduction of additional elements in
the framework, nor its transformation into another framework.1

Definition 7 (Recursive argumentation framework [6]) A recursive argumen-
tation framework Γ = 〈A,K,s, t〉 is a quadruple where A and K are (possibly in-
finite) disjoint sets respectively representing arguments and attack names, and
where s : K→ A and t : K→ A∪K are functions respectively mapping each attack
to its source and its target.

As in Dung’s framework, a RAF can be graphically represented as a directed
graph.

Example 1 Figure 2.1 shows an example of RAF. In all this document, arguments
will be represented by a round box, while attacks will be represented by a square
box.

a b δ

c

d

eγ

hf θ

g

ι

α

β

ε

ζ

η

κ

λ

Figure 2.1: Example of a RAF

1For instance, one approach developed in [2, 3] uses a “flattening process” that transforms an
AFRA into a Dung AF and then uses AF semantics.

6

Definition 8 (Structure [6]) A pair U= 〈S,Q〉 is said to be a structure of some
Γ = 〈A,K,s, t〉 if it satisfies: S⊆ A and Q⊆ K.

Notice that by x ∈ U we mean x ∈ S∪Q.

Definition 9 (Defeat and Inhibition [6]) Let U= 〈S,Q〉 be a structure.
We denote by De f (U) the set of all arguments defeated by U, defined by:

De f (U) = {a ∈ A|∃α ∈ Q s.t. s(α) ∈ S and t(α) = a}

We denote by Inh(U) the set of all attacks inhibited by U, defined by:

Inh(U) = {α ∈ K|∃β ∈ Q s.t. s(β) ∈ S and t(β) = α}

Definition 10 (Acceptability [6]) An element x∈ (A∪K) is said to be acceptable
w.r.t. some structure U iff every attack α ∈ K with t(α) = x satisfies one of the
following conditions: (i) s(α) ∈ De f (U) or (ii) α ∈ Inh(U).

By Acc(U) we denote the set containing all acceptable arguments and attacks
with respect to U.

For any pair of structures U= 〈S,Q〉 and U′ = 〈S′,Q′〉, we write U′ v U′ iff
(S∪Q) ⊆ (S′ ∪Q′) and we write U var U

′ iff S ⊆ S′. As usual, we say that a
structure U is v-maximal (resp. var-maximal) iff every U′ that satisfies U v U′

(resp. Uvar U
′) also satisfies U′ v U (resp. U′ var U).

Definition 11 (Structure semantics [6, 7]) Let U= 〈S,Q〉 be a structure over some
RAF Γ = 〈A,K,s, t〉. U is said to be:

1. Conflict-free iff S∩De f (U) =∅ and Q∩ Inh(U) =∅.

2. Admissible iff it is conflict free and (S∪Q)⊆ Acc(U).

3. Complete iff it is conflict free and (S∪Q) = Acc(U).

4. Preferred iff it is a v-maximal admissible structure.

5. Grounded iff it is a v-minimal complete structure.

6. Arg-preferred iff it is a var-maximal admissible structure.

7. Stable iff S = A\De f (U) and Q = K \ Inh(U).

7

In [6], Proposition 1 and 2 and Theorem 1 have been proven.

Proposition 1 ([6]) There is always a unique grounded structure.

Proposition 2 ([6]) The set of all admissible structures forms a complete partial
order with respect to v. Furthermore, for every admissible structure U, there
exists an (arg-) preferred extension U′ such that Uv U′.

Theorem 1 ([6]) The following assertions hold:

• every complete structure is also admissible ,

• every preferred structure is also complete ,

• every stable structure is also preferred .

Moreover, in [6], it is proven that RAF are a conservative generalization of
AF since there is a one-to-one correspondence between the structures of a RAF
without recursive attacks and their corresponding Dung’s extensions (the proof is
given for the complete, grounded, preferred and stable semantics).

8

Chapter 3

New semantics for RAF

In this section is introduced the eager semantics for RAF, and a focus on RAFs
with no recursive attacks is done. The notion of AF reinstatement labelling in-
troduced in [5] is also generalized for RAF (so called “reinstatement RAF la-
belling”). The same work can be done in the case of RAF.

3.1 The Eager semantics
While introducing labellings for AF and studying labellings over some constraints,
Caminada et al. ([5]) highlighted a non yet discovered semantics: the eager se-
mantics. From the eager labelling semantics has been defined the eager extension
semantics.

3.1.1 Definition and some properties
As for AF, the eager structures are the ones that decide the most on the acceptance
or the rejection of arguments and attacks.

Definition 12 (Eager structure). Let Γ = 〈A,K,s, t〉 be a RAF and U= 〈S,Q〉
be some structure over it. U is said to be an eager structure iff U is a complete
structure such that:

S∪Q∪De f (U)∪ Inh(U) is maximal w.r.t. to inclusion.

Theorem 2 The following assertions hold:

9

1. Every stable structure is an eager structure

2. Every eager structure is a preferred structure

PROOF.

1. (Stable structures are eager ones). Let Γ= 〈A,K,s, t〉 be a RAF and U= 〈S,Q〉
be a stable structure. According to the definition of a stable structure (Defi-
nition 11), we have:

S = A\De f (U) and Q = K \ Inh(U)

For any x ∈ (A∪K), x is whether in U or is defeated or inhibited by U. As
a consequence, (S∪Q∪De f (U)∪ Inh(U)) is maximal w.r.t. to inclusion.

We prove so that every stable structure is an eager structure.

2. (Eager structures are preferred ones). Let Γ = 〈A,K,s, t〉 be a RAF and
U= 〈S,Q〉 be an eager structure. Let suppose that U is not a preferred
structure. U being by definition a complete structure (Definition 12), there
exists thus a preferred structure U′ = 〈S′,Q′〉 such that U @ U′. We have
thus by definition of v-inclusion:

S⊆ S′ and Q⊆ Q′ (3.1)

From the strict inclusion, we also have:

(S∪Q)⊂ (S′∪Q′) (3.2)

It follows, from Equations 3.1, 3.2 and from Definition 9 that:

(De f (U)∪ Inh(U))⊂ (De f (U′)∪ Inh(U′)) (3.3)

Combining Equations 3.2 and 3.3, we have:

(S∪Q∪De f (U)∪ Inh(U))⊂ (S′∪Q′∪De f (U′)∪ Inh(U′)) (3.4)

Given that U′ is also a complete structure, the consequence of Equation
3.4 is that U is not an eager structure, as (S∪Q∪De f (U)∪ Inh(U)) is not
maximal. There is thus a contradiction.

We prove so that every eager structure is also a preferred structure.

10

�

Theorem 3 Let Γ = 〈A,K,s, t〉 be a RAF. If there exists a stable structure, then
the eager structures coincide with the stable structures.

PROOF. Let suppose that there exists a stable structure U= 〈S,Q〉. Following
the definition of stable structures (Definition 11), we have: S = A \De f (U) and
Q = K \ Inh(U). As a consequence, we have (S∪De f (U)∪Q∪ Inh(U)) including
all the arguments and attacks of Γ.

According to Theorem 2, U is also an eager structure. As any eager structure
U′ = 〈S′,Q′〉 maximizes the set (S′∪De f (U′)∪Q′∪ Inh(U′)) and as there exists
U, a structure such that (S∪De f (U)∪Q∪ Inh(U)) is maximized to point that it
includes all the arguments and attacks of Γ, then for U′ to be maximal we nec-
essarily have (S′∪De f (U′)∪Q′∪ Inh(U′)) also including all the arguments and
attacks of Γ. U′ is then a stable structure.

We prove thus that if there exists a stable structure, then the eager structures
coincide with the stable structures. �

The complete, grounded, preferred, eager, argpref and stable semantics cor-
responding to Example 1 are given in Table 3.1.

We can observe that the stable semantics produces no structure for that RAF.
This example shows that an eager structure is not always a stable one (see U3 and
U4) and that a preferred structure is not always an eager one (see U2).

3.1.2 The case of RAF with no recursive attacks
As stated in Section 2.2, it has been proven in [6] that in RAFs without recur-
sive attacks there is a one-to-one correspondence between structures and Dung’s
extensions for the complete, grounded, preferred and stable semantics. Let now
consider the case of the eager semantics.

The set of eager extensions coincides with the set of eager structures on RAF
with no recursive attacks (i.e. RAF that happened to be simple AF). Notice that
all the structures of such a RAF contain all the attacks.

Proposition 3 (Eager extensions and structures) Let Γ = 〈A,K,s, t〉 be a RAF
such that ∀α ∈ K, t(α) ∈ A. Γ can thus be considered as a simple AF. Let Γ′ =
〈A,K〉 be the AF version of Γ.

U= 〈S,K〉 is an eager structure of Γ iff S is an eager extension of Γ
′

11

PROOF. Let Γ = 〈A,K,s, t〉 be a RAF such that ∀α ∈ K, t(α) ∈ A. Γ can thus be
considered as a simple AF. Let Γ′ = 〈A,K〉 be the AF version of Γ.

Step 1: Let prove in a first place that if U = 〈S,K〉 is an eager structure of Γ

then S is an eager extension of Γ′.

Let U= 〈S,K〉 be an eager structure over Γ. Notice that the set of attacks of U
is K as attacks are always valid in Γ, and so that Inh(U) =∅. Let suppose that S
is not an eager extension of Γ′. There exists thus an extension S′ of Γ′ such that:

(S∪De f (S))⊂ (S′∪De f (S′)) (3.5)

We have thus :

(S∪De f (S)∪K)⊂ (S′∪De f (S′)∪K) (3.6)

Let U′= 〈S′,K〉 be the structure over Γ whose set of arguments is the extension
S′. For the same reason as U, the set of attacks of U′ is K and Inh(U′) =∅.

As Inh(U) =∅ and Inh(U′) =∅, we can thus say from Equation 3.6 that:

(S∪De f (S)∪K∪ Inh(U))⊂ (S′∪De f (S′)∪K∪ Inh(U′)) (3.7)

Given that all attacks are valid in Γ, we have: De f (S)=De f (U) and De f (S′)=
De f (U′). We have thus from Equation 3.7:

(S∪De f (U)∪K∪ Inh(U))⊂ (S′∪De f (U′)∪K∪ Inh(U′)) (3.8)

As stated by Equation 3.8, (S∪De f (S)∪K ∪ Inh(U)) is not maximal. It fol-
lows that U is not an eager structure, which is a contradiction.

We prove so that if U = 〈S,K〉 is an eager structure of Γ then S is an eager
extension of Γ′.

Step 2: Let now prove that if S is an eager extension of Γ′ then U = 〈S,K〉 is
an eager structure of Γ.

Let S be an eager extension of Γ′ and let U = 〈S,K〉 be a structure over Γ

whose set of arguments is S. Notice that the set of attacks of U is K as attacks are
always valid in Γ.

Let suppose that U is not an eager structure. There exists thus an eager struc-
ture U′ = 〈S′,K〉 such that:

(S∪De f (U)∪K∪ Inh(U))⊂ (S′∪De f (U′)∪K∪ Inh(U′)) (3.9)

12

Given that all attacks are valid in Γ, we have: Inh(U) =∅ and Inh(U′) =∅. We
have thus from Equation 3.9:

(S∪De f (U))⊂ (S′∪De f (U′)) (3.10)

Furthermore, as all attacks are valid in Γ, we have: De f (S) = De f (U) and
De f (S′) = De f (U′). We have thus from Equation 3.10:

(S∪De f (S))⊂ (S′∪De f (S′)) (3.11)

As stated by Equation 3.11, (S∪De f (S)) is not maximal. It follows that S is
not an eager extension, which is a contradiction.

We prove so that if S is an eager extension of Γ′ then U = 〈S,K〉 is an eager
structure of Γ.

With steps 1 and 2, we have thus proven that:

U= 〈S,K〉 is an eager structure of Γ iff S is an eager extension of Γ
′

�

3.2 Reinstatement RAF labellings
Now that relations between structure semantics and between structure and exten-
sions semantics has been stated, we introduce the notion of labelling on RAF.

The reason why we are interested in the labelling approach to compute seman-
tics is that labellings are more precise than structures (as there are three statuses to
describe the acceptance of elements) and especially because it seems to be more
practical for finding algorithms.

Definition 13 (RAF labelling). Let Γ = 〈A,K,s, t〉 be a recursive argumentation
framework. A RAF labelling is a tuple L= 〈`A,`K〉 such that `A is a total func-
tion `A : A→{in,out,und} and `K , a total function `K : K→{in,out,und}.

We define:

• in(L) as the tuple 〈{a ∈ A|`A(a) = in},{α ∈ K|`K(α) = in}〉,

• und(L) as the tuple 〈{a ∈ A|`A(a) = und},{α ∈ K|`K(α) = und}〉 and

13

• out(L) as the tuple 〈{a ∈ A|`A(a) = out},{α ∈ K|`K(α) = out}〉.

Let x ∈ (A∪K). Given a certain L, we use the notation L(x) to indicate the
labelling of x in L. It could mean `A(x) or `K(x), following the nature of x. We
also use the notation in(L) (respectively out(L), und(L)) to represent the set of
all in-labelled (respectively out-labelled, und-labelled) attacks or argument in
L.

Definition 14 (Reinstatement RAF labelling). Let Γ = 〈A,K,s, t〉 be a recursive
argumentation framework and L= 〈`A,`K〉 be a RAF labelling. L is a reinstate-
ment RAF labelling iff it satisfies the following conditions: ∀x ∈ (A∪K),

• (L(x)= out) ⇐⇒ (∃α ∈K s.t. t(α)= x, `K(α)= in and `A(s(α)) = in)

• (L(x)= in) ⇐⇒ (∀α ∈K s.t. t(α)= x, `K(α)= out or `A(s(α))= out)

Moreover, as for AF, we also introduce a notion of valid labelling. An in -
labelled element is said to be legally in iff all its attackers or their involved attacks
are labelled out . An out -labelled element is said to be legally out iff at least one
of its attackers and the involved attack are labelled in . An und -labelled element
is said to be legally und iff it does not have any attacker and its involved attack that
are labelled in and one of its attackers and the involved attack are not labelled
out . Formally, valid labellings are defined as follows.

Definition 15 (Legally labelled elements, valid RAF labelling)
Let Γ = 〈A,K,s, t〉 be a recursive argumentation framework and L= 〈`A,`K〉 be
a RAF labelling over Γ. Let x be an argument or an attack of Γ. x is said to be
legally labelled in L if and only if the 3 following conditions hold:

• x ∈ in(L) iff (∀α ∈ K s.t. t(α) = x, `K(α) = out or `A(s(α)) = out)

• x ∈ out(L) iff (∃α ∈ K s.t. t(α) = x, `K(α) = in and `A(s(α)) = in)

• x ∈ und(L) iff ((@α ∈ K s.t. t(α) = x, `K(α) = in and `A(s(α)) = in)
and (∃α ∈ K s.t. t(α) = x, `K(α) 6= out and `A(s(α)) 6= out))

L is said to be a valid RAF labelling if all its elements are legally labelled.

Notice that by definition reinstatement RAF labellings are valid ones.
The labelling version of Table 3.1 about Example 1 is shown in Table 3.2.

14

U1 U2 U3 U4

A
rg

um
en

ts
or

at
ta

ck
s

a
b
c
d
e
f
g
h
α

β

γ

δ

ε

ζ

η

θ

ι

κ

λ

Se
m

an
tic

s
w

ith
st

ru
ct

ur
es grounded

complete
preferred

arg-preferred
eager
stable

In the first part of the table, i j means that the
element i belongs to the structure j.
In the second part of the table, i j means that
j is a structure of the semantics i.

Table 3.1: Semantics structures

15

L1 L2 L3 L4

A
rg

um
en

ts
or

at
ta

ck
s

a und in out out

b und out in in

c und und in in

d und und in in

e und und out out

f und und in in

g und in in out

h und und und und

α in in in in

β in in in in

γ in in in in

δ und in out out

ε in in in in

ζ in in in in

η in in in in

θ und und out out

ι und out out in

κ in in in in

λ in in in in

Se
m

an
tic

s
w

ith
R

A
F

la
be

lli
ng

s

grounded
complete
preferred

arg-preferred
eager
stable

i j means that j is a labelling of semantics i.

Table 3.2: Semantics RAF labellings

16

Chapter 4

RAF labellings and structure
semantics

In this section we show that there exists a one-to-one mapping between RAF la-
bellings and structures. Specific semantics structures happen to be coinciding with
RAF labellings under some constraints.

Definition 16 (Struct2Lab and Lab2Struct). Let Γ = 〈A,K,s, t〉 be a RAF,
U= 〈S,Q〉 be a structure and L= 〈`A,`K〉 be a RAF labelling. The functions
Struct2LabΓ and Lab2StructΓ are defined as following:

• Struct2LabΓ(U) = 〈`A,`K〉, a RAF labelling with:

– `A = {(a,in)|a ∈ S} ∪ {(a,out)|a ∈ (A \ S) and a ∈ De f (U)} ∪
{(a,und)|a ∈ (A\S) and a /∈ De f (U)}

– `K = {(α,in)|α ∈ Q} ∪ {(α,out)|α ∈ (K \Q) and α ∈ Inh(U)} ∪
{(α,und)|
α ∈ (K \Q) and α /∈ Inh(U)}

• Lab2StructΓ(L) = 〈S,Q〉, a structure with:

– S = {a|`A(a) = in}
– Q = {α|`K(α) = in}

We write Struct2Lab and Lab2Struct instead of Struct2LabΓ and Lab2StructΓ

when there is no ambiguity about the RAF Γ we refer to.

17

4.1 Complete semantics
Reinstatement RAF labellings coincide with complete structures as stated by The-
orems 4 and 5.

Theorem 4 Let Γ = 〈A,K,s, t〉 be a RAF and let L= 〈`A,`K〉 be a reinstatement
RAF labelling. Then Lab2Struct(L) is a complete structure.

PROOF. Let U = Lab2Struct(L). According to Definition 11, U being a com-
plete structure (with U= 〈S,Q〉) means that (S∪Q) = Acc(U). In a first step, let
us prove that (S∪Q)⊆ Acc(U) and then that (S∪Q)⊇ Acc(U).

Step 1: (S∪Q)⊆ Acc(U)

Let x ∈ (S∪Q). By definition of Lab2Struct(L), we have L(x) = in. Given
that L is a reinstatement RAF labelling, we have:

∀α ∈ K s.t. t(α) = x, `K(α) = out or `A(s(α)) = out (4.1)

So two cases must be considered: `K(α) = out or `A(s(α)) = out.

1. `K(α) = out.

Given L is a reinstatement RAF labelling there exists an attack β such that
t(β) = α , `K(β) = in and `A(s(β)) = in. As a consequence, β ∈ Q and
s(β) ∈ S. According to Definition 9, we have so: α ∈ Inh(U).

2. `A(s(α)) = out.

Given L is a reinstatement RAF labelling there exists an attack γ such that
t(γ) = s(α), `K(γ) = in and `A(s(γ)) = in. As a consequence, γ ∈ Q and
s(γ) ∈ S. According to Definition 9, we have so: s(α) ∈ De f (U).

As a consequence and following Definition 10, we have: x ∈ Acc(U).
We prove so that:

(S∪Q)⊆ Acc(U) (4.2)

Step 2: (S∪Q)⊇ Acc(U)

Let x ∈ Acc(U), x being an argument or an attack. According to Definition 10,
for all α ∈ K such that t(α) = x, we have: s(α) ∈ De f (U) or α ∈ Inh(U).

18

Let y be s(α) or α . Given that y ∈ (De f (U)∪ Inh(U)), there exists an attack
β such that s(β) ∈ S, β ∈ Q and t(β) = y. By definition of Lab2Struct(L), we
have `A(s(β)) = in and `K(β) = in. Given L is a reinstatement RAF labelling,
we have L(y) = out.

As a consequence, we have:

∀α ∈ K s.t. t(α) = x, `A(s(α)) = out or `K(α) = out (4.3)

Then, given that L is a reinstatement RAF labelling, we have : L(x) = in. By
definition of Lab2Struct(L) we have so x ∈ (S∪Q).

We prove so that :
(S∪Q)⊇ Acc(U) (4.4)

Finally, because of Equations 4.2 and 4.4 we have:

(S∪Q) = Acc(U) (4.5)

We prove thus prove that Lab2Struct(L) is a complete structure. �

Theorem 5 Let Γ = 〈A,K,s, t〉 be a RAF and let U= 〈S,Q〉 be a complete struc-
ture. Then Struct2Lab(U) is a reinstatement RAF labelling.

PROOF. Let L = Struct2Lab(U). In order to prove that L is a reinstatement
RAF labelling (with L= 〈`A,`K〉) we have to prove that, for all x ∈ (A∪K):

1. (L(x)= out)=⇒ (∃α ∈K s.t. t(α)= x, `K(α)= in and `A(s(α)) = in)

2. (L(x)= out)⇐=(∃α ∈K s.t. t(α)= x, `K(α)= in and `A(s(α)) = in)

3. (L(x) = in) =⇒ (∀α ∈ K s.t. t(α) = x, `K(α) = out or `A(s(α)) = out)

4. (L(x) = in)⇐= (∀α ∈ K s.t. t(α) = x, `K(α) = out or `A(s(α)) = out)

Step 1: (L(x)= out)=⇒ (∃α ∈K s.t. t(α)= x, `K(α)= in and `A(s(α)) = in)

Let x ∈ (A∪K) be an argument or an attack such that L(x) = out. Accord-
ing to the definition of Struct2Lab(U), we have x ∈ (De f (U)∪ Inh(U)). Fol-
lowing the definitions of De f (U) and Inh(U), we can state that there exists an
attack α such that α ∈ Q, s(α) ∈ S and t(α) = x. According to the definition of
Struct2Lab(U), we have so `K(α) = in and `A(s(α)) = in.

19

We prove so that for all x ∈ (A∪K):

(L(x) = out) =⇒ (∃α ∈ K s.t. t(α) = x, `K(α) = in and `A(s(α)) = in)
(4.6)

Step 2: (L(x) = out)⇐= (∃α ∈ K s.t. t(α) = x, `K(α) = in and `A(s(α))
= in)

Let x ∈ (A∪K) be an argument or an attack. If there exists an attack α ∈
K such that t(α) = x, `K(α) = in and `A(s(α)) = in, then according to the
definition of Struct2Lab(U), we have α ∈ Q and s(α) ∈ S. As a consequence,
we have x ∈ (De f (U)∪ Inh(U)). We have thus, according to the definition of
Struct2Lab(U): L(x) = out.

We prove so that for all x ∈ (A∪K):

(L(x) = out)⇐= (∃α ∈ K s.t. t(α) = x, `K(α) = in and `A(s(α)) = in)
(4.7)

Step 3: (L(x) = in) =⇒ (∀α ∈ K s.t. t(α) = x, `K(α) = out or `A(s(α)) =
out)

Let x ∈ (A∪K) be an argument or an attack such that L(x) = in. According
to the definition of Struct2Lab(U), we have then x ∈ U and as U is a com-
plete structure we have x ∈ Acc(U). As a consequence, for all α ∈ K such that
t(α) = x, we have: s(α) ∈ De f (U) or α ∈ Inh(U). According to the definition of
Struct2Lab(U), we have then: `A(s(α)) = out or `K(α) = out.

We prove so that for all x ∈ (A∪K):

(L(x) = in) =⇒ (∀α ∈ K s.t. t(α) = x,`K(α) = out or `A(s(α)) = out)
(4.8)

Step 4: (L(x) = in)⇐= (∀α ∈ K s.t. t(α) = x, `K(α) = out or `A(s(α)) =
out)

Let x ∈ (A∪K) be an argument or an attack such that for all attacks α ∈
K s.t. t(α) = x, `K(α) = out or `A(s(α)) = out. For all such attack α , we
have then, according to the definition of Struct2Lab(U): α ∈ Inh(U) or s(α) ∈
De f (U). As a consequence, we have x ∈ Acc(U) and so x ∈ (S∪Q), U being
complete structure. According to the definition of Struct2Lab(U), we have then:
L(x) = in.

20

We prove so that for all x ∈ (A∪K):

(L(x) = in)⇐= (∀α ∈ K s.t. t(α) = x,`K(α) = out or `A(s(α)) = out)
(4.9)

Equations 4.6, 4.7, 4.8 and 4.9 being stated, we prove thus that L is a rein-
statement RAF labelling. �

4.2 Preferred semantics
In this section we show that several constraints on reinstatement RAF labellings
lead to the preferred semantics.

4.2.1 Reinstatement RAF labellings with maximal in
Reinstatement RAF labellings such that in (L) is maximal coincide with pre-
ferred structures as stated by Theorems 6 and 7.

Theorem 6 Let Γ = 〈A,K,s, t〉 be a RAF and let L= 〈`A,`K〉 be a reinstatement
RAF labelling such that in(L) is maximal. Then Lab2Struct(L) is a preferred
structure.

PROOF. Let L be a reinstatement RAF labelling such that in(L) is maximal.
Let suppose that U = Lab2Struct(L) is not a preferred structure. According to
Definition 11, Proposition 2 and Theorem 1, there exists then a complete structure
U′ such that U@U′ (strict inclusion). Let L′ = Struct2Lab(U′). Then in(L′)⊂
in(L). As a consequence L is not a reinstatement RAF labelling such that in(L)
is maximal, which is a contradiction. �

Theorem 7 Let Γ = 〈A,K,s, t〉 be a RAF and let U= 〈S,Q〉 be a preferred struc-
ture. Then L= Struct2Lab(U) is a reinstatement RAF labelling such that in(L)
is maximal.

PROOF. Let U be a preferred structure and L = Struct2Lab(U). Let us sup-
pose that L is not a reinstatement RAF labelling such that in(L) is maximal.

21

Then there exists a reinstatement RAF labelling L′ such that in(L)⊂ in(L′). Let
U′ = Lab2Struct(L′). Then U′ is a complete structure such that U @ U′ (strict
inclusion). As a consequence, U is not a preferred structure, which is a contradic-
tion.

�

4.2.2 Reinstatement RAF labellings with maximal out
Reinstatement RAF labellings such that out (L) is maximal also coincide with
preferred structures. In order to prove it, let first prove the two following proposi-
tions.

Proposition 4 Let L and L′ be two reinstatement RAF labellings. If in(L) ⊂
in(L′) then out(L)⊂ out(L′).

PROOF. Let L and L′ be two reinstatement RAF labellings such that in(L) ⊂
in(L′), meaning that:

∀w ∈ in(L), w ∈ in(L′) (4.10)

and

∃x ∈ in(L′), x /∈ in(L) (4.11)

Let prove that out(L)⊂ out(L′), and so that :

1. ∀y ∈ out(L), y ∈ out(L′)

2. ∃z ∈ out(L′), z /∈ out(L)

Step 1: ∀y ∈ out(L), y ∈ out(L′)

Let y be an attack or an argument such that y ∈ out(L). Given L is a rein-
statement RAF labelling, we have by definition:

(L(y) = out) =⇒ (∃α ∈ K s.t. t(α) = y,`K(α) = in and `A(s(α)) = in)

Then according to Equation 4.10, α ∈ in(L′) and s(α) ∈ in(L′). As L′ is
also a reinstatement RAF labelling, we have so y ∈ out(L′).

22

Step 2: ∃z ∈ out(L′), z /∈ out(L)

Let x be an attack or an argument such that x ∈ in(L′) and x /∈ in(L). Given
L and L′ are reinstatement RAF labellings, we have by definition:

(L′(x) = in) ⇐⇒ (∀α ∈ K s.t. t(α) = x, ` ′K(α) = out or ` ′A(s(α)) = out)
(4.12)

(L(x) 6= in) ⇐⇒ (∃α ∈ K s.t. t(α) = x,`K(α) 6= out and `A(s(α)) 6= out)
(4.13)

Let α be such an attack with t(α) = x, `K(α) 6= out ∩ `A(s(α)) 6= out.
By definition of α we have, α /∈ out(L) and s(α) /∈ out(L). Furthermore,

given that L′(x) = in, we have following Equation 4.12, α ∈ out(L′) or s(α) ∈
out(L′).

We prove thus that there exists z such that, z ∈ out(L′) and z /∈ out(L).
�

Proposition 5 Let L and L′ be two reinstatement RAF labellings. If out(L) ⊂
out(L′) then in(L)⊂ in(L′).

PROOF. Let L and L′ be two reinstatement RAF labellings such that out(L) ⊂
out(L′), meaning that:

∀w ∈ out(L), w ∈ out(L′) (4.14)

and

∃x ∈ out(L′), x /∈ out(L) (4.15)

Let prove that in(L)⊂ in(L′), and so that :

1. ∀y ∈ in(L), y ∈ in(L′)

2. ∃z ∈ in(L′), z /∈ in(L)

Step 1: ∀y ∈ in(L), y ∈ in(L′)

23

Let y be an attack or an argument such that y ∈ in(L). Given L is a reinstate-
ment RAF labelling, we have by definition:

(L(y) = in) =⇒ (∀α ∈ K s.t. t(α) = y, `K(α) = out or `A(s(α)) = out)

Then according to Equation 4.14, we have:

(L(y) = in) =⇒ (∀α ∈ K s.t. t(α) = y, ` ′K(α) = out or ` ′A(s(α)) = out)

As L′ is also a reinstatement RAF labelling, we have then y ∈ in(L′).

Step 2: ∃z ∈ in(L′), z /∈ in(L)

Let x be an attack or an argument such that x ∈ out(L′) and x /∈ out(L).
Given L and L′ are reinstatement RAF labellings, we have by definition:

(L′(x) = out) ⇐⇒ (∃α ∈ K s.t. t(α) = x,` ′K(α) = in and ` ′A(s(α)) = in)
(4.16)

(L(x) 6= out) ⇐⇒ (∀α ∈ K s.t. t(α) = x, `K(α) 6= in or `A(s(α)) 6= in)
(4.17)

According to Equation 4.17, for all attack α such that t(α) = x, we have:
α /∈ in(L) or s(α) /∈ in(L). However, we have following Equation 4.16, there
exists at least one attack α ∈ K s.t. α ∈ in(L′) and s(α) ∈ in(L′).

We prove thus that there exists z such that, z ∈ in(L′) and z /∈ in(L). �

Now that Propositions 4 and 5 have been proven, let now prove that rein-
statement RAF labellings such that out (L) is maximal coincide with preferred
structures.

Theorem 8 Let Γ = 〈A,K,s, t〉 be a RAF and let L= 〈`A,`K〉 be a reinstatement
RAF labelling such that out(L) is maximal. Then Lab2Struct(L) is a preferred
structure.

PROOF. Let L be a reinstatement RAF labelling such that out(L) is maximal.
Let suppose that Lab2Struct(L) is not a preferred structure. Then according to
Theorem 6, in(L) is not maximal. There exists thus a reinstatement RAF labelling
L′ such that in(L) ⊂ in(L′). We have then, following Proposition 4, out(L) ⊂
out(L′), which is a contradiction. �

24

Theorem 9 Let Γ = 〈A,K,s, t〉 be a RAF and let U= 〈S,Q〉 be a preferred struc-
ture. Then L= Struct2Lab(U) is a reinstatement RAF labelling such that out(L)
is maximal.

PROOF. Let U be a preferred structure. According to Theorem 7, L= Struct2Lab(U)
is a reinstatement RAF labelling such that in(L) is maximal. Let suppose that
out(L) is not maximal. There exist thus a reinstatement RAF labelling L′ such
that out(L)⊂ out(L′). We have then, following Proposition 5, in(L)⊂ in(L′),
which is a contradiction. �

4.3 Stable semantics: reinstatement RAF labellings
with empty und

Reinstatement RAF labellings such that und (L) is empty coincide with stable
structures as stated by Theorems 10 and 11.

Theorem 10 Let Γ= 〈A,K,s, t〉 be a RAF and let L= 〈`A,`K〉 be a reinstatement
RAF labelling such that und(L) =∅. Then Lab2Struct(L) is a stable structure.

PROOF. Let L= 〈`A,`K〉 be a reinstatement RAF labelling such that und(L) =
∅. Let U= Lab2Struct(L). Let x be any attack or argument such that x /∈ U.

Given that und(L) = ∅, we have according to Definition 16: L(x) = out.
There exists then an attack α such that: `A(s(α)) = in ∩ `K(α) = in. We have
then s(α) ∈ U and α ∈ U.

Therefore, according to Definition 9, we have: x ∈ De f (U) or x ∈ Inh(U),
following the nature of x. This means that U defeats or inhibits any argument and
attack which is not in it.

We prove so that U is, thus, a stable structure. �

Theorem 11 Let Γ= 〈A,K,s, t〉 be a RAF and let U= 〈S,Q〉 be a stable structure.
Then L = Struct2Lab(U) is a reinstatement RAF labelling such that und(L) is
empty.

25

PROOF. Let U be a stable structure and let x be an argument or an attack.
If x ∈ U then L(x) = in.
Let consider the case when x /∈ U. Given U is a stable structure then there

exists an attack α in U that defeats or inhibits x. We have then, according to
Definition 16: L(x) = out.

In both cases L(x) 6= und. We prove so that und(L) =∅. �

4.4 Grounded semantics
In this section we show that several constraints on reinstatement RAF labellings
lead to the grounded semantics.

4.4.1 Reinstatement RAF labellings with maximal und

Reinstatement RAF labellings such that und (L) is maximal coincide with the
grounded structure as stated by Theorems 12 and 13.

Theorem 12 Let Γ = 〈A,K,s, t〉 be a RAF and let L= 〈`A,`K〉 be a reinstate-
ment RAF labelling such that und(L) is maximal. Then Lab2Struct(L) is the
grounded structure.

PROOF. Let L= 〈`A,`K〉 be a reinstatement RAF labelling such that und(L)
is maximal. Let suppose that U = Lab2Struct(L) is not the grounded struc-
ture. According to Theorem 4, U is a complete structure. By definition of the
grounded structure (Definition 11), we can thus say that there exists a structure
U′ that is the grounded structure and such that U′ @ U (strict inclusion). Let
L′ = Struct2Lab(U′) be the reinstatement RAF labelling corresponding with the
grounded structure.

As U′ @ U we have, by definition of Struct2Lab: in(L′)⊂ in(L)
Following Proposition 4, we thus also have: out(L′)⊂ out(L)
As a consequence, we can say that: und(L)⊂ und(L′)
There is a contradiction.

We prove so that U is, thus, the grounded structure.
�

26

Theorem 13 Let Γ = 〈A,K,s, t〉 be a RAF and let U= 〈S,Q〉 be the grounded
structure. Then L = Struct2Lab(U) is a reinstatement RAF labelling such that
und(L) is maximal.

PROOF. Let Γ = 〈A,K,s, t〉 be a RAF, let U= 〈S,Q〉 be the grounded structure
and U′ be any complete structure that is not grounded. Let L= Struct2Lab(U)
and L′ = Struct2Lab(U′).

According to Definition 11, we have: U@ U′.
By definition of Struct2Lab, we thus have: in(L)⊂ in(L′).
Following Proposition 4, we thus also have: out(L)⊂ out(L′).
As a consequence, we have: und(L′)⊂ und(L).

We prove so that L= Struct2Lab(U) is a reinstatement RAF labelling such that
und(L) is maximal.

�

4.4.2 Reinstatement RAF labellings with minimal in
Reinstatement RAF labellings such that in (L) is minimal coincide with the grounded
structure as stated by Theorems 14 and 15.

Theorem 14 Let Γ= 〈A,K,s, t〉 be a RAF and let L= 〈`A,`K〉 be a reinstatement
RAF labelling such that in(L) is minimal. Then Lab2Struct(L) is the grounded
structure.

PROOF. L be a reinstatement RAF labelling such that in(L) is minimal. Let
suppose that U= Lab2Struct(L) is not the grounded structure. By definition of
the grounded structure (Definition 11), we can thus say that there exists a structure
U′ that is the grounded structure and such that U′ @ U (strict inclusion). Let
L′ = Struct2Lab(U′) be the reinstatement RAF labelling corresponding with the
grounded structure. As U′ @ U we have, by definition of Struct2Lab: in(L′) ⊂
in(L). We have then a contradiction.

We prove so that U= Lab2Struct(L) is the grounded structure. �

Theorem 15 Let Γ = 〈A,K,s, t〉 be a RAF and let U= 〈S,Q〉 be the grounded
structure. Then L = Struct2Lab(U) is a reinstatement RAF labelling such that
in(L) is minimal.

27

PROOF. Let U be the grounded structure and L= Struct2Lab(U). Let suppose
that in(L) is not minimal. There exists then a reinstatement RAF labelling L′

such that in(L′) ⊂ in(L). Let U′ = Lab2Struct(L′). From the definition of
Lab2Struct, we can say that: U′ @ U. This contradicts the definition of the
grounded structure (Definition 11).

We prove so that L = Struct2Lab(U) is a reinstatement RAF labelling such
that in(L) is minimal. �

4.4.3 Reinstatement RAF labellings with minimal out
Note that reinstatement RAF labellings such that out (L) is minimal coincide
with the grounded structure as stated by Theorems 16 and 17.

Theorem 16 Let Γ = 〈A,K,s, t〉 be a RAF and let L= 〈`A,`K〉 be a reinstate-
ment RAF labelling such that out(L) is minimal. Then Lab2Struct(L) is the
grounded structure.

PROOF. L be a reinstatement RAF labelling such that out(L) is minimal. Fol-
lowing Proposition 5, in(L) is also minimal. Therefore, according to Theorem 14,
Lab2Struct(L) is the grounded structure. �

Theorem 17 Let Γ = 〈A,K,s, t〉 be a RAF and let U= 〈S,Q〉 be the grounded
structure. Then L = Struct2Lab(U) is a reinstatement RAF labelling such that
out(L) is minimal.

PROOF. Let U be the grounded structure and L= Struct2Lab(U). According to
Theorem 15, in(L) is minimal. Following Proposition 4, out(L) is also minimal.
L is thus a reinstatement RAF labelling such that out(L) is minimal. �

4.5 Eager semantics
Reinstatement RAF labellings such that und (L) is minimal coincide with eager
structures as stated by Theorems 18 and 19.

28

Theorem 18 Let Γ= 〈A,K,s, t〉 be a RAF and let L= 〈`A,`K〉 be a reinstatement
RAF labelling such that und(L) is minimal. Then Lab2Struct(L) is an eager
structure.

PROOF. Let Γ = 〈A,K,s, t〉 be a RAF. Let L= 〈`A,`K〉 be a reinstatement RAF
labelling such that und(L) is minimal. Let suppose that U = Lab2Struct(L)
is not an eager structure (with U= 〈S,Q〉). There exists thus an eager structure
U′ = 〈S′,Q′〉 such that:

(S∪Q∪De f (U)∪ Inh(U))⊂ (S′∪Q′∪De f (U′)∪ Inh(U′)) (4.18)

As a consequence, we have:

(A∪K)\ (S∪Q∪De f (U)∪ Inh(U))⊃ (A∪K)\ (S′∪Q′∪De f (U′)∪ Inh(U′))
(4.19)

Let L′ = Struct2Lab(U′). Following Equation 4.19, we have according to
the definition of Struct2Lab:

und(L)⊃ und(L′)

Then und(L) is not minimal, which is a contradiction.
We prove so that U= Lab2Struct(L) is an eager structure. �

Theorem 19 Let Γ = 〈A,K,s, t〉 be a RAF and let U= 〈S,Q〉 be an eager struc-
ture. Then L= Struct2Lab(U) is a reinstatement RAF labelling such that und(L)
is minimal.

PROOF. Let U= 〈S,Q〉 be an eager structure. By definition, S∪Q∪De f (U)∪
Inh(U) is thus maximal. As a consequence, (A∪K)\ (S∪Q∪De f (U)∪ Inh(U))
is minimal. Let L= Struct2Lab(U). According to the definition of Struct2Lab
and following the previous statement, we have thus und(L) being minimal.

We prove so that L = Struct2Lab(U) is a reinstatement RAF labelling such
that und(L) is minimal. �

29

4.6 A one-to-one mapping

In this section is summarized the relations between labellings and structures in
RAF and is also presented the links between labellings in AF and RAF with no
recursive attacks.

4.6.1 Structures and labellings in RAF

Table 4.1 sums up the whole previous sections of Chapter 4. It shows the corre-
spondence between structure semantics and reinstatement RAF labellings.

Restriction on
Semantics Theorems

Reinstatement RAF labelling
no restrictions complete semantics Theorems 4 and 5

empty und stable semantics Theorems 10 and 11
maximal in preferred semantics Theorems 6 and 7

maximal out preferred semantics Theorems 8 and 9
maximal und grounded semantics Theorems 12 and 13
minimal in grounded semantics Theorems 14 and 15

minimal out grounded semantics Theorems 16 and 17
minimal und eager semantics Theorems 18 and 19

Table 4.1: Reinstatement RAF labellings and structures semantics

4.6.2 AF labellings and RAF labellings when no recursive at-
tack exists

As stated in Section 3.1.2, there exists a one-to-one mapping between structures
and extensions in RAF without recursive attacks for the complete, grounded, pre-
ferred, eager and stable semantics.

[5] established a one-to-one mapping between AF extensions and AF rein-
statement labellings for the mentioned semantics. In this report, as summarized
in Section 4.6.1, is established a one-to-one mapping between RAF structures and
reinstatement RAF labellings for the same semantics.

As a consequence, for RAF with no recursive attacks, there exists a one-to-
one mapping between reinstatement labellings (AF notion) and structures (RAF

30

notion) and also between reinstatement labellings (AF notion) and reinstatement
RAF labellings (RAF notion).

31

Chapter 5

Conclusion and perspectives

The main contribution of this report is the extension of the notion of AF rein-
statement labelling semantics to RAF. Another contribution is the extension of the
eager semantics, which was defined for AF, to RAF.

Given a RAF, a RAF labelling is a tuple in which the first element is a la-
belling over its arguments and the second one is a labelling over its attacks. These
labellings are three-value based. These values indicate the degree of acceptance
of an AF element (an argument or an attack). It could be accepted (in), rejected
(out) or in an undecidable state (und).

A one-to-one mapping between structures and RAF labellings is defined using
two linking functions: Struct2Lab, that transforms a structure into a RAF la-
belling and Lab2Struct, that transforms a RAF labelling into a structure. Given
a structure and its corresponding RAF labelling, an argument (respectively an at-
tack) will be labelled in if and only if it is in the structure, out if and only if it is
defeated (respectively inhibited) by the structure and und if and only if is not in
the structure but not defeated (respectively inhibited) by the structure.

We formally define reinstatement RAF labellings as coherent RAF labellings.
It is shown (see Section 3.1.2) that the complete, grounded, preferred, eager and
stable structure semantics correspond to precise types of reinstatement RAF la-
bellings. Table 4.1 gives the correspondence between structure semantics and
reinstatement RAF labellings.

Moreover, we confirm by this work (see also [6]) that RAF are a conservative
generalization of Dung’s AF. Indeed in RAF with no recursive attacks, there is a
one-to-one mapping between reinstatement labellings (AF notion) and two RAF

32

notions (structures and reinstatement RAF labellings) for the complete, grounded,
preferred, eager and stable semantics.

The reason why we defined reinstatement RAF labellings is that they are more
precise on the acceptability status of a RAF element than structure and mostly
because it opens a whole new field of research for RAF solving algorithms.

As a perspective, we want to propose some solving algorithms for RAF se-
mantics based on a labelling search.

We are also interested in the RAF semantics complexity. In [6], the complexity
of the credulous and skeptical acceptance problems has been shown to be the same
whether in AF or in RAF for the complete, preferred and stable semantics. We
want to study other decision problems such as “non empty existence” (Does a
given semantics produce a non empty structure ?) and “verification” (Is a given
structure, a structure of a given semantics ?).

While a decision problem consists in answering a yes/no question, a “function
problem” gives a more complex output. Basically, in addition to saying that a
solution of a given problem exists (decision problem), the answer of the function
problem associated with it will be the solution found. As in practice, argumen-
tation solvers have to concretely compute solutions, we are also interested in the
complexity of the function versions of those mentioned decision problems.

33

Bibliography

[1] P. Baroni, M. Caminada, and M. Giacomin. An introduction to argumenta-
tion semantics. Knowledge Eng. Review, 26(4):365–410, 2011.

[2] P. Baroni, F. Cerutti, P. E. Dunne, and M. Giacomin. Computing with infinite
argumentation frameworks: The case of AFRAs. In Proc. of TAFA, Revised
Selected Papers, pages 197–214, 2011.

[3] P. Baroni, F. Cerutti, M. Giacomin, and G. Guida. AFRA: Argumentation
framework with recursive attacks. Intl. Journal of Approximate Reasoning,
52:19–37, 2011.

[4] H. Barringer, D. M. Gabbay, and J. Woods. Temporal dynamics of sup-
port and attack networks : From argumentation to zoology. In D. Hutter
and W. Stephan, editors, Mechanizing Mathematical Reasoning, Essays in
Honor of Jörg H. Siekmann on the Occasion of His 60th Birthday. LNAI
2605, pages 59–98. Springer Verlag, 2005.

[5] M. Caminada. On the issue of reinstatement in argumentation. In JELIA,
pages 111–123, 2006.

[6] C. Cayrol, J. Fandinno, L. Fariñas del Cerro, and M.-C. Lagasquie-Schiex.
Valid attacks in argumentation frameworks with recursive attacks. In 13th
International Symposium on Commonsense Reasoning (Commonsense), vol-
ume 2052. CEUR-WS : Workshop proceedings, 2017.

[7] C. Cayrol, J. Fandinno, L. Fariñas del Cerro, and M.-C. Lagasquie-Schiex.
Valid attacks in Argumentation Frameworks with Recursive Attacks (long
version). Rapport de recherche IRIT/RR–2019–02–FR, IRIT, 2019.

34

[8] Günther Charwat, Wolfgang Dvořák, Sarah Alice Gaggl, Johannes Peter
Wallner, and Stefan Woltran. Methods for solving reasoning problems in ab-
stract argumentation — A survey. Artificial Intelligence, 220:28–63, 2015.

[9] P. M. Dung. On the acceptability of arguments and its fundamental role in
nonmonotonic reasoning, logic programming and n-person games. Artificial
Intelligence, 77:321–357, 1995.

[10] Hengfei Li and Jiachao Wu. Semantics of extended argumentation frame-
works defined by renovation sets. In International Conference on Principles
and Practice of Multi-Agent Systems (PRIMA), pages 532–540. Springer,
2019.

[11] S. Modgil. An abstract theory of argumentation that accommodates defea-
sible reasoning about preferences. In Proc. of ECSQARU, pages 648–659,
2007.

[12] S. Modgil. Reasoning about preferences in argumentation frameworks. Artif.
Intell., 173:901–934, 2009.

35

