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Abstract. The graphical, hypergraphical and polymatrix games frameworks pro-
vide concise representations of non-cooperative normal-form games involving
many agents. In these graph-based games, agents interact in simultaneous local
subgames with the agents which are their neighbors in a graph. Recently, ordinal
normal form games have been proposed as a framework for game theory where
agents’ utilities are ordinal. This paper presents the first definition of Ordinal
Graphical Games (OGG), Ordinal Hypergraphical Games (OHG), and Ordinal
Polymatrix Games (OPG). We show that, as for classical graph-based games,
determining whether a pure NE exists is also NP-hard. We propose an original
CSP model to decide their existence and compute them. Then, a polynomial-time
algorithm to compute possibilistic mixed equilibria for graph-based games is pro-
posed. Finally, the experimental study is dedicated to test our proposed solution
concepts for ordinal graph-based games.

Keywords: Possibility theory · Ordinal game theory · Algorithms · Complexity

1 Introduction

Game theory is a natural framework to consider when modeling complex multi-agent
systems. The larger the number of agents in these systems, the more computational
issues arise. However, there exist situations where the utility of players only depends
on a small subset of other players’ strategies. Accordingly, researchers in AI proposed
compact representations for games, pursuing the seminal work on graphical games [11].
Polymatrix games [20], graphical games [11] and hypergraphical games [16] have been
proposed as a convenient way to represent games with multiple players and local inter-
actions. These models offer the possibility to exploit local interactions among players
and can require exponentially less space than usual normal-form games to represent.
In hypergraphical games, agents’ interactions are represented by a hypergraph where
each agent (vertex) can be involved in several normal-form subgames (hyperedges). If
the utility of each agent depends on exactly one subgame, then the game is a graphical
game. If all subgames involve only two players then the game is a polymatrix game. In
this work, we are interested in these three classes of games.

As for standard representations, the overall aim for players with compact repre-
sentations of games is to compute a Nash equilibrium (NE) [13]. Significant work has
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been devoted to finding pure or mixed NE for polymatrix, graphical and hypergraphi-
cal games. [11] proposed a message passing type algorithm (TreeNash) for computing
NE on tree structured graphical games. [10,15] extended the TreeNash algorithm to
arbitrary graphical games, by defining NashProp, a heuristic Loopy Belief Propagation-
type algorithm. Concerning polymatrix games, [12] have demonstrated that a mixed NE
could be found by a reduction to a Linear Complementarity Problem (LCP). In a dif-
ferent line of works, [17] have studied constrained pure NE in different subclasses of
polymatrix games. They have shown that the problem of finding pure NE is tractable in
these subclasses. [2] proposed Valued Nash Propagation (VNP), an algorithm for find-
ing a pure NE in hypergraphical games and showed that VNP works efficiently when the
hypertree-width is bounded. [19] proposed an algorithm for solving Asymmetric Dis-
tributed Constraint Satisfaction problems (ADisCSP), in order to find approximate NE
for hypergraphical games. When it comes to reflecting realistic games situations, local
interactions between players is only one aspect. Another important feature of games
is that preferences of players may not always be easily quantified. Sometimes, only
an ordinal ranking of joint strategies can be reasonably expressed by “players”. Pure
NE are hopefully invariant to the quantitative embedding of ordinal preference scales.
However, mixed-equilibria are sensitive to non-linear transformations of the preference
scales of players, which makes usual game theory unable to easily tackle ordinal prefer-
ences over joint strategies. Therefore, Ordinal games [3] have been studied as a frame-
work to tackle games with ordinal preferences. However, until recently there has been
little advancement in the analysis of equilibria in ordinal games. [3] studied only pure
strategies in ordinal games. Then, a definition of mixed strategies has been recently
proposed in the possibility theory framework [1]. In the same line, [8] have proposed
the definition of randomization over actions using possibilistic approaches to study and
compare both qualitative and quantitative equilibrium concepts based on the Sugeno
integral and Choquet integral [7]. However, to our knowledge, all works dedicated to
the study of ordinal games are limited to normal-form games, while the two aspects
of compactness and ordinal preferences occur naturally in human elicited games situ-
ations. Our goal is to overcome the lack of solution concepts and algorithms for com-
pactly represented ordinal games.

The contributions of the present paper are fourfold: (i) We give the first definition of
Ordinal Graphical Games (OGG), Ordinal Hypergraphical Games (OHG) and Ordi-
nal Polymatrix Games (OPG). These definitions allow, in some cases, an exponentially
more compact representation of ordinal games than in [1], for example. We also study
both pure and possibilistic mixed NE in these games. (ii) We show that, as for cardi-
nal graph-based games, deciding whether a pure NE exists is NP-complete. (iii) We
propose and implement solution approaches for finding pure and mixed NE for graph-
based ordinal games, the algorithm computing mixed-NE being polytime in the game
description. (iv) We end the paper with an experimental study.
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2 Background

2.1 Extensive and Compact Representations of Normal Form Games

A normal form game represents strategic interactions between players with conflict-
ing objectives. Extensive normal form games representations are exploited to compute
equilibrium strategies between players. A normal form game is defined as follows [18]:

Definition 1 (Normal form game). A normal form game is a triple G = 〈N, A, U〉:
– N= {1, ..., n} is a set of n players.
– A = A1 × . . .×An: Ai is a set of strategies available to player i. a = (a1, . . . , an)

denotes a joint strategy.
– U = {ui : A → R}i∈N is a set of real-valued utility functions.

The classical definition of pure NE in a normal-form game is the following:

Definition 2 (Pure Nash equilibrium). Let G=〈N, A, U〉 be a normal form game. A
pure NE is a strategy a∗ ∈ A such that ui(a∗) ≥ ui(ai, a

∗
−i), ∀i ∈ {1, ..., n},∀ai ∈ Ai,

where a∗
−i =def (a∗

1, . . . , a
∗
i−1, a

∗
i+1, . . . , a

∗
n).

Extensive normal form games expressions are unable to model games with more than
dozen of players (utility tables representations are exponential in the number of play-
ers). Fortunately, in realistic games situations with many players, interactions are often
only “local”. The utility of players only depends on the strategies chosen by few other
players. Compact representations of games have thus been largely studied.

In this paper, we are particularly interested in three models of compactly-
represented normal-form games, based on graph theory: graphical games [11], poly-
matrix games [20] and hypergraphical games [16].

These three frameworks represent normal form games 〈N, A, Ū〉, where the utility
functions of players Ū = {ūi : A → R}i∈N have some particular structure:

– In a graphical game the local utility functions of players are defined by: Ū =
{ūi : AMi

→ R}i∈N , where i ∈ Mi ⊆ N, ∀i ∈ N . These local utility functions
concisely represent (when |Mi| < n) the utility functions of players in the corre-
sponding normal form game. These are defined by U = {ui : A → R}, where

ui(a) = ūi(aMi
),∀i ∈ N, ∀a ∈ A. (1)

– In hypergraphical games the utility function of any player is a sum of local util-
ity functions over subgames involving only few players. There are K subgames
and Nk ⊆ N, ∀k = 1..K, is the set of players involved in subgame k. The
local utility functions of player i are defined as: Ūi =

{
ūk

i : ANk → R
}

i∈Nk .
In the corresponding normal form game, global utility functions are defined as
U = {ui : A → R}, where

ui(a) =
∑

k∈{1,...,K}
i∈Nk

ūk
i (aNk),∀i ∈ N, ∀a ∈ A. (2)
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– In a polymatrix game, the local utility functions of players are defined by: Ū ={
ūij : A{i,j} → R

}
(i,j)∈E⊆N2 where E is a set of pairs of players involved in 2-

player games. In the corresponding normal form game, global utility functions are
defined as U = {ui : A → R}, where

ui(a) =
∑

j,(i,j)∈E

ūij(a{i,j}),∀i ∈ N, ∀a ∈ A. (3)

2.2 Ordinal Games Within the Possibility Theory Framework

[1] have introduced the definition of possibilistic mixed strategies in ordinal games.
These definitions are based on the possibilistic decision theory framework. First, we
give an overview of the possibility theory framework. Possibility theory [4] can be seen
as a qualitative counterpart to probability theory. The basic concept in possibility theory
is the notion of possibility distribution π. It is a mapping from a set of states S to a
finite ordered scale L = {0L < . . . < 1L}, equipped with the order-reversing function
ν : L → L. π gives some knowledge about state s ∈ S: π(s) = 1L indicates that s
is totally plausible, π(s) = 0L means that s is impossible and π(s) > π(s′) implies
that s is more plausible than s′. π is assumed to be normalized: there is at least one
completely possible state (s∗ such that π(s∗) = 1L). Assuming π, the possibility Π(E)
and the necessity N(E) of any event E ⊆ S can be computed: Π(E) = sups∈E π(s)
determines to what extent E is consistent with the knowledge expressed by π whereas
N(E) = ν

(
Π(Ē)

)
= ν (sups/∈E π(s)) evaluates to what extent ¬E is inconsistent,

hence, it determines the certitude level of E implied by knowledge π.
In light of qualitative (possibilistic) decision problems under uncertainty, where

each result is assessed by an ordinal utility function μ : S 	→ Δ, [4,5] have intro-
duced qualitative pessimistic utility (Upes), which is a counterpart to von Neumann and
Morgenstern’s [18] expected utility:

Upes(π) = min
s∈S

max(ν(π(s)), μ(s)) (4)

Upes generalizes the Wald criterion and determines to what degree it is certain (i.e.,
according to measure N ) that μ achieves a good utility. While pure NEs are similar
in ordinal and cardinal games, ordinal games do not admit stochastic mixed strategies,
since one cannot compute the mathematical expectation of a probability distribution
over ordinal rewards. However, possibilistic mixed strategies can be considered as a
qualitative counterpart to probabilistic mixed strategies in cardinal games and have been
justified in terms of equilibria in ordinal games, in [1].

Definition 3 (Ordinal game). An ordinal game OG is a tuple 〈N, (Ai)i∈N , (μi)i∈N 〉:
– N= {1, ..., n} is a set of n players.
– A = A1 × ... × An: Ai is a set of actions available to player i.
– L is a finite ordinal scale.
– μ = {μi : A 	→ L}i∈N is a set of ordinal utility functions. μi(a) is the ordinal

utility of player i in the ordinal game when the joint strategy of players is a.
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Example 1 (Ordinal game). Assume two farmers own neighbour fields. Each farmer
decides what to sow in her field. The set of possible crops is: Wheat (W) or
Organic Wheat (OW). Each farmer has to be cautious in her choice of crop because
sowing organic crop near to non-organic crops reduces the profit of the organic
crop. Throughout the examples we consider the following unique ordinal satis-
faction and uncertainty scale: scale L = {0, ..., 4}. Emojis ( )
are used to distinguish satisfaction from uncertainty levels, but both sets are
in bijection. The ordinal utilities of farmers are given in the following table:

W OW

W , ,
OW , ,

Since the concept of pure NE is ordinal in nature, its definition is the same in the possi-
bilistic framework as in the classical framework:

Definition 4 (Pure NE in ordinal games). Let us consider an ordinal game OG =
〈N, (Ai)i∈N , (μi)i∈N 〉. a∗ ∈ A is a pure NE of OG, iff: μi(a∗

i , a
∗
−i) ≥ μi(ai, a

∗
−i),

∀i ∈ N, ∀ai ∈ Ai.

Note that, in the qualitative case, a pure NE verifies: ∃a∗ ∈ A s.t. π(a∗
i ) =

max(L),∀i ∈ N and π(ai) = min(L),∀ai �= a∗
i ,∀i ∈ N .

Example 2 (Cont. Example 1). One can check that the ordinal game has two pure
NEs: (W,W) and (OW,OW). In these NE, both farmers are somehow satisfied (levels
3 and 4 ∈ L) and have no incentive to deviate.

The concept of mixed strategy in the possibility theory framework [1] is described as
a possibility distribution over the alternatives of player i, i.e., πi : Ai 	→ L. Hence,
πi is a ranking over the options included in Ai, showing a player’s preferences. πi can
also be usefully interpreted by other players as a likelihood of play of player i, i.e., a
ranking of the options that player i is likely to play. As usual, πi is normalized, i.e.,
maxai∈Ai

πi(ai) = 1L. A joint possibilistic mixed strategy verifies:

π(a) = min
i∈N

πi(ai),∀a = (a1, ..., an) ∈ A. (5)

The pessimistic possibilistic decision criterion [4] is used to evaluate the utility of π to
player i:

μPES
i (π) = min

a∈A
max(ν(π(a)), μi(a)). (6)

where ν : L → L is the order-reversing function of L.
A (least specific) Possibilistic Mixed Equilibrium (ΠME) is defined as a set π∗ =

(π∗
1 , . . . , π

∗
n) of normalized possibility distributions expressing individual preferences,

where no player has incentive to deviate unilaterally from her strategy.

Definition 5 (Possibilistic Mixed Equilibrium (ΠME)). For a given ordinal game
OG = 〈N, (Ai)i∈N , (μi)i∈N 〉, π∗ = (π∗

1 , . . . , π
∗
n) is a ΠME iff it satisfies, for any

possibilistic mixed strategy π, μPES
i (π∗) ≥ μPES

i (πi, π
∗
−i), ∀i ∈ N, ∀πi : Ai → L,

where π∗
−i =def (π∗

1 , . . . , π
∗
i−1, π

∗
i+1, . . . , π

∗
n).
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Example 3 (Cont. Example 1). Let us consider possibilistic mixed strategy (π∗
1 , π

∗
2),

where π∗
1(W ) = π∗

2(W ) = 4 and π∗
1(OW ) = π∗

2(OW ) = 1.
One can check that μPES

1 (π∗) = μPES
2 (π∗) = 3 and that this is a possibilistic equi-

librium in the sense of [1]. No player can improve her pessimistic utility by changing
her mixed strategy.

Mixed strategies in cardinal games are evaluated by their expected utility, reflect-
ing the assumption that games are repeated and that utility compensate. In the ordi-
nal framework, mixed strategies can be seen as refining “worst-case” strategies (i.e.
minimax strategies). [1] have proposed a different interpretation of these: A player’s
own strategy is a form of “commitment to play” she announces to other players (I will
preferably play actions with highest possibility degree but I may play different actions
as well). Then an equilibrium results from different rounds of discussions during which
players successively lower the plausibility of playing actions, until no one feels better
of changing her current strategy.

A ΠME is generally not unique. A least specific ΠME is one where the utility of
any player can only decrease when it unilaterally transforms its possibility distribution
into a less specific one. The interest of a least specific ΠME is that it sets only the light-
est possible constraints on every players’ strategies. One can check that in the previous
example, π∗ is a least specific ΠME. By replacing π∗

1 with π1(W ) = 4, π1(OW ) = 2,
we get μPES

1 (π1, π
∗
2) = 2 < μPES

1 (π∗). [1] have proved that a least specific ΠME for
an ordinal game could be computed in polynomial time, and have provided a polyno-
mial time algorithm to compute a ΠME through successive improvement of strategies.

3 Ordinal Graphical, Hypergraphical and Polymatrix Games

In the previous section, we have recalled the framework of possibilistic ordinal game
theory, which has been proposed to model, in particular, human elicited game situ-
ations, where preferences between strategies are usually best modelled in “ordinal”
ways. Another important features of human-elicited games is a need for compactness
of expression. One cannot easily rank joint strategies where actions of many players are
involved. In particular, the notion of local interactions is worth exploring in the context
of ordinal games as well. This section introduces the ordinal counterparts to graphical,
hypergraphical and polymatrix games.

3.1 Motivating ‘Farmers’ Example

We briefly present a toy problem which illustrates both ordinal and graphical
aspects of the game. Let assume that we have n farmers each with a unique field
arranged in the form of a grid. Mi denotes the set of farmers (including farmer
i), which actions may influence the utility of i. Typically, Mi will include the
(at most four) nearest neighbours of i. Each year and according to her subjec-
tive preferences, each farmer decides what to sow in her field. The set of possible
crops is

{
Meadow(M),Wheat(W ), Canola(C), Organic Wheat(OW ), Organic

Canola(OC)
}

. The utility of any farmer i aggregates production, biodiversity and
pollination ordinal utility functions. If there are n players, this game requires O

(
n|A|5)

space to represent as an (ordinal) graphical game or O
(
n|A|2) space as an ordinal poly-

matrix game, instead of O (n|A|n) space as a normal form ordinal game.
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3.2 Ordinal Graph-Based Games: Definitions

In this section, we provide definitions of three new ordinal games classes: graphical
(OGG), hypergraphical (OHG) and polymatrix (OPG). These are defined in the frame-
work of possibilistic game theory, by considering local ordinal utility functions μ̄i.

Definition 6 (OGG utility functions). In an OGG the local utility functions of players
are defined as:

μ̄ = {μ̄i : AMi → L}i∈N ,

where Mi ⊆ N, ∀i ∈ N is a subset of players. In the corresponding ordinal normal
form game, global utility functions are defined as μ = {μi : A → L}i∈N , where

μi(a) = μ̄i(aMi), ∀i ∈ N, ∀a ∈ A.

In the case of ordinal graphical games, the analogy with cardinal games is direct, since
utility functions μi require no aggregations of local utilities.

In an OHG, local utilities are combined using an ordinal aggregator. In the follow-
ing, the local utilities are aggregated through a minimum operator, which is coherent
with preference aggregation in an adversarial framework.

Definition 7 (OHG utility functions). In an ordinal hypergraphical game the local
utility functions of players are defined as:

μ̄i =
{

μ̄k
i : ANk → L

}

i∈Nk
,

where Nk ⊆ N, ∀k = 1..K (K is the number of subgames).
In the corresponding ordinal normal form game, global utility functions are defined

as μ = {μi : A → L}, where

μi(a) = min
k∈{1,...,K}

i∈Nk

μ̄k
i (aNk),∀a ∈ A. (7)

Note that a given OHG can be easily cast as an OGG, by defining Mi =
∪k,i∈NkNk,∀i ∈ N and

μ̄i(aMi
) = min

k∈{1,...,K}
i∈Nk

μ̄k
i (aNk),∀i, aMi

∈ AMi
. (8)

Finally, OPG can be defined as specific cases of OHG where each agent is involved
in simultaneous 2-player games. Formally, once again we consider a specific ordinal
utility function:

Definition 8 (OPG utility functions). In an OHG, the local utility functions of players
are defined as:

μ̄ =
{
μ̄ij : A{i,j} → L

}
(i,j)∈E⊆N2 ,

where E is a set of edges defining the 2-player games.
In the corresponding ordinal normal form game, global utility functions are defined

as:
μi(a) = min

j,(i,j)∈E
μ̄ij(ai, aj), ∀a ∈ A.
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4 Computing Pure NE in Graph-Based Ordinal Games

4.1 Hardness

Informally, a pure NE in a graph-based ordinal game is a joint action a∗ ∈ A from
which no player has an incentive to deviate unilaterally.

In the case of OGG, the definition of pure NE may exploit the locality of possibilistic
utility functions:

Proposition 1 (Pure NE in OGG). Let G = 〈N, A, {Mi}i∈N , μ̄〉 be an ordinal
graphical game. a∗ ∈ A is a pure NE of G, iff: ∀i ∈ N, ∀ai ∈ Ai.

μ̄i(a∗
i , a

∗
Mi−{i}) ≥ μ̄i(a′

i, a
∗
Mi−{i}).

Proof sketch. The proposition results from Definition 4 and Definition 6. �
Recall that an OHG can be cast as an OGG. According to Proposition 1 and Eq. 8, we
can prove the following corollary:

Proposition 2. a∗ is a pure NE of an OHG iff ∀i ∈ N, ∀ai ∈ Ai,

min
k∈{1,...,K}

i∈Nk

μk
i (a

∗
i , a

∗
Nk\{i}) ≥ min

k∈{1,...,K}
i∈Nk

μk
i (ai, a

∗
Nk\{i}).

In the same way, an OPG is an OHG where all subgames contain exactly two players.

Proposition 3. a∗ is a pure NE of OPG iff ∀i ∈ N, ∀ai ∈ Ai,

min
j,(i,j)∈E

μ̄ij(a∗
i , a

∗
j ) ≥ min

j,(i,j)∈E
μ̄ij(ai, a

∗
j ).

We now show that deciding the existence of a pure NE in ordinal graphical games is a
difficult problem, even in a very restricted setting.

Proposition 4. Deciding whether an ordinal graphical game has a pure NE is NP-
complete. Hardness holds even if G has 3-bounded neighborhood, and the number of
actions is fixed.

Proof sketch. Membership. We can decide the membership by guessing a joint action
a and verifying that a is a NE. Clearly the latter task takes time polynomial in the size
of the game.

Hardness. [6] have shown that deciding the existence of a pure NE in (usual) graphical
games is NP-complete even for 3-bounded neighborhood games, i.e., where each player
has 3 neighbors at most. Now, just note that pure NE in ordinal and cardinal graphical
games are the same notion when no utility functions aggregations are performed (i.e.
when there is a single ordinal utility function for each player). Thus, if one is given
a graphical game as input, it can be transformed (in polynomial time) into an ordinal
graphical game, by plunging the utilities into an ordinal scale. The pure NE are then
equal in both cardinal and ordinal problems. �
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We then prove that deciding the existence of pure NE in OPG and OHG is also
NP-complete, which is less obvious at first glance:

Proposition 5. Deciding whether an OPG or an OHG admits a pure NE is NP-
complete.

Proof sketch. The membership part is easy for both OPG and OHG. The hardness part,
for OPG, relies on a reduction of the K-INDEPENDENT SET problem1. Hardness for
OHG results from the hardness result for OPG. �

4.2 CSP Modeling in Graph-Based Ordinal Games

A Constraint Satisfaction Problem (CSP) is a triple (X ;D; C) where X is a set of vari-
ables, D is the set of domains of these variables and C is a set of constraints over
variables values. Modeling a graph-based ordinal game as a CSP is useful in the sense
that we can take advantage of existing CSP solvers in order to find pure NE(s) within
reasonable time. In this section, we show how to model Ordinal Graphical Games (and
OHG and OPG) as a CSP and show that the solutions of the induced CSP are pure
NE for the original game. Note that [6] proposed a CSP modeling of (cardinal) graph-
ical games in order to find pure NE. The concepts of pure NE are identical in cardinal
and ordinal graphical games since utilities in each games are not combined, unlike in
polymatrix and hypergraphical games. Still, our CSP2 model is different from that of
[6]. Indeed, the fact that local utilities are aggregated by a minimum operator and not a
sum leads to a different reduction (a simpler one, in fact), to a different problem. This
different form allows it to be extended to OHG and OPG.

Definition 9 (CSP modeling). Let G = 〈N, A, {Mi}i∈N , μ̄〉 be an ordinal graphical
game. We define the CSP model (X ;D; C) of G as follows:

– X = {A1, ..., An}; each variable Ai represents the action of player i (N =
{1, . . . , n}).

– D = A1 × ... × An; Ai is the domain of variable Ai, that is the set of allowed
strategies of player i.

– C = {Ci,a′
i
, i ∈ {1, ..., n}, a′

i ∈ Ai}, can be seen as binary-valued functions Ci,a′
i
:

AMi
→ {0, 1},∀i, a′

i, satisfying:
Ci,a′

i
(aMi

) = 1 iff μ̄i(aMi
) ≥ μ̄i(a′

i, aMi−i),∀i, a′
i, aMi

.

Note that there are
∑n

i=1 |Ai| constraints Ci,a′
i

(of arity |Mi|). Remark also that
Ci,a′

i
(aMi

) is satisfied if and only if a′
i is a non-dominated action of player i. So, obvi-

ously, the following proposition holds:

1 The proofs are omitted for the reason of brevity; they can be found here (anonymous address):
Proofs.

2 Our CSP model uses integer-valued variables. In our actual implementation, we used binary
variables xi,ai , where xi,ai = 1 iff Ai = ai, for any pair (i, ai) and the constraints were
changed accordingly. Still, the two problems are equivalent and we describe here the “non-
binary” model, which is more “readable”.

https://drive.google.com/open?id=1aB4ufsEvT7zhEgb4_aLU5ldMAdTA1Sgk
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Proposition 6. a∗ = (a∗
1, ..., a

∗
n) ∈ A is a pure NE of ordinal graphical game G if and

only if it is a solution of CSP (X ;D; C).
Proof sketch. The proof directly results from the definition of the constraints in terms
of non-dominated strategies. �
Since ordinal hypergraphical and polymatrix games can be represented as ordinal
graphical games, they can also be modelled as CSP. However, note that in the conver-
sion to a graphical game, conciseness may be lost. In the extreme case of a polymatrix
game with relations between every pairs of players, the representation of the resulting
ordinal graphical game is exponentially larger than that of the original game. Fortu-
nately, in the case of ordinal hypergraphical/polymatrix games, each constraint Ci,a′

i
of

the corresponding ordinal graphical game can be equivalently replaced in the CSP with
an equivalent set of constraints (of reasonable sizes):

Ci,a′
i
=

{
Ck

i,a′
i
(aNk)

}

i∈Nk
, where Ck

i,a′
i
(aNk) = 1 iff μk

i (aNk) ≥ μk
i (a

′
i, aNk−i ).

(9)
Indeed, recall that μ̄i(aMi

) = mink∈{1,...,K}
i∈Nk

μk
i (aNk). Then it directly follows that:

Ci,a′
i
(aMi

) = 1 iff
(
Ck

i,a′
i
(aNk) = 1,∀k s.t. i ∈ Nk

)
.

Thus, for both hypergraphical and polymatrix games, the search for pure NE can be
performed through modelling as a CSP of similar size as that of the original problem.

5 Possibilistic Mixed Equilibria in Ordinal Graph-Based Games

In this section, we show that computing a possibilistic mixed equilibrium in OGG (and
OPG and OHG) takes polynomial time in the size of the game. To start with, let an
OGG G = 〈N, A, {Mi}i∈N , μ̄〉 be given. Let us assume that π = {πi}i=1..n is a mixed
possibilistic strategy over A = A1 × . . . × An. As for ordinal games [1], the utility of
π in an OGG is measured using the pessimistic criterion μpes. It can be shown that the
expression of μpes decomposes according to the structure of the graphical game.

Proposition 7. The pessimistic utility for player i of a joint mixed possibilistic strategy
in an OGG, OPG or OHG is:

μpes
i (π) = min

aMi

max
(
max
j∈Mi

ν(π(aj)), μ̄i(aMi
)
)
. (10)

Proof sketch: The proposition results from the expression of μi(a) = μ̄i(aMi
),∀i ∈

N, ∀a ∈ A as well as from the decomposability of π(aMi
) = minj∈Mi

πj(aj), through
elementary computations. �
The subset of dominated actions for player i, Di ⊆ Ai can be defined as follows:

Di = {ai ∈ Ai s.t. μpes
i (ai, π−i) ≤ μpes

i (π)} .

Now, we can prove that,
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Proposition 8. The computation of a mixed ΠME in OGG, OHG and OPG is polyno-
mial in the size of the game.

Proof. First, note that μpes
i (π) in Proposition 7 takes polynomial time to compute for

OGG, OHG and OPG, given that the expression of μ̄i(aMi
) decomposes in OHG and

OPG. The computation of a possibilistic mixed equilibrium in an ordinal game requires
iterative calls to an IMPROVE procedure (Algorithm 1), as shown in [1]. Basically, the
solution algorithm proposed in [1] in order to compute a mixed equilibrium consists in
starting with uniform possibilistic strategies for every players (πi(ai) = 1L,∀i, ai) and
then “improving” the current mixed strategy of a single player of the game, by applying
Algorithm 1. At every time steps, a new player is chosen, which strategy is improved.
The algorithm stops when no player can see her strategy improved. It is shown in [1]
that the algorithm converges to a possibilistic mixed strategy in time polynomial in the
expression of the ordinal game. Let us show that the same result holds in the case of
ordinal graph-based games, First, note that one call to the IMPROVE procedure takes
polynomial time, since μpes

i (π) takes polynomial time to compute3. Now, we need to

Algorithm 1. IMPROVE procedure
1: Input: (G, πloc, i)
2: Output: πloc

3: π ← πloc

4: if (Πi(Ai \ Di) = 1L) and
(
μpes
i (π) < 1L

)
then

5: for ai ∈ Di

6: πi(ai) ← min
(

πi(ai), ν(μpes
i (π))

)

7: end for
8: end if
9: πloc ← π

prove that a possibilistic mixed equilibrium is reached within a polynomial number of
calls to IMPROVE. This results directly from the observation made in [1], that each
improvement reduces strictly the possibility πi(ai) of one alternative of one player i.
Since at least one alternative for each player should keep possibility 1L, the number of
iterations of the algorithm is bounded by:

Niter =
∑

i=1..n

|L|(|Ai| − 1) ≤ n|L|namax;namax = max
i=1..n

|Ai|. (11)

�

6 Experimental Study

We empirically evaluated the time execution of pure and mixed NE computation in var-
ious ordinal games. To this end, we built and solved CSP models using the CHOCO

solver [9], providing a single pure NE or a proof of non-existence. The mixed NE

3 ν(μpes
i (π)) is, by definition, the degree immediately below ν(μpes

i (π)) in L.
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computation algorithm (PME) was implemented in MATLAB. All experiments were
performed on an Intel(R) Core(TM) i5-7200U CPU, 2.5 Ghz processor, with 8 Gb RAM
memory, 64 bits architecture and under Windows 10 OS. Both algorithms were tested on
a dataset of problems, including randomly generated problems and “Farmers games”:

– Randomly generated Games. The structure of OHGs were generated randomly,
by controlling the number of players n, the number of actions per player, m, the
size of hyperedges, s (s = 2 in the case of OPG). The number of local games, K,
was computed from a connectivity parameter, c = K

NPG , where NPG = n!
s!(n−s)!

is the maximal number of distinct subgames. The local games correspond to four
types of games included in the Gamut suite [14]: “Chicken Games (CG)”, “Com-
pound Games (COG)”, “Random Games (RG)” and “Dispersion Games (DG)”.
Local games where generated using Gamut, then their utilities were made ordinal.
Every local games of a game are of the same type. The following combinations of
parameters were considered: (i) m = 2 and (n, c) ∈ {3, 4, 5..., 15} × {0.4, 0.8}
and (ii) n = 8 and (m, c) ∈ {2, ..., 7} × {0.4, 0.8}. For every combinations of
parameters, we solved 100 randomly generated games and we computed the aver-
age solution times.

– Farmers games. (Defined in Sect. 3.1). In these games, we vary the dimension of
the grid by considering grids of dimensions 2 × 2, 2 × 3, 2 × 4, 3 × 3, 4 × 3 and
4 × 4. Results on our tested games are shown in Figs. 1, 2, 3 and 4, respectively.
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Fig. 1. Avg. runtime on ordinal hypergraphical games
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Fig. 2. Avg. runtime on ordinal polymatrix games
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From Figs. 1 and 2, we notice that, for all games, the CSP algorithm is able to
return a proof of existence or non existence of pure NE. Besides, the PME algorithm
always returns a possibilistic mixed equilibrium efficiently. As theoretically expected,
pure NE existence is experimentally harder to prove than mixed NE computation, espe-
cially for “difficult” games (more players, more actions per player). Another result of
the experimental study is that ordinal polymatrix games seem easier to solve than ordi-
nal hypergraphical games. In addition, the connectivity of games seems to have only
a second-order impact on experimental time-complexity. Figure 3 shows that the num-
ber of actions impacts the execution time for both algorithms. This conclusion holds
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for all tested games. For the most difficult games we considered (Farmers games), the
“exponential vs polynomial complexity” phenomenon really shows up (Fig. 4).

7 Conclusion

In this paper, we have introduced and defined Ordinal Graphical Games (OGG) Ordinal
Hypergraphical Games (OHG) and Ordinal Polymatrix Games (OPG). These frame-
works are embedded in possibilistic game theory and inspired by the classical graph-
ical, hypergraphical and polymatrix games models. First, we have studied pure NE in
OGG, OHG and OPG and shown that, as for graphical (normal-form) games, deciding
their existence is NP-complete. Second, we have shown that the problem of finding a
pure NE in ordinal graph-based games could be modelled as a Constraint Satisfaction
problem (CSP). Finally, we focused our attention on the problem of finding possibilistic
mixed equilibria. We have shown that, as for ordinal normal-form games, a ΠME can
be computed in polynomial time (in the size of the game). For this purpose, we have
proposed an adapted version of the current algorithm for ordinal games and we have
shown that it runs in polynomial time. This result is surprising at first glance, since
OGG, OHG and OPG admit exponentially more compact representations than normal
form ordinal games. However, this result is due to the nice properties of the “minimum”
aggregator used to combine local utilities.

The choice of a CSP modelling to compute pure NE was natural, in particular since
it provides a natural and easy way to model the search for pure NE in possibilistic
games. It is even more natural than in the cardinal case, due to the use of the minimum
operator to aggregate utilities in local games. Furthermore, the CSP approach allows
to make use of existing efficient solvers and do not require to develop specific solu-
tion algorithms. However, in the context of (cardinal) graphical games, the family of
TreeNash/Nashprop algorithms [10] has been advocated to compute exact/approximate
mixed NE, in particular for graphical games where the underlying graphical structure is
a tree. These algorithms require, from a conceptual point of view, to propagate messages
between players in the form of continuous multivariate functions T : [0, 1]k → {0, 1},
expressing “best responses” to mixed strategies. Since this is not possible in practice,
approximate (discretized) or exact (exponential size) representations of these functions
are propagated to compute equilibria. In ordinal graphical games, since the set of possi-
bility distributions is a finite set, we may define similar message propagation algorithms
where the messages are finite tables. This is an interesting avenue for further research.
However, it remains to compare the efficiency of these message-passing algorithms to
that of the ones we propose.
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