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A b s t r a c t 

A new N-azacrown carbazole fluoroionophore 1 was synthesized by microwave path and its sensing behavior toward metal ions was investigated by spectroscopic 

methods. This new structure proved to be an excellent selective fluorescent probe toward Fe3+ in non-buffered aqueous solution without interfer- ence with the 

background metal ions (Li+, Na+, K+, Mg2+, Ca2+, Al3+, Cr3+, Mn2+, Fe2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+ and Ga3+). Additionally, the immobilization of this new 

selective iron probe was successfully achieved on gold electrode by electro-polymerization and monitored by EQCM. 

 

 

Introduction 

 
In the past decade the research of highly selective and sensitive 

organic fluorescent probes for metal ions recognition has gained 

extreme importance in environmental and biological area [1–3]. This is 

due to the fact that, among the numerous analytical methods, the 

fluorescence one is a great tool owing to its high sensitivity, and relatively 

simple instrumentation [4,5]. It also allows a real-time, nondestructive 

detection and/or quantification of chemical species. Besides the 

development of fluoroionophores for metal ions of groups I and II, 

significant exploration of fluorescent molecular sen- sors and switches for 

heavy transition metal (HTM) ions are actually involved [6–8]. 

Concerning HTM ions detection, fluorimetric anal- ysis of iron [9–17] 

has nowadays attracted a great deal of attention due to its important role 

in the fields of environmental monitoring and biological science [18]. It 

could be noticed that literature gives only few examples of iron 

chemosensors operating in water and in most cases, these operate in 

buffered solutions due to the pH depen- dence of their fluorescence 

properties [19–22]. Among fluorescent chemosensors, those 

incorporating a carbazole core appear to be highly promising 

derivatives due to their attractive fluorescent properties and their 

ability to be electropolymerized in order to 

form a thin film onto metal surfaces [23]. The polymer-coated elec- 

trodes then obtained may be used for electrocatalysis, electronics, 

photoelectronics and photo-electrochemistry. Recently, polycar- bazole 

derivatives were used to develop copper (II) ion-selective 

microelectrochemical transistors [24]. 

Consequently, in our continuing program on the design and 

synthesis of new chemosensors for recognition of environmen- tal 

molecular species [25,26] and more particularly HTM [27],  we report 

here an easy and rapid microwave assisted organic synthesis (MAOS) 

of a new selective iron (III) water soluble fluo- roionophore 1. This new 

iron molecular sensor was designed with typical fluorophore-spacer-

receptor format comprising a fluores- cent carbazole moiety linked to an 

aza-15-crown-5 with or without N-carbonyl methylene arm (compounds 

1 and 4 respectively, Scheme 1). The photoluminescent properties of 

the complexation phenomenon of this new fluorescent probe were 

investigated in the presence of HTM and alkali metal ions. Finally, the 

redox prop- erties of the carbazole unit were exploited to 

electropolymerized the aza-15-crown-5 receptor onto a gold surface 

with an EQCM monitoring. 

 
1. Experimental 

 
1.1. Materials and instrumentations 

 
Perchlorate salts (Li+, Na+, K+, Mg2+, Ca2+, Al3+, Cr3+, Mn2+, Fe2+, Fe3+, 

Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+, Ga3+) were used as the 

 
 

 

Scheme 1.  Synthesis of chemosensors 1 and 4. 
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metal cations source for fluorescence spectroscopy. Iron chloride salt 

was used as the metal cation source for infrared spectroscopy. All the 

chemicals used were purchased from Acros Organic or Sigma Aldrich and 

were used as received without further purification. Microwave-assisted 

reactions were performed on a monomode reactor Synthewave 

Prolabo402 (300 W) equipped with infrared pyrometer control and 

stirring mechanically. 1H and 13C NMR spec- tra were recorded with a 

Bruker Avance 250 MHz spectrometer. Mass spectra were measured 

using a Platform II Micromass Appa- ratus. IR spectra were recorded 

using a Perkin–Elmer instrument. Fluorescence spectra were recorded 

using a Perkin–Elmer LS50B spectrometer. Electrochemical 

experiments were performed using an Autolab PGSTAT 30 workstation. 

A three electrode configuration was used with a platinum or gold disk as 

the working electrode and platinum wire as a counter electrode. An 

Ag/AgCl electrode was used as a reference. EQCM measurements were 

performed using a Maxtek RQCM apparatus with 5 MHz AT-cut gold 

crystal (Maxtek P/N 149211-1 Model SC-501-1). 

 
1.2. Computational methodology 

 
To obtain more information about the conformational changes of the 

crown ethers used upon complexation with iron ion, the molecular 

structures of the free ligands and his 1:1 complex with Fe3+ were 

carried out using the Spartan software of Wavefunction Inc. The 

preliminary conformational distribution search has been performed by 

using the MMFF94 s molecular mechanics force field. The structures 

were then optimized based on the 6.31G* basic set at the restricted 

Hartree–Fock (RHF) level of theory. 

 
1.3. Synthesis 

 
1.3.1. 2-(9H-carbazol-9-yl)acetyl fluoride (3) 

To an ice-cold solution of 2-(9H-carbazol-9-yl)acetic acid 2 (1.00 g; 

4.44 mmol) in CH2Cl2 under nitrogen atmosphere, pyri- dine (0.69 g; 

8.88 mmol) and cyanuric fluoride (1.19 g; 8.88 mmol) were 

successively added. The resulting solution was irradiated in a focused 

microwave oven at 40 ◦C for 30 min and then washed several times 

with water, dried over anhydrous MgSO4 and concen- trated in vacuum. 

Compound 3 was isolated as a brown solid. Yield: 98%. 1H NMR (250 

MHz, CDCl3): ı (ppm) 5.22 (s, 2H), 7.27–7.35 (m, 

4H), 7.52 (t, J = 7.50 Hz, 2H), 8.14 (d, J = 7.75 Hz, 2H). 

 
2.3.2. 2-(9H-carbazol-9-yl)-1-(1,4,10,13-tetraoxa-7- 

azacyclopentadecan-7-yl)ethanone 

(1) 

To a cold solution of aza-15-crown-5 (0.50 g; 2.28 mmol) in DMF (10 

mL) was added 2-(9H-carbazol-9-yl)acetyl fluoride 3  (0.57 g; 

2.51 mmol). The resulting solution was irradiated in a focused 

microwave oven at 40 ◦C for 30 min and then concentrated under 
reduced pressure to give yellow oil which was purified by column 

chromatography (EtOAc/MeOH 8:2). Crystallization from EtOAc 

gave the desired amide as a white solid. Yield:  81%.  1H  NMR (Fig. S1, 

Supplementary data) (250 MHz, CD3CN): ı (ppm) 3.45–3.78 (m, 18H), 

3.90 (t, J = 5.40 Hz, 2H), 5.31 (s, 2H), 7.22 (t, J = 7.00 Hz, 

2H), 7.39–7.48 (m, 4H), 8.12 (d, J = 7.75 Hz, 2H) (Fig S1). 13C NMR 

(62.5 MHz, CD3CN) (Fig. S2, Supplementary data): ı (ppm) 44.0, 

48.9, 49.3, 68.1, 69.2, 69.3, 69.4, 69.7, 70.0, 70.4, 108.79, 118.5, 

119.7, 122.2, 125.3, 140.9, 167.28 (Fig. S2). Mass (ES+) m/z (%): 427 

[M+1]+ (10%), 449 [M+23]+ (100%). 

 
2.3.3. 2-(9H-carbazol-9-yl)-1-(1,4,10,13-tetraoxa-7- 

azacyclopentadecan-7-yl)ethane 

(4) 

1 (500 mg, 1.17 mmol) was dissolved in anhydrous THF (50 mL) and 

then was slowly added to BH3–THF (47 mL, 1.0 M, 46.94 mmol) at room 

temperature. The resulting solution was refluxed for 12 h, and the excess 

borane was eliminated with methanol. Solvents were removed under 

vacuum and the residue was hydrolyzed in refluxing MeOH–H2O–

conc. HCl (4:1:1) 60 mL for 2 h. The aque- ous layer was basified with 

NaHCO3 and then extracted by DCM. The resulting oily product was 

purified by column chromatogra- phy on silica gel (EtOAc/MeOH 1:1). 

Compound 4 was isolated as brown oil. Yield: 74%. 1H NMR (250 MHz, 

CD3CN) (Fig. S3, Supple- mentary data): ı (ppm) 2.72 (t, J = 5.81 Hz, 

4H), 2.92 (t, J = 7.00 Hz, 2H), 3.40–3.50 (m, 16H), 4.42 (t, J = 7.00 Hz, 

2H), 7.21 (t, J = 7.00 Hz, 

2H), 7.43–7.56 (m, 4H), 8.11 (d, J = 7.62 Hz, 2H). 13C NMR (62.5 MHz, 

CD3CN) (Fig. S4, Supplementary data): ı (ppm) 42.5, 55.1, 55.9, 70.6, 

70.7, 70.8, 71.2, 110.1, 119.7, 121.0, 123.4, 126.5, 141.3. Mass (ES+) 

m/z (%): 435 [M+23]+ (100%). 

 
2. Results and discussion 

 
2.1. Synthesis 

 
Firstly, aza-15-crown-5 was synthesized according to the pro- 

cedure of Okahara and coworkers [28] from diethanolamine and 

triethylene glycol ditosylate [29] and 2-(9H-carbazol-9-yl)acetic acid 2 

was produced following the procedure of Zhang and al. [30]. Initially 

the coupling reaction between aza-15-crown-5 and 2 was performed by 

the well-known DCC/DMAP approach [31] at room temperature for 

three days as well as MAOS procedure to give 1 in moderate yields 

(50% and 65% respectively). Conse- quently to increase yields, we 

reacted 2 with an excess of cyanuric fluoride [32] by MAOS path to 

provide in quasi quantitative yield the more reactive 2-(9H-carbazol-9-

yl)acetylfluoride 3. The N- acylation of aza-15-crown-5 with the N-

carbazole acyl fluoride derivative 3 was then undertaken under 

microwave irradiation. As predicted, microwave irradiation provided a 

faster and more effi- cient synthesis of 1 with an improved yield of 

81%. Furthermore in order to understand the contribution of spacer in 

the recogni- tion phenomenon, the carbonyl group of the chemosensor 

1 was then reduced in anhydrous THF under soft addition of BH3–THF 
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Table 1 

Photophysical parameters of fluorescent crown derivatives 1 and 4. 
 

 ε (M−1 cm−1 ) hexc (nm) hem (nm) $F 
a
 

Compound 1 

Compound 4 

1.5 × 104
 

1.2 × 104
 

292 

294 

330–440 

330–470 

0.31 

0.20 

a Quantum yields were estimated by using anthracene as a standard in ethanol. 

 
 

 

 
 

 

 
 

 

 
 
 

Fig. 3. Fluorescence emission spectrum of 1 (0,5 µM, hex = 292 nm) vs. addition of Fe3+ 

(0–300 µM) in water. Inset: Benesi–Hildebrand plot. 

 
 

 

 

 
 

Fig. 1.   Absorption spectra of 1 (5  10−5M, H2O) with 2.5  10−3 M of metal cations (Li+, Na+, 
K+, Mg2+ , Ca2+, Al3+, Cr3+, Mn2+ , Fe2+, Fe3+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+, 

Ga3+). 

 

to afford an N-azacrown-carbazole derivative 4 without carbonyl entity 

between fluorophore and crown-ether. 

 
2.2. UV–vis absorption and fluorescence properties 

 
The absorption and emission spectral properties of crown 

derivatives 1 and 4 were studied in water (Table 1). Absorp- tion 

spectrum of 1 (Fig. 1) showed absorption bands in range of 270–350 

nm along with a maximum centered at 292 nm while compound 4 have 

an absorption bands around 275–355 nm with a maximum absorption 

slightly shifted at 294 nm (Fig. S5, Supple- mentary data). As shown in 

Table 1, the fluorescence quantum yield is higher for the crown 

derivative 1 than for compound 4. 

In order  to  study  the  influence  of  pH  on  the  spectromet-  ric 

properties, the new fluorescent crown derivatives were first investigated 

over a pH range of 2–12. The results show no sig- nificant change of 

absorption spectra for compound 1 indicating  no pH dependence (Fig. 

6A, Supplementary data). Contrary to 1, compound 4 shows strong pH 

dependence (Fig. S6B, Supplemen- tary data). Therefore its pKa of 7.8 

require to work in buffered 

solution at pH 9. Unfortunately, in these conditions and at this level of 

concentration, all metals precipitate and it was not possible to carry out 

UV–vis absorption experiments with compound 4. The absorption spectra 

of new crown ether 1 were then performed upon addition of various metal 

ions such as Li+, Na+, K+, Mg2+, Ca2+, Al3+, Cr3+, Mn2+, Fe2+, Fe3+, Ni2+, 

Cu2+, Zn2+, Cd2+, Hg2+, Pb2+  and  Ga3+
 

as perchlorate salts [33]. As shown in Fig. 1, the addition of  Fe3+
 

causes an increase of the absorption band between 330 and 350 nm while 

the G–G* transition at 292 nm progressively decrease. In our 

experiments, the presence of other metal cations doesn’t cause any 

significant alterations of the UV–vis spectra (Fig. 1). 

Fig. 2 shows the variation of fluorescence emission after addi- tion 
of 200 equivalents (100 µM) of metal cations to a solution of 1 and 4 

(5.10−7 M) in aqueous solution at room temperature and 

with an incubation time of 1 min. As expected from UV absorption of 1 

(Fig. 2A), only Fe3+ induced a significant fluorescence quench- ing of up 

to 39% suggesting a selectivity phenomenon. To prevent the amine 

protonation, the fluorescent emission experiments of 4 were carried out 

at pH = 9 with addition of the same series of cations (Fig. 2B). The 

examination of results reveals a decrease of the fluo- rescence intensity 

for Fe3+, Fe2+ and Cu2+ species and shows a loss of selectivity toward 

Fe3+. 

In order to calculate the association constants, compounds 1 and 4 

were titrated with Fe3+ and Fe3+, Fe2+ and Cu2+ perchlorate salts 

respectively (Fe3+ vs. 1 as example in Fig. 3). The non-linear 
regression analysis of fluorescence flattening allowed to estimate the 

association constant [34] which was compiled in Table 2. 

 

 
 

Fig. 2. Change in fluorescence emission of compound 1 (A) and 4 (B) (0.5 µM, hex = 292 nm, water) upon addition of 200 equivalents of various metal cations as perchlorate salts. 
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Table 2 

Complex formation constants K (103 M−1 ) and limit of detections (LOD) of compound 1 and 4. 
 

 Fe3+ Fe2+ Cu2+ 

Compound 1 

Compound 4 

7.0 ± 0.3 (2.5 µM) 

4.2 ± 0.15 (2.6 µM) 

– 

4.8 ± 0.2 (2.4 µM) 

– 

3.7 ± 0.13 (3.1 µM) 

 
1. It reveals that cations did not individually impact the decrease  of 

fluorescence of 1 toward Fe3+. Furthermore, the presence of all Li+, Na+, 

K+, Mg2+, Ca2+, Al3+, Cr3+, Mn2+, Fe2+, Ni2+, Zn2+, Cd2+, Hg2+, Pb2+ and 

Ga3+ did not influence the fluorescence spectrum (Fig. 4) thereby 
confirming the highly iron (III) selectivity of this new probe. In addition, 

the Fe3+/Fe2+ quench ratio of 1:0.1 appears to be interesting for speciation 
study. 

 
2.3. Binding pattern and molecular modeling 

 

 

 
 

 

 

 

 

 
Fig. 4.  Fluorescence response of chemosensor 1 (0,5 µM, hex  = 292 nm) alone, with  200 

equiv. of Li+, Na+, K+, Mg2+ , Ca2+, Al3+, Cr3+, Mn2+ , Fe2+, Ni2+, Zn2+, Cd2+, Hg2+, 

Pb2+ and Ga3+ (top) and with addition of 200 equiv. of Fe3+ (bottom). 

 

The association constant of 1 vs. Fe3+  is  higher  compared  to the 

other values obtained for 4  and is consistent with a selectiv-   ity induced 

by a specific interaction between the metal ion and the ligand. 

Furthermore, the calculated limit of detections (LOD) are comparable with 

dedicated literature [16,17,35]. 

To confirm the selectivity of  fluorescent  crown  derivative  1, we have 

then performed fluorescence experiment in contaminated medium by 

various cations. Then, the fluorescence spectrum of 1 was recorded in the 

presence of Fe3+ and an equal amount of each previously mentioned metal 

cations (Fig. S7, Supplementary data) to evaluate their individual 

influence toward Fe3+ associated with 

Since, it is reasonable to assume that N-carbonyl methylene arm of 1 is 
involved in the chelation phenomenon, infrared spectroscopy studies and 
1H NMR experiment were carried out to get further information on the 

nature of complex formation between 1 and Fe3+. The IR spectrum of 1 

was characterized by the ether-crown (C- O-C) stretching band at 1121 

cm−1 and the amide carbonyl (C O) regions at 1645 cm−1 respectively 

(Fig. 5). Upon the addition of Fe3+, both carbonyl and ether absorption 

bands were shifted to lower frequency (1605 and 1095 cm−1, 
respectively) which con- firms that both carbonyl and azacrown ether 
moiety are involved in the recognition phenomenon [36]. 

To consolidate the coordination pattern between 1 and Fe3+, 

we have performed a 1H NMR experiment in CD3CN (Fig. 6). As 

shown, the addition of 1 equiv. of Fe(ClO4)3 induces a shift of 

methylenic group to 5.31 ppm toward 5.71 ppm that is consistent with 

IR experiment where the carbonyl moiety was involved in the chelation 

of Fe3+. 

To complete  binding  pattern  of  Fe3+   with  chemosensor 1, 

molecular modeling was performed using 6.31G*/RHF ab initio method 

based on 1:1 stoechiometry (Fig. 7) previously estimated by Benesi–

Hildebrand plot (Fig. 3, inset) [37]. In our models, we have firstly 

chelated the iron ion with one molecule of water, oxygen’s 

 

 
 

Fig. 5. IR spectra of compound 1 (top) and chemosensor 1 in the presence of Fe3+ (bottom). 
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Fig. 6. 1H NMR spectra of 1 in CD3CN: 1 alone (bottom), 1 + 1 equiv. of Fe(ClO4)3 (top). 

 

atoms from crown ether and an additional bond to satisfy the coor- 

dination number of Fe3+. This additional bond was, in the one hand, the 

aromatic part of carbazole unit in order to form cation–G inter- action 

and, on the other hand, the oxygen of the carbonyl group. The  

complexation  by  cation–G  interaction  was  not  energetically favored 

due to excessive proximity between carbazole moiety and crown ether. 

Thus, only the optimized structure of Fig. 7B revealed that a metal ion 

binds with the carbonyl as well as with oxygen atoms from the crown 

ether moiety. 

In consequence, as for alkali metal complex with lariat ether amide 

described by Gokel and coworkers [38], we assume that the presence of 

an amide group in probe 1 affects the conformation and consequently the 

binding properties of the macrocyclic azacrown ether which induce the 

selectivity. Thus, this effective binding affin- ity of iron with the receptor 

coupled with the absence of quenching effect of other paramagnetic Cu2+ 

and Mn2+ cations tend to estab- lish that the fluorescent quenching 

mechanism is due to a static quenching process for the best part but a 

dynamic quenching pro- cess may also occur at high concentration of 

iron. 

 
2.4. Electrochemical properties 

 
As previously outlined in this paper, electropolymerization by cyclic 

voltammetry (CV) is an effective technique to create films onto 

surfaces [39]. Hence, we turned our attention to whether    1 could be 

electropolymerized onto an electrode surface using this technique. To 

test the ability to form network ultrathin films, 

 

Fig. 7. Optimized geometry of free 1 (A); 1.Fe3+ (B) by 6.31G*/RHF ab initio method. 

 
 

Fig. 8. CV showing the electrochemical polymerization of 1 from a 10−3 M solution 

in acetonitrile/water (2:8) with 1 M HClO4. The CV shows 10 cycles between +0.4 and 
+1.0 V. Scan rate = 0.1 V s−1 . 

 

 

chemosensor 1 was electropolymerized for 10 cycles (Fig. 8) at a range 

of 0.4–1.0 V with a scan rate of 0.1 V s−1 in acetonitrile/water mixture 

(2:8) with 1 M HClO4 as electrolyte (WE, gold-coated slide; CE, Pt wire; 

RE, Ag/AgCl). 

The first anodic scan (Fig. S8, Supplementary data) shows an 

oxidation potential at around 1 V for 1 ascribed to the formation of the 

carbazole cation radical. During the second scan, a new sharp oxidation 

wave appears at a lower potential intensities (0.7 V) indi- cating that the 

electrochemical–chemical reaction generates an oligomeric/polymeric 

material that is easier to oxidize than the monomer 1. Upon repeated 

scans, an increase in the oxidation and reduction currents is observed, 

indicating the occurrence of the growth of a film onto the working 

electrode surface according to a radical mechanism [40,41]. Following 

deposition, the functional- ized surface was successively washed with 

ultrapure water and its electrochemistry was then investigated in a fresh 

aqueous solution of 1 M perchloric acid using CV. Oxidative scans 

between +0.25 and 

+0.90 V were recorded and clearly revealed the redox wave due to the 

oxidation of carbazole framework and thus provided clear evi- dence of 

deposition of carbazole moiety on the electrode surface. Moreover, the 

current increase of the redox process proved to be linear as a function of 

the scan rate as expected for surface bound electro-active material (Fig. 9a 

and b). The film proved to be reason- ably stable, displaying a similar 

current/voltage response for more than 10 cycles. 

Additionally, the  electrodeposition  was  investigated  using a 

combined electrochemistry and quartz crystal microbalance (EQCM) 

(Fig. S9, Supplementary data). It is seen that the frequency decreased 

monotonically with potential scans indicating the pro- gressively 

deposition of a carbazole film onto the gold surface. The surface 

coverage T  of the redox species can be calculated  by integrating the 

anodic peak area [42] (charge Q) according to T = Q/nFA, where F is 

the Faraday constant, n the number of elec- trons exchanged (n = 0.5, 

i.e. only half of carbazole units display a positive charge) [40], and A 

the surface area (Ø 1.3 cm). The elec- trochemical results show that the 

surface coverage is 6.92 10+15 molecules per cm2 which is in the same 

order of magnitude than those previously described for unsubstitued N-

carbazole. From our literature knowledge, it is the first time that an N-

azacrown car- bazole derivative has been coated as a pendant unit onto 

a gold working electrode surface via carbazole electro-polymerization. In 

addition, we attempt to realize similar electrodeposition with the 

reduced N-carbazole-azacrown 4. No increasing in the oxidation 
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Fig. 9.  Cyclic voltamograms at different scan rates of chemosensor 1 – grafted gold surface (left). Peak current as a function of scan rate for anodic and cathodic peaks (right). 

 
 

and reduction currents could be observed (Fig. S10, Supplementary 

data). We presume that the protonation of the free tertiary amine is 

responsible for this lack of electro-deposition because of the high 

solubility of protonated form of 4 in water. 

 
3. Conclusions 

 
In conclusion, we have successfully designed a new N-azacrown 

carbazole chemosensor allowing the specific detection of Fe3+ ion. The 
synthesis was efficiently carried out with good yield and reduced 
reaction time using microwave-assisted synthesis. We measured a 
significant and quantifiable decrease of the fluores- cence intensity of 

chemosensor 1 upon addition of Fe3+. By contrast, the addition of other 

metals cations such as Li+, Na+, K+, Mg2+, Ca2+, Al3+, Cr3+, Mn2+, 

Fe2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+ and 

Ga3+ do not significantly modify the fluorescence emission allow- 

ing the specificity quantification of iron concentration. The non-pH 

dependence of the fluorescence properties of 1 provides an effec- tive 

means for Fe3+ sensing in water. Moreover chemosensor 1 was 

successfully electropolymerized on gold electrode and work is under 

way in our laboratory to investigate its recognition prop- erties toward 

metal cations. 
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