N

N

Hyperfine structure in the H 27 and HD™ molecular
ions at ma’ order
Vladimir I Korobov, Jean-Philippe Karr, Mohammad Haidar, Zhen-Xiang
Zhong

» To cite this version:

Vladimir I Korobov, Jean-Philippe Karr, Mohammad Haidar, Zhen-Xiang Zhong. Hyperfine structure
in the H_ 2% and HD* molecular ions at ma® order. Physical Review A, 2020, 102 (2), pp.022804.
10.1103/PhysRevA.102.022804 . hal-02865658v2

HAL Id: hal-02865658
https://hal.science/hal-02865658v2
Submitted on 18 Nov 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02865658v2
https://hal.archives-ouvertes.fr

Hyperfine structure in the H; and HD" molecular ions at ma® order

Vladimir I. Korobov!, Jean-Philippe Karr??, Mohammad Haidar?, and Zhen-Xiang Zhong?*
! Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna 141980, Russia
2 Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University,
Collége de France, 4 place Jussieu, F-75005 Paris, France
3 Université d’Evry-Val d’Essonne, Université Paris-Saclay,
Boulevard Francgois Mitterrand, F-91000 Evry, France and
4 Division of Theoretical and Interdisciplinary Research,
State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,
Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China

A complete effective Hamiltonian for relativistic corrections at orders ma® and ma®(m/M) in a
one-electron molecular system is derived from the NRQED Lagrangian. It includes spin-independent
corrections to the energy levels and spin-spin scalar interactions contributing to the hyperfine split-
ting, both of which had been studied previously. In addition, corrections to electron spin-orbit and
spin-spin tensor interactions are newly obtained. This allows improving the hyperfine structure
theory in the hydrogen molecular ions. Improved values of the spin-orbit hyperfine coefficient are
calculated for a few transitions of current experimental interest.

I. INTRODUCTION

High-resolution spectroscopy of the hydrogen molecular ions H and HD* may contribute significantly to the
determination of fundamental constants such as the proton-electron mass ratio m,/me [1]. A pure rotational transition
in HD* has recently been measured with a relative uncertainty of 1.3 x 107! [2]. The experimental accuracy of ro-
vibrational transition frequencies is expected to reach a few parts per trillion in the near future using spectroscopy
in the Lamb-Dicke regime [2-4] or in a Doppler-free geometry [5, 6]. While information on fundamental constants is
obtained from comparison of spin-averaged transition frequencies with theoretical predictions, the hyperfine splitting
of ro-vibrational lines also allows for precise tests of theory.

So far, the hyperfine structure of H;r and HD™ has been calculated within the Breit-Pauli approximation [7, 8],
taking into account the anomalous magnetic moment of the electron. All terms at orders ma?* and ma® are included,
so that the theoretical accuracy of the hyperfine coefficients is of order a? ~ 5 x 107°. Higher-order corrections to
the largest coeflicients, i.e. the spin-spin Fermi contact interaction, were later calculated in [9, 10], which allowed to
get excellent agreement with available RF spectroscopy data in H;r [11] at the level of ~ 1 ppm. The following step
to improve the hyperfine structure theory is to evaluate higher-order corrections to the next largest coefficients, i.e.
the electron spin-orbit and spin-spin tensor interaction, starting with relativistic corrections at the ma® order.

With this aim, we derive in the present work the complete effective Hamiltonian for the hydrogen molecular ions at
the ma® and ma®(m/M) orders, following the NRQED approach [12-15]. Then, we use it to calculate numerically the
corrections to the electron spin-orbit interaction for a few transitions studied in ongoing experiments. The paper is
organized as follows: in Secs. IT and III, we recall the expression of the NRQED Lagrangian and associated interaction
vertices. We then systematically derive the effective potentials, which are organized in three categories: tree-level
interactions involving the exchange of a Coulomb or transverse photon (Sec. IV), terms due to retardation in the
transverse photon exchange (Sec. V), and finally those coming from a seagull diagram with simultaneous exchange
of two photons (Sec. VI). In Sec. VII, we collect our results to write the total effective Hamiltonian, separating
the different types of interactions: spin-independent, electronic spin-orbit, spin-spin scalar and tensor interactions.
Finally, in Sec. VIII we present numerical calculations of the spin-orbit interaction coefficient.

II. NRQED LAGRANGIAN

Natural (Lorentz-Heaviside) units (% = ¢ = 1) are used throughout. We assume that e is the electron’s charge and
thus is negative, the elementary charge is then denoted by |e].

We use the Coulomb gauge for photons, and electrons are described by two-component Pauli spinors. We take
the NRQED Lagrangian for the electron in the gauge-invariant form [12-15], including all the terms involved in



bound-state energy corrections up to the ma® order:
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where D = V —jeA. The contact terms required in the NRQED theory [12-14] are not considered here, because they
do not play any role in the spin-orbit and spin-spin tensor interactions which are our main focus in the following.
Here and in what follows we use the notation: {X,Y} = XY +Y*X*, [X,Y] = XY — Y X where the star denotes
a Hermitian conjugate. The coupling constants, c;, are determined by requiring that scattering amplitudes in QED
and NRQED agree up to a chosen order in a and in v?/c?. Performing this matching at tree level, which is enough
for the work presented here, one gets cr =cp =cg =cw, = 1.

As shown in more detail in [15], the effective Hamiltonian Heg, which stems from the Lagrangian, is equivalent to
the Foldy-Wouthuysen Hamiltonian Hpw derived in [16] (see Eq.(23)). It may be obtained from Hpw through the
canonical transformation " (H — i9;)e™", where [16]

e
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where p = —¢V is the electron’s impulse. Heavy particles of masses M, charges Z,, and impulses P, with a = 1,2,
are treated within the leading-order interaction Hamiltonian:
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The magnetic moments of particles are expressed as follows:
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m
e and p, are dimensionless quantities measured in Bohr and nuclear magnetons, respectively.

We will consider corrections to the bound states of a one-electron molecular system such as Hf or HD*. The
zero-order approximation is the nonrelativistic Schréodinger equation with the Hamiltonian

P2 P2 p> A Z VAV
1 +7+V V__ﬂ_ﬂ_f_ 120[.
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(3)
Here r, = r. — R, with a = (1,2) is the electron’s position with respect to the nucleus a, and R = Ra—R; the
internuclear vector. It is assumed that M, > m. We also assume that the Hamiltonian is written in the center of
mass (center of inertia) frame, which implies: p.+P;+Ps = 0.

The potentials Ay and A are related to electric and magnetic field strengths as follows

0A
E=-VA)— —, B=VxA.
ot
We define E| = -V 4y and E; = %’?, while B is always transverse. It is worth noting that E; corresponds to an

instantaneous interaction, while A propagates in time with the velocity of light.
In order to determine which terms are needed at a given order, it is useful to know the nominal order of expectation
values of various operators for a wavefunction of the nonrelativistic bound system. One gets [13]:

(p) ~m(v/c), () ~m(v/c)®,  (edo) ~m(v/c)?,
(eA) ~m(v/c)3, <eEH> ~m?(v/c)3, (eB) ~ m2(v/c)?,

where v is the typical velocity of the bound electron.



The photon propagator in the Coulomb gauge is:
1

G% = 55 — the Coulomb photon propagator,
q
GH = A
i — 9 — 44;/9 e t Lot . (4)
= fri e transverse photon propagator.
dp

We use Feynman’s time-ordered perturbation formalism [17], whereby the change of energy of a bound system due
to exchange of one photon is expressed

so- [ Etoma —_

where V(1) and V(2) are some NRQED vertices for the electron or nucleus, 19 and Ej are respectively the non-
relativistic bound state wave function and energy for the Hamiltonian (3), and r,,r; the position operators of the
involved particles. This formula dates back from the original work by Feynman [18] (Sec. IT) and appears in a slightly
modified form in [19, 20].
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III. NRQED VERTICES

It is convenient to translate the NRQED Lagrangian [Eq. (1)] in terms of NRQED vertices and “Feynman” rules,
as done in Fig. 3 of Ref. [13]. Here, we list the vertices contributing to the ma® and maS(m/M) orders, and give
their expressions both in momentum and coordinate space, which are connected to each other by a 3D Fourier
transformation. In the momentum space we use p and p’ as momenta of incident and scattered electron, q = p'—p
is the transferred momentum.

We first give the tree-level vertices related to the electron line:
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The last one appears only in the retardation contribution, see Sec V B. For nuclei, the following tree-level vertices
come into play:

1IN. Za|6|A0 Za‘6|A0
Pa—i—Pfl P, P, (7)
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The seagull-type vertices for the electron are:
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Note that two transverse photon vertex 10. only contributes at the (m/M)? order and thus will not be used in the
following. However, the corresponding vertex for nuclei should be included:

N 22220 A(q)-Alaw) Zic” 52 (9)
«“ oMM, oM,

In the following, we obtain from these vertices the effective potentials at orders ma® and ma®(m/M) (both spin-
independent and spin-dependent) by systematic application of the nonrelativistic Rayleigh-Schrédinger perturbation
theory. For each term, we will mention which vertices are involved by referring to the numbering given above. It is
understood that all terms should be summed over the nuclear index a (a = 1,2, and b =3 — a).

IV. TREE-LEVEL INTERACTIONS

We first consider the tree-level diagrams involving the exchange of one photon between the electron and a nucleus.
The derivation of effective potentials is straightforward in this case (one such example is given in [15]). For the
transformation from momentum to coordinate space, useful integrals can be found in Appendix A. Two terms come
from a Coulomb photon exchange (vertices 1-1N and 2-1N):

3

)
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The square brackets around quantities imply that derivatives act only within the bracket, thus [AV] in the first line
corresponds to the Laplacian of the Coulomb potential i.e. a sum of delta-function operators. The transverse photon
exchange produces four terms (3-2N, 3-3N, 4-2N and 4-3N):
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V. RETARDATION IN THE SINGLE TRANSVERSE PHOTON EXCHANGE

According to Eq. (5), the energy correction due to a single transverse photon exchange between the electron and a
nucleus is
1

1 d'q 44,
AE = 1 |y =2 I —
(2m)* / q?+ie (5” q? Yo Ey—qo—Hy

where V(1) and V(2) are some NRQED vertices from Section III, Egs. (6) and (7).

Vi (2) eiqre
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A. Dipole and Fermi vertices

Let us consider first the contribution from the leading-order vertices: 5 and 6 for the electron, 2N and 3N for the
nucleus,

dq (o; 4'd pe  iloexal\' [ ; 1 1\
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(13)
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where ) means orders ma® and higher. The term 1 /q in parentheses of (13) corresponds to the subtracted leading
ma? order contribution to the Breit—Pauli interaction [21], and the maS-order is removed by subtracting the term
corresponding to the g = 0 limit. We use the retardation expansion:
1 1  Ho—E, (Hyo—Ep)?
- 2 3 T
q

for transverse photon momenta g~ (v/c) > (Ho—Fy)~ (v/c)? (the contribution from smaller momenta is suppressed
after the performed subtractions). Here, the first term corresponds to a contribution of order ma® [21], and the second
term contributes to order ma®. Then
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From the relationship (with a = 1,2 and b =3 — a)
M,
Ra = _Mra + ﬁva
where M = My + M5 + m, and F means a minus sign for a = 1 and plus for a = 2, one gets:
[Ho, e "Ra] = ¢ Ra ) O (%) .
As a result,
eiqre (H()*Eo)Q eiiqR“ = eiqr“ (H0*E0)2 + eiqre [I‘I()7 67iqRa] (H()*Eo) + eiqre (HQ*E()) [HO, GiiqRa]
(16)
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In the second line, we have kept only the leading-order term in (m/M).

Using this relationship, one immediately sees that the terms of Eq. (15) involving the nuclear magnetic moment
give a zero contribution when applied to the zero-order state [¢)g). These terms thus contribute only at higher orders
in m/M (maS(m/M)? and above) and will not be considered here. The remaining terms can be separated into a
spin-independent term and a term contributing to the spin-orbit interaction.

For the spin-independent part we have

Zee® 1 da (4 ¢4\ ; iqr iqr
Usq = MW / ﬁ (5ij> pe{(HO*EO) (6 Ao — 1) (Ho—Eo) + [‘5 o — I,HO] (Ho—Eo)
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and after integration we finally obtain (using the third line of Eq. (A2)):
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Contributions from the R/R? terms can be assumed to be small, since at small R the wave function is exponentially
small due to the strong Coulomb barrier. Then the interaction may be simplified to
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The electron spin-orbit term is
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After Fourier transform:
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Similarly to the Us, term, one can neglect the last two lines in the above expression.

B. Time derivative vertex

Now we consider a retardation term where the electron interacts via the time derivative vertex (number 7 in Eq. (6))
while the nucleus interacts via the lowest-order vertices (dipole (2N) or Fermi (3N)).
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The first step is integration over gy. Using integration in the complex plane one gets
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The time derivative vertex is of nominal order (v/c)® ~ a3. The first term in the expansion of 1/(Ey — Hy — q) (i.e.
—1/q, see Eq. (14)) would produce a contribution of order ma?®, but this contribution vanishes due to cancellation
between both terms of Eq. (21). The ma®-order term corresponds to the next term, (Hy — Ey)/q?. Using the relation

el (Hy—Ey) e 'aRa ~ el (Hy— Fy), similar to Eq. (16), one gets that the term involving the nuclear magnetic
moment only contributes at the (m/M)? order and mat thus be ignored. The remaining term is
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After Fourier transform:
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Once more, the last two lines in the above expression may be neglected. Comparing Eq. (19) with Eq. (23), we see
that the leading terms cancel out, so that Us, + Us. is negligibly small. We will thus ignore these two terms when
writing the total effective Hamiltonian in Sec. VII.

VI. SEAGULL-TYPE INTERACTIONS

It remains to consider the contributions arising from seagull-type vertices, Eqgs. (8) and (9). All the interactions in
momentum space are the convolution of two functions, which represent either the electric field strength E or magnetic
field potential A. In the coordinate space, they are directly given by a product (scalar or vector) of the same functions
converted to the coordinate space.

The corresponding expressions for the electric field strength of a point-like Coulomb source, and for the magnetic
field potential produced by the moving charge and magnetic moment of a nucleus, are
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and the potential produced by the electron at the location of a nucleus is
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The first seagull-type contribution is a double Coulomb photon exchange diagram (vertices 7-1N-1N):
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The next terms stem from the seagull vertex with one Coulomb and one transverse photon (vertices 8-1N-2N and

8-1N-3N):
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or finally
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The last contribution to consider is a double transverse photon exchange with the top on a nucleus and two legs
on an electron (vertices 4N-5-5, 4N-5-6, and 4N-6-6):
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VII. EFFECTIVE HAMILTONIAN

In this Section, we collect the results obtained in Secs. IV-VI to build the complete effective Hamiltonian at orders
ma® and ma®(m/M), including as well the second-order terms contributing to these orders. In doing so, we separate
the different types of interactions: spin-independent, spin-orbit, spin-spin scalar and tensor interactions. Before that,
we recall the expression of the effective Hamiltonian for leading-order relativistic corrections, i.e. the Breit-Pauli
Hamiltonian, which comes into play in the second-order terms.

Spin-orbit interactions require a specific discussion. Formally, the leading electronic spin-orbit interaction Hj, (see
Eq. (28) below) contains terms of order ma? (electronic spin-orbit) and ma®(m/M) (electronic spin-nuclear orbit).
However, assuming one considers a ¢ electronic state, the electronic spin-orbit coupling gives a zero contribution in
the Born-Oppenheimer approach. The nonzero value of this term is due to nonadiabatic effects, so that it is actually
smaller by a factor ~ (m/M) with respect to its nominal order, and thus of the same order as the electronic spin-
nuclear orbit coupling. The same thing occurs in the relativistic corrections, i.e. spin-orbit terms that are nominally
of order ma® are of comparable magnitude to the “recoil” (ma®(m/M) terms. We will thus make no distinction
between nonrecoil or recoil contributions whenever the spin-orbit interaction is involved.

For the same reasons, the nuclear spin-orbit interaction Hy,, (last line in Eq. (28)), in which the first term is of
nominal order ma*(m/M), has an actual contribution of order ma?(m/M)?. Relativistic corrections to this interaction
(e.g. the effective potential Us., Eq. (11)), are of order ma®(m/M)?. That is why we will not consider the nuclear
spin-orbit interaction in the following.

A. Leading-order (ma") relativistic corrections

We include here all terms of the Breit-Pauli Hamiltonian at orders ma* and ma*(m/M) (the electron’s anomalous
magnetic moment is not taken into account here).

H(4) :HB+Hret+Hso+Hss+HSON’ (27)
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Hy = —
B 8m3 8m?2 ’

o ma (59 A\ F |z (59 i) P
T o m r | M 2 m\ 7 rs | My’
I _ Za(1+2a,) [raxpe]s Za(l4ae) [raxPg]

28
2m? r3 € mM, r3 Ses (28)
Pela o (HeTa)(pora)]  8Ta
HSS - |: 7”2 _3 TE - 3 l‘l’euaé(ra)a

5 Ha-
/r(l

o - 1 [Fo X De) 1 {— Zmpl,] [rexPg)
N 3 Fa M, Mg

B. Spin-independent interaction: leading term and recoil

The nonrecoil effective Hamiltonian is

6
H’r(z?))—s in pe + ula + Z/l4
P 16m5 (29)
S S B 0 NS WL 60 SR M VO S -
~ 16m5  6ami e 128m2 WPer 6dmA PeV Pe) T gz

The second-order contribution is

nd_order _
AEio—spig = <HB Q(EO - HO) IQ HB> . (30)
The above expressions coincide with previous results [22, 23]. These corrections have been evaluated numerically

for the hydrogen molecular ions in [24, 25]. It should be noted that both the first-order and second-order contributions
contain divergences, which need to be cancelled out [23].

The recoil effective Hamiltonian is

HE) = Usy + Usy + Usa + U ,

7 ’e §ii pipd\ pi Z é §i pipd\ PJ
u2a:_8712 pE’}i +) oL _722 pg,g 422 2 b
m m \ r Ty My 8m m \ 7o TS5 Mo

U — 1 Z% 1 Z2 1 Z12Z2 (1‘11‘2) Z1Z22 (1'11'2)
3¢ 4m M, 7’? Ms rg M, r%r% Mo T%T% 31)
Zl2 i Ip ip _ 3(per1)(r1pe) Z22 i Ip ip . 3(per2)(r2pe)
8m2M;y |ri T r?Te re 8m2My |r§ "3t s ’
z3 1 (Per1)(r1Pe) Z3 1 (Per2)(rape)
U a — L e 5 Pe 3 = = 2 e e 3 = = 5
% 8m2 M, {p r%p * rs T3 20, |P r%p + s
Z/{60 Z% Z22 i

1
T Am2My vt Am2My rd
The second-order contribution is

AEE;'jforder = AEret + AE(O)

S0-s0?

AEret =2 <HB Q(EO - HO)_lQ Hret> (32)

AEY9,, = (H.Q(Ey — Ho)'QH,)".

where A denotes the scalar part of an operator A (Hso being a vector operator, the second-order term has contri-
butions of rank 0, 1, and 2), see Appendix B, Eq. (B3) for details.

It should be noted that AEggZSO was considered together with nonrecoil terms in Refs. [23, 24]. For the reasons
explained above, we prefer to include it in the recoil part.

The effective Hamiltonian (31) is actually incomplete, because it does not include contributions from the contact
terms of the NRQED Lagrangian [12, 13, 16]. A complete consideration of the recoil effective Hamiltonian for the
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hydrogen molecular ions, including contact terms and explicit cancellation of divergences, can be found in [26]. Our
results coincide with those of that reference: the potentials Us,, Us,, and Ug, respectively appear in the terms denoted
dH4 (Eq. (42)), 0Hs (Eq. (50)), and dH5 (Eq. (45)). In the case of Us,, this is best seen by comparing the first line
of Eq. (17) with Eq. (50) of [26], where a prefactor z,z. should be added.

C. Spin-spin scalar interaction

The effective Hamiltonian for this interaction is

0 0 0)
His)e) Uy +u5§b ,
0 1 8
U) = 1 {pi [3 53(%)] } Heka (33)
1 V4 Z
T — [Zlueul L gy et | Doireiepty | Z(Eiv) pepty)
3m 7’1 7‘2 i IS

and the second-order contribution is
AEgg)zntwder =2 <HB Q(Eo — Ho)™'Q H§2)> . (34)

Again, the first-order and second-order terms contain divergences which have to be cancelled out. This was done
in [9, 10] for hydrogen molecular ions, and the resulting corrections to the spin-spin contact interaction were evaluated
numerically. Beyond the relativistic corrections considered here (of order (Za)?Ef, where Er is the Fermi splitting),
there is a one-loop radiative contribution at the same order (a(Za)Er) [27, 28]. Other contributions to spin-spin
scalar interactions include higher-order QED corrections (see [27, 28] and references therein) and effects involving the
nuclear structure such as the Zemach [29] and recoil [30, 31] corrections, and were taken into account in [9, 10].

D. Electron spin-orbit interaction

As explained above, for this interaction we make no distinction between nonrecoil and recoil contributions. The
effective Hamiltonian is

H = Uy + Usp, + Usg + Usp,

3Z 1 3Z 1
th = s {2 o b - 522 {12 i .
2

16m*  16m*

Uy, = 4mZ3;\/[1 {pe, 11 [r1 xPy ]} + 4mZ32MQ {pe, Z[TQXPQ]} ,

Usa = 4mZ?1j\41 % [r1xP1]s. 4ng§\4 rl [r2 xPo]se (35)
45;5\21 7“117“5’ [roxPq]s. + % 3 1r2 [r1 xPo] s,
% y 17"5’ 1 xr3] (r1P1)se + 421,524 rl 1 x 3] (raPa)s. |

Ust, = *mZTjM rl [r1XPe]se — % rl [r2 X Ppe|se -

The second-order contributions is
AE2"=0r4eT — AE,, + AEqorer + AES:
AEyo =2 (HsoQ(Eo — Ho) ' QHp),
AEqoret =2 (HooQ(Eo — Ho) ' QHper) ,

SO‘SO’

(36)

S0~

AEY,, = (H,Q(E, — Hy) *QH.,)" .
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It is worth noting that both first and second-order terms are finite and do not require regularization. The spin-orbit
interaction at this order was partially considered in [32] for the antiprotonic helium atom, but all terms were not
included in that work. It should also be mentioned that the only other correction to the spin-orbit interaction at
the ma® order corresponds to the effect of the electron’s anomalous magnetic moment [28] and was therefore already
included in [7].

E. Spin-spin tensor interaction

The effective Hamiltonian for spin-spin tensor interaction is

2 2 2
H( ) (6) —uz(d) +u5(b)7

y®_ L [ o[ ramepa—3(nera)(Kota)
2d 4m? e’ rd
2 2 (37)
@ _ 1 [ ripeps — 3(per1)(pyr1) T3 Mty — 3(peT2)(BoT2)
Uy = o | 21 : + Z :
m Tl 7’2
11 (rira)pepy — 3(pern)(p12) (rir2) ety — 3(per2) (Bor1)
Zy 33 + Z 33 .
6m iy IS
The second-order contribution is
2)2™? _order __ 2) (2)
AE®? =AE® + AEyss + AEL) .,
AE® =2 <H§§)Q(Eo - Ho)leHB> ,
@ (38)
AEsizsa =2 <H£E)Q(E0 - Ho)ilQHSO> )
_ 2
AE?,  =2(H.Q(Ey — Hy) 'QHuoy ).

Here also, all terms are finite and do not require regularization. The only other correction to the spin-spin tensor
interaction at this order is the effect of the electron’s anomalous magnetic moment.

VIII. NUMERICAL RESULTS AND CONCLUSION

The results of Secs. VIID and VIIE can be used to calculate relativistic corrections to the electron spin-orbit and
spin-spin tensor interaction coefficients of the hyperfine Hamiltonian in a one-electron molecular system. Here, we
present corrections to the spin-orbit coefficient in both Hj [8] and HD™ [7] for a few transitions studied in recent or
ongoing experiments [2, 4, 6, 33].

Our calculations rely on the “exponential” variational expansion [34], where the wave function for a state of total
orbital angular momentum L and parity IT = (—1)% is expanded in the following way:

111
\IJLM R rl Z y ! 2 7 I)Glllz(R7r17r2)ﬂ
li+l=L

Vil (Rt = Rl (VL (R) @ Vi) (39)

N
GLT (Ryri,m2) = Z {Cn Re [e_anR_B"”_"’“T?] +D,Im [e‘“"R_B“”_%”} }
n=1

The complex exponents a.,, Bn, Vn are generated in a pseudorandom way. Matrix elements of all operators are
calculated analytically; general methods of such calculations may be found e.g. in [35-37]. The matrix elements are
reduced to finite sums of radial integrals of the general form

R+7ry
Ly, B8,7) / dR/ drl/ ldrger rye aR*ﬁTl*””, (40)
—r1

which are then calculated using recurrence relations.
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From the numerical point of view, the calculation of first-order terms (Usp, Uap, and Us,) is straightforward; we
used N = 2000 — 3000 which was more than sufficient to get 4 significant digits.
Second-order contributions pose more difficult problems [32], especially the singular term AFE,, and the (less

singular) term AEY In the case of AE,,, the intermediate wavefunction ¢)(!) defined by

sSo0—so-*

(Eo — Ho)yp'V = (Hp — (Hp)) %o (41)

behaves like 1/ (1/72) at small electron-nucleus distances. The regular trial functions (39) would thus result in
very slow convergence. In order to reduce this singularity, we use the transformation described in [32]:

Hly = Hg — (Ey — Ho)U — U(Ey — Hyp), (42)
where
C1 C2 i (215 — me) 7
i = -— —_— g - — } . 4
1 + ry “i 4m? ! (43)

Here, 1/p; = 1/me + 1/M;. The second-order term may then be rewritten as follows:
<H50Q(E0 - HO)_lQHB> = <H50Q(E0 - HO)_lQH/B> + <UHSO> - <U><Hso> (44)

With Hp being replaced by Hp in Eq. (41), the first-order wavefunction is now less singular and behaves like In(rq)
(In(r)) at small distances. In the numerical evaluation, we use a “multilayer” basis set, where the first subsets
(between 2 and 4) approximate the regular part of the intermediate wavefunction, and 8 others subsets contain
growing exponents 3, (7,) up to 10* in order to reproduce the In(r;) (In(re)) behavior at small distances, see an
illustrative example in Table I. The total size of the intermediate basis set is typically around N ~ 10000. The
convergence will be analyzed in more detail in a future publication focusing on numerical results.

Subset [A1, As]  [A], Ab] [Bi1, Bo] [C1, O] N;
1 [5.1,5.5]  [0.8,15.2]  [0.00,1.80] [0.00,1.65] 1830
2 [5.1,5.2] [-0.6,6.3] [0.00,1.56] [0.00,1.59] 1170
3 [5.1,5.5] [-0.6,15.2] [1.80,10.0] [0.00,1.65] 1290
4 [5.1,5.5] [-0.6,15.2] [0.00,1.80] [1.65,10.0] 1290
5 [5.1,5.5] [-0.6,15.2] [10.0,10%]  [0.00,1.65] 1070
6 [5.1,5.5] [-0.6,15.2] [0.00,1.80] [10.0,10%] 1070
7 [5.1,5.5) [-0.6,15.2]  [10%,10%]  [0.00,1.65] 900
8 [5.1,5.5] [-0.6,15.2] [0.00,1.80]  [10%,10°] 900
9 [5.1,5.5] [-0.6,15.2]  [10%,10*]  [0.00,1.65] 740
10 [5.1,5.5] [-0.6,15.2] [0.00,1.80]  [10%,10%] 740

TABLE I: Variational parameters used in the calculation of singular second-order terms for the (L = 1,v = 0) state of HD ™.
[A1, A2] (resp. [A}, Aj] are the intervals in which the real (resp. imaginary) parts of exponents o, (see Eq. (39)) are generated,
and [Bi1, Bz] (resp. [C1, C3]) are the intervals for the real parts of B, (resp. 7»). An indicative number of basis functions N; in
each subset is given the last column. The total basis size in this example is N = 11000.

The AES))_ s, contribution is obtained from Eq. (B3) of the Appendix. The spin operator U' appearing in that
equation is given in Sec. B2. For the orbital operator T!, the calculation is separated into three terms ag, a_, a4
corresponding to the possible values of the angular momentum L’ of intermediate states, L' = L, L+1, see Eq. (B5) for
definitions. The total contribution is given by Eq. (B6) (with k3 = k2 = k = 1). Since the first-order wavefunction (41)
with Hyg, on the right-hand side is also singular at small electron-nucleus distances, we use a similar multilayer basis
set as for the AFE, contribution. An intermediate basis size up to N ~ 20000 was used for the (L = 3,v = 9) state
of HDT.

Our numerical results are given in Tables IT (for Hy ) and III (for HD*). From a study of convergence as a function
of N, we estimate the numerical uncertainty of AE,, and AFE,,_s, to about 1 Hz. For the other contributions, all
digits are significant. The total uncertainty of the spin-orbit interaction coefficient (denoted ¢, in H;r and F; in HDV)
is dominated by the yet unevaluated radiative correction of order ma” In(«) [38, 39]. A tentative order of magnitude is
a3 In(a)c, ~ 100 Hz, but our preliminary calculations indicate that this correction is actually as large as 300-400 Hz.
The calculation of this contribution is thus essential for further improvement of theoretical predictions of the hyperfine
structure, and will be addressed in a forthcoming publication.
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(Lov)| PP | U | Usn | Usa |AEw|AEw rer | AED | Act® | (this work)

(2,0) [42162.530|1.542| —3.601|0.027| 2.736 | 0.348 0.412 |1.463| 42163.99
(2,1) [39571.598 | 1.451 | —3.440|0.036| 2.579 | 0.327 0.388 |1.341| 39572.94

TABLE II: Relativistic corrections to the spin-orbit interaction coefficient c. for rovibrational states of Hf (in kHz). The
leading-order (Breit-Pauli) value of c. (Ref. [8]) is given in column 2. Columns 3-8 are the first-order and second-order
contributions listed in Egs. (35) and (36), respectively. The total correction is given in column 9. The last column is our new
value of cc.

(L,v)| EPP 1 Uy | Un | Usa |AEso|AEs et | AEY | AE® | By (this work)

sSo—so

(1,0) {31984.645|1.170| —2.736|0.021| 2.087 | 0.263 0.313 |1.118| 31985.76

(1,6) |22643.474|0.834| —2.097|0.044| 1.509 | 0.181 0.219 |0.689 22644.16
(3,0) {31627.353|1.156 | —2.694 | 0.019| 2.043 |  0.260 0.308 |1.093 31628.45
(3,9) |18270.577|0.680| —1.732|0.043| 1.161 | 0.146 0.182 |0.481 18271.06

TABLE III: Same as Table II, for the spin-orbit coefficient £; in HDT. The Breit-Pauli value in column 2 was obtained in
Ref. [7].

In conclusion, we have derived the complete effective Hamiltonian at the ma® and ma®(m/M) for hydrogen molec-
ular ions. The spin-independent and spin-spin scalar interaction terms were found to agree with previous calcula-
tions [9, 24, 26]. We then exploited this effective Hamiltonian to calculate corrections to the electronic spin-orbit
hyperfine coefficient for a few states involved in experimentally studied transitions in H and HD*. The theoretical
uncertainty has been reduced by more than a factor of 3, from about a?c, ~ 1.5 kHz to about 300-400 Hz. Next steps
are the calculation of radiative corrections at the next order, and of corrections to the spin-spin tensor interaction
coeflicients. It will then become possible to perform precise comparison with present and upcoming experimental data.
Finally, the effective Hamiltonian we have derived may also be used to improve the hyperfine structure calculations
in antiprotonic helium [32, 40].
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APPENDIX A: FOURIER INTEGRALS

In this Appendix, we summarize the three-dimensional integrals that were used in our derivations for the Fourier
transformation from momentum to coordinate space. The master integral is

4 d3q 1
9 jiar _ 1 Al
2m)3 ) o c r’ (A1)

and other useful integrals are
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APPENDIX B: ALGEBRA OF ANGULAR MOMENTA FOR THE SECOND-ORDER CONTRIBUTIONS

A second-order contribution to the hyperfine splitting of a rovibrational state (v, L) may be written in the general
form

AE = (vLSIM | (S - OL)Q(Ey — Ho)'Q(O}? - Sf?)

vLS’JM> (B1)

where S,, Sy, O,, O, are some irreducible orbital tensor operators, with S,, S; acting in the spin space and Oy,
O, in the orbital space. |[vLSJM) is a pure hyperfine state, with S the total spin, and J = L 4+ S the total angular
momentum.

The goal of this Appendix is to show how such quantities can be decomposed into irreducible tensor components,
which are expressed as the scalar product of an irreducible orbital tensor operator with an irreducible spin operator
of the same rank. Then, we will give the expressions of the spin operators and of the orbital reduced matrix elements.

1. Decomposition into irreducible tensor components

Let us introduce the irreducible tensor operators
Ty = {05 ® Q(Eo — Ho) 'QOy}unr,  Uhy = {S4* ® S5}

Then, using the relationship (see Ref. [41], Chapter 3, Sec. 3.3.2, Eq. (11))

II
i k {{Ak, ® Ci, } @ {Bg, ® Di, }k}oo,
kiko

{{As; @By, }o @ {Ck, @ DizJotoo = Z
Kk

where I, p,... = \/(2n1 +1)(2ng + 1) ..., one gets
(S - OF)Q(Eo — Ho)~'Q(O}? - 8}2) =

= (=110, {{Sgl ® 0k} @ {Q(Ey — Hy)~*QO}> - 552}0}

00 (B2)
= (=DM N I {TF @ Uklgg = Y (—1)MHhReth(Th . UF),
k k
As a result,
AE =Y AE®,
k
AE(%) — (_1)k1+k2+/€ <’ULSJM ‘(Tk . Uk)| ’ULS,JM> (Bg)

vL||T*||vL)

= (—1)"'1““’“< LA (PESTM | U vLs )

where L = I, L' = L, L? = {L ® L}y, etc.

2. Irreducible spin operators

a) With the electron spin-orbit Hamiltonian Hy, on both sides:

1 V3
Uy = {Se ®Se}00 = —ﬁ Sg = B
1
U, = {Se & Se}lp, = 7% Se,

UQEO.
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b) With the electron spin-orbit Hamilotnian Hy, and the nuclear spin-orbit Hamiltonian H,,

1
UO = {Se & Ia}OO = _% (Se . Ia)a
)
U, = {Se ® Ia}lp = E [Se X I(l]v

BIL v iy 07
U; = {Se ® IG}QM = 5 i(sela + SeIa) - ?(Se ! Ia)

2p

¢) With the electron spin-orbit Hamiltonian Hy, and the tensor spin-spin Hamiltonian H. 5(3):
Let us define:

ng) = {se @ L }ou-
We then get
Ul = {Se ® SSS}l/L = {Se ® {Se ® Ia}2}1p

= ?‘{{Se ®@scto®@Ia}iy + @{{Se ®sct1 @Ity = W 2£[se><1 1,

12 L 12
1 /3
U2 = {Se ® Sss}Qu - _2\/78§§)a

UgEO.

3. Orbital reduced matrix elements

For the operator T% acting on spatial degrees of freedom, one separates the calculation into different terms corre-
sponding to the possible vales of the angular momentum L’ of intermediate states, L’ = L, L+1 (since min(ky, ko) = 1
in all the cases under consideration here). The reduced matrix element of a given component L' may then be expressed
(see Ref. [41], Chapter 13, Sec. 13.1.3, Eq. (10))

(VLIOk [0n L") (va L/ OF2 [0 L )

<UL|\Tk(L >||UL> = (~1)*I1, {Ll v L,} 3 o . (B4)
n#0 n

Let us define

| (VLIO8 o, L = 1) (va L = 1O} vL )

a_ = — ,

% n£0 EO - En
k ka2
1 (VL0 L) (v L|Of 0L
T Z E,— E ’ (B5)
L 75 0 n
1 (L0 o L+ 1) (v L+ 1|Of 0L
“TTm Eo — E, '

n£0
The prefactor of the spin operator L* - U* in Eq. (B3) is given by

(_1)k1+k2+k <UL||T]€HUL> —
(L)L) (B6)
(1) Wi | Jkeoke kL Jke ke R Tk ke k
(LIL*|L) Lo L—1f"" L L[ Vo Loroer["]
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