Markov Random Geometric Graph (MRGG): A Growth Model for Temporal Dynamic Networks - Archive ouverte HAL Access content directly
Journal Articles Electronic Journal of Statistics Year : 2022

Markov Random Geometric Graph (MRGG): A Growth Model for Temporal Dynamic Networks

Yohann de Castro

Abstract

We introduce Markov Random Geometric Graphs (MRGGs), a growth model for temporal dynamic networks. It is based on a Markovian latent space dynamic: consecutive latent points are sampled on the Euclidean Sphere using an unknown Markov kernel; and two nodes are connected with a probability depending on a unknown function of their latent geodesic distance. More precisely, at each stamp-time $k$ we add a latent point $X_k$ sampled by jumping from the previous one $X_{k-1}$ in a direction chosen uniformly $Y_k$ and with a length $r_k$ drawn from an unknown distribution called the latitude function. The connection probabilities between each pair of nodes are equal to the envelope function of the distance between these two latent points. We provide theoretical guarantees for the non-parametric estimation of the latitude and the envelope functions. We propose an efficient algorithm that achieves those non-parametric estimation tasks based on an ad-hoc Hierarchical Agglomerative Clustering approach. As a by product, we show how MRGGs can be used to detect dependence structure in growing graphs and to solve link prediction problems.
Fichier principal
Vignette du fichier
mrgg.pdf (1.97 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-02865542 , version 1 (11-06-2020)
hal-02865542 , version 2 (12-02-2021)
hal-02865542 , version 3 (08-03-2022)

Identifiers

Cite

Quentin Duchemin, Yohann de Castro. Markov Random Geometric Graph (MRGG): A Growth Model for Temporal Dynamic Networks. Electronic Journal of Statistics , 2022, 16 (1), pp.671 -- 699. ⟨10.1214/21-EJS1969⟩. ⟨hal-02865542v3⟩
181 View
71 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More