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Abstract

We introduce Markov Random Geometric Graphs (MRGGs), a growth model for temporal
dynamic networks. It is based on a Markovian latent space dynamic: consecutive latent points
are sampled on the Euclidean Sphere using an unknown Markov kernel; and two nodes are
connected with a probability depending on a unknown function of their latent geodesic distance.

More precisely, at each stamp-time k we add a latent point Xk sampled by jumping from
the previous one Xk−1 in a direction chosen uniformly Yk and with a length rk drawn from an
unknown distribution called the latitude function. The connection probabilities between each
pair of nodes are equal to the envelope function of the distance between these two latent points.
We provide theoretical guarantees for the non-parametric estimation of the latitude and the
envelope functions.

We propose an efficient algorithm that achieves those non-parametric estimation tasks based
on an ad-hoc Hierarchical Agglomerative Clustering approach, and we deploy this analysis on a
real data-set given by exchange of messages on a social network.

1 Introduction
In Random Geometric Graph (RGG), nodes are sampled independently in latent space Rd. Two nodes
are connected if their distance is smaller than a threshold. A thorough probabilistic study of RGGs
can be found in [26]. RGGs have been widely studied recently due to their ability to provide a powerful
modeling tool for networks with spatial structure. We can mention applications in bioinformatics [17]
or analysis of social media [18]. One main feature is to uncover hidden representation of nodes using
latent space and to model interactions by relative positions between latent points.
Furthermore, nodes interactions may evolve with time. In some applications, this evolution is given
by the arrival of new nodes as in online collection growth [24], online social network growth [4, 20],
or outbreak modeling [32] for instance. The network is growing as more nodes are entering. Other
time evolution modelings have been studied, we refer to [28] for a review.
A natural extension of RGG consists in accounting this time evolution. In [12], the expected length
of connectivity and dis-connectivity periods of the Dynamic Random Geometric Graph is studied:
each node choose at random an angle in [0, 2π) and make a constant step size move in that direction.
In [30], a random walk model for RGG on the hypercube is studied where at each time step a vertex
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Figure 1: Graphical model of MRGG model: Markovian dynamics on Euclidean sphere where we
jump from Xk onto Xk+1. The Yk encodes direction of jump while rk encodes its distance, see (2).

is either appended or deleted from the graph. Their model falls into the class of Geometric Markovian
Random Graphs that are generally defined in [9].
As far as we know, there is no extension of RGG to growth model for temporal dynamic networks.
For the first time, in this paper, we consider a Markovian dynamic on the latent space where the new
latent point is drawn with respect to the latest latent point and some Markov kernel to be estimated.

Estimation of graphon in RGGs: the Euclidean sphere case Random graphs with latent
space can be defined using a graphon, see [25]. A graphon is a kernel function that defines edge
distribution. In [31], Tang and al. prove that spectral method can recover the matrix formed by
graphon evaluated at latent points up to an orthogonal transformation, assuming that graphon
is a positive definite kernel (PSD). Going further, algorithms have been designed to estimate
graphons, as in [21] which provide sharp rates for the Stochastic Block Model (SBM). Recently, the
paper [8] provides an non-parametric algorithm to estimate RGGs on Euclidean spheres, without
PSD assumption.
We present here RGG on Euclidean sphere. Given n points X1, X2, . . . , Xn on the Euclidean
sphere Sd−1, we set an edge between nodes i and j (where i, j ∈ [n], i 6= j) with independent
probability p(〈Xi, Xj〉). The unknown function p : [−1, 1] → [0, 1] is called the envelope function.
This RGG is a graphon model with a symmetric kernel W given by W (x, y) = p(〈x, y〉). Once the
latent points are given, independently draw the random undirected adjacency matrix A by

Ai,j ∼ B(p(〈Xi, Xj〉)) , i < j

with Bernoulli r.v. drawn independently (set zero on the diagonal and complete by symmetry), and
set

Tn :=
1

n
(p(〈Xi, Xj〉))i,j∈[n] and T̂n :=

1

n
A, (1)

We do not observe the latent point and we have to estimate the envelope p from A only. A standard
strategy is to remark that T̂n is a random perturbation of Tn and to dig into Tn to uncover p.
One important feature of this model is that the interactions between nodes is depicted by a simple
object: the envelope function p. The envelope summarises how individuals connect each others given
their latent positions. Standard examples [7] are given by pτ (t) = 1{t≥τ} where one connects two
points as soon as their geodesic distance is below some threshold. The non-parametric estimation
of p is given by [8] where the authors assume that latent points Xi are independently and uniformly
distributed on the sphere, which will not be the case in the present paper.

A new growth model: the latent Markovian dynamic Consider RGGs where latent points
are sampled with Markovian jumps, the Graphical Model under consideration can be found in Figure 1.
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(a) True and estimated envelope functions. (b) True and estimated latitude functions.

Figure 2: Non-parametric estimation of envelope and latitude functions using algorithms of Sections 2
and 3. We built a graph of 1500 nodes sampled on the sphere S2 and using envelope and latitude
(dot orange curves) defined in Section 5 by (10). The estimated envelope is thresholded to get a
function in [0, 1] and the estimated latitude function is normalized with integral 1 (plain blue lines).

Namely, we sample n points X1, X2, . . . , Xn on the Euclidean sphere Sd−1 using a Markovian dynamic.
We start by sampling randomly X1 on Sd−1. Then, for any i ∈ {2, . . . , n}, we sample

• a unit vector Yi ∈ Sd−1 uniformly, orthogonal to Xi−1.

• a real ri ∈ [−1, 1] encoding the distance between Xi−1 and Xi, see (3). ri is sampled from a
distribution fL : [−1, 1]→ [0, 1], called the latitude function.

then Xi is defined by

Xi = ri ×Xi−1 +
√

1− r2
i × Yi . (2)

This dynamic can be pictured as follows. Consider that Xi−1 is the north pole, then chose uniformly
a direction (i.e., a longitude) and, in a independent manner, randomly move along the latitudes (the
longitude being fixed by the previous step). The geodesic distance γi drawn on the latitudes satisfies

γi = arccos(ri) , (3)

where random variable ri = 〈Xi, Xi−1〉 has density fL(ri). The resulting model will be referred to as
the Markov Random Geometric Graph (MRGG) and is described with Figure 1.

Temporal Dynamic Networks: MRGG estimation strategy Seldom growth models exist
for temporal dynamic network modeling, see [28] for a review. In our model, we add one node at a
time making a Markovian jump from the previous latent position. It results in

the observation of (Ai,j)1≤j≤i−1 at time T = i ,

as pictured in Figure 1. Namely, we observe how a new node connects to the previous ones. For such
dynamic, we aim at estimating the model, namely envelope p and respectively latitude fL. These
functions capture in a simple function on Ω = [−1, 1] the range of interaction of nodes (represented
by p) and respectively the dynamic of the jumps in latent space (represented by fL), where, in
abscissa Ω, values r = 〈Xi, Xj〉 near 1 corresponds to close point Xi ' Xj while values close to −1
corresponds to antipodal points Xi ' −Xj . These functions may be non-parametric.
From snapshots of the graph at different time steps, can we recover envelope and latitude functions?
This paper proves that it is possible under mild conditions on the Markovian dynamic of the latent
points and our approach is summed up with Figure 3.
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Fundamental result

⇒
Guarantee for the recovery of: Algorithm

Spectral convergence of T̂n under (a) envelope p, see (5) ↔ SCCHEi

Markovian dynamic, see Section 2.1 (b) latent distances ri, see (9) ↔ HEiC [2]

Figure 3: Presentation of our method to recover the envelope and the latitude functions.

Define λ(Tn) := (λ1, . . . , λn) and resp. λ(T̂n) := (λ̂1, . . . , λ̂n) the spectrum of Tn and resp. T̂n, see
(1). Building clusters from λ(T̂n), Algorithm 1 (SCCHEi) estimates the spectrum of envelope p while
Algorithm 2 [2] (HEiC, see Section E in Appendix) extracts d eigenvectors of T̂n to uncover the
Gram matrix of the latent positions. Both can then be used to estimate the unknown functions of
our model (see Figure 2).

Previous works Non-parametric estimation of RGGs on Euclidean sphere has been investigated
in [8] with i.i.d. latent points. Estimation of latent point relative distances with HEiC Algorithm has
been introduced in [2] under i.i.d. latent points assumption. Phase transitions on the detection of
geometry in RGGs (against Erdös Rényi alternatives) has been investigated in [7].
For the first time, we introduce latitude function and non-parametric estimations of envelope and
latitude using new results on kernel matrices concentration with dependent variables (see Appendix).

Outline Sections 2 and 3 present the estimation method with new theoretical results under
Markovian dynamic. These news results are random matrices operator norm control and resp. U-
statistics control under Markovian dynamic, shown in the Appendix at Section H and resp. Section G.
The envelope adaptive estimate is built from a size constrained clustering (Algorithm 1) tuned by
slope heuristic (6), and the latitude function estimate (see Section 3.1) is derived from estimates
of latent distances ri. Section 5 investigates synthetic and real data experiments. Our method can
handle random graphs with logarithmic growth node degree (i.e., new comer at time T = n connects
to O(log n) previous nodes), referred to as relatively sparse model, see Section 4.

Notations Consider a dimension d ≥ 3. Denote by ‖ · ‖2 (resp. 〈·, ·〉) the Euclidean norm (resp.
inner product) on Rd. Consider the d-dimensional sphere Sd−1 := {x ∈ Rd : ‖x‖2 = 1} and denote
by σ the uniform distribution on Sd−1. For two real valued sequences (un)n∈N and (vn)n∈N, denote
un =

n→∞
O(vn) if there exist k1 > 0 and n0 ∈ N such that ∀n > n0, |un| ≤ k1|vn|.

Given two sequences x, y of reals–completing finite sequences by zeros–such that
∑
i x

2
i + y2

i <∞,
we define the `2 rearrangement distance δ2(x, y) as

δ2
2(x, y) := inf

π∈S

∑
i

(xi − yπ(i))
2 ,

where S is the set of permutations with finite support. This distance is useful to compare two
spectra.

2 Nonparametric estimation of the envelope function
One can associate with W (x, y) = p(〈x, y〉) the integral operator TW : L2(Sd−1)→ L2(Sd−1):

∀g ∈ L2(Sd−1), ∀x ∈ Sd−1, (TW g)(x) =

∫
Sd−1

g(y)p(〈x, y〉)dσ(y),

where dσ is the Lebesgue measure on Sd−1. The operator TW is Hilbert-Schmidt and it has a countable
number of bounded eigenvalues λ∗k with zero as only accumulation point. The eigenfunctions of TW
have the remarkable property that they do not depend on p (see [10] Lemma 1.2.3): they are given
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by the real Spherical Harmonics. We denote Hl the space of real Spherical Harmonics of degree l
with dimension dl and with orthonormal basis (Yl,j)j∈[dl] where

dl := dim(Hl) =


1 if l = 0
d if l = 1(
l+d−1
l

)
−
(
l+d−3
l−2

)
otherwise.

We define also for all R ∈ N, R̃ :=
∑R
l=0 dl. We end up with the following spectral decomposition

p(〈x, y〉) =
∑
l≥0

p∗l
∑

1≤j≤dl

Yl,j(x)Yl,j(y) =
∑
k≥0

p∗kckG
β
k(〈x, y〉) , (4)

where λ(TW ) = {p∗0, p∗1, . . . , p∗1, . . . , p∗l , . . . , p∗l , . . . } meaning that each eigenvalue p∗l has multiplicity
dl; and G

β
k is the Gegenbauer polynomial of degree k with parameter β := d−2

2 and ck := 2k+d−2
d−2

(see Appendix C). Since p is bounded, one has p ∈ L2((−1, 1), wβ) where the weight function wβ is
defined by wβ(t) := (1− t2)β−

1
2 , and it can be decomposed as p ≡

∑
k≥ p

∗
kckG

β
k and the Gegenbauer

polynomials Gβk are an orthogonal basis of wβ(t) := (1− t2)β−
1
2 .

Weighted Sobolev space The space Zswβ ((−1, 1)) with smoothness s > 0 is defined as the set of
functions g =

∑
k≥0 g

∗
kckG

β
k ∈ L2((−1, 1), wβ) such that

‖g‖∗Zswβ ((−1,1)) :=

[ ∞∑
l=0

dl|g∗l |2 (1 + (l(l + 2β))s)

]1/2

<∞.

2.1 Integral operator spectrum estimation with dependent variables
One key result is a new control of U -statistics with latent Markov variables (see Section G) and it
makes use of a Talagrand’s concentration inequality for Markov chains (see [1]). This article follows
the hypothesis made on the Markov chain (Xi)i≥1 by [1]. Namely, we referred to as “mild conditions”
the assumption that latitude function fL is bounded away from 0 with ‖fL‖∞ <∞; and the first
and the second regeneration times associated with the split chain to have sub-exponential tail. Those
assumptions are fully described in section G.
Theorem 1 is a theoretical guarantee for a random matrix approximation of spectrum of integral
operator with dependent latent variables. Theorem 3 in Appendix H gives explicitly the constants
hidden in the big O below which depend on the spectral gap of the Markov chain (Xi)i≥1.

Theorem 1 Assume mild conditions on the Markov chain (Xi)i≥1 and assume the envelope p has
regularity s > 0. Then, it holds

E
[
δ2
2(λ(TW ), λ(Tn)) ∨ δ2

2(λ(TW ), λRopt(T̂n))
]

= O

([
n

log2(n)

]− 2s
2s+d−1

)
,

with λRopt(T̂n) = (λ̂1, . . . , λ̂R̃opt , 0, 0, . . . ) and Ropt = b
(
n/ log2(n)

) 1
2s+d−1 c where λ̂1, . . . , λ̂n are the

eigenvalues of T̂n sorted in decreasing order of magnitude.

Remark In Theorem 1 and Theorem 2, note that we recover, up to a log factor, the minimax rate
of non-parametric estimation of s-regular functions on a space of (Riemannian) dimension d − 1.
Even with i.i.d. latent variables, it is still an open question to know if this rate is the minimax rate
of non-parametric estimation of RGGs.
Eq.(4) shows that one could use an approximation of (p∗k)k≥1 to estimate the envelope p and Theorem 1
states we can recover (p∗k)k≥1 up to a permutation. The problem of finding such a permutation is
NP-hard and we introduce in the next section an efficient algorithm to fix this issue.
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2.2 Size Constrained Clustering Algorithm
Note the spectrum of TW is given by (p∗l )l≥0 where p∗l has multiplicity dl. In order to recover envelope
p, we build clusters from eigenvalues of T̂n while respecting the dimension dl of each eigen-space
of TW . In [8], an algorithm is proposed testing all permutations of {0, . . . , R} for a given maximal
resolution R. To bypass the high computational cost of such approach, we propose an efficient
method based on the tree built from Hierarchical Agglomerative Clustering (HAC).
In the following, for any ν1, . . . , νn ∈ R, we denote by HAC({ν1, , . . . , νn}, dc) the tree built by a
HAC on the real values ν1, . . . , νn using the complete linkage function dc defined by ∀A,B ⊂ R,
dc(A,B) = maxa∈A maxb∈B ‖a− b‖2. Algorithm 1 describes our approach.

Algorithm 1 Size Constrained Clustering for Harmonic Eigenvalues (SCCHEi).

Data: Resolution R, matrix T̂n = 1
nA, dimensions (dk)Rk=0.

1: Let λ̂1, . . . , λ̂n be the eigenvalues of T̂n sorted in decreasing order of magnitude.
2: Set P := {λ̂1, . . . , λ̂R̃} and dims = [d0, d1, . . . , dR].
3: while All eigenvalues in P are not clustered do
4: tree← HAC(nonclustered eigenvalues in P, dc)
5: for d ∈ dims do
6: Search for a cluster of size d in tree as close as possible to the root.
7: if such a cluster Cd exists then Update(dims, tree, Cd, d).
8: for d ∈ dims do
9: Search for the group C in tree with a size larger than d and as close as possible to d.

10: if such a group exists then Update(dims, tree, C, d) else Go to step 3.
Return: Cd0 , . . . , CdR , {λ̂R̃+1, . . . , λ̂n}

Update(dims, tree, C, d).
1: Save the subset Cd consisting of the d eigenvalues in C with the largest absolute values.
2: Delete from tree all occurrences to eigenvalues in Cd and delete d from dims.

2.3 Adaptation: Slope heuristic as model selection of Resolution
A data-driven choice of model size R can be done by slope heuristic, see [3] for a nice review. One
main idea of slope heuristic is to penalize the empirical risk by κpen(R̃) and to calibrate κ > 0. If
the sequence (pen(R̃))R̃ is equivalent to the sequence of variances of the population risk of empirical
risk minimizer (ERM) as model size R̃ grows, then, penalizing the empirical risk (as done in (6)), one
may ultimately uncover an empirical version of the U -shaped curve of the population risk. Hence,
minimizing it, one builds a model size R̂ that balances between bias (under-fitting regime) and
variance (over-fitting regime). First, note that empirical risk is given by the intra-class variance
below.

Definition 1 For any output (Cd0 , . . . , CdR ,Λ) of the Algorithm SCCHEi, the thresholded intra-class
variance is defined by

IR :=
1

n

 R∑
k=0

∑
λ∈Cdk

λ− 1

dk

∑
λ′∈Cdk

λ′

2

+
∑
λ∈Λ

λ2

 ,
and the estimations (p̂k)k≥0 of the eigenvalues (p∗k)k≥0 is given by

∀k ∈ N, p̂k =

{
1
dk

∑
λ∈Cdk

λ if k ∈ {0, . . . , R̂}
0 otherwise.

(5)
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Second, as underlined in the proof of Theorem 1 (see Theorem 3 in the Appendix), the estimator’s
variance of our estimator scales linearly in R̃.
Hence, we apply Algorithm SCCHEi for R varying from 0 to Rmax := max{R ≥ 0 : R̃ ≤ n} to
compute the thresholded intra-class variance IR (see Definition 1) and given some κ > 0, we select

R(κ) ∈ arg min
R∈{0,...,Rmax}

{
IR + κ

R̃

n

}
. (6)

The hyper-parameter κ controlling the bias-variance trade-off is set to 2κ0 where κ0 is the value of
κ > 0 leading to the “ largest jump” of the function κ 7→ R(κ). Once R̂ := R(2κ0) has been computed,
we approximate the envelope function p using (5) (see (14) in Appendix for the closed form). In
Appendix D, we describe this slope heuristic on real data and our results can be reproduced using
the notebook Experiments1.

3 Nonparametric estimation of the latitude function

3.1 Our approach to estimate the latitude function in a nutshell
In Theorem 2 (see below), we show that we are able to estimate consistently the pairwise distances
encoded by the Gram matrix G∗ where

G∗ :=
1

n
(〈Xi, Xj〉)i,j∈[n] .

Taking the diagonal just above the main diagonal (referred to as superdiagonal) of Ĝ, we get estimates
of the i.i.d. random variables (〈Xi, Xi−1〉)2≤i≤n = (ri)2≤i≤n sampled from fL. Using (r̂i)2≤i≤n the
superdiagonal of nĜ, we can build a kernel density estimator of the latitude function fL. In the
following, we describe the algorithm used to build our estimator Ĝ with theoretical guarantees.

3.2 Spectral gap condition and Gram matrix estimation
The Gegenbauer polynomial of degree one is defined by Gβ1 (t) = 2βt, ∀t ∈ [−1, 1]. As a consequence,
the Gram matrix G∗ is related to the Gegenbauer polynomial of degree one by

G∗ =
1

2βn

(
Gβ1 (〈Xi, Xj〉)

)
i,j∈[n]

=
1

nd

d∑
k=1

Y1,k(Xi)Y1,k(Xj), (7)

using the addition theorem (see [10, Lem.1.2.3 and Thm.1.2.6]). Denoting V ∗ ∈ Rn×d the matrix
with columns v∗k := 1√

n
(Y1,k(X1), . . . , Y1,k(Xn)) for k ∈ [d], (7) becomes

G∗ :=
1

d
V ∗(V ∗)>.

We will prove that for n large enough there exists a matrix V̂ ∈ Rn×d where each column is an
eigenvector of T̂n, such that Ĝ := 1

d V̂ V̂
> approximates G∗ well, in the sense that the norm ‖G∗−Ĝ‖F

converges to 0. To choose the d eigenvectors of the matrix T̂n that we will use to build the matrix V̂ ,
we need the following spectral gap condition

∆∗ := min
k∈N, k 6=1

|p∗1 − p∗k| > 0. (8)

This condition will allow us to apply Davis-Kahan type inequalities.
1https://github.com/quentin-duchemin/Markovian-random-geometric-graph
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Now, thanks to Theorem 1, we know that the spectrum of the matrix T̂n converges towards the
spectrum of the integral operator TW . Then, based on (7), one can naturally think that extracting
the d eigenvectors of the matrix T̂n related with the eigenvalues that converge towards p∗1, we can
approximate the Gram matrix G∗ of the latent positions. Theorem 2 proves that the latter intuition
is true with high probability under the spectral gap condition (8). The algorithm HEiC [2] (See
Section E for a presentation) aims at identifying the above mentioned d eigenvectors of the matrix T̂n
to build our estimate of the Gram matrix G∗.

Theorem 2 Assume mild conditions on the Markov chain (Xi)i≥1, assume ∆∗ > 0, and assume
that graphon W has regularity s > 0. We denote V̂ ∈ Rn×d the d eigenvectors of the matrix T̂n
associated with the eigenvalues returned by the algorithm HEiC and we define Ĝ := 1

d V̂ V̂
>. Then for

n large enough and for some constant D > 0, it holds with probability at least 1− 5/n2,

‖G∗ − Ĝ‖F ≤ D
(

n

log2(n)

) −s
2s+d−1

. (9)

4 Relatively Sparse Regime
As highlighted in [2], one can use the algorithm HEiC to estimate the underlying dimension d by
running the algorithm with different dimensions and keeping the one that leads to the larger gap (as
defined in Algorithm 2). Although this paper deals with the so-called dense regime (i.e. when the
expected number of neighbors of each node scales linearly with n), our results may be generalized to
the relatively sparse model connecting nodes i and j with probability W (Xi, Xj) = ζnp(〈Xi, Xj〉)
where ζn ∈ (0, 1] satisfies lim inf

n
ζnn/ log n ≥ Z for some universal constant Z > 0.

In the relatively sparse model, one can show following the proof of Theorem 1 that the resolution

should be chosen as R̂ =
(

nζn
1+ζn log2 n

) 1
2s+d−1

. Specifying that λ∗ = (p∗0, p
∗
1, . . . , p

∗
1, p
∗
2, . . . ) and

T̂n = A/n, Theorem 1 becomes for a graphon with regularity s > 0

E

[
δ2
2

(
λ∗,

λ(T̂n)

ζn

)]
= O

((
nζn

1 + ζn log2 n

) −2s
2s+d−1

)
.

5 Experiments
Experiments with simulated data We tested our method using d = 3 and considering the
following functions

p : x 7→ 1x≥0, and fL : x 7→
{

1
2g(1− x; 2, 2) if x ≥ 0
1
2g(1 + x; 2, 2) otherwise , (10)

where g(·; 2, 2) is the density of the beta distribution with parameters (2, 2). Figure 4.(a) presents
the δ2-error between the spectra of the true envelope (resp. latitude) function and the estimated
one when the size of the graph is increasing. In Figure 4.(b), we propose a visualization of the
clustering performed by SCCHEi with n = 1000 and R = 4. Blue crosses represent the R̃ eigenvalues
of T̂n with the largest magnitude, which are used to form clusters corresponding to the five-first
spherical harmonic spaces. The red circles are the estimated eigenvalues (p̂k)0≤k≤4 (plotted with
multiplicity) defined from the clustering given by our algorithm SCCHEi (see (5)). Those results
show that SCCHEi achieves a relevant clustering of the eigenvalues of T̂n which allows us to recover
the envelope function (see Figure 2.(a)).
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(a) δ2 error on envelope and latitude functions. (b) Clustering adjacency eigenvalues (R = 4).

Figure 4: Non-parametric estimation of envelope and latitude using algorithms described in Sections 2
and 3. In (a), bars represent standard deviation of δ2 errors between true and estimated functions.

Experiments with real data We test our algorithm on real data provided by [29] and collected
from a social network involving students at University of California, Irvine. The dataset includes
dated messages between users. We consider a self-avoiding random walk starting from the student
that first sent a message and where we always move to the addressee of the older message sent by the
current user. If at some point all the contacts of the current user have been already seen, we restart
the random walk following the same procedure with the remaining users. A portion of this walk
between two restarts is called an excursion. We keep only the excursions of length at least 20, which
leads to a graph with 302 nodes where two nodes are connected if the corresponding users exchanged
at least one message. Working with a dimension d = 3, we apply our algorithm on this network.
Figure 5.(a) presents the estimated envelope function which proves that students who share messages
have most of the time latent representations which are highly correlated. Figure 5.(b) shows the
estimated latitude function. The peak at 0 corresponds to the transitions in the self-avoiding random
walk where we restart the process by choosing a new user. The right tail of the distribution is slowly
decreasing and remains strictly positive, corresponding to transitions of the random walk where we
stay in the same group of contacts (i.e. without restarting the random walk). The higher the average
number of contacts per user, the smaller the peak at 0 of the latitude function and the larger the
right tail of the distribution. Those results can be reproduced using the notebook Experiments1 and
Appendix D gives the details of the slope heuristic used to choose the resolution R̂. In Appendix F,
we propose another application of our algorithm with another dataset.

(a) Envelope function (b) Latitude function

Figure 5: We run Algorithm SCCHEi with
d = 3 and R̂ = 3. Figure (a) shows the
estimated function p which was rescaled in
order to have 1 as maximum value on [0, 1].
For the latitude function, we removed 10%
of the (r̂i)i with the largest magnitude and
we rescaled those remaining so that the max-
imum magnitude is 1. Normalizing to get
a density on [-1,1], we obtain the latitude
function presented in Figure 5 (b).
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Appendix
Guidelines for the Appendix
Sections A to C: Basic definitions and Complements
In Section A we recall basic definitions on Markov chains which are required for Section B where we
describe some properties verified by the Markov chain (Xi)i≥1. Section C provides complementary
results on the Harmonic Analysis on Sd−1 which will be useful for our proofs.
Sections D to F: Algorithms and Experiments
Section D describes precisely the slope heuristic used to perform the adaptive selection of the model
dimension R̃ on real data. Section E provides a complete description of the HEiC alogorithm used to
extract d-eigenvectors of the adjacency matrix that will be used to estimate the Gram matrix of the
latent positions. Section F is another application on real data of our algorithms where no significant
dependence structure is revealed by the estimation the latitude function even if the RGG model still
provides interesting information through the estimation of the envelope function.
Sections G to I: Proofs of theoretical results
Thereafter, we dig into the most theoretical part of the Appendix. In Section G, we provide a
full description of the assumptions we made on the Markov chain (Xi)i≥1 and which we have been
referring to so far by mild conditions. Section G is also dedicated to the proof of a concentration
result for a particular U-statistic of the Markov chain (Xi)i≥1 that is an essential element of the
proof of Theorem 1 which is provided in Section H. Finally, the proof of Theorem 2 can be found in
Section I.

A Definitions for general Markov chains
We consider a state space E and a sigma-algebra Σ on E which is a standard Borel space. We denote
by (Xi)i≥1 a time homogeneous Markov chain on the state space (E,Σ) with transition kernel P .

A.1 Ergodic and reversible Markov chains
Definition 2 [27, section 3.2] (φ-irreducible Markov chains)
The Markov chain (Xi)i≥1 is said φ-irreducible if there exists a non-zero σ-finite measure φ on E
such that for all A ⊂ E with φ(A) > 0, and for all x ∈ E, there exists a positive integer n = n(x,A)
such that Pn(x,A) > 0 (where Pn(x, ·) denotes the distribution of Xn+1 conditioned on X1 = x).

Definition 3 [27, section 3.2] (Aperiodic Markov chains)
The Markov chain (Xi)i≥1 with invariant distribution π is aperiodic if there do not exist m ≥ 2
and disjoint subsets A1, . . . , Am ⊂ E with P (x,Ai+1) = 1 for all x ∈ Ai (1 ≤ i ≤ m − 1), and
P (x,A1) = 1 for all x ∈ Am, such that π(A1) > 0 (and hence π(Ai) > 0 for all i).

Definition 4 [27, section 3.4] (Geometric ergodicity)
The Markov chain (Xi)i≥1 is said geometrically ergodic if there exists an invariant distribution π
and functions ρ : E → (0, 1) and C : E → [1,∞) such that

‖Pn(x, ·)− π‖TV ≤ C(x)ρ(x)n, ∀n ≥ 0, π−a.e x ∈ E,

where ‖µ‖TV := supA∈Σ |µ(A)|.

Definition 5 [27, section 3.3] (Uniform ergodicity)
The Markov chain (Xi)i≥1 is said uniformly ergodic if there exists an invariant distribution π and
constants 0 < ρ < 1 and L > 0 such that

‖Pn(x, ·)− π‖TV ≤ Lρn, ∀n ≥ 0, π−a.e x ∈ E,

where ‖µ‖TV := supA∈Σ |µ(A)|.
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Remark: A Markov chain geometrically or uniformly ergodic admits a unique invariant distribution.

Definition 6 A Markov chain is said reversible if there exists a distribution π satisfying

π(dx)P (x, dy) = π(dy)P (y, dx).

A.2 Spectral gap
This section is largely inspired from [14]. Let us consider that the Markov chain (Xi)i ≥ 1 admits a
unique invariant distribution π on Sd−1.
For any real-valued, Σ-measurable function h : E → R, we define π(h) :=

∫
h(x)π(dx). The set

L2(E,Σ, π) := {h : π(h2) <∞}

is a Hilbert space endowed with the inner product

〈h1, h2〉π =

∫
h1(x)h2(x)π(dx), ∀h1, h2 ∈ L2(E,Σ, π).

The map
‖ · ‖π : h ∈ L2(E,Σ, π) 7→ ‖h‖π =

√
〈h, h〉π,

is a norm on L2(E,Σ, π). ‖ · ‖π naturally allows to define the norm of a linear operator T on
L2(E,Σ, π) as

Nπ(T ) = sup{‖Th‖π : ‖h‖π = 1}.

To each transition probability kernel P (x,B) with x ∈ E and B ∈ Σ invariant with respect to π, we
can associate a bounded linear operator h 7→

∫
h(y)P (·, dy) on L2(E,Σ, π). Denoting this operator

P , we get

Ph(x) =

∫
h(y)P (x, dy), ∀x ∈ E, ∀h ∈ L2(E,Σ, π).

Let L0
2(π) := {h ∈ L2(E,Σ, π) : π(h) = 0}. We define the absolute spectral gap of a Markov

operator.

Definition 7 (Spectral gap) A Markov operator P reversible admits a spectral gap 1− λ if

λ := sup

{
‖Ph‖π
‖h‖π

: h ∈ L0
2(π), h 6= 0

}
< 1.

The next result provides a connection between spectral gap and geometric ergodicity for reversible
Markov chains.

Proposition 1 [23, Prop 1.2]
A reversible, φ-irreducible and aperiodic Markov chain is geometrically ergodic if and only if P admits
a spectral gap.
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B Properties of the Markov chain
Let P be the Markov operator of the Markov chain (Xi)i≥1. By abuse of notation, we will also denote
P (x, ·) the density of the measure P (x, dz) with respect to dσ, the uniform measure on Sd−1. For
any x, z ∈ Sd−1, we denote Rzx ∈ Rd×d a rotation matrix sending x to z (i.e. Rzxx = z) and keeping
Span(x, z)⊥ fixed. In the following, we denote ed := (0, 0, . . . , 0, 1).

B.1 Invariant distribution and reversibility for the Markov chain
Reversibility of the Markov chain (Xi)i≥1.

Lemma 1 For all x, z ∈ Sd−1, P (x, z) = P (z, x) = P (ed, R
ed
z x).

Proof of Lemma 1.
Using our model described in section 2, we get X2 = rX1 +

√
1− r2Y where conditionally on X1,

Y is uniformly sampled on S(X1) := {q ∈ Sd−1 : 〈q,X1〉 = 0}, and where r has density fL on
[−1, 1]. Let us consider a gaussian vector W ∼ N (0, Id). Using the Cochran’s theorem and Lemma 2,
we know that conditionally on X1, the random variable W−〈W,X1〉X1

‖W−〈W,X1〉X1‖2 is distributed uniformly on
S(X1).

Lemma 2 Let W ∼ N (0, Id). Then, W
‖W‖2 is distributed uniformly on the sphere Sd−1.

Denoting L= the equality in distribution sense, we have

X2
L
= rX1 +

√
1− r2

W − 〈W,X1〉X1

‖W − 〈W,X1〉X1‖2
= rX1 +

√
1− r2

RX1

X2
W ′ − 〈RX1

X2
W ′, X1〉X1

‖RX1

X2
W ′ − 〈RX1

X2
W ′, X1〉X1‖2

,

where W ′ := RX2

X1
W . Note that W ′ ∈ Rd is also a standard centered gaussian vector because this

distribution is invariant by rotation. Since 〈RX1

X2
W ′, X1〉 = 〈W ′, X2〉 and ‖RX1

X2
q‖2 = ‖q‖2, ∀q ∈ Sd−1,

we deduce that
X2 − rX1

L
= RX1

X2

[√
1− r2

W ′ − 〈W ′, X2〉X2

‖W ′ − 〈W ′, X2〉X2‖2

]
. (11)

RX2

X1
is the rotation that sends X1 to X2 keeping the other dimensions fixed. Let us denote a1 := X1,

a2 := X2−rX1

‖X2−rX1‖2 and complete the linearly independent family (a1, a2) in an orthonormal basis of
Rd given by a := (a1, a2, . . . , ad). Then, the matrix of RX2

X1
in the basis a is r −

√
1− r2 0>d−2√

1− r2 r 0>d−2

0d−2 0d−2 Id−2

 .
We deduce that (

RX1

X2

)−1

(X2 − rX1) = RX2

X1
(X2 − rX1)

= ‖X2 − rX1‖2RX2

X1

(
X2 − rX1

‖X2 − rX1‖2

)
= ‖X2 − rX1‖2RX2

X1
a2

= ‖X2 − rX1‖2
[
−
√

1− r2a1 + ra2

]
= −

√
1− r2‖X2 − rX1‖2X1 + rX2 − r2X1

= −(1− r2)X1 + rX2 − r2X1

= −X1 + rX2.
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Going back to (11), we deduce that

X1
L
= rX2 +

√
1− r2

W̃ − 〈W̃ ,X2〉X2

‖W̃ − 〈W̃ ,X2〉X2‖2
, (12)

where W̃ = −W ′ is also a standard centered gaussian vector in Rd. Thus, we proved the first equality
of Lemma 1. Based on (12) we have,

RedX2
X1

L
= rRedX2

X2 +
√

1− r2
RedX2

W̃ − 〈W̃ ,X2〉RedX2
X2

‖W̃ − 〈W̃ ,X2〉X2‖2

= red +
√

1− r2
RedX2

W̃ − 〈RedX2
W̃ , ed〉ed

‖RedX2
W̃ − 〈RedX2

W̃ , ed〉ed‖2
,

which proves that P (ed, R
ed
x2
x1) = P (x2, x1) for any x1, x1 ∈ Sd−1 because RedX2

W̃ is again a standard
centered gaussian vector in Rd.
�

Invariant distribution of the Markov chain.

Proposition 2 The uniform distribution on the sphere Sd−1 is an invariant distribution of the
Marokv chain (Xi)i≥1.

Proof of Proposition 2.
Let us consider z ∈ Sd−1. We denote dσ ≡ dσd the Lebesgue measure on Sd−1 and dσd−1 the
Lebesgue measure on Sd−2. Using [10, section 1.1], it holds bd :=

∫
Sd−1 dσ = 2πd/2

Γ(d/2) . We have∫
x∈Sd−1

P (x, z)
dσ(x)

bd

=

∫
x∈Sd−1

P (ed, R
ed
z x)

dσ(x)

bd
(Using Lemma 1)

=

∫
x∈Sd−1

P (ed, x)
dσ(x)

bd
(Using the change of variable x 7→ Redz x)

=

∫ π

0

∫
Sd−2

P

(
ed,

[
ξ sin θ
cos θ

])
(sin θ)d−2dθ

dσd−1(ξ)

bd
(Using [10, Eq.(1.5.4) Section 1.5])

=

∫ 1

−1

∫
Sd−2

P

(
ed,

[
ξ
√

1− r2

r

])
(1− r2)

d−3
2 dr

dσd−1(ξ)

bd

=

∫ 1

−1

fL(r)dr ×
∫
Sd−2

1

bd−1

dσd−1

bd
=

1

bd
,

which proves that the uniform distribution on the sphere is an invariant distribution of the Markov
chain.
�

B.2 Ergodicity of the Markov chain
Lemma 3 We consider that fL is bounded away from 0. Then, the Markov chain (Xi)i≥1 is
φ-irreducible and aperiodic.

Proof of Lemma 3.

15



Considering for φ the uniform distribution on Sd−1, we get that for any x ∈ Sd−1 and any A ⊂ Sd−1

with φ(A) > 0,

P (x,A) =

∫
z∈A

P (x, z)
dσ(z)

bd

=

∫
z∈A

P (ed, R
ed
x z)

dσ(z)

bd
(Using Lemma 1)

=

∫
z∈Redx A

P (ed, z)
dσ(z)

bd

(Using the change of variable z 7→ Redx z with Redx A = {Redx a : a ∈ A})

=

∫
r∈[−1,1]

∫
ξ∈Sd−2

fL(r)1(ξ>,r)>∈Redx Adr
dσd−1(ξ)

bd−1bd
> 0,

since φ is invariant by rotation, φ(A) > 0 and fL is bounded away from 0.
Let us prove now that the chain is aperiodic. Suppose that A1 and A2 are disjoint subsets of E both
of positive σ measure, with P (x,A2) = 1 for all x ∈ A1. Consider any x ∈ A1, then since A1 must
have positive Lebesgue measure, we have P (x,A1) > 0 which concludes the proof.
�

Lemma 4 We consider that fL is bounded away from 0. Then the Markov chain (Xi)i≥1 uniformly
ergodic.

Proof of Lemma 4. The condition on fL implies that for all x ∈ Sd−1, the density P (x, ·) with respect
to the Lebesgue measure on Sd−1 is strictly positive everywhere. This implies that the Markov chain
(Xi)i≥1 is uniformly ergodic (see [11, section 1]).
�
Remark: From Lemmas 1 and 3 and Proposition 2, we know that the Markov chain (Xi)i≥1 is
φ-irreducible, aperiodic and reversible with unique invariant distribution the uniform distribution on
the sphere. Thanks to Proposition 1, we deduce that the Markov chain has a spectral gap if and only
if the chain is geometrically ergodic. With Proposition 4, we know that the Markov chain (Xi)i≥1

is uniformly ergodic and thus is geometrically ergodic. Hence, (Xi)i≥1 has a spectral gap. In the
following subsection, we show that this spectral gap is equal to 1.

B.3 Computation of the spectral gap of the Markov chain
Keeping notations of Appendix A, let us consider h ∈ L0

2(σ) such that ‖h‖σ = 1. Then

‖Ph‖2σ =

∫
x∈Sd−1

(∫
y∈Sd−1

P (x, dy)h(y)

)2

dσ(x)

=

∫
x∈Sd−1

(∫
y∈Sd−1

P (x, y)h(y)dσ(y)

)2

dσ(x)

=

∫
x∈Sd−1

(∫
y∈Sd−1

P (ed, R
ed
y x)h(y)dσ(y)

)2

dσ(x) (Using Lemma 1)

=

∫
x∈Sd−1

(∫
y∈Sd−1

P (ed, x)h(y)dσ(y)

)2

dσ(x) (Using the rotational invariance of σ)

=

∫
x∈Sd−1

P (ed, x)2

(∫
y∈Sd−1

h(y)dσ(y)

)2

dσ(x)

= 0,

where the last equality comes from h ∈ L0
2(σ). Hence, the Markov chain (Xi)i≥1 has 1 for spectral

gap.
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C Complement on Harmonic Analysis on the sphere
This section completes the brief introduction to Harmonic Analysis on the sphere Sd−1 provided in
Section 2. We will need in our proof the following result which states that fixing one variable and
integrating with respect to the other one with the uniform measure on Sd−1 gives ‖W −WR‖22.

Lemma 5 For any x ∈ Sd−1,

EX∼π[(W −WR)2(x,X)] = ‖W −WR‖22,

where π is the uniform measure on the Sd−1.

Proof of Lemma 5.

EX∼π[(W −WR)2(x,X)] =

∫
y

(W −WR)2(x, y)π(dy)

=

∫
y

(∑
r>R

p∗r

dr∑
l=1

Yr,l(x)Yr,l(y)

)2

π(dy)

=

∫
y

∑
r1,r2>R

p∗r1p
∗
r2

dr∑
l1=1

dr∑
l2=1

Yr1,l1(x)Yr1,l1(y)Yr2,l2(x)Yr2,l2(y)π(dy)

=
∑

r1,r2>R

p∗r1p
∗
r2

dr∑
l1=1

dr∑
l2=1

Yr1,l1(x)Yr2,l2(x)

∫
y

Yr1,l1(y)Yr2,l2(y)π(dy).

Since
∫
y
Yr,l(y)Yr′,l′π(dy) is 1 if r = r′ and l = l′ and 0 otherwise, we have that

EX∼π[(W −WR)2(x,X)] =
∑
r>R

(p∗r)
2
dr∑
l=1

Yr,l(x)2

=
∑
r>R

(p∗r)
2dr (Using [10, Eq.(1.2.9)])

= ‖W −WR‖22.

�
Let us consider β := d−2

2 and the weight function wβ(t) := (1− t2)β−
1
2 . As highlighted in section

2, any envelope function p ∈ L2([−1, 1], wβ) can be decomposed as p ≡
∑R
k=0 p

∗
kckG

β
k where Gβl is

the Gegenbauer polynomial of degree l with parameter β and where ck := 2k+d−2
d−2 . The Gegenbauer

polynomials are orthonormal polynomials on [−1, 1] associated with the weight function wβ .
The eigenvalues (p∗k)k≥0 of the envelope function can be computed numerically through the formula

∀l ≥ 0, p∗l =

(
clbd
dl

)∫ 1

−1

p(t)Gβl (t)wβ(t)dt, (13)

where bd :=
Γ( d2 )

Γ( 1
2 )Γ( d2−

1
2 )

with Γ the Gamma function. Hence, it is possible to recover the envelope
function p thanks to the identity

p =
∑
l≥0

√
dlp
∗
l

Gβl
‖Gβl ‖L2([−1,1],wβ)

=
∑
l≥0

p∗l clG
β
l . (14)
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For R ≥ 0, let us define R̃ =
∑R
k=0 dk which corresponds to the dimension of the space of Spherical

Harmonics with degree at most R. We introduce the truncated graphon WR which is obtained from
W by keeping only the R̃ first eigenvalues, that is

∀x, y ∈ Sd−1, WR(x, y) :=

R∑
k=0

p∗k

dk∑
l=1

Yk,l(x)Yk,l(y).

Similarly, we denote for all t ∈ [0, 1], pR(t) =
∑R
k=0 p

∗
kckG

β
k(t).

D Slope heuristic on real data
We propose a detailed analysis of the slope heuristic described in section 2.2 on the real data presented
in section 5. We recall that R(κ) represents the optimal value of R to minimize the bias-variance
decomposition defined by (6) for a given hyperparameter κ. Figure 6 shows the evolution of R̃(κ)
with respect to κ which is sampled on a logscale. R̃(κ) is the dimension of the space of Spherical
Harmonics with degree at most R(κ). Our slope heuristic consists in choosing the value κ0 leading
to the larger jump of the function κ 7→ R̃(κ). In our case, Figure 6 shows that κ0 = 10−3.5. As
described in Section 2.2, the resolution level R̂ selected to cluster the eigenvalues of the matrix T̂n is
given by R(2κ0). In our case, we choose R̂ = 3.

Figure 6: We sample the parameter κ on
a logscale between 10−5 and 10−1 and we
compute the corresponding R(κ) defined in
(6). We plot the values of R̃(κ) with respect
to κ. The larger jump allows us to define κ0.

E Reminder on Harmonic EigenCluster(HEiC)
Before presenting the algorithm HEiC, let us define for a given set of indices i1, . . . , id ∈ [n]

Gap1(T̂n; i1, . . . , id) := min
i/∈{i1,...,id}

max
j∈{i1,...,id}

|λ̂i − λ̂j |.

Algorithm 2 Harmonic EigenCluster(HEiC) algorithm.
Data: Adjacency matrix A. Dimension d.

1: (λ̂sort1 , . . . , λ̂sortn )← eigenvalues of T̂n sorted decreasing order.
2: Λ1 ← {λ̂sort1 , . . . , λ̂sortd }.
3: Initialize i = 2 and gap= Gap1(T̂n; 1, 2, . . . , d).
4: while i ≤ n− d+ 1 do
5: if Gap1(T̂n; i, i+ 1, . . . , i+ d− 1) > gap then
6: Λ1 ← {λ̂sorti , . . . , λ̂sorti+d−1}
7: i = i+ 1

Return: Λ1, gap.
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F Results on the Gowalla dataset
We propose another application of our algorithm on a friendship dataset provided in [13] and collected
from Gowalla, a popular location-based social network where users share their locations by checking-in.
Our graph contains 6, 442, 890 nodes, corresponding to all the check-ins between February 2009 and
October 2010, ordered by timestamps. Two nodes in our graph are connected if the corresponding
users are friends on Gowalla. Results are provided with Figure 7 working with a dimension d = 3.
Figure 7.(a) presents the estimated envelope function while (b) shows the estimated latitude function.
Figure 7.(b) looks like a centered normal distribution with a small variance. Therefore, we cannot
conclude that there is a dependence between the latent representations of two consecutive nodes in
the graph.

(a) Envelope function. (b) Latitude function.

Figure 7: Presentation of the results working with the dataset from [13]. On a graph with 6, 442, 890
nodes, we run the algorithm SCCHEi with d = 3 and R̂ = 2 to get a clustering of the largest R̃opt
eigenvalues of T̂n. Figure (a) shows the estimated function p which was first rescaled (in order to
have 1 as maximum value on [0, 1]) and then thresholded (to have positive values). For the latitude
function, we removed the tail of the distribution by considering the 95% fraction of the (r̂i)i with the
smallest magnitude and rescaling them so that the maximum magnitude is 1. The estimated latitude
function is presented with Figure 7 (b).

G Concentration inequality for U-statistics with Markov chains
In this section, we prove a concentration inequality for a U-statistic of the Markov chain (Xi)i≥1

which is a key result to prove Theorem 1. In the first subsection, we describe precisely the assumptions
made on the Markovian dynamic, namely Assumption A and Assumption B. Those conditions allow
us to fall into the framework of [1, Section 3] and to use a Talagrand’s concentration for Markov
chains.

G.1 Assumptions and notations for the Markov chain
Assumption A The latitude function fL is bounded away from 0 and ‖fL‖∞ <∞.
Assumption A guarantees that there exist δm, δM > 0 such that

∀x ∈ Sd−1,∀A ∈ B(Sd−1), δmν(A) ≤ P (x,A) ≤ δMν(A),

for some probability measure ν (e.g. the uniform measure on the sphere π). Assumption A also
implies that there exists a small set, namely there exists a set C ∈ B(Sd−1) such that

∀x ∈ Sd−1, ∃m, Pm(x,C) > 0.
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One can take m = 1 and C = Sd−1. The latter has the important consequence that the Markov chain
(Xi)i≥1 is uniformly ergodic (see [11, section 1]), with associated constants L > 0 and 0 < ρ < 1
(see Definition 5).
We introduce some additional notations which will be useful for the proof of the next subsection in
particular to apply Talagrand concentration result from [1]. We extend the Markov chain (Xi)i≥1 to
a new (so called split) chain (X̃n, Rn) ∈ Sd−1 × {0, 1}, satisfying the following properties.

• (X̃n)n is again a Markov chain with transition kernel P and initial distribution π We recall
that π is the uniform distribution on the Sd−1.

• if we define T1 = inf{n > 0 : Rn = 1},

Ti+1 = inf{n > 0 : RT1+···+Ti+n = 1},

then T1, T2, . . . are well defined, independent moreover T2, T3, . . . are i.i.d.

• if we define Si = T1 + · · ·+ Ti, then the "blocks"

Y0 = (X1, . . . , XT1),

Yi = (XSi+1, . . . , XSi+1
), i > 0,

form a one-dependent sequence (i.e. for all i, σ((Yj)j<i) and σ((Yj)j>i) are independent).
Moreover, the sequence Y1, Y2, . . . is stationary and the variables Y0, Y1, . . . are independent.
In consequence, for f : Sd−1 → R, the variables

Zi = Zi(f) =

Si+1∑
j=Si+1

f(Xj), i ≥ 1,

constitute an i.i.d. sequence.

• the distribution of T1 depends only on π, P , C, δm, ν, whereas the law of T2 only on P , C, δm
and ν.

To derive concentration of measure inequality, we assume the exponential integrability of the
regeneration time described with Assumption B.
Assumption B ‖T1‖ψ1

< ∞ and ‖T2‖ψ1
< ∞, where ‖ · ‖ψ1

is the 1-Orlicz norm introduced in
Definition 8.

Definition 8 For α > 0, define the function ψα : R+ → R+ with the formula ψα(x) = exp(xα)− 1.
Then for a random variable X, the α-Orlicz norm is given by

‖X‖ψα = inf {λ > 0 : E[ψα(|X|/λ)] ≤ 1} .

G.2 Concentration inequality of U-statistic for Markov chain
One key result to prove Theorem 1 is the concentration of the following U-statistic

Ustat(n) =
∑

1≤i<j≤n

[
(W −WR)2(Xi, Xj)− ‖W −WR‖22

]
.

Lemma 6 Let us consider γ ∈ (0, 1) satisfying log(e/γ) ≤ n/ log2 n. Then it holds with probability
at least 1− γ,

Ustat(n) ≤M ‖p− pR‖
2
∞ log n

n
(log(e/γ) ∨ log n) ,

whereM > 0 only depends on constants related to the Markov chain (Xi)i≥1, namely δm, δM , ‖T1−T1‖,
ET2, ‖T1‖ψ1

, ‖T2‖ψ1
, L and ρ.
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Note that ‖W −WR‖22 corresponds to the expectation of the kernel (W −WR)2(·, ·) under the uniform
distribution on Sd−1 which is known to be the unique invariant distribution π of the Markov chain
(Xi)i≥1 (see Appendix B). More precisely, for any x ∈ Sd−1, it holds

‖W −WR‖22 = EX∼π[(W −WR)2(x,X)] = E(X,X′)∼π⊗π[(W −WR)2(X,X ′)],

see Lemma 5 for a proof. Our proof is inspired from [16, Section 3.4.3] where a Bernstein-type
inequality is shown for U-statistics of order 2 in the independence setting. Their proof relies on the
canonical property of the kernel functions which endowed the U-statistic with a martingale structure.
We want to use a similar argument and we decompose Ustat(n) to recover the martingale property for
each term (except for the last one). Considering for any l ≥ 1 the σ-algebra Gl = σ(X1, . . . , Xl), the
notation El refers to the conditional expectation with respect to Gl. Then we decompose Ustat(n) as
follows,

Ustat(n) =

tn∑
k=1

∑
i<j

(
Ej−k+1[(W −WR)2(Xi, Xj)]− Ej−k[(W −WR)2(Xi, Xj)]

)
+
∑
i<j

(
Ej−tn [(W −WR)2(Xi, Xj)]− ‖W −WR‖22

)
, (15)

where tn is an integer that scales logarithmically with n and that will be specified latter. By
convention, we assume here that for all k < 1, Ek[·] := E[·]. Hence the first term that we will consider
is given by

Un =
∑

1≤i<j≤n

h(Xi, Xj−1, Xj),

where for all x, y, z ∈ Sd−1,

h(x, y, z) = (W −WR)2(x, z)−
∫
w

(W −WR)2(x,w)P (y, dw).

We provide a detailed proof of a concentration result for Un by taking advantage of its martingale
structure following the work of [16, Section 3.4.3]. Reasoning by induction, we show that the tn − 1
following terms involved in the decomposition (15) of Ustat(n) can be handled using a similar approach.
Since the last term of the decomposition (15) has not a martingale property, another argument is
required. We deal with the last term exploiting the uniform ergodicity of the Markov chain (Xi)i≥1

which is guaranteed by Assumption A (see the previous Subsection or [27, Theorem 8]).

G.3 Concentration of the first term of the decomposition of the U-statistic
Martingale structure of the U-statistic Defining Yj =

∑j−1
i=1 h(Xi, Xj−1, Xj), Un can be

written as Un =
∑n
j=2 Yj . Since

Ej−1[Yj ] = E[Yj | X1, . . . , Xj−1] = 0,

we know that (Uk)k≥2 is a martingale relative to the σ-algebras Gl, l ≥ 2. This martingale can be
extended to n = 0 and n = 1 by taking U0 = U1 = 0, G0 = {∅,Sd−1}, G1 = σ(X1). We will use the
martingale structure of (Un)n through the following Lemma.

Lemma 7 (see [16, Lemma 3.4.6])
Let (Um, Gm),m ∈ N, be a martingale with respect to a filtration Gm such that U0 = U1 = 0. For
each m ≥ 1 and k ≥ 2, define the angle brackets Akm = Akm(U) of the martingale U by

Akm =

m∑
i=1

Ei−1[(Ui − Ui−1)k]
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(and note Ak1 = 0 for all k). Suppose that for λ > 0 and all i ≥ 1, E[eλ|Ui−Ui−1|] <∞. Then(
εm := eλUm−

∑
k≥2 λ

kAkm/k!, Gm

)
,m ∈ N,

is a supermartingale. In particular, E[εm] ≤ E[ε1] = 1, so that, if Akm ≤ wkm for constants wkm ≥ 0 ;
then

E[eλUm ] ≤ e
∑
k≥2 λ

kwkm/k!.

For all k ≥ 2 and n ≥ 1, we have :

Akn =

n∑
j=2

Ej−1

[
j−1∑
i=1

h(Xi, Xj−1, Xj)

]k
≤ V kn :=

n∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

h(Xi, Xj−1, Xj)

∣∣∣∣∣
k

≤ δM
n∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

h(Xi, Xj−1, X
′
j)

∣∣∣∣∣
k

,

where the random variables (X ′j)j are i.i.d. with distribution ν.

Lemma 8 (see [16, Ex.1 Section 3.4]) Let Zi be independent random variables with respective
probability laws Pi. Let k > 1, and consider the space H = {(f1(Z1), . . . , fN (ZN )) : fi ∈ Lk(Pi)}.
Then the duality of Lp spaces and the independence of the variables Zi imply that(

N∑
i=1

E
[
|fi(Zi)|k

])1/k

= sup∑N
i=1 E|ξi(Zi)|k/(k−1)=1

N∑
i=1

E [fi(Zi)ξi(Zi)] ,

where the sup runs over ξi ∈ Lk/(k−1)(Pi).

Then by the duality result of Lemma 8,

(V kn )1/k ≤ δM sup
ξ∈Lk

n∑
j=2

j−1∑
i=1

Ej−1

[
h(Xi, Xj−1, X

′
j)ξj(X

′
j)

]

where Lk =

{
ξ = (ξ2, . . . , ξn) s.t. ∀2 ≤ j ≤ n, ξj ∈ Lk/(k−1)(ν) with

n∑
j=2

E|ξj(X ′j)|k/(k−1) = 1

}
.

= δM sup
ξ∈Lk

n−1∑
i=1

n∑
j=i+1

Ej−1

[
h(Xi, Xj−1, X

′
j)ξj(X

′
j)

]
If we define the random vectors Xi for i = 1, . . . , n− 1 on Rn by

Xi = (0, . . . , 0, h(Xi, Xi, xi+1), . . . , h(Xi, Xn−1, xn)),

and for ξ = (ξ2, . . . , ξn) ∈
∏n
i=2 L

k/(k−1)(ν), the function fξ(h2, . . . , hn) =
∑n
j=2

∫
hj(x)ξj(x)dν(x),

then setting F = {fξ :
∑n
j=2E|ξj(X ′j)|k/(k−1) = 1}, we have

(
V kn
)1/k ≤ δM sup

f∈F

∣∣∣∣∣
n−1∑
i=1

fξ(Xi)

∣∣∣∣∣ .
Using a similar approach, one can prove that

δm sup
f∈F

∣∣∣∣∣
n−1∑
i=1

fξ(Xi)

∣∣∣∣∣ ≤ (V kn )1/k .
By the separability of the Lp spaces of finite measures, F can be replaced by a countable subset F0.
To upper-bound the tail probabilities of Un, we will bound the variable V kn on sets of large probability
using Talagrand’s inequality. Then we will use Lemma 7 on these sets by means of optional stopping.
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Application of Talagrand’s inequality for Markov chains Let us denote

Z = sup
f∈F

∣∣∣∣∣
n−1∑
i=1

fξ(Xi)

∣∣∣∣∣
and let us define the asymptotic weak variance

σ2
k = sup

f∈F
VarZ1(f)/ET2.

We also consider τ = ‖T1‖ψ1
∨ ‖T2‖ψ1

and bk = supf∈F ‖f‖∞.
Now, we define for all i ∈ [n], Vi = (0, . . . , 0, Xn−i+1, . . . , Xn) ∈ Rn. Then, thanks to the reversibility
of the Markov chain (Xi)i≥1, Vi is a Markov chain with transition kernel directly given by the
transition kernel of (Xi)i≥1: P. Since Xi is σ(Vn−i+1) measurable, we can apply Theorem 7 from [1],
and we get that for any t ≥ 0,

P (Z ≥ KE[Z] + t) ≤ K exp

(
− 1

K
min

(
t2

nσ2
k

,
t

τ3(ET2)−1bk log n

))
.

We deduce that for any t ≥ 1,

P

((
V kn
)1/k ≥ δM

δm
KE[

(
V kn
)1/k

] + δM t

)
≤ K exp

(
− 1

K
min

(
t2

nσ2
k

,
t

τ3(ET2)−1bk log n

))
,

which implies that for any x ≥ 0,

P

((
V kn
)1/k ≥ δM

δm
KE[

(
V kn
)1/k

] + δM

√
nσ2

kx+ δMxτ
3(ET2)−1bk log n

)
≤ K exp

(
− x

K

)
.

K is a universal constant that we will assume equal to 1 to simplify notations. Using the change of
variable x = ku with u ≥ 0 in the previous inequality leads to

P

( ∞⋃
k=2

(
V kn
)1/k ≥ δM

δm
E[
(
V kn
)1/k

] + δM

√
nσ2

kku+ δMkuτ
3(ET2)−1bk log n

)
≤ 1.62e−u,

because

1 ∧
∞∑
k=2

exp (−ku) ≤ 1 ∧ 1

eu(eu − 1)
=

(
eu ∧ 1

eu − 1

)
e−u ≤ 1 +

√
5

2
e−u ≤ 1.62e−u.

Bounding bk. Using Hölder’s inequality we have,

bk = sup∑n
j=2 E|ξj(X′j)|k/(k−1)=1

max
i

sup
x,y

∣∣∣∣∣∣
n∑

j=i+1

E
[
h(x, y,X ′j)ξj(X

′
j)
]∣∣∣∣∣∣

≤ sup∑n
j=2 E|ξj(X′j)|k/(k−1)=1

max
i

sup
x,y

n∑
j=i+1

(
E
∣∣h(x, y,X ′j)

∣∣k)1/k (
E
∣∣ξj(X ′j)∣∣k/(k−1)

)(k−1)/k

≤ sup∑n
j=2 E|ξj(X′j)|k/(k−1)=1

max
i

sup
x,y

 n∑
j=i+1

E
∣∣h(x, y,X ′j)

∣∣k1/k n∑
j=i+1

E
∣∣ξj(X ′j)∣∣k/(k−1)

(k−1)/k

≤ max
i

sup
x,y

 n∑
j=i+1

E
∣∣h(x, y,X ′j)

∣∣k1/k

≤ (B2Ak−2)1/k,

23



where
A := ‖h‖∞ ≤ 2‖p− pR‖2∞

and
B2 := nb2 where b2 = max

{∥∥EX′∼ν [h2(·, ·, X ′)
]∥∥
∞ ,
∥∥EX′′∼π [h2(X ′′, ·, ·)

]∥∥
∞

}
.

Bounding the variance.

E[T2]σ2
k = sup

f∈F
Var

(
T2∑

i=T1+1

f(Xi)

)

= sup
ξ∈Lk

Var

 T2∑
i=T1+1

n∑
j=i+1

Ej−1[h(Xi, Xj−1, X
′
j)ξj(X

′
j)]


≤ 2

(
B2Ak−2

)2/k
E[(T2 − T1)2],

where the last inequality comes from the following (where we use twice Holder’s inequality),

sup
ξ∈Lk

E


 T2∑
i=T1+1

n∑
j=i+1

Ej−1[h(Xi, Xj−1, X
′
j)ξj(X

′
j)]

2


≤ sup
ξ∈Lk

E


 T2∑
i=T1+1

n∑
j=i+1

Ej−1[|h(Xi, Xj−1, X
′
j)|k]1/kE[|ξj(X ′j)|k/(k−1)](k−1)/k

2


≤ sup
ξ∈Lk

E


 T2∑
i=T1+1

 n∑
j=i+1

Ej−1[|h(Xi, Xj−1, X
′
j)|k]

1/k n∑
j=i+1

E[|ξj(X ′j)|k/(k−1)]

(k−1)/k


2

≤ E


 T2∑
i=T1+1

 n∑
j=i+1

Ej−1[|h(Xi, Xj−1, X
′
j)|k]

1/k


2
≤

(
B2Ak−2

)2/k
E[(T2 − T1)2].

Now notice that for all θ1, θ2 ≥ 0 and 0 < ε ≤ 1 by convexity,(
θ1 + θ2

1 + ε

)k
=

(
θ1

1 + ε
+
εε−1θ2

1 + ε

)k
≤ 1

1 + ε
θk1 +

ε

1 + ε
ε−kθk2 ,

so that

(θ1 + θ2)k ≤ (1 + ε)k−1θk1 + ε−(k−1)(1 + ε)k−1θk2 = (1 + ε)k−1θk1 + (1 + ε−1)k−1θk2 .

By symmetry, this inequality holds for all ε ≥ 0, that is, for all θ1, θ2, ε ≥ 0,

(θ1 + θ2)k ≤ (1 + ε)k−1θk1 + (1 + ε−1)k−1θk2 .

Using this inequality twice and the bounds obtained on bk and σ2
k gives for u > 0,[

δM
δm

(
EV kn

)1/k
+ δM

√
nσ2

kku+ δMkuτ
3(ET2)−1bk log n

]k
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≤

[
δM
δm

(
EV kn

)1/k
+
√

2δM (B2Ak−2)1/k‖T2 − T1‖2(ET2)−1/2
√
nku

+ δMkuτ
3(ET2)−1(B2Ak−2)1/k log n

]k

≤ (1 + ε)k−1

(
δM
δm

)k
EV kn + (1 + ε−1)k−1

[
δMkuτ

3(ET2)−1(B2Ak−2)1/k log n

+
√

2δM (B2Ak−2)1/k‖T2 − T1‖2(ET2)−1/2
√
nku

]k

≤ (1 + ε)k−1

(
δM
δm

)k
EV kn + (1 + ε−1)2k−2(δMku)kτ3k(ET2)−kB2Ak−2 logk n

+ (1 + ε)k−1(1 + ε−1)k−1δkMB
2Ak−2‖T2 − T1‖k2(ET2)−k/2(2nku)k/2.

So, setting

wkn := (1 + ε)k−1

(
δM
δm

)k
EV kn + (1 + ε−1)2k−2(δMku)kτ3k(ET2)−kB2Ak−2 logk n

+ (2 + ε+ ε−1)k−1δkMB
2Ak−2‖T2 − T1‖k2(ET2)−k/2(2nku)k/2,

we have
P
(
V kn ≤ wkn ∀k ≥ 2

)
≥ 1− 1.62e−u, (16)

where the dependence in u of wkn is leaved implicit.

Upper-bounding Un using the martingale structure Let

T + 1 := inf{l ∈ N : V kl ≥ wkl for some k ≥ 2}.

Then, the event {T ≤ l} depends only on X1, . . . , Xl for all l ≥ 1. Hence, T is a stopping time for the
filtration (Gl)l where Gl = σ((Xi)i∈[l]) and we deduce that UTl := Ul∧T for l = 0, . . . , n is a martingale
with respect to (Gl)l with UT0 = U0 = 0 and UT1 = U1 = 0. We remark that UTj − UTj−1 = Uj − Uj−1

if T ≥ j and zero otherwise, and that {T ≥ j} is Gj−1 measurable. Then, the angle brackets of this
martingale admit the following bound:

Akn(UT ) =

n∑
j=2

Ej−1[(UTj − UTj−1)k]

≤ V kn (UT )

=

n∑
j=2

Ej−1|Uj − Uj−1|k1T≥j

=

n∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

h(Xi, Xj−1, Xj)

∣∣∣∣∣
k

1T≥j

=

n−1∑
j=2

V kj 1T=j + V kn 1T≥n

≤ wkn

n−1∑
j=2

1T=j + 1T≥n


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≤ wkn,

since, by definition of T , V kj ≤ wkn for all k on {T ≥ j}. Hence, Lemma 7 applied to the martingale
UTn implies

EeλU
T
n ≤ exp

∑
k≥2

λk

k!
wkn

 .

Also, since V kn is nondecreasing in n for each k, inequality (16) implies that

P(T < n) ≤ P
(
V kn ≥ wkn for some k ≥ 2

)
≤ 1.62e−u.

Thus we deduce that for all s ≥ 0,

P(Un ≥ s) ≤ P(UTn ≥ s, T ≥ n) + P(T < n) ≤ e−λs exp

∑
k≥2

λk

k!
wkn

+ 1.62e−u. (17)

The final step of the proof consists in simplifying exp
(∑

k≥2
λk

k! w
k
n

)
.

∑
k≥2

λk

k!
wkn =

∑
k≥2

λk

k!
(1 + ε)k−1

(
δM
δm

)k
EV kn

+
∑
k≥2

λk

k!
(2 + ε+ ε−1)k−1δkMB

2Ak−2‖T2 − T1‖k2(ET2)−k/2(2nku)k/2

+
∑
k≥2

λk

k!
(1 + ε−1)2k−2(δMku)kτ3k(ET2)−kB2Ak−2 logk n

:= a1 + a2 + a3.

Bounding a3. Using the inequality k! ≥ (k/e)k, we have noting δ(ε) := e(1 + ε−1)2(ET2)−1τ3δM ,

a3 ≤
∑
k≥2

λk(1 + ε−1)2k−2(δMeu)kτ3k(ET2)−kB2Ak−2 logk n

=
∑
k≥2

λk(1 + ε−1)−2δ(ε)kukB2Ak−2 logk n

= λ2(1 + ε−1)−2δ(ε)2u2B2 log2 n
∑
k≥0

λkδ(ε)kukAk logk n

=

(
B(1 + ε−1)−1uδ(ε) log n

)2
λ2

1− uλAδ(ε) log n
,

for λ < (uAδ(ε) log n)−1.

Bounding a2. We use the inequality k! ≥ kk/2 because (k/e)k > kk/2 for k ≥ e2 and for k smaller,
the inequality follows by direct verification. Defining η(ε) :=

√
2(2 + ε+ ε−1)δM‖T2 − T1‖(ET2)−1/2,
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we have

a2 ≤
∑
k≥2

λk(2 + ε+ ε−1)k−1δkMB
2Ak−2‖T2 − T1‖k2(ET2)−k/2(2nu)k/2

=
∑
k≥2

λk(2 + ε+ ε−1)−1η(ε)kB2Ak−2(nu)k/2

= (2 + ε+ ε−1)−1η(ε)2B2(nu)λ2
∑
k≥0

λkη(ε)kAk(nu)k/2

=
(2 + ε+ ε−1)−1 (λη(ε)B)

2
nu

1− λAη(ε)
√
nu

,

for λ < (Aη(ε)
√
nu)−1.

Bounding a1. Let us recall that

E[V kn ] = E

n∑
j=2

Ej−1

∣∣∣∣∣
j−1∑
i=1

h(Xi, Xj−1, Xj)

∣∣∣∣∣
k

= E

n∑
j=2

E

∣∣∣∣∣
j−1∑
i=1

h(Xi, Xj−1, Xj)

∣∣∣∣∣
k ∣∣∣∣∣ Xj−1, Xj

 .
Thus denoting κ = δM

δm
,

a1 =
1

1 + ε
E

n∑
j=2

(
E|Xj−1,Xj

[
eλ(1+ε)κ|Cj |

]
− λ(1 + ε)κE|Xj−1,Xj [|Cj |]− 1

)
,

where Cj =
∑j−1
i=1 h(Xi, Xj−1, Xj) and where the notation E|Xj−1,Xj refers to the expectation

conditionally to the σ-algebra σ(Xj−1, Xj).
Now we use a symmetrization trick: since ex−x−1 ≥ 0 for all x and since ea|x|+e−a|x| = eax+e−ax,
adding E|Xj−1,Xj [exp (−λ(1 + ε)κ|Cj |)] + λ(1 + ε)κE|Xj−1,Xj [|Cj |]− 1 to a1 gives

a1 ≤
1

1 + ε
E

n∑
j=2

(
E|Xj−1,Xj [e

λ(1+ε)κCj ]− 1 + E|Xj−1,Xj [e
−λ(1+ε)κCj ]− 1

)
. (18)

Let us consider some j ∈ {2, . . . , n}. Conditionally on σ(Xj−1, Xj), Cj is a sum of bounded functions
(by A) depending on the Markov chain 2. We denote

vj(Xj−1, Xj) =

j−1∑
i=1

EXi∼π[h2(Xi, Xj−1, Xj)|Xj−1, Xj ] ≤ B2

and V =
∑n
j=2Ev

k
j (Xj−1, Xj) ≤ C2B2(k−1) (with C2 = nB2).

Remark that

EXi∼π[h(Xi, Xj−1, Xj)|Xj−1, Xj ]

= EXi∼π
[
(W −WR)2(Xi, Xj)− Ej−1[(W −WR)2(Xi, Xj)] | Xj−1, Xj

]
=

∫
xi

(W −WR)2(xi, Xj)π(dxi)

−
∫
xi

∫
xj

(W −WR)2(xi, xj)π(dxi)P (Xj−1, dxj)

= ‖W −WR‖22 − ‖W −WR‖22
= 0,

2Strictly speaking, we consider the time reversal Markov chain starting at Xj−1 which has the same kernel due to
the reversibility of the chain.
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where we used that

∀x ∈ Sd−1, EX∼π[(W −WR)2(X,x)] = EX∼π[(W −WR)2(x,X)] = ‖W −WR‖22,

as stated by Lemma 5. We will use a Bernstein inequality for Markov chain (see [19]). Note that
the time reversal Markov chain with kernel P starting at Xj−1, that we consider here, admits the
uniform distribution on Sd−1 has invariant measure. Moreover, its spectral gap is equal to 1 (see
Appendix B). Finally, notice from Taylor expansion that (1− p/3)(ep − p− 1) ≤ p2/2 for all p ≥ 0.
We can now apply [19, Eq.(4.5) Thm 1.1] with t = λ(1 + ε)κ and c = A (using their notations). We
get that for λ < [(1 + ε)κ(A/3 +B/

√
2)]−1,

E|Xj−1,Xj [e
λ(1+ε)κ|Cj |]

≤ E|Xj−1,Xj

[
exp

(
λ2(1 + ε)2κ2vj(Xj−1, Xj)

2− 2Aλ(1 + ε)κ/3

)]
≤ E|Xj−1,Xj

[
exp

(
λ2(1 + ε)2κ2vj(Xj−1, Xj)

2− 2Aλ(1 + ε)κ/3

)]
.

Considering λ < [(1 + ε)κ(A/3 +B/
√

2)]−1, ε < 1 and using (18), this leads to

a1 ≤
2

1 + ε

n∑
j=2

E

[
exp

(
λ2(1 + ε)2κ2vj(Xj−1, Xj)

2− 2Aλ(1 + ε)κ/3

)
− 1

]

≤ 2

1 + ε

∞∑
k=1

λ2k(1 + ε)2kκ2kV

(2− 2Aλ(1 + ε)κ/3)k

≤ 2

1 + ε

∞∑
k=1

λ2k(1 + ε)2kκ2kC2B2(k−1)

(2− 2Aλ(1 + ε)κ/3)k

=
(1 + ε)C2λ2κ2

1−Aλ(1 + ε)κ/3− λ2(1 + ε)2κ2B2/2

≤ (1 + ε)C2λ2κ2

1− λ(1 + ε)κ(A/3 +B/
√

2)
.

Putting altogether we obtain

exp

∑
k≥2

λk

k!
wkn

 ≤ exp

(
λ2W 2

1− λc

)
,

where
W = (1 + ε)1/2Cκ+ (1 + ε+ ε−1)−1/2η(ε)B

√
nu+B(1 + ε−1)−1uδ(ε) log n,

and
c = max

[
(1 + ε)κ(A/3 +B/

√
2), Aη(ε)

√
nu,Aδ(ε)u log n

]
.

Using this estimate in (17) and taking s = 2W
√
u+ cu and λ =

√
u/(W + c

√
u) in this inequality

yields
P
(
Un ≥ 2W

√
u+ cu

)
≤ 2.62e−u.

By taking ε = 1/2, we deduce that for any u ≥ 0, it holds with probability at least 1− e1−u∑
i<j

hi,j(Xi, Xj)

≤
√

6Cκ
√
u+ 6δM‖T2 − T1‖(ET2)−1/2B

√
nu+ 6eδM (ET2)−1τ3Bu3/2 log n

+
κ

2
(A+ 3B)u+ 9AδM‖T2 − T1‖(ET2)−1/2

√
nu3/2 + 12A(ET2)−1τ3eδMu

2 log n,
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Using
B ≤

√
nA, C =

√
nB ≤ nA and A ≤ 2‖p− pR‖2∞,

it holds with probability at least 1− e1−u,∑
i<j

hi,j(Xi, Xj) ≤ A
[
M0n

√
u+M1nu+M2

√
n log(n)u3/2 +M3 log(n)u2

]
with

M0 =
√

6κ, M1 = 6δM‖T2 − T1‖(ET2)−1/2 + 3κ,

M2 = 9δM‖T2 − T1‖(ET2)−1/2 + 6eδM (ET2)−1τ3e, and M3 = 12(ET2)−1τ3δM .

Let us consider some γ ∈ (0, 1). Then, denoting M = 8 max(M0,M1,M2,M3), we have with
probability at least 1− γ,

2

n(n− 1)

∑
i<j

hi,j(Xi, Xj)

≤ M

2

‖p− pR‖2∞
n(n− 1)

[
n log

(
e

γ

)
∨
√
n log n log

(
e

γ

)3/2

∨ log(n) log

(
e

γ

)2
]
. (19)

In particular, for any γ ∈ (0, 1) satisfying log(e/γ) ≤ n/ log2 n it holds with probability at least 1− γ,

2

n(n− 1)

∑
i<j

hi,j(Xi, Xj) ≤M
‖p− pR‖2∞

n
log

(
e

γ

)
. (20)

G.3.1 Reasoning by descending induction with a logarithmic depth

As previously explained, we apply a proof similar the one of the previous subsection on the tn first
terms of the decomposition (15). Let us give the key elements to justify such approach by considering
the second term of the decomposition (15), namely∑

i<j

(
Ej−1

[
(W −WR)2(Xi, Xj)

]
− Ej−2

[
(W −WR)2(Xi, Xj)

])
=

n−2∑
i=1

n∑
j=i+2

h(1)(Xi, Xj−2, Xj−1) +

n−1∑
i=1

g(Xi)

=

n−2∑
i=1

n−1∑
j=i+1

h(1)(Xi, Xj−1, Xj) +

n−1∑
i=1

g(Xi), (21)

where
h(1)(x, y, z) =

∫
w

(W −WR)2(x,w)P (z, dw)−
∫
w

(W −WR)2(x,w)P 2(y, dw)

and
g(x) =

∫
w

(W −WR)2(x,w)P (x, dw)− ‖W −WR‖22.

We can upper-bound directly
∑n−1
i=1 g(Xi) by 2n‖p− pR‖2∞ and we aim at proving a concentration

result for the term

U
(1)
n−1 :=

n−2∑
i=1

n−1∑
j=i+1

h(1)(Xi, Xj−1, Xj) =

n−1∑
j=2

j−1∑
i=1

h(1)(Xi, Xj−1, Xj),

using an approach similar to the one of the previous subsection. One can use exactly the same sketch
of proof.
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• Martingale structure
Using the notation Y (1)

j =
∑j−1
i=1 h

(1)(Xi, Xj−1, Xj), we have U (1)
n−1 =

∑n−1
j=2 Y

(1)
j which shows

that (U
(1)
n )n is a martingale with respect to the σ-algebras Gl. Indeed, we have Ej−1[Y

(1)
j ] = 0.

• Talagrand’s inequality
One can use the same duality trick to show that the V kn can be controlled using a sum of
functions of the Markov chain (Vi)i≥1 (as defined in the previous section).

• Bounding exp(wknλ
k/k!)

The terms a2 and a3 can be bounded in a similar way. For the term a1, we only need to show
that h(1) satisfies EXi∼π|h(1)(Xi, y, z)] = 0, ∀y, z ∈ Sd−1 in order to apply as previously a
Bernstein’s type inequality.

EXi∼π|h(1)(Xi, y, z)]

=

∫
xi

π(dxi)

(∫
w

(W −WR)2(xi, w)P (z, dw)−
∫
w

(W −WR)2(xi, w)P 2(y, dw)

)
=

∫
w

(
P (z, dw)

∫
xi

π(dxi)(W −WR)2(xi, w)− P 2(y, dw)

∫
xi

π(dxi)(W −WR)2(xi, w)

)
= ‖W −WR‖22 − ‖W −WR‖22 (Using Lemma 5)
= 0.

• Conclusion of the proof
The key remark is that the constants A and B are respectively bounded by 2‖p− pR‖2∞ and
2n‖p− pR‖2∞ as previously. This allows us to get a concentration inequality strictly similar to
the one of the previous subsection, namely for any γ ∈ (0, 1) satisfying log(e/γ) ≤ n/ log2 n, it
holds with probability at least 1− γ,

2

n(n− 1)
h(1)(Xi, Xj−1, Xj) ≤M

‖p− pR‖2∞
n

log

(
e

γ

)
.

Going back to (21), we get that for any γ ∈ (0, 1) satisfying log(e/γ) ≤ n/ log2 n it holds with
probability at least 1− γ,∑

i<j

(
Ej−1

[
(W −WR)2(Xi, Xj)

]
− Ej−2

[
(W −WR)2(Xi, Xj)

])
≤ M

‖p− pR‖2∞
n

log

(
e

γ

)
+ 8
‖p− pR‖2∞

n
(22)

One can do the same analysis for the tn first terms in the decomposition (15). Hence for any γ ∈ (0, 1)
satisfying log(e/γ) ≤ n/ log2 n, it holds with probability at least 1− γ,

tn∑
k=1

∑
i<j

(
Ej−k+1[(W −WR)2(Xi, Xj)]− Ej−k[(W −WR)2(Xi, Xj)]

)
≤ Mtn

‖p− pR‖2∞
n

log

(
e

γ

)
+ 8(tn − 1)

‖p− pR‖2∞
n

. (23)

G.3.2 Bounding the remaining statistic with uniform ergodicity

In the previous steps of the proof, we decompose Un in tn + 1 terms (see (15)). The martingale
structure of the first tn terms of this decomposition allowed us to derive a concentration inequality
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for each of them. It remains to control the last term of this decomposition, namely∑
i<j

(
Ej−tn

[
(W −WR)2(Xi, Xj)

]
− ‖W −WR‖22

)
,

where tn = bq log nc with 0 < q < (log(1/ρ))
−1. Using our convention which states that for all k < 1,

Ek[·] := E[·], we need to control

n−1∑
i=1

n∑
j=i+1

(
Ej−tn

[
(W −WR)2(Xi, Xj)

]
− ‖W −WR‖22

)
=

n−1∑
i=1

n∑
j=i+1

Ej−tn
[
(W −WR)2(Xi, Xj)− (W −WR)2(Xi, X

′
j)
]
,

where (X ′j)j are i.i.d random variables with distribution π (the uniform distribution on Sd−1), and
independent of (Xi)i≥1 (see Lemma 5). We deduce that∣∣∣∣∣∣

∑
i<j

(
Ej−tn

[
(W −WR)2(Xi, Xj)

]
− ‖W −WR‖22

)∣∣∣∣∣∣
≤

n−1∑
i=1

n∑
j=(i+1)∨(tn+1)

∣∣Ej−tn [(W −WR)2(Xi, Xj)− (W −WR)2(Xi, X
′
j)
]∣∣

+

n−1∑
i=1

n∧tn∑
j=(i+1)

∣∣E [(W −WR)2(Xi, Xj)
]
− ‖W −WR‖22

∣∣
≤ (1) + (2) + (3) + (4) + 2ntn‖p− pR‖2∞,

with, denoting Hij = Ej−tn
[
(W −WR)2(Xi, Xj)− (W −WR)2(Xi, X

′
j)
]
,

(1) :=

tn∑
i=1

2tn∑
j=(tn+1)

|Hij | ≤ 2q2 log2(n)‖W −WR‖2∞,

(2) :=

tn∑
i=1

n∑
j=(2tn+1)

|Hij | ,

(3) :=

n−1∑
i=tn+1

n∧(tn+i)∑
j=i+1

|Hij | ≤ 2qn log(n)‖W −WR‖2∞,

(4) :=

n−1∑
i=tn+1

n∑
j=tn+i+1

|Hij | .

Let us upper-bound (2) and (4) to conclude the proof. First note that for i ≤ j − tn, it holds

Ej−tn
[
(W −WR)2(Xi, Xj)

]
=

∫
z∈Sd−1

(W −WR)2(Xi, z)P
tn(Xj−tn , dz).
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We start by upper-bounding (2),

(2) =

tn∑
i=1

n∑
j=2tn+1

∣∣Ej−tn [(W −WR)2(Xi, Xj)− (W −WR)2(Xi, X
′
j)
]∣∣

≤
tn∑
i=1

sup
xi∈Sd−1

n∑
j=2tn+1

∣∣Ej−tn [(W −WR)2(xi, Xj)− (W −WR)2(xi, X
′
j)
]∣∣

≤
tn∑
i=1

sup
xi∈Sd−1

n∑
j=2tn+1

∣∣∣∣∫
z

(W −WR)2(xi, z)
(
P tn(Xj−tn , dz)− π(dz)

)∣∣∣∣
≤ ‖W −WR‖2∞

tn∑
i=1

n∑
j=(2tn+1)

∫
z

∣∣P tn(Xj−tn , dz)− π(dz)
∣∣

≤ ‖W −WR‖2∞
tn∑
i=1

n∑
j=2tn+1

Lρtn

≤ ‖W −WR‖2∞ntnLρtn .

where L > 0 and 0 < ρ < 1 are constants related to the uniform ergodicity of the Markov chain (see
Definition 5). With analogous computations, we upper-bound the term (4)

(4) =

n−1∑
i=tn+1

n∑
j=tn+i+1

∣∣Ej−tn [(W −WR)2(Xi, Xj)− (W −WR)2(Xi, X
′
j)
]∣∣

≤
n−1∑

i=tn+1

sup
xi∈Sd−1

n∑
j=tn+i+1

∣∣Ej−tn [(W −WR)2(xi, Xj)− (W −WR)2(xi, X
′
j)
]∣∣

≤
n−1∑

i=tn+1

sup
xi∈Sd−1

n∑
j=tn+i+1

∣∣∣∣∫
z

(W −WR)2(xi, z)
(
P tn(Xj−tn , dz)− π(dz)

)∣∣∣∣
≤ ‖W −WR‖2∞

n−1∑
i=tn+1

n∑
j=tn+i+1

∫
z

∣∣P tn(Xj−tn , dz)− π(dz)
∣∣

≤ ‖W −WR‖2∞
n−1∑

i=tn+1

n∑
j=tn+i+1

Lρtn

≤ ‖W −WR‖2∞n2Lρtn .

We deduce that
2

n(n− 1)

∑
i<j

(
Ej−tn

[
(W −WR)2(Xi, Xj)

]
− ‖W −WR‖22

)
≤ 10(1 + q + q2)‖W −WR‖2∞

n log2 n+ Ln2ρq log(n)

n(n− 1)

= ‖W −WR‖2∞O(n−1 log2 n), (24)

because ρq log(n) = O(n−1). Indeed,

nρq log(n) = nnq log(ρ) = n1+q log(ρ),

with 1 + q log(ρ) < 0 because we choose q such that 0 < q < (log(1/ρ))−1.
We proved that the last term of the decomposition (15) can be bounded byM ′‖W−WR‖2∞n−1 log2(n)
where M ′ is a constant that depends only on L and ρ. Coupling this result with the concentration
result (23) concludes the proof of Lemma 6.
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H Proof of Theorem 1
The proof of Theorem 1 mainly lies in the following result which is proved in Appendix H.1. Coupling
the convergence of the spectrum of the matrix of probability Tn with a concentration result on the
spectral norm of random matrices with independent entries (see [5]), we show the convergence in
metric δ2 of the spectrum of T̂n towards the spectrum of the integral operator TW .

Theorem 3 Let us consider γ ∈ (0, 1) satisfying log(e/γ) ≤ (n/ log2 n) ∧ (n/(13R̃)). Then it holds
with probability at least 1− γ,

δ2 (λ(TW ), λ(Tn))

≤ 2‖p− pR‖2 + 8

√
R̃

n
ln(e/γ) +M‖p− pR‖∞

√
log n

n
(log(e/γ) ∨ log n)

1/2
,

where M > 0 only depends on constants related to the Markov chain (Xi)i≥1 (see Lemma 6).

First part of the proof for Theorem 1 We start by establishing the convergence rate for
δ2 (λ(TW ), λ(Tn)) .We keep notations of Theorem 3. Let us consider γ ∈ (0, 1) satisfying (n/ log2 n)∧
(n/(13R̃)), and assume that p ∈ Zswβ ((−1, 1)) with s > 0.
Let us define the event

Ω(γ) :=

{
δ2 (λ(TW ), λ(Tn)) ≤ 2‖p− pR‖2 + 8

√
R̃

n
ln(e/γ)

+M‖p− pR‖∞

√
log n

n
(log(e/γ) ∨ log n)

1/2

}
.

Using Theorem 3, it holds P (Ω(γ)) ≥ 1− γ. Remarking further that

δ2 (λ(TW ), λ(Tn)) ≤ δ2 (λ(TW ), 0) + δ2 (0, λ(Tn)) ≤ ‖p‖2 +
√
n ≤
√

2 +
√
n,

we have

E[δ2
2(λ(TW ), λ(Tn))]

= E[δ2
2(λ(TW ), λ(Tn))1Ω(γ)] + (1 +

√
2)2nP(Ω(γ)c)

≤ c‖p− pR‖22 + c
R̃

n
log(e/γ) + c‖p− pR‖2∞

log n

n
(log(e/γ) ∨ log n)

+ (1 +
√

2)2nγ,

where c > 0 is a constant that does not depend on R, d or n.
Since

‖p− pR‖22 =
∑
k>R

(p∗k)2dk
(1 + k(k + 2β))s

(1 + k(k + 2β))s
≤ C(p, s, d)R−2s, (25)

and since
R̃ = O(Rd−1), (26)

we have choosing γ = 1/n2

E[δ2
2(λ(TW ), λ(Tn))] ≤ D′

[
R−2s +Rd−1 log(n)

n
+ ‖p− pR‖2∞

log2(n)

n

]
, (27)

where D′ > 0 is a constant independent of n and R.
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Let us show that choosing R = b
(
n/ log2(n)

) 1
2s+d−1 c concludes the proof.

Since ‖Gβk‖∞ = Gβk(1) = dk/ck, we get that

‖pR‖∞ ≤
R∑
k=0

|p∗k|ckG
β
k(1) =

R∑
k=0

|p∗k|dk ≤
√
R̃‖pR‖2,

and using (33), we deduce that

‖p− pR‖∞ ≤ ‖p‖∞ + ‖pR‖∞ ≤ 1 +
√

2R̃. (28)

Hence, (27) becomes

E[δ2
2(λ(TW ), λ(Tn))] ≤ D′′

[
R−2s +Rd−1 log(n)

n
+ R̃

log2(n)

n

]
,

where D′′ is a constant that does not depend on n or R.
Choosing R = b

(
n/ log2(n)

) 1
2s+d−1 c and using (26) we get

E[δ2
2(λ(TW ), λ(Tn))]

≤ D′′

[(
n

log2(n)

) −2s
2s+d−1

+ 2

(
n

log2(n)

) d−1
2s+d−1 log2(n)

n

]

≤ 3D′′
(

n

log2(n)

) −2s
2s+d−1

.

Second part of the proof for Theorem 1 Let us recall that in the statement of Theorem 1,
λRopt(T̂n) is the sequence of the R̃opt first eigenvalues (sorted in decreasing absolute values) of the
matrix T̂n where Ropt is the value of the parameter R leading to the optimal bias-variance trade off,
namely

λRopt(T̂n) = (λ̂1, . . . , λ̂R̃opt , 0, 0, . . . ).

From the computations of the first part of the proof, we know that Ropt = b
(
n/ log2(n)

) 1
2s+d−1 c. That

corresponds to the situation where we choose optimally R and it is in practice possible to approximate
this best model dimension using e.g. the slope heuristic. Therefore, δ2

(
λ(TW ), λRopt(T̂n)

)
is the

quantity of interest since it represents the distance between the eigenvalues used to built our estimates
(p̂k)k and the true spectrum of the envelope function p. Since R̃ = O

(
Rd−1

)
for all integer R ≥ 0,

we have R̃opt = O
(

(n/ log2(n))
d−1

2s+d−1

)
. We deduce that for n large enough 2R̃opt ≤ n and using [8,

Proposition 15] we obtain

δ2

(
λRopt(T̂n), λ(TWRopt

)
)

≤ δ2

(
λ(Tn), λ(TWRopt

)
)

+

√
2R̃opt‖T̂n − Tn‖

≤ δ2 (λ(Tn), λ(TW )) + δ2

(
λ(TW ), λ(TWRopt

)
)

+

√
2R̃opt‖T̂n − Tn‖, (29)

where λ(TWRopt
) = (λ∗1, . . . , λ

∗
R̃opt

, 0, 0, . . . ). Let us consider γ ∈ (0, 1). Using Theorem 3, we know
that with probability at least 1− γ it holds for n large enough

δ2 (λ(Tn), λ(TW ))

≤ 2‖p− pRopt‖2 + 8

√
R̃opt
n

ln(e/γ) +M‖p− pRopt‖∞

√
log n

n
(log(e/γ) ∨ log n)

1/2
.
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Using (25), (28) and the fact that R̃ = O(Rd−1), it holds with probability at least 1− 1/n2,

δ2
2 (λ(Tn), λ(TW )) ≤ c

[
R−2s
opt +Rd−1

opt

log n

n
+MRd−1

opt

log2 n

n

]
≤ (M ′)2(n/ log2 n)

−2s
2s+d−1 ,

where c > 0 is a numerical constant and M ′ > 0 depends on constants related to the Markov chain
(Xi)i≥1 (see Theorem 3 for details). Moreover,

δ2
2

(
λ(TW ), λ(TWRopt

)
)

= ‖p− pRopt‖22 ≤ C(p, s, d)R−2s
opt = O

(
(n/ log2 n)

−2s
2s+d−1

)
, (30)

where we used (25). Finally, using the concentration of spectral norm for random matrices with
independent entries from [5], there exists a universal constant C0 > 0 such that it holds with
probability at least 1− 1/n2,

‖Tn − T̂n‖ ≤
3√
2n

+ C0

√
log(n3)

n
.

Using again R̃ = O(Rd−1), this implies that for n large enough, it holds with probability at least
1− 1/n2, √

2R̃opt‖Tn − T̂n‖ ≤ D(n/ log2 n)
−s

2s+d−1 ,

where D > 0 is a numerical constant.
From (29), we deduce that P(Ω) ≥ 1− 2/n2 where the event Ω is defined by

Ω =

{
δ2
2

(
λRopt(T̂n), λ(TWRopt

)
)
≤
(
C(p, s, d)1/2 +D +M ′

)2

(n/ log2 n)
−2s

2s+d−1

}
.

Remarking finally,

δ2

(
λRopt(T̂n), λ(TWRopt

)
)
≤ δ2

(
λ(TWRopt

), 0
)

+ δ2

(
0, λ(T̂n)

)
≤ ‖p‖2 +

√
n ≤
√

2 +
√
n,

we obtain

E
[
δ2
2

(
λRopt(T̂n), λ(TWRopt

)
)]

(31)

≤ E
[
δ2
2

(
λRopt(T̂n), λ(TWRopt

)
)
| Ω
]

+ P(Ωc)(
√

2 +
√
n)2

≤
(
C(p, s, d)1/2 +D +M ′

)2

(n/ log2 n)
−2s

2s+d−1 + 2
(
√

2 +
√
n)2

n2

= O
(

(n/ log2 n)
−2s

2s+d−1

)
. (32)

Using the triangle inequality, (30) and (32) leads to

E
[
δ2
2

(
λRopt(T̂n), λ(TW )

)]
≤ 3E

[
δ2
2

(
λRopt(T̂n), λ(TWRopt

)
)]

+ 3δ2
2

(
λ(TWRopt

), λ(TW )
)

= O
(

(n/ log2 n)
−2s

2s+d−1

)
,

which concludes the proof of Theorem 1.
�
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H.1 Proof of Theorem 3
We follow the same sketch of proof as in [8].
Let R ≥ 1 and define,

Φk,l =
1√
n

[Yk,l(X1), . . . , Yk,l(Xn)] ∈ Rn,

ER,n =
(
〈Φk,l,Φk′,l′〉 − δ(k,l),(k′,l′)

)
(k,k′)∈[R], l∈{1,...,dk}, l′∈{1...,dk′}

∈ RR̃×R̃,

XR,n = [Φ0,1,Φ1,1,Φ1,2, . . . ,ΦR,dR ] ∈ Rn×R̃,

AR,n =
(
X>R,nXR,n

)1/2
with A2

R,n = IdR̃ + ER,n,

KR = Diag(λ1(TW ), . . . , λR̃(TW )),

TR,n =

R∑
k=0

p∗k

dk∑
l=1

Φk,l(Φk,l)
> = XR,nKRX

>
R,n ∈ Rn×n

T̃R,n = ((1− δi,j)TR,n)i,j∈[n] ∈ Rn×n,

T ∗R,n = AR,nKRA
>
R,n ∈ RR̃×R̃,

WR(x, y) =

R∑
k=0

p∗k

dk∑
l=1

Yk,l(x)Yk,l(y).

It holds

δ2(λ(TW ), λ(TWR
)) =

(∑
k>R

dk(p∗k)2

)1/2

.

We point out the equality between spectra of the operator TWR
and the matrix KR. Using the SVD

decomposition of XR,n, one can also easily prove that λ(TR,n) = λ(T ∗R,n). We deduce that

δ2 (λ(TWR
), λ(TR,n)) = δ2

(
λ(KR), λ(T ∗R,n)

)
≤ ‖T ∗R,n −KR‖F = ‖AR,nKRAR,n −KR‖F ,

with the Hoffman-Wielandt inequality. Using equation (4.8) at ([22] p.127) gives

δ2 (λ(TWR
), λ(TR,n)) ≤

√
2‖KR‖F ‖ER,n‖ =

√
2‖WR‖2‖ER,n‖.

Using again the Hoffman-Wielandt inequality we get

δ2(λ(TR,n), λ(T̃R,n)) ≤ ‖T̃R,n − TR,n‖F =

[
1

n2

n∑
i=1

WR(Xi, Xi)
2

]1/2

,

and

δ2

(
λ(T̃R,n), λ(Tn)

)
≤ ‖T̃R,n − Tn‖F =

 1

n2

∑
i 6=j

(W −WR)2(Xi, Xj)

1/2

.

Now, we invoke Lemmas 9, 10 and 6 to conclude the proof. Proofs of those lemmas are provided in
Appendix H.2, H.3 and G respectively.

Lemma 9 Let us consider γ > 0 and assume that 13R̃ ln(e/γ) ≤ n. Then it holds with probability
at least 1− γ

‖ER,n‖ ≤ 4

√
R̃

n
ln(2/γ).

36



Lemma 10 Let R ≥ 1. We have

1

n2

n∑
i=1

WR(Xi, Xi)
2 =

1

n

(
R∑
k=0

p∗kdk

)2

.

For any γ ∈ (0, 1) with log(e/γ) ≤ (n/ log2 n) ∧ (n/(13R̃)), it holds with probability at least 1− γ,

δ2 (λ(TW ), λ(Tn))

≤ δ2 (λ(TW ), λ(TWR
)) + δ2 (λ(TWR

), λ(TR,n)) + δ2

(
λ(TR,n), λ(T̃R,n)

)
+ δ2

(
λ(T̃R,n), λ(Tn)

)
≤ 4

√
R̃

n
ln(2/γ) +

√
2

(
R∑
k=0

dk(p∗k)2

)1/2

+
1√
n

∣∣∣∣∣
R∑
k=0

p∗kdk

∣∣∣∣∣+ 2‖p− pR‖2

+M‖p− pR‖∞

√
log n

n
(log(e/γ) ∨ log n)

1/2
,

where M > 0 depends only on constants related to the Markov chain (Xi)i≥1.
Now remark that ∣∣∣∣∣

R∑
k=0

p∗kdk

∣∣∣∣∣ ≤
(

R∑
k=0

dk

)1/2( R∑
k=0

dk(p∗k)2

)1/2

=
√
R̃‖pR‖2,

and that
‖pR‖22 ≤ ‖p‖22 ≤ 2, (33)

because pR is the orthogonal projection of p, and |p| ≤ 1.
We deduce that

δ2 (λ(TW ), λ(Tn))

≤ 2‖p− pR‖2 + 4

√
R̃

n
ln(2/γ) +

√
2R̃

n

+M‖p− pR‖∞

√
log n

n
(log(e/γ) ∨ log n)

1/2

≤ 2‖p− pR‖2 + 8

√
R̃

n
ln(e/γ)

+M‖p− pR‖∞

√
log n

n
(log(e/γ) ∨ log n)

1/2
. (34)

�

H.2 Proof of Lemma 9
Observe that nER,n =

∑n
i=1

(
ZiZ

>
i − IdR̃

)
where for all i ∈ [n], Zi ∈ RR̃ is defined by

Zi := Z(Xi) := (Y0,1(Xi), Y1,1(Xi), Y1,2(Xi), . . . , Y1,d1(Xi), . . . , YR,1(Xi), . . . , YR,dR(Xi)) .

By definition of the spectral norm for a hermitian matrix,

‖ 1

n

n∑
i=1

ZiZ
>
i − IdR̃‖ = max

x, ‖x‖=1

∣∣∣∣∣x>
(

1

n

n∑
i=1

ZiZ
>
i

)
x− 1

∣∣∣∣∣ .
We use a covering set argument based on the following Lemma.
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Lemma 11 (see [15])
Let us consider an integer D ≥ 2. For any ε0 > 0, there exists a set Q ⊂ SD−1 of cardinality at most
(1 + 2/ε0)D such that

∀α ∈ SD−1, ∃q ∈ Q, ‖α− q‖2 ≤ ε0.

We consider Q the set given by Lemma 11 with D = d and ε0 ∈ (0, 1/2). Let us define x0 ∈ Sd−1

such that |x>0 ER,nx0| = ‖ER,n‖ and q0 ∈ Q such that ‖x0 − q0‖2 ≤ ε0. Then,

|x>0 ER,nx0| − |q>0 ER,nq0| ≤ |x>0 ER,nx0 − q>0 ER,nq0| (by triangle inequality)

= |x>0 ER,n(x0 − q0)− (q0 − x0)>ER,nq0|
≤ ‖x0‖2‖ER,n‖‖x0 − q0‖2 + ‖q0 − x0‖2‖ER,n‖‖q0‖2
≤ 2ε0‖ER,n‖.

which leads to
|x>0 ER,nx0| = ‖ER,n‖ ≤ |q>0 ER,nq0|+ 2ε0‖ER,n‖.

Hence,

‖ER,n‖ ≤
1

1− 2ε0
max
q∈Q
|q>ER,nq|.

We introduce for any q ∈ Q the function

Fq : x = (x1, . . . , xn) 7→ 1

n

n∑
i=1

q>
(
ZiZ

>
i − 1

)
q :=

1

n

n∑
i=1

fq(xi),

where fq(x) = q>
(
Z(x)Z(x)> − 1

)
q.

Let us consider t > 0. We want to apply Bernstein’s inequality for Markov chains from [19, Theorem
1.1]. We remark that Eπ[fq(X)] = 0 and that ‖fq‖∞ ≤ R̃− 1. For all m ∈ [R̃], we denote φm = Yr,l
with r ∈ {0, . . . , R} and l ∈ [dr] such that m = l +

∑r
i=0 di − 1. Then, for any x ∈ Sd−1, and for all

k, l ∈ [R̃],
(
(Z(x)>Z(x))2

)
k,l

=
∑R̃
m=1 φl(x)φm(x)2φk(x) = R̃φl(x)φk(x) = R̃

(
Z(x)Z(x)>

)
k,l

where
we used [10, Eq.(1.2.9)]. We deduce that

Eπ[fq(X)2] = Eπ[q>Z(X)Z(X)>qq>Z(x)Z(x)>q]− 2Eπ[q>Z(X)Z(X)>q] + 1

= Eπ[q> (Z(X)Z(X)>)2︸ ︷︷ ︸
=R̃·Z(X)Z(X)>

q]− 2q>Eπ[Z(X)Z(X)>]︸ ︷︷ ︸
=Id

q + 1

= R̃ · q>Eπ[Z(X)Z(X)>]q − 1

= R̃− 1.

Using that the Markov chain (Xi)i≥1 has a spectral gap equals to 1 (see Appendix B.3), we get from
[19, Eq. (1.6)] that

P (|Fq(X)| ≥ t) = P
(
|q>ER,nq| ≥ t

)
≤ 2 exp

(
−nt2

4(R̃− 1) + 10(R̃− 1)t

)
,

which leads to

P

(
max
q∈Q
|q>ER,nq| ≥ t

)
≤ P

⋃
q∈Q
|q>ER,nq| ≥ t

 ≤ 2 exp

(
−nt2/(R̃− 1)

4 + 10t

)
(1 + 2/ε0)

R̃
.

Choosing ε0 = 2
(

exp
(

nt2/2

(R̃−1)R̃(4+10t)

)
− 1
)−1

in order to satisfy (1 + 2/ε0)R̃ = exp(nt2(R̃− 1)−1(4 +

10t)−1/2), we get

P

(
max
q∈Q
|q>ER,nq| ≥ t

)
≤ 2 exp

(
−nt2

(R̃− 1)(8 + 20t)

)
.
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We deduce that if 25
2 ln(2/α)R̃ ≤ n, it holds with probability at least 1− α,

max
q∈Q
|q>ER,nq| ≤ 16

√
R̃

n
ln(2/α).

Assuming that 200 ln(7)R̃3 ln(2/α) ≤ n3 in order to have 1/(1− 2ε0) ≤ 1/4, it holds with probability
at least 1− α

‖ER,n‖ ≤
1

1− 2ε0
max
q∈Q
|q>ER,nq| ≤ 4

√
R̃

n
ln(2/α).

�

H.3 Proof of Lemma 10
Reminding that for all x ∈ Sd−1 and for all k ≥ 0,

∑dk
l=1 Yk,l(x)2 = dk (see Corollary 1.2.7 from [10]),

we get

1

n2

n∑
i=1

WR(Xi, Xi)
2 =

1

n2

n∑
i=1

(
R∑
k=0

p∗k

dk∑
l=1

Yk,l(Xi)
2

)2

=
1

n2

n∑
i=1

(
R∑
k=0

p∗kdk

)2

=
1

n

(
R∑
k=0

p∗kdk

)2

.

�

I Proof of Theorem 2
Proposition 3 is the counterpart of Proposition 1 in [2] in our dependent framework. This result is
the cornerstone of Theorem 2 and is proved in Appendix I.1.

Proposition 3 We assume that ∆∗ > 0. Let us consider γ > 0 and define the event

E :=

{
δ2(λ(Tn), λ(TW )) ∨ 2

9
2

√
d

∆∗
‖Tn − T̂n‖ ≤

∆∗

4

}
.

Then for n large enough,
P(E) ≥ 1− γ/2.

Moreover, on the event E, there exists one and only one set Λ1, consisting of d eigenvalues of T̂n,
whose diameter is smaller that ∆∗/2 and whose distance to the rest of the spectrum of T̂n is at least
∆∗/2. Furthermore, on the event E, the algorithm HEiC returns the matrix Ĝ = 1

d V̂ V̂
>, where V̂

has by columns the eigenvectors corresponding to the eigenvalues in Λ1.

In the following, we work on the event E . Let us consider γ ∈ (0, 1).

We choose R = (n/ log2 n)
1

2s+d−1 . Reminding that WR is the rank R approximation of W , the Gram
matrix associated with the kernel WR is

TR,n =

R∑
k=0

p∗k

dk∑
l=1

Φk,l(Φk,l)
> = XR,nKRX

>
R,n ∈ Rn×n
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where

Φk,l =
1√
n

[Yk,l(X1), . . . , Yk,l(Xn)] ∈ Rn,

XR,n = [Φ0,1,Φ1,1,Φ1,2, . . . ,ΦR,dR ] ∈ Rn×R̃ and
KR = Diag(λ1(TW ), . . . , λR̃(TW )).

Let us denote now Ṽ (resp. ṼR) the orthonormal matrix formed by the eigenvectors of the matrix Tn
(resp. TR,n). We have the following eigenvalue decompositions

Tn = Ṽ ΛṼ > and TR,n = ṼRΛRṼ
>
R ,

where Λ = diag(λ1, . . . , λn) are the eigenvalues of the matrix Tn and where
ΛR = (p∗0, p

∗
1, . . . , p

∗
1, . . . , p

∗
R, . . . , p

∗
R, 0, . . . , 0) ∈ Rn where each p∗k has multiplicity dk. Then, we note

by V ∈ Rn×d (resp. VR) the matrix formed by the columns 2, . . . , d of the matrix Ṽ (resp. ṼR). The
matrix V ∗ ∈ Rn×d is the orthonormal matrix with i−th column 1√

n
(Y1,1(Xi), . . . , Y1,d(Xi)). The

matrices G∗, G,GR and G∗proj are defined as follows

G∗ :=
1

c1
V ∗(V ∗)>

G :=
1

c1
V V >

GR :=
1

c1
VRV

>
R

G∗proj := V ∗((V ∗)>V ∗)−1(V ∗)>.

G∗proj is the projection matrix for the columns span of the matrix V ∗. Using the triangle inequality
we have

‖G∗ −G‖F ≤ ‖G∗ −G∗proj‖F + ‖G∗proj −GR‖F + ‖GR −G‖F .

Step 1: Bounding ‖G−GR‖F . Since the columns of the matrices V and VR correspond respectively
to the eigenvectors of the matrices Tn and TR,n, applying the Davis Kahan sinus Theta Theorem
(see Theorem 4) gives that there exists O ∈ Rd×d such that

‖V O − VR‖F ≤
23/2‖Tn − TR,n‖F

∆
,

where ∆ := mink∈{0,2,3,...,R} |p∗1 − p∗k| ≥ ∆∗ = mink∈N, k 6=1 |p∗1 − p∗k|. Using Lemma 12, we get that

‖G−GR‖F =
1

d
‖V O(V O)> − VRV >R ‖F ≤ 2‖V O − VR‖F .

Hence, using the proof of Theorem 1, we get that with probability at least 1− 1/n2,

‖G−GR‖F ≤ 2‖V O − VR‖F ≤
C

∆∗

(
n

log2 n

)− s
2s+d−1

,

where C > 0 is a constant.

Step 2: Bounding ‖G∗ − G∗proj‖F . To bound ‖G∗ − G∗proj‖F , we apply first Lemma 13 with
B = V ∗. This leads to

‖G∗ −G∗proj‖F ≤ ‖Idd − (V ∗)>V ∗‖F ≤
√
d‖Idd − (V ∗)>V ∗‖.
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Using a proof rigorously analogous to the proof of Lemma 9, it holds with probability at least 1− γ
and for n large enough,

‖Idd − (V ∗)>V ∗‖ ≤ 4

√
d log(e/γ)

n
.

We get by choosing γ = 1/n2 that it holds with probability at least 1− 1/n2,

‖Idd − (V ∗)>V ∗‖ ≤ C ′
√
d log(n)

n
,

where C ′ > 0 is a universal constant.

Step 3: Bounding ‖G∗proj −GR‖F . We proceed exactly like in [2] but we provide here the proof
for completeness. Since G∗proj and GR are projectors we have, using for example [6, p.202],

‖G∗proj −GR‖F = 2‖G∗projG⊥R‖F . (35)

We use Theorem 5 with E = G∗proj , F = G⊥R, B = TR,n and A = TR,n +H where

H = X̃R,nKRX̃
>
R,n −XR,nKRXR,n,

where the columns of the matrix X̃R,n are obtained using a Gram-Schmidt orthonormalization process
on the columns of XR,n. Hence there exists a matrix L such that X̃R,n = XR,n(L−1)>. This matrix
L is such that a Cholesky decomposition of X>R,nXR,n reads as LL>.
A and B are symmetric matrices thus we can apply Thoerem 5. On the event E , we can take
S1 = (λ1 − ∆∗

8 , λ1 + ∆∗

8 ) and S2 = R\(λ1 − 7∆∗

8 , λ1 + 7∆∗

8 ). By Theorem 5 we get

‖G∗projG⊥R‖F ≤
‖A−B‖F

∆∗
=
‖H‖F

∆∗
. (36)

We only need to bound ‖H‖F .

‖H‖F ≤ ‖L−>KRL
−1 −KR‖F ‖X>R,nXR,n‖

≤ ‖KR‖F ‖L−1L−> − IdR̃‖‖X
>
R,nXR,n‖, (37)

where the last inequality comes from Lemma 14. From the previous remarks on the matrix L, we
directly get

‖L−1L−> − IdR̃‖ = ‖
(
X>R,nXR,n

)−1 − IdR̃‖.
Using the notations of the proof of Theorem 3 which is provided in Appendix H.1, we get

‖L−1L−> − IdR̃‖‖X
>
R,nXR,n‖ = ‖X>R,nXR,n − IdR̃‖ = ‖ER,n‖.

Noticing further that ‖KR‖2F ≤
∑
k≥0(p∗k)2dk = ‖p‖22 ≤ 2 (because |p| ≤ 1), (37) becomes

‖H‖F ≤
√

2‖ER,n‖. (38)

Using Lemma 9, it holds with probability at least 1− γ and for n large enough,

‖ER,n‖ ≤ 4

√
R̃

n
ln(2/γ). (39)

Since R̃ = O
(
Rd−1

)
and R = O

((
n/ log2 n

) 1
2s+d−1

)
, we obtain using (35), (36), (38) and (39) that

with probability at least 1− 1/n2 it holds

‖G∗proj −GR‖F = 2‖G∗projG⊥R‖F ≤
Cd
∆∗

(
n

log2(n)

) −s
2s+d−1

,

where Cd > 0 is a constant that may depend on d and on constants related to the Markov chain
(Xi)i≥1.
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Conclusion. We proved that on the event E , it holds with probability at least 1− 3/n2,

‖G∗ −G‖F ≤ D1

(
n

log2(n)

) −s
2s+d−1

,

where D1 > 0 is a constant that depends on ∆∗, d and on constants related to the Markov chain
(Xi)i≥1. Moreover, Eq. (43) from the proof of Proposition 3 gives that on the event E , we have

‖G− Ĝ‖F =
1

d
‖V V > − V̂ V̂ >‖F ≤

2
9
2

√
d‖Tn − T̂n‖

3∆∗
.

Using the concentration result from [5] on spectral norm of centered random matrix with independent
entries we get that there exists some constant D2 > 0 such that with probability at least 1− 1/n2 it
holds

‖G− Ĝ‖F ≤ D2

√
log n

n
.

Using again Proposition 3, we know that for n large enough, P(E) ≥ 1− 1/n2. We conclude that for
n large enough, it holds with probability at least 1− 5/n2,

‖G∗ − Ĝ‖F ≤ D3

(
n

log2(n)

) −s
2s+d−1

,

for some constant D3 > 0 that depends on ∆∗, d and on constants related to the Markov chain
(Xi)i≥1 (see Theorem 3 for details).
�

I.1 Proof of Proposition 3
First part of the proof Let us consider γ > 0.
Using the concentration of spectral norm for random matrices with independent entries from [5],
there exists a universal constant C0 such that

P

(
‖Tn − T̂n‖ ≤

3
√

2D0

n
+ C0

√
log n/γ

n

)
≤ γ,

where denoting Y = Tn − T̂n, we define D0 := max1≤i≤n
∑n
j=1 Yi,j (1− Yi,j) . We deduce that for n

large enough, it holds with probability at least 1− γ/4,

‖Tn − T̂n‖ ≤
(∆∗)2

2
13
2

√
d
. (40)

Using now Theorem 1, it holds with probability at least 1− γ/4 for n large enough

δ2 (λ(Tn), λ(TW )) ≤ C
(

log2 n

n

) s
2s+d−1

≤ ∆∗

8
. (41)

Putting together (40) and (41), we deduce that for n large enough,

P (E) ≥ 1− γ/2.
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Second part of the proof In the following, we work on the event E . Since ∆∗ > 0 by assumption,
we get that p∗1 = λ∗1 = · · · = λ∗d is the only eigenvalue of TW with multiplicity d. Indeed, all eigenvalue
p∗k with k > d has multiplicity dk > d and p∗0 has multiplicity 1. Moreover, from (41), we have that
there exists a unique set of d eigenvalues of Tn, denoted λi1 , λi2 , . . . , λid , such that they are at a
distance least 3∆∗/4 away from the other eigenvalues, i.e.

∆ := min
ν1∈λ(Tn)\{λi1 ,λi2 ,...,λid}

max
ν2∈{λi1 ,λi2 ,...,λid}

|ν1 − ν2| ≥
3∆∗

4
. (42)

Let us form the matrix V ∈ Rn×d where the k-th column is the eigenvector of Tn associated with
the eigenvalue λik . We denote further G := V V >/d. Let V̂ ∈ Rn×d be the matrix with columns
corresponding to the eigenvectors associated to eigenvalues λ̂i1 , λ̂i2 , . . . , λ̂id of T̂n and Ĝ := V̂ V̂ >/d.
Using Theorem 4 there exists some orthonormal matrix O ∈ Rd×d such that

‖V O − V̂ ‖F ≤
2

3
2 min{

√
d‖Tn − T̂n‖, ‖Tn − T̂n‖F }

∆
.

Denoting λsorti1
≥ λsorti2

≥ · · · ≥ λsortid
(resp. λ̂sorti1

≥ λ̂sorti2
≥ · · · ≥ λ̂sortid

) the sorted version of the
eigenvalues λi1 , λi2 , . . . , λid (resp. λ̂i1 , λ̂i2 , . . . , λ̂id), we have[

d∑
k=1

(
λsortik

− λ̂sortik

)2
]1/2

≤ ‖V V > − V̂ V̂ >‖F (Hoffman-Wielandt inequality [6, Thm VI.4.1])

≤ 2‖V O − V̂ ‖F (Using Lemma 12)

≤ 2
5
2 min{

√
d‖Tn − T̂n‖, ‖Tn − T̂n‖F }

∆

≤ 2
9
2 min{

√
d‖Tn − T̂n‖, ‖Tn − T̂n‖F }

3∆∗
(Using (42)) (43)

≤ ∆∗/8. (Using (40))

Using the triangle inequality, we get that

∆̂ := min
ν1∈λ(T̂n)\{λ̂i1 ,λ̂i2 ,...,λ̂id}

max
ν2∈{λ̂i1 ,λ̂i2 ,...,λ̂id}

|ν1 − ν2| ≥
∆∗

2
. (44)

We proved that on the event E , the eigenvalues in Λ1 := {λ̂i1 , . . . , λ̂id} are at distance at least ∆∗/2

from the other eigenvalues of T̂n (see (44)) and are at distance at most ∆∗/8 of the eigenvalues
λi1 , . . . , λid of Tn. We could have done this analysis for different eigenvalues. Let us consider some
k ≥ 0. Eq. (41) shows that on the event E , there exists a set of dk eigenvalues of Tn which concentrate
around p∗k and such that it has diameter at most ∆∗/4. Weyl’s inequality (see [6, p.63]) proves
that there exist dk eigenvalues of T̂n that are at distance at most ∆∗/4 from p∗k. If we consider now
a subset L 6= Λ1 of d eigenvalues of T̂n, then the previous analysis shows that there exists some
eigenvalue λ̂ of T̂n which is not in L and that is at distance at most ∆∗/4 from one eigenvalue in
L. Using (42), we deduce that Algorithm (HEiC) returns Ĝ = V̂ V̂ >/d where the columns of V̂
correspond to the eigenvectors of T̂n associated to the eigenvalues in Λ1.
�

I.2 Useful results
Lemma 12 Let A,B be two matrices in Rn×d then

‖AA> −BB>‖F ≤ (‖A‖+ ‖B‖)‖A−B‖F .
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If A>A = B>B = Id then
‖AA> −BB>‖F ≤ 2‖A−B‖F .

Proof of Lemma 12.

‖AA> −BB>‖F = ‖(A−B)A> +B(A> −B>)‖F
= ‖A(A−B)>‖F + ‖(B −A)B>‖F
≤ ‖(A⊗ Idn)vec(A−B)‖2 + ‖(Idd ⊗B)vec(A−B)>‖2
≤ (‖A⊗ Idn‖+ ‖Idd ⊗B‖) ‖A−B‖F
= (‖A‖+ ‖B‖)‖A−B‖F ,

where vec(·) represent the vectorization of a matrix that its transformation into a column vector and
⊗ is the notation for the Kronecker product between two matrices.
�

Theorem 4 (Davis-Kahan Theorem) Let Σ and Σ̂ be two symmetric Rn×n matrices with eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn and λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂n respectively. For 1 ≤ r ≤ s ≤ n fixed, we assume that
min{λr−1 − λr, λs − λs−1} > 0 where λ0 := ∞ and λn+1 = −∞. Let d = s − r + 1 and V and V̂
two matrices in Rn×d with columns (vr, vr+1, . . . , vs) and (v̂r, v̂r+1, . . . , v̂s) respectively, such that
Σvj = λjvj and Σ̂v̂j = λj v̂j. Then there exists an orthogonal matrix Ô in Rd×d such that

‖V̂ Ô − V ‖F ≤
23/2 min{

√
d‖Σ− Σ̂‖, ‖Σ− Σ̂‖F }

min{λr−1 − λr, λs − λs+1}
.

Lemma 13 Let B be a n× d matrix with full column rank. Then we have

‖BB> −B(B>B)−1B>‖F = ‖Idd −B>B‖F .

Proof of Lemma 13. Using the cyclic property of the trace, we have

‖BB> −B(B>B)−1B>‖2F = ‖B
(
Idd − (B>B)−1

)
B>‖2F

= Tr
(
B
(
Idd − (B>B)−1

)
B>B

(
Idd − (B>B)−1

)
B>
)

= Tr
(
B>B

(
Idd − (B>B)−1

)
B>B

(
Idd − (B>B)−1

))
= Tr

((
B>B − Idd

) (
B>B − Idd

))
= ‖Idd −B>B‖2F .

�

Theorem 5 (see [6, ThmVII.3.4]) Let A and B be two normal operators and S1 and S2 two sets
separated by a strip of size δ. Let E be the orthogonal projection matrix of the eigenspaces of A
with eigenvalues inside S1 and F be the orthogonal projection matrix of the eigenspaces of B with
eigenvalues inside S2. Then

‖EF‖F ≤
1

δ
‖E(A−B)F‖F ≤

1

δ
‖A−B‖F .

Lemma 14 (Ostrowski’s inequality) Let A ∈ Rn×n be a Hermitian matrix and S ∈ Rd×n be a
general matrix then

‖SAS> −A‖F ≤ ‖A‖F × ‖S>S − Idn‖.
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