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Pulse propagation in a 1D array of excitable semiconductor lasers

Nonlinear pulse propagation is a major feature in continuously extended excitable systems. The persistence of this phenomenon in coupled excitable systems is expected. Here, we investigate theoretically the propagation of nonlinear pulses in a 1D array of evanescently coupled excitable semiconductor lasers. We show that the propagation of pulses is characterized by a hopping dynamics. The average pulse speed and bifurcation diagram are characterized as a function of the coupling strength between the lasers. Several instabilities are analyzed such as the onset and disappearance of pulse propagation, and a spontaneous breaking of the translation symmetry. The pulse propagation modes evidenced are specic to the discrete nature of the 1D array of excitable lasers.

Linear oscillators coupled with springs to nearest neighbors exhibit wave propagation. This phenomenon is persistent when considering the continuous limit, i.e. when considering an elastic rope. In this limit, the wave dispersion relation is linear, unlike the discrete case of coupled systems where it is nonlinear. Here we study the propagation of localized nonlinear wavespulsesin coupled excitable systems. Excitable oscillators play a fundamental role in understanding the activity of neurons, cardiac tissue, and oscillatory chemical reactions. Based on a model of a 1D array of excitable semiconductor lasers, we show that pulse propagation is characterized by a hopping dynamics and that it displays a rich variety of bifurcations. Counterintuitively, we observe that pulses do not persist in the continuous limit. INTRODUCTION The propagation of excitations (spikes) in discrete excitable media plays a major role in biological systems [START_REF] Acheson | From Calculus to Chaos: An Introduction to Dynamics[END_REF] . It is at the heart of the conduction of information in axons, and ensures conduction delays which are central to information processing in neural networks 5 . The possibility to process information with spikes in photonic systems has attracted recently a lot of interest because of its application potential in terms of energy consumption, parallelism and speed 69 . It has been recently shown theoretically that coupled excitable semiconductor lasers can behave analogously to biological axons, allowing to transport and process information in the form of short optical spikes 8,[START_REF] Barbay | Fifth Rio De La Plata Workshop on Laser Dynamics and Nonlinear Photonics[END_REF] .

Dissipative systems are characterized by exhibiting attractors and basins of attraction 1115 . The boundaries of a) Electronic mail: sylvain.barbay@c2n.upsaclay.fr these basin of attraction are in general fractal [START_REF] Jackson | Perspectives of nonlinear dynamics[END_REF][START_REF] Hoppensteadt | Analysis and simulation of chaotic systems[END_REF] . The dynamics within the basin of attraction is governed by the geometry of the stable invariant manifolds associated with the respective equilibrium and the separatrix manifolds of the basin of attraction [START_REF] Guckenheimer | Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields[END_REF][START_REF] Wiggins | Chaotic Transport in Dynamical Systems[END_REF] . Manifolds are the nonlinear extension of the eigenvectors obtained in the linearized dynamics around the equilibrium. Hence, innitesimal disturbances around the equilibrium are generally exponentially decaying to equilibrium (linear dynamical behavior). However, under certain conditions and unexpectedly, large excursions (larger than the disturbance) can be observed in the basin of attraction. This type of behavior is known as excitability. Excitability is a generic phenomenon encountered in many areas of Science and in particular in biology 1721 , chemistry [START_REF] Ruo | [END_REF]23 , and optics 24,25 .

From the point of view of the phase portrait geometry, excitability arises because stable invariant manifolds are folded (as a consequence of previous bifurcations) or are connected with hyperbolic points that generate separatrix inside the basin of attraction (see Fig. 1) [START_REF] Izhikevich | [END_REF][START_REF] Izhikevich | Dynamical Systems In Neuroscience[END_REF] . Therefore, excitability is a genuine nonlinear phenomenon. The above scenario changes radically when considering excitable systems extending over space. In this context, a local perturbation above the excitability threshold is enough to excite its nearest neighbors, generating excitable pulses or waves [START_REF] Murray | Mathematical Biology[END_REF][START_REF] Izhikevich | Dynamical Systems In Neuroscience[END_REF]2628 . These waves are known in chemical reactions [START_REF] Murray | Mathematical Biology[END_REF]27 , in the cardiac muscle [START_REF] Adelman | Biophysics and Physiology of Excitable Membranes[END_REF] , and in liquid crystals 26 . In lasers, their existence has been theoretically predicted in a laser with injected signal 28 but the experimental part lack of a convincing demonstration. In most of these works, the propagation of pulses is studied, which has a well-dened propagation speed. However, continuous models are used to characterized the propagation. It is known that discreteness can aect the propagation of waves fronts 29,30 . For example, the wavefront speed in discrete systems can present oscillations 2931 . Even more, discreteness can induce the propagation failure in bistable 32 or excitable [START_REF] Carpio | [END_REF] discrete systems.

The aims of this manuscript is to study theoretically the propagation of pulses in an array of excitable semiconductor lasers. Based on a one-dimensional array of coupled lasers with saturable absorber medium, we show that the propagation of pulses is characterized by a hopping dynamics (see Fig. 1). Depending on the coupling strength between the lasers, we characterize the speed of the pulses and their bifurcation diagrams. This speed increases with the coupling strength. The propagating pulses emerge by means of a saddle-node bifurcation, as the coupling constant increases, then the solution adapts itself and exhibits several instabilities. The observed pulses are peculiar to the discrete nature of the excitable lasers coupling, that is, when the continuous limit is taken, the traveling pulses do not persist.

II. THEORETICAL DESCRIPTION OF AN ARRAY OF EXCITABLE SEMICONDUCTOR LASER

The excitable system that we consider is a micropillar laser with an integrated saturable absorber medium studied theoretically in 33,34 and experimentally in 35,[START_REF] Selmi | Synposis in Physics, Semiconductors Laser Get Nervy[END_REF] . These lasers have been shown to behave analogously to biological neurons, displaying refractory periods [START_REF] Selmi | Synposis in Physics, Semiconductors Laser Get Nervy[END_REF] , spike latency [START_REF] Selmi | [END_REF]38 and temporal summation (coincidence detection) 39 . We consider a 1D array of evanescently coupled lasers with saturable absorber 8,[START_REF] Barbay | Fifth Rio De La Plata Workshop on Laser Dynamics and Nonlinear Photonics[END_REF] depicted in Fig. 1a 

and described by the dimensionless set of equations

Ėn = [(1 -iα)N g,n -(1 -iβ)N as,n -1] E n + iκ(E n-1 + E n+1 ), (1) 
Ṅg,n = b 1 A -N g,n 1 + |E n | 2 , (2) 
Ṅas,n = b 2 B -N as,n 1 + s|E n | 2 ], (3) 
where E n (t), N g,n (t), and N as,n (t) account respectively for the envelope of the electric eld, the rescaled gain and the rescaled absorption in the i-th laser. The factors α and β are standard semiconductor parameters describing phase-amplitude coupling. κ stands for the dispersive nearest-neighbor coupling coecient between the lasers. Non-radiative carrier recombination rates for the gain and absorber media are, respectively, b 1 and b 2 .

A and B account for the pump gain and non-saturable losses. The saturation parameter s in semiconductors is necessarily greater than 1. Time is rescaled to the cavity photon lifetime, which is the shortest timescale in the system (several picoseconds), and the carrier recombination timescales which are of the order of 0.5 -1 nanosecond are therefore small: b 1,2

1. Notice that a model similar to the set of equations (1-3) with purely diusive coupling has been considered to study synchronization phenomena in the presence of additive noise 40 and localization phenomena when coecients are variable (with disorder) 41 . The set of equations (1-3) under the inuence of noise exhibits synchronization, and with variable coecients shows localization 42 . A single semiconductor laser with an integrated saturable absorber medium can be accurately described by rate equations for the intensity of the electric eld, gain, and absorption, the Yamada model 34,43 . However, because of the evanescent coupling between the microlasers, one must consider the envelope of the electric eld in the model written in Eqs. (1-3) to account for the dispersive (imaginary) coupling term.

The non-lasing solution is represented by E n (t) = 0, N g,n = A, and N as,n = B. This state is stable for a single laser when A -B -1 < 0 and corresponds to an attractor. Excitable dynamical behavior requires that 33 s > 1 + 1/B. Note that in semiconductor materials, this condition is fullled since the parameter s is a large parameter due to the gain saturation. The schematic projection of the phase portrait of a single laser in the plane {N g , I = |E| 2 } is illustrated in Fig. 1a. The laser threshold corresponds to a transcritical bifurcation and occurs at A th ≡ 1+B. In this kind of system, excitability exists near a homoclinic loop bifurcation and below the laser threshold. If the system is sent above the stable manifold of the saddle point, it makes a large excursion around the heteroclinic orbit and turns back to the stable state corresponding to the o solution of the laser: an excitable optical pulse is produced.

In Figure 1 b-d, pulse propagation in the array of semiconductor lasers is exemplied for dierent values of the evanescent coupling parameter, κ. This parameter can be experimentally tuned by changing the center-tocenter distance between the pillars (see Ref. 44). In the regime of weak evanescent coupling, κ 1, the coupling time is large as compared to the photon cavity lifetime which ensures that an excitable response can form before the energy couples to the neighboring laser. This corresponds to a saltatory propagation regime [START_REF] Barbay | Fifth Rio De La Plata Workshop on Laser Dynamics and Nonlinear Photonics[END_REF] . When kappa is larger, as will be shown below, the propagation mode deviates from the saltatory one. To test numerically the pulse propagation, we disturb a single laser with a perturbation amplitude value slightly above the excitable threshold (cf. Fig. 2). The rst eect observed due to the discreteness of the excitable medium is that the propagation of the pulses proceeds through a hopping (or saltatory) dynamics. Namely, the lasers are turned on one by one while they emit an excitable spike, and when they go back to their o state they excite the neighboring lasers. If the coupling strength is large enough, the leaking of energy from the initially perturbed laser to the neighboring ones can excite the neighbors and propagate the pulse. The process repeats giving rise to the observed hopping dynamics. Note that the propagation is unidirectional because of the refractory period exhibited by each excitable laser [START_REF] Selmi | Synposis in Physics, Semiconductors Laser Get Nervy[END_REF][START_REF] Selmi | [END_REF] : once the laser has red a spike, it cannot be re-excited immediately thus there is a symmetry breaking of the excitable medium. This explains why the pulse that starts at one edge only propagates to a single ank.

III. PULSE SPEED AND BIFURCATION DIAGRAM

CHARACTERIZATION

As we increase the value of the evanescent coupling parameter κ, the average pulse speed v increases. Figure 3 summarizes how the average pulse speed behaves as a function of κ. For small evanescent coupling values, we do not observe propagating pulses. The pulses appear by means of a saddle-node bifurcation from a critical cou-pling constant κ ≡ κ sn . The saddle-node bifurcation is a generic mechanism of emergence of localized structures in several contexts such as nonlinear optics, plasma, and uid 4549 . The main features of this bifurcation are that solutions are only observed in a region of the parameter space and that a critical exponent is observed near the bifurcation for the growth rate as a function of the distance to the equilibrium. Figure 4 shows the intensity of the electric eld in two successive lasers as a function of time for dierent evanescent coupling regions (I to IV) highlighted on Figure 3. The pulse throughout region I is characterized by the fact that the intensity of the electric eld is concentrated in a single laser (see Fig. 4a). Numerically, we nd for the parameters considered in gure 2 and close to the left edge (asymptotic limit of the speed) that the mean speed goes almost linearly with κ such that v = v 0 + v 1 (κ -κ sn ) n with v 0 = 0.06176, v 1 = 1.655, κ sn = 0.1 and n = 0.9189 (cf. Fig. 5a). This regime corresponds to a solitary, ballistic regime.

However, close to κ ≡ κ t = 0.45 (region II), we observe that there is a qualitative change in the average speed curve (see Fig. 3). Figure 5b shows a zoom of regions I and II. We note that the speed of the pulse varies continuously but is not dierentiable at this critical point. To reveal the origin of this instability, the evolution of the electric eld intensity in two successive lasers below and above the transition is shown in region II on Fig. 4b,c. Note that below the bifurcation, the temporal prole of the pulse in the two successive lasers is identical. However, above the bifurcation, the temporal proles in two successive lasers are not identical and they alternate. Therefore, this bifurcation corresponds to a spontaneous translational symmetry-breaking. This transition occurs for both pulses that propagate to the right or left ank, then one expects this bifurcation to be of the pitchfork type 1115 . To characterize the pitchfork bifurcation we t on Figure 5b the average speed with v = a 0 + a 1 (κ -κ t ) n with a 0 = 0.5363, a 1 = 0.6659, κ t = 0.454, and n = 0.5367. The dependance is thus compatible with the expected square root law.

Likewise, to characterize the spontaneous translational symmetry-breaking bifurcation, we introduce the total intensity in the nth-laser as an order parameter

I T,n = dt|E n | 2 (t). (4) 
Figure 6 shows the total intensity for two successive lasers as a function of the evanescent coupling parameter. Below the bifurcation, the total intensity between two successive lasers is identical. However, above the bifurcation, the total intensity is dissimilar ad there is a concentration of energy in one of the lasers. The pulse intensities in successive lasers become almost identical at κ = 0.65, otherwise there is a translational symmetry breaking for 0.44 < κ < 0.80. From κ = 0.80 onward, the system recovers the spatial translation invariance (cf. Fig. 6).

Increasing the value of the coupling κ, the propagative pulses persist for rather large values until they disappear by a saddle-node bifurcation for κ ≡ κ + sn = 2.71. For κ greater than κ + sn no pulses are observed (see Fig. 3). Physically, this is expected since the energy will ow to the neighboring cavities before reaching the excitable threshold. Therefore, propagation is not possible anymore.

It is worthy to note that the continuous limit of the set of equations ( 1)-( 3) is obtained considering an innitely large coupling constant (κ → ∞). Therefore, we conclude from the previous observations that in the continuous limit the model Eqs. ( 1)-( 3) has no propagating pulses. In order to support this conjecture, we analyze in the parameter space (κ, A) the region where the pulses with hopping dynamics are observed. The results are shown on Figure 7. As the gain pump parameter A decreases, the window of coupling constants where propagating pulses are observed shrinks. Below A = 2, no propagating pulses are observed since the system is not excitable anymore. Similar bifurcation diagrams are observed for the average pulse speed for dierent evanescent coupling constant and pump gain as shown on Figure 7b. Interestingly, the mean speed can also be controlled through the pump 8 as can be seen on Figure 7c. This is a very important feature from an experimental point of view since the coupling constant is often xed by fabrication. The yellow shadowed region shows the region where the propagating pulses are observed. Note that for a nite pump gain in the excitable region (2 < A < 3) and in the continuous limit, no propagating pulses are expected. The continuous limit of the set of Eqs. ( 1)-(3) plus diusive coupling was studied in Refs. [START_REF] Rosanov | Spatial hysteresis and optical patterns[END_REF][START_REF] Fedorov | [END_REF] . Propagation of pulses is shown for non-radiative carrier recombination rates of the same order as the one of the electric eld (b 1 ∼ b 2 ∼ 1). For semiconductor micropillar lasers, these rates dier from several orders of magnitude since the electric eld decay time is much smaller than the carrier decay times. Hence, for the typical parameters of micropillar lasers, it is not possible to observe pulses in the continuous limit.

IV. CONCLUSION

Continuous spatially extended excitable systems can sustain the propagation of pulses. This phenomenon is intuitively based on the fact that the system without spatial coupling is excitable, that is, if an equilibrium suffers a suciently large disturbance, the dynamical system exhibits large excursions in the basin of attraction. When considering the spatially extended system, one expects that when a region is perturbed, it will excite the surrounding areas generating the emission of pulses or waves. The persistence of this phenomenon for coupled (discrete) excitable systems is expected. However, the phenomenon of pulse propagation in discrete, coupled excitable systems is not obvious and depends on the coupling. We show that pulse propagation in discrete, coupled excitable lasers is characterized by a hopping dynamics and that it presents a rich bifurcation structure. We also show that the observed pulses do not necessarily persist in the continuous limit. These results pave the way to the experimental study of such hopping dynamics in optics with potential impact on neuromimetic systems and information processing 8 .
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 12 Figure 1. (color online) Pulse propagation in 1D array of excitable semiconductor lasers. (a) Schematic representation of an array of excitable semiconductor lasers. Lasers emit from the top and are evanescently coupled through the neighbors. The inset accounts for the typical phase portrait of a single semiconductor laser. Curves and dots account for invariant manifolds and equilibria. Spatiotemporal propagation of a pulse of an array of excitable semiconductor laser model Eqs. (1)-(3) with dierent coupling constant κ = 0.20 (b), κ = 0.25 (c), and κ = 0.30 (d), α = 2.0, β = 0, A = 2.74, B = 2, b1 = b2 = 0.001, and s = 10.
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 3 Figure 3. (color online) Average pulse speed as a function of evanescent coupling κ of excitable semiconductor laser model Eqs. (1)-(3) with α = 2.0, β = 0, A = 2.74, B = 2, b1 = b2 = 0.001, and s = 10. The colored regions account for the dierent bifurcations observed. κsn ∼ 0.1, κt ∼ 0.45, and κ + sn ∼ 2.71 account for the critical evanescent coupling in which the pulses emerge and present a spontaneous symmetry translation-breaking, respectively.
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 4 Figure 4. (color online) Intensity of electric eld I = |En| 2 of two successive micropillars as a function of time for dierent evanescent coupling parameter κ = 0.1 (a), κ = 0.44 (b), κ = 0.46 (c), κ = 0.7 (d), κ = 0.8 (e), κ = 2.5 (f), and κ = 2.71 (g). Pulses spread to the right ank.
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 5 Figure 5. (color online) Amplications of average pulse speed as a function of evanescent coupling κ of excitable semiconductor laser model Eqs. (1)-(3) with α = 2.0, β = 0, A = 2.74, B = 2, b1 = b2 = 0.001, and s = 10. Points account for the pulse speed obtained numerically. (a) Emergence of hopping pulse solutions. The dashed curve is obtained buy tting v with v = v0 + v1(κ -κsn) n and v0 = 0.06176, v1 = 1.655, κsn = 0.1 and n = 0.9189. (b) Spontaneous translational symmetry-breaking instability. The dashed curve is obtained by tting v with v = a0 + a1(κ -κt) n and a0 = 0.5363, a1 = 0.6659, κt = 0.454, and n = 0.5367.

Figure 6 .

 6 Figure 6. (color online) Total intensity of electric eld IT,n in the n-micropillar as a function of evanescent coupling for model Eqs. (1)-(3) with α = 2.0, β = 0, A = 2.74, B = 2, b1 = b2 = 0.001, and s = 10.

Figure 7 .

 7 Figure 7. (color online) Phase diagram of pulse obtained for model Eqs. (1)-(3) with α = 2.0, β = 0, B = 2, b1 = b2 = 0.001, and s = 10. (a) Pulse phase diagram in A-κ space. Points account for the limits of pulse obtained numerically. Average pulse speed as a function of evanescent coupling κ (b) and pump gain A (c).
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