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Abstract. In this work we are interested in controlling the displacement
of particles in interaction with N point vortices, in a two-dimensional
fluid and neglecting the viscous diffusion. We want to drive a passive
particle from an initial point to a final point, both given a priori, in a
given finite time, the control being due to the possibility of impulsion
in any direction of the plane. For the energy cost, the candidates as
minimizers are given by the normal extremals of the Pontryagin Maxi-
mum Principle (PMP). The transcription of the PMP gives us a set of
nonlinear equations to solve, the so-called shooting equations. We in-
troduce these shooting equations and present numerical computations
in the cases of N = 1, 2, 3 and 4 point vortices. In the integrable case
N = 1, we give complete quadratures of the normal extremals.

Keywords: Helhmoltz-Kirchhoff N vortices model, Energy minimization, Pon-
tryagin Maximum Principle, Indirect shooting method.

1 Introduction

This work is concerned with the control of the displacement of particles in inter-
action with point vortices, in a two-dimensional fluid, where the viscous diffu-
sion is neglected, which is equivalent to using the Euler equation instead of the
Navier-Stokes equation as the mathematical model of the fluid flow. We refer to
Ref. [12] for details about vortex theory.

In most of the control problems, concerning realistic flows, the solution is
achieved by means of simplified models such as point vortex [17]. There is a
special interest in the use of control methods applied to vortex dynamics in the
fields of geophysical fluid dynamics, aeronautic and hydrodynamic [16]. In the
context of hydrodynamics, the fish-like locomotion and autonomous underwater
vehicles are applications of point vortex that have received some attention in the
last years due to the necessity of data sampling in the oceans water [13, 10, 8].
Moreover, from the dynamics of such systems there is an intense activity research
initiated by Poincaré [14] to compute periodic trajectories avoiding collisions and
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such techniques lead to the concept of choregraphy developed by [6] for the N-
body problem and [5] for the N-vortex system, showing the relations between
both dynamics in the Hamiltonian frame [11]. From the control point of view,
there is a lot of development related to space navigation for the N-body problem,
see [3], valuable in our study for ship navigation in the N-vortex problem.

In this work we apply the Pontryagin Maximum Principle (PMP) to control
the displacement of a passive particle (which is by definition a zero circulation
vortex), influenced by vortex points located around it, in an optimal way (we con-
sider the energy cost, see [2] for time minimization). This problem is a particular
case of the challenging ”Problem 2” included in [16]. A passive particle is small
enough not to perturb the velocity field, but also large enough not to perform a
Brownian motion. Particles of this type are the tracers used for flow visualization
in fluid mechanics experiments [1]. We consider also that the passive particles
have the same density of the fluid in which it is embedded. Explicitly we want
to drive a passive particle from an initial starting point to a final terminal point,
both given a priori, in a given finite time. Here, the vortex dynamics is governed
by N point vortices and the control is due to the possibility of impulsion in any
direction of the two dimensional plane (a sufficiently long time is considered so
that the optimal control remains bounded and its amplitude is small enough).

The article is structured as follows: Section 2 is devoted to the statement of
the control problem. The maximum principle is stated in Section 3, with some
results in the one vortex case. The cases of 2, 3, 4 vortices are treated in Section 4.

2 Vortex Dynamics and Statement of the Problem

We give in this section a short description of the vortex dynamics and we refer
to [12] for more details. This description is followed by the formulation of the
control problem addressed in this work.

Let us consider the case of a two-dimensional fluid, for which the incompress-
ible Euler equations are given by

∂ν

∂t
+ (ν · ∇) ν = −∇p, ∇ · ν = 0, (1)

where ν stands for ν(X, t) := (ν1(X, t), ν2(X, t)) and represents the velocity field
and p is the pressure of the fluid. Due to∇·ν = 0 (the incompressibility equation)
from (1), one can write ν = (ν1, ν2) =: (∂yΨ,−∂xΨ) where Ψ is called the stream-
function. Besides, let w denote the viscosity vector and introduce ν̃ := (ν, 0),
then w is given by the relation w = ∇∧ ν̃ = (0, 0, ∂xν2 − ∂yν1) =: (0, 0, ω), and
with the two previous formulas, one can deduce the Poisson equation satisfied
by Ψ , that is ∇2Ψ = −ω. The resolution of this equation leads to

Ψ(X, t) =
1

2π

∫
R2

ln(‖X − Y ‖)ω(Y, t) dY,

where ‖·‖ is the Euclidean norm. On the other hand, considering a finite number
N of point vortices, then the viscosity vector can be written in the form ω(X, t) =
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i=1 kiδ(X−Xi(t)), where δ is the Dirac mass and where ki is the circulation of

the ith-vortex. These two previous relations allow us to write the vortex dynamics
as follows:

dxi
dt

= −
N∑
j=1
j 6=i

kj
2π

yi − yj
r2ij

,
dyi
dt

=

N∑
j=1
j 6=i

kj
2π

xi − xj
r2ij

,

where (xi, yi) is the position of the ith-vortex and where r2ij := (xi−xj)2 + (yi−
yj)

2 is the square distance between the vortices i and j.
As mentioned above, the aim of this paper is not to control the vortices

but the displacement of particles. The idea is therefore to consider a parti-
cle (or passive tracer) as a point vortex with zero circulation and to apply
a small amplitude control acting only on the passive tracer [16]. The con-
trol system is then written as follows: q̇ = F0(q) + u1F1(q) + u2F2(q) where
q := (x, y, x1, y1, · · · , xN , yN ) ∈ R2(1+N) is the vector of positions of the particle
and the vortices, where the control fields are F1(q) = ∂

∂x and F2(q) = ∂
∂y , and

where the drift F0 is given by

F0(q) =−
N∑
j=1

kj
2π

y − yj
r2j

∂

∂x
+

N∑
j=1

kj
2π

x− xj
r2j

∂

∂y

+

N∑
i=1

− N∑
j=1
j 6=i

kj
2π

yi − yj
r2ij

∂

∂xi
+

N∑
j=1
j 6=i

kj
2π

xi − xj
r2ij

∂

∂yi

 ,

with r2i := (x−xi)2+(y−yi)2, i = 1, · · · , N . The optimal control problem of inter-

est is then defined as follows: minimize the transfer energy J(u) :=
∫ T
0
‖u(t)‖2 dt

to drive a passive particle from an initial point (x0, y0) ∈ R2 to a target point
(xf , yf ) ∈ R2, both given a priori, in a given finite time T > 0. The initial
positions of the vortices being also given.

3 Case of one vortex

3.1 Pontryagin maximum principle and shooting function

In the single vortex case one has (ẋ1, ẏ1) = (0, 0), that is the vortex is static and
can be fixed to the origin of the reference frame. Hence, the control system may
be reduced to

q̇(t) = F0(q(t)) + u1(t)F1(q(t)) + u2(t)F2(q(t)), (2)

where q = (x, y) ∈ R2 (by a slight abuse of the notation since (x1, y1) = (0, 0)
is constant) is the position of the particle and where the drift and the control
fields are given by

F0(q) =
µ

x2 + y2

(
−y ∂

∂x
+ x

∂

∂y

)
, F1 =

∂

∂x
, F2 =

∂

∂y
, µ :=

k

2π
.
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Explicitly the control problem in this case is written:

ẋ(t) = − µ y(t)

x2(t) + y2(t)
+ u1(t), ẏ(t) =

µx(t)

x2(t) + y2(t)
+ u2(t),

Lemma 1. For any q0, qf there exists a control joining q0 to qf in time T > 0.

Proof. Considering the polar coordinates (r cos θ, r sin θ) = (x, y) and an adapted
rotating frame for the control, v = u e−iθ, the control system (2) becomes
ṙ(t) = v1(t), θ̇(t) = µ/r(t)2 + v2(t)/r(t). From q0, we can apply a constant
control v(t) = (α1, 0) until the distance ‖qf‖ is reached and then apply a con-
stant control v(t) = (0, α2) until the target xf is reached, where α1, α2 ∈ R are
suitably chosen according to the time T .

Let q0 ∈ R2 denote the initial condition, qf ∈ R2 the target and T > 0
the transfer time. Let u ∈ L∞([0, T ],R2) be an optimal solution (assuming its
existence) and let q denote the associated optimal trajectory. According to the
Pontryagin maximum principle [15], then there exists an absolutely continuous
function p : [0, T ]→ R2 satisfying the adjoint equation a.e. over [0, T ]:

ṗ(t) = −∇qH(q(t), p(t), u(t)), (3)

where H(q, p, u) := p · (F0(q) + u1 F1(q) + u2 F2(q)) + p0‖u‖2 is the pseudo-
Hamiltonian.3 Besides, we have:

p0 ≤ 0, the pair (p, p0) never vanishes (4)

and the optimal control satisfies the maximization condition a.e. over [0, T ]:

H(q(t), p(t), u(t)) = max
w∈R2

H(q(t), p(t), w). (5)

Any quadruplet (q, p, p0, u) solution of (2) and (3)–(5) is called an extremal and
is said to be abnormal if p0 = 0 otherwise it is said to be normal. In the normal
case, when p0 6= 0, we can fix by homogeneity p0 = −1/2.

Definition 1. An extremal is a called BC-extremal if q(0) = q0 and q(T ) = qf .

Proposition 1. Let (q, p, p0, u) be an extremal, then, the extremal is normal
(that is there are no abnormal extremals) and the control u is smooth.

Proof. Let us introduce the Hamiltonian lifts Hi(z) := p · Fi(q) with z := (q, p).
If p0 = 0, then the maximization condition leads to H1 = H2 = 0, that is
p1 = p2 = 0, which contradicts the PMP. Hence p0 < 0 and we can fix p0 =
−1/2. With this normalization, the control may be written in the feedback form
u(t) = Φ(z(t)) with Φ(z) := (H1(z), H2(z)) smooth. It is clear and well-known
that in this case, the control law t 7→ u(t) is smooth.

3 The standard inner product is written a · b, for a, b in R2.
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Since we have only normal extremals we fix p0 = −1/2 and define the follow-
ing true Hamiltonian (plugging u in feedback form into the pseudo-Hamiltonian):

H(z) := H(z, Φ(z)) = H0(z) +
1

2
(H2

1 (z) +H2
2 (z)) = H0(z) +

1

2
‖p‖2.

Let’s introduce the Hamiltonian system
#—

H(z) := (∇pH(z),−∇qH(z)) and the

pseudo-Hamiltonian system
#—

H(z, u) := (∇pH(z, u),−∇qH(z, u)). Then, we have:

Proposition 2. Let (z, u) be an extremal (p0 = −1/2 is implicit). Then:

ż(t) =
#—

H(z(t), u(t)) =
#—

H(z(t)) =
#  —

H0(z(t)) + (p(t), 0) .

According to this proposition, we can define the exponential mapping :

expt,q0(p0) := π ◦ exp(t
#—

H)(q0, p0),

where π(q, p) := q is the canonical projection on the state space and exp(t
#—

H)(z0)

is the solution at time t of ż =
#—

H(z) with the initial condition z0. Finally, let us
introduce the shooting function:

S : R2 −→ R2

p0 7−→ S(p0) := expT,q0(p0)− qf .

Then, we have the classical following relation between BC-extremals and zeros
of the shooting function.

Proposition 3. Let (q, p, u) be a BC-extremal (p0 = −1/2 is implicit), then,
S(p(0)) = 0. Conversely, let p0 ∈ R2 s.t. S(p0) = 0. Then, defining z(t) :=

exp(t
#—

H)(q0, p0) over [0, T ] and u(t) := Φ(z(t)), the pair (z, u) is a BC-extremal.

3.2 Integration of the extremal solutions

Writing the system in polar coordinates, the Hamiltonian becomes:

H(r, θ, pr, pθ) = pθ
µ

r2
+

1

2
(p2r +

p2θ
r2

).

Proposition 4. The system is Liouville integrable and, in polar coordinates, the
extremals are given by: if c := pθ(2µ+ pθ) ≥ 0, then

r(t) =

√
(c4t+ c5)2 + c3

c4
, pr(t) =

(c4t+ c5)

r(t)
,

θ(t) =
c6

c4
√
c3

(
arctan

c4t+ c5√
c3

− arctan
c5√
c3

)
,

and if c < 0, then

r(t) =

√
(c4t+ c5)2 + c3

c4
, pr(t) =

(c4t+ c5)

r(t)
,

θ(t) =
c6

c4
√
−c3

(
log

∣∣∣∣c4t+ c5)−
√
−c3

c4t+ c5) +
√
−c3

∣∣∣∣− log

∣∣∣∣c5 −√−c3c5 +
√
−c3

∣∣∣∣) ,
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with c1 = pr(0), c2 = pθ, c3 = c, c4 = c21 + c3
r20

, c5 = r0|c1|, c6 = c4(µ+ c2).

Proof. The θ coordinate is cyclic, so pθ defines a second first integral with H.
This guarantees the Liouville integrability of the system. For the integration of
the extremals, one has to solve the following system:

ṙ(t) = pr(t), ṗr(t) =
2µpθ
r3(t)

+
p2θ
r3(t)

, θ̇(t) =
µ

r2(t)
+

pθ
r2(t)

, ṗθ(t) = 0,

with (r(0), θ(0), pr(0), pθ(0)) =: (r0, θ0, c1, c2). Since pθ = c2 is constant, we
have from the two first equations that r̈(t) = c3/r

3(t), whence r̈(t)ṙ(t) =
c3ṙ(t)/r

3(t), with c3 := c2(µ + c2). Solving this last equation we obtain r(t) =√
((c4t+ c5)2 + c3)/c4 with c4 := c21 + c3/r

2
0 and c5 = r0|c1|. One deduces pr(t)

by differentiating this relation. The integration of θ depends on the sign of c3.
Indeed one has θ̇(t) = c6/((c4t+ c5)2 + c3), with c6 := c4(µ+ c2), thus, if c3 ≥ 0
one has the first case, otherwise one has the second.

3.3 Numerical methods and results

The HamPath4 code [4, 9] is used to compute the BC-extremals. A Newton-like
algorithm is used to solve the shooting equation S(p0) = 0. Providing H and S to
HamPath, the code generates automatically the Jacobian of the shooting func-
tion. To make the implementation of S easier, HamPath supplies the exponential
mapping. Automatic Differentiation is used to produce

#—

H and is combined with
Runge-Kutta integrators to assemble the exponential mapping.

We present here, in the one vortex case, two examples. For the examples,
we fix the initial condition to q0 = (2, 0), the transfer time to T = 10 and we
consider two targets: qf = (−2, 0) and qf = (3,−3), to emphasize the influence of
the vortex circulation (the strength of the drift being dependent to the distance
between the particle and the vortex). The circulation is fixed to k = 2πµ, with
µ = 2‖q0‖. The two results are detailed in the caption of Figure 1, where we
represent the projection of the two BC-extremals in the state space, that is the
trajectories, together with the control laws.

4 Cases of 2, 3 and 4 vortices

4.1 Pontryagin maximum principle and shooting function

In the case ofN > 1 vortices, the vortices are not static and have to be considered
in the dynamics. Let us recall that the control system has the form q̇ = F0(q) +
u1F1(q) + u2F2(q), where F0, F1, and F2 are given in Section 2, and that the
state q contains the position of the particle together with the positions of the N
vortices. In the control problem, see Section 2, the initial positions of the particle
and the vortices are fixed. Let us denote by q0 ∈ R2(1+N) the vector of these
positions. On the other hand, the final position of the particle is fixed while the

4 www.hampath.org
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Fig. 1. One vortex. (Top) qf = (−2, 0) and the cost is J ≈ 4.2675e-3. (Bottom)
qf = (3,−3) and the cost is J ≈ 5.5177e-1. In both cases, the shooting equation S = 0
is solved with a good accuracy of order 1e-12. On the left, we have the trajectory (in
blue), the point vortex is represented by a red dot, the initial condition by a blue dot.
The two control components are given on the right.

final positions of the N vortices are free. Let us denote by (xf , yf ) ∈ R2 the
target for the particle. The transfer time is also fixed and denoted T > 0. In
order to apply the maximum principle, we define the pseudo-Hamiltonian:

H(q, p, u) := p · F0(q) + u1 p · F1(q) + u2 p · F2(q) + p0(u21 + u22),

where p0 will be fixed to −1/2 according to:

Proposition 5. Let (q, p, p0, u) be a BC-extremal. Then, the extremal is normal
and the control u is smooth.

Proof. If p0 = 0, then the maximization condition leads to H1 = H2 = 0, that
is px = py = 0 all along the extremal. Decomposing the adjoint vector as p :=
(px, py, px1 , py1 , · · · , pxN

, pyN ), then, the transversality conditions implies that at
the final time, px1

(T ), py1(T ), . . . , pxN
(T ), pyN (T ) are zero, which contradicts

the PMP. Hence p0 < 0 and we can fix p0 = −1/2. With this normalization,
the control may be written in the feedback form u(t) = Φ(z(t)) with Φ(z) :=
(H1(z), H2(z)) smooth. Here again, the control law t 7→ u(t) is smooth.
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In the same spirit as in the one vortex case, one can define the following shoot-
ing function (with adapted and clear notation) to compute the BC-extremals:

S : R2(1+N) −→ R2(1+N)

p0 7−→ S(p0) :=
(
x(T, q0, p0)− xf , y(T, q0, p0)− yf ,
px1

(T, q0, p0), · · · , pyN (T, q0, p0)
)

4.2 Numerical results

In the following examples, we fix the initial particle position to (x0, y0) = (2, 0)
and the target to (xf , yf ) = (3,−3). To make a comparison with respect to
the number of vortices we impose the condition ΣN

i=1|ki| = k, where k is the
circulation in the one vortex case, that is k = 2πµ with µ = 2‖q0‖. The initial
positions of the vortices are taken arbitrarily.

In general, the main difficulty to solve the shooting equations is the initial-
ization of the adjoint vector due to the sensitivity of the underlying Newton
method. In order to overcome this difficulty, we use the following algorithm:

– For two vortices, we first solve the subproblem where we set one of the
circulation to zero, that is we solve a one vortex problem;

– Then, we use a path following algorithm [4] implemented in the HamPath
software where the homotopic parameter is the value of the circulation which
increase from 0 to the desired value;

– We repeat this procedure to obtain solutions for problems with more vortices.

We summarize in Table 1 the results in the one vortex case together with the
new results for N = 2, 3 and 4. The trajectories and the controls are given in
Figures 2, 3 and 4, respectively for N = 2, 3 and 4.

Vortices Circulations Initial positions (q0) Target Cost Figure

N = 1 k = 8π (2, 0) (−2, 0) 0.004 1

N = 1 k = 8π (2, 0) (3,−3) 0.552 1

N = 2 k1 = k2 = 4π (2, 0, 0, 1, 0,−1) (3,−3) 1.947 2

N = 3 k1 = k2 = k3 = 8π/3 (2, 0, 0, 1, 1,−1,−1,−1) (3,−3) 0.406 3

N = 4 k1 = k2 = k3 = k4 = 2π (2, 0, 1, 0, 0, 1,−1, 0, 0,−1) (3,−3) 0.335 4

Table 1. In the two first columns are given the number of vortices with their circu-
lations. In the third is given the initial positions of the particle and the vortices, the
target for the particle being given in the fourth. The fifth column gives the cost asso-
ciated to the computed BC-extremal, whose trajectory and control are plotted in the
figure given by the last column.

5 Conclusion

In this article, we have solved the control problem in the cases N=1,2,3 and 4
vortices. In the case of a single vortex, where it is trivial to show the integrability
of the resulting Hamiltonian system, we have provided analytic expressions of



Minimum energy control of passive tracers advection in point vortices flow 9

-4 -2 0 2 4

(y,y
i
)

-4

-3

-2

-1

0

1

2

3

4

(x
,x

i)

0 2 4 6 8 10

t

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

u
2

u
1
(t)

u
2
(t)

Fig. 2. Two vortices. Trajectory and control in the two vortices case. The initial ad-
joint vector being p0 = (0.28, 0.15, 0.097,−0.47,−0.11, 0.088) (see Table 1 for details).
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Fig. 3. Three vortices. Trajectory and control in the three vortices case. The initial
adjoint vector being p0 = (−0.37,−0.037, 0.088, 0.34, 0.69,−0.48,−0.36,−0.026) (see
Table 1 for details).
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Fig. 4. Four vortices. Trajectory and control in the four vortices case. The initial ad-
joint vector is p0 = (0.17,−0.0015, 0.041,−0.18,−0.025,−0.26, 0.11, 0.11,−0.18, 0.22)
(see Table 1 for details).

extremals. In the other cases, we have limited ourselves to a numerical study
of the problem by presenting some solutions obtained thanks to the HamPath
software. Beyond 4 vortices, it is well known in the literature that the vortex
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system is chaotic (see for instance [7, 16]), so controlling the particle in an envi-
ronment containing more than 4 vortices no longer guarantees a solution to the
problem. On the other hand, we have arbitrarily considered the initial positions
of the vortices and we propose in future experiments to optimize this initial
configuration in order to improve the results we have obtained.
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