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We consider non degenerate Brownian SDEs with Hölder continuous in space diffusion coefficient and unbounded drift with linear growth. We derive two sided bounds for the associated density and pointwise controls of its derivatives up to order two under some additional spatial Hölder continuity assumptions on the drift. Importantly, the estimates reflect the transport of the initial condition by the unbounded drift through an auxiliary, possibly regularized, flow.

Introduction 1.Statement of the problem

We are interested in providing Aronson-like bounds and corresponding pointwise estimates for the derivatives up to order two for the transition probability density of the following d-dimensional, non-degenerate diffusion dX t = b(t, X t )dt + σ(t, X t )dW t , t 0, X 0 = x, (1.1) where (W t ) t 0 is a standard d-dimensional Brownian motion on the classical Wiener space (Ω, F , (F t ) t 0 , P).

The diffusion coefficient σ is assumed to be rough in time, and Hölder continuous in space. The drift b is assumed to be measurable and to have linear growth in space. Importantly, we will always assume throughout the article that the diffusion coefficient σ is bounded and separated from 0 (usual uniform ellipticity condition). When both coefficients b, σ are bounded and Hölder continuous, it is well known that there exists a unique weak solution to (1.1) which admits a density (see e.g. [START_REF] Stroock | Multidimensional diffusion processes[END_REF], [START_REF] Friedman | Stochastic differential equations[END_REF], [START_REF] Chen | Heat kernels for non-symmetric diffusion operators with jumps[END_REF]), i.e. for all A ∈ B(R d ) (Borel σ-field of R d ), P[X t ∈ A|X 0 = x] = A p(0, x, t, y)dy.

Furthermore, it can be proved by the parametrix method that the transition density p(0, x, t, y) enjoys the following two sided Gaussian estimates on a compact set in time:

C -1 g λ -1 (t, xy) p(0, x, t, y) Cg λ (t, xy)

(1.2)

as well as the following gradient estimate |∇ j x p(0, x, t, y)| Ct -j 2 g λ (t, xy), j = 1, 2, where g λ (t, x) := t -d 2 exp -λ|x| 2 /t , λ ∈ (0, 1], t > 0, (1.3) and the constants λ, C 1 only depend on the regularity of the coefficients, the non-degeneracy constants of the diffusion coefficients, the dimension d, and for the constant C, on the maximal time considered (see [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] and [START_REF] Aronson | The fundamental solution of a linear parabolic equation containing a small parameter[END_REF], [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF]). Such methods have been successfully applied to derive upper bounds up to the second order derivative for more general cases, such as operators satisfying a strong Hörmander condition (see [START_REF] Bonfiglioli | Fundamental solutions for non-divergence form operators on stratified groups[END_REF]), and also Kolmogorov operators with linear drift (see [START_REF] Polidoro | On a class of ultraparabolic operators of Kolmogorov-Fokker-Planck type[END_REF] and [START_REF] Di Francesco | On a class of degenerate parabolic equations of Kolmogorov type[END_REF]). A different approach consists in viewing a logarithmic transformation of p as the value function of a certain stochastic control problem (see [START_REF] Fleming | Stochastic variational formula for fundamental solutions of parabolic PDE[END_REF]): such idea allows then to get the desired density estimates by choosing appropriate controls and eventually an upper bound for the logarithmic gradient (see [START_REF] Sheu | Some estimates of the transition density of a nondegenerate diffusion Markov process[END_REF]). When the drift is unbounded and non-linear fewer results are available. In fact, in this case it is no longer expected that the two sided estimates as given in (1.2) hold. Consider for instance the following Ornstein-Uhlenbeck (OU)-process dX t = X t dt + dW t , X 0 = x, which has, with the notations of (1.3), the non-spatial homeogenous density p OU (0, x, t, y) = (π(e 2t -1)) -d/2 g t/(e 2t -1) (t, e t xy).

In [START_REF] Delarue | Density estimates for a random noise propagating through a chain of differential equations[END_REF] the authors derive two sided density bounds for a class of degenerate operators with unbounded and Lipschitz drift, satisfying a weak Hörmander condition, by combining the two previous approaches: parametrix and logarithmic transform. Indeed, when the drift is unbounded it becomes difficult to get good controls for the iterated kernels in the blunt parametrix expansion. In our non-degenerate parabolic setting those bounds still hold provided the drift is globally Lipschitz continuous in space. Then, they read as:

C -1 g λ -1 (t, θ t (x) -y) p(0, x, t, y) Cg λ (t, θ t (x) -y), (1.4) where θ stands for the deterministic flow associated with the drift, i.e. θt (x) = b(t, θ t (x)), t 0, θ 0 (x) = x and C, λ > 0 enjoy the same type of dependence as in (1.2) but importantly λ now also depends on the maximal time considered. This means that the diffusion starting from x, oscillates around θ t (x) at time t with fluctuations of order t -1 2 . Notice that if b is bounded, then (1.4) reduces to (1.2) since

t -1 2 |x -y| -b ∞ t 1 2 t -1 2 |θ t (x) -y| t -1 2 |x -y| + b ∞ t 1 2 .
Hence, taking or not into consideration the flow does not give much additional information. The above control also clearly emphasizes why C might depend on some maximal time interval considered. In the case where b is bounded but not necessarily smooth, the above bounds remain valid for any regularizing flow. Diffusion with dynamics (1.1) and unbounded drifts appear in many applicative fields. Let us for instance mention the work [START_REF] Gobet | LAN property for ergodic diffusions with discrete observations[END_REF] which was concerned with issues related to statistics of diffusions. We can also refer to [START_REF] Pagès | Total Variation and Wasserstein bounds for the ergodic Euler-Naruyama scheme for diffusions[END_REF] for the numerical approximation of ergodic diffusions.

In such frameworks, estimates on the density and its derivatives are naturally required. Some gradient estimates of the density were established in [START_REF] Gobet | LAN property for ergodic diffusions with discrete observations[END_REF]. The approach developed therein relies on the Malliavin calculus. It thus required some extra regularity on the drift. Also, since the deterministic flow was not taken into consideration an additional penalizing exponential term in the right hand side 1 of the bounds appeared. Similar features appeared in the work [START_REF] Deck | Parabolic differential equations with unbounded coefficients -a generalization of the parametrix method[END_REF] which established the existence of fundamental solutions for a strictly sublinear Hölder continuous drift.

The point of the current work is to establish estimates for the derivatives that reflect both the singularities associated with the differentiation in the parabolic setting, as in equation (1.2) above, and also reflect the key importance of the flow for unbounded drifts as it appears in the two-sided heat kernel estimate (1.4). To the best of our knowledge, our is one of the first results for the derivatives of heat kernels with unbounded drifts.

We can actually address various frameworks. We manage to obtain two-sided heat kernel bounds for a Hölder continuous in space diffusion coefficient σ in (1.1) and a drift b which is uniformly bounded in time at the origin and has linear growth in space (see assumptions (H σ α ) and (H b β ) below). Importantly, when the drift b is itself not smooth, the heat kernel bounds can be stated in the form (1.4) for any flow associated with a mollification of b. In particular, if the drift is continuous in space they actually hold for any Peano flow. Those conditions are also sufficient to obtain gradient bounds w.r.t. the backward variable x. To derive controls for the second order derivatives w.r.t. x an additional spatial Hölder continuity assumption naturally appears for the drift. Eventually, imposing some additional spatial smoothness on the diffusion coefficient, we also succeed to establish a gradient bound w.r.t. the forward variable y.

The paper is organized as follows. Our main results are stated in details in Section 1.2; Section 2 is dedicated to the proof of our main results when the coefficients satisfy our previous assumptions and are also smooth. Importantly, we prove that the two-sided heat-kernel bounds do not depend on the smoothness of the coefficients but only on constants appearing in (H σ α ) and (H b β ), the fixed final time horizon T > 0 and the dimension d. We also establish there bounds for the derivatives through Malliavin calculus techniques which is precisely possible because the coefficients are smooth. Those bounds serve as a priori controls to derive in Section 3, through a circular type argument based on the Duhamel-parametrix type representation of the density, that those bounds actually do not depend on the smoothness of the coefficients. We then deduce the main results passing to the limit in a mollification procedure through convergence in law and compactness arguments. We eventually discuss in Section 4 some possible extensions for the estimation of higher order derivatives of the heat kernel when the coefficients have some additional smoothness properties.

Let us mention that our approach developed here had previously been successfully used in [START_REF] Chaudru De Raynal | Strong existence and uniqueness for degenerate SDE with Hölder drift[END_REF] and [START_REF] Chaudru De Raynal | Schauder estimates for some Degenerate Kolmogorov Equations[END_REF] to derive respectively the strong well-posedness of kinetic degenerate SDEs or Schauder estimates for degenerate Kolmogorov equations. It actually seems sufficiently robust to be generalized, as soon as some suitable two sided bounds hold, in order to obtain estimates of the derivatives of the density.

Assumptions and Main Results

We make the following assumptions about σ and b in (1.1).

(H σ α ) (Non degeneracy). There exists a positive constant κ 0 1, such that

κ -1 0 |ξ| 2 σσ * (t, x)ξ, ξ κ 0 |ξ| 2 , x, ξ ∈ R d , t 0, (1.5) 
and for some α ∈ (0, 1),

|σ(t, x) -σ(t, y)| κ 0 |x -y| α , t 0, x, y ∈ R d . (1.6) 
(H b β ) There exist positive constant κ 1 > 0 and β ∈ [0, 1] such that for all x, y ∈ R d and t 0,

|b(t, 0)| κ 1 , |b(t, x) -b(t, y)| κ 1 (|x -y| β ∨ |x -y|). (1.7) 
It should be noticed that under (H b 0 ), b can possible be an unbounded measurable function with linear growth. For instance, b(t, x) = x + b 0 (t, x) with b 0 being bounded measurable satisfies (1.7). The drift b(t, x) = c 1 (t) + c 2 (t)|x| β , β ∈ [0, 1] where c 1 , c 2 are bounded measurable functions of time, also enters this class. We mention that the second condition in (1.7) could be stated only locally, i.e. for e.g. |x -y| 1. This could be checked throughout the proofs below, we prefer to keep it global for simplicity.

Moreover, under (H σ α ) and (H b 0 ), for any (s, x) ∈ R + × R d , it is well known that there exists a unique weak solution to (1.1) starting from x at time s (see e.g. [START_REF] Stroock | Multidimensional diffusion processes[END_REF], [START_REF] Bass | A new technique for proving uniqueness for martingale problems[END_REF], [START_REF] Delarue | Density estimates for a random noise propagating through a chain of differential equations[END_REF], [START_REF] Menozzi | Parametrix techniques and martingale problems for some degenerate Kolmogorov equations[END_REF]).

For any T ∈ (0, ∞] and ε ∈ [0, T ), we write

D T ε := {(s, t) ∈ [0, ∞) 2 : ε < t -s < T }.
To state our main result, we need to prepare some deterministic regularized flow associated with the drift b. Let ρ be a nonnegative smooth function with support in the unit ball of R d and such that

R d ρ(x)dx = 1. For ε ∈ (0, 1], define ρ ε (x) := ε -d ρ(ε -1 x), b ε (t, x) := b(t, •) * ρ ε (x) = R d b(t, y)ρ ε (x -y)dy, (1.8) 
i.e. * stands for the usual spatial convolution. Then for each n = 1, 2, • • • , it is easy to see that

|∇ n x b ε (t, x)| = R d (b(t, y) -b(t, x))∇ n x ρ ε (x -y)dy R d |b(t, y) -b(t, x)||∇ n x ρ ε |(x -y)dy κ 1 ε β R d |∇ n x ρ ε |(x -y)dy cε β-n . (1.9)
On the other hand, from (1.7) we also have

|b ε (t, x) -b(t, x)| R d |b(t, y) -b(t, x)|ρ ε (x -y)dy κ 1 ε β . (1.10) For fixed (s, x) ∈ R + × R d , we denote by θ (ε) t,s (x) the deterministic flow solving θ(ε) t,s (x) = b ε (t, θ (ε) t,s (x)), t 0, θ (ε) s,s (x) = x. (1.11)
Note that (θ

(ε)
t,s (x)) t s stands for a forward flow and (θ

(ε)
t,s (x)) t s stands for a backward flow. Also, since we have regularized equation (1.11) is well posed.

The following lemma, which provides a kind of equivalence between mollified flows, is our starting point for treating the unbounded rough drifts.

Lemma 1.1 (Equivalence of flows). Under (H b 0 ), for any ε ∈ (0, 1], the mapping x → θ (ε) t,s (x) is a C ∞ - diffeomorphism
and its inverse is given by x → θ (ε) s,t (x). Moreover, for any T > 0, there exists a constant

C = C(T, κ 1 , d) 1 such that for any ε ∈ (0, 1], all |t -s| T and x, y ∈ R d , |θ (1) t,s (x) -y| + |t -s| C |θ (ε) t,s (x) -y| + |t -s| C |x -θ (ε) s,t (y)| + |t -s|, (1.12) 
where

Q 1 C Q 2 means that C -1 Q 2 Q 1 CQ 2 .
Proof. By (1.9), it is a classical fact that x → θ (ε) t,s (x) is a C ∞ -diffemorpihsm and its inverse is given by x → θ (ε) s,t (x). Below, without loss of generality, we assume s < t. By (1.11) and (1.8), (1.9), (1.10), we have

|θ (ε) t,s (x) -θ (1) t,s (x)| t s b ε (r, θ (ε) r,s (x)) -b 1 (r, θ (ε) r,s (x)) dr + t s b 1 (r, θ (ε) r,s (x)) -b 1 (r, θ (1) r,s (x)) dr 2κ 1 (t -s) + ∇b 1 ∞ t s |θ (ε) r,s (x) -θ (1)
r,s (x)|dr, which implies by the Gronwall inequality that

|θ (ε) t,s (x) -θ (1) 
t,s (x)| 2κ 1 (ts)e ∇b1 ∞ (t-s) .

Thus we obtain |θ

(1)

t,s (x) -y| |θ (ε)
t,s (x) -y| + 2κ 1 e ∇b1 ∞ (t-s) |t -s|. By symmetry, we obtain the first C . For the second one, note that by the Gronwall inequality,

|θ (1) t,s (x) -θ (1) t,s (y)| e ∇b 1 ∞(t-s) |x -y| ⇒ |θ (1) t,s (x) -y| e ∇b 1 ∞(t-s) |x -θ (1)
s,t (y)|. (1.13) From this, by the first C , we obtain the second C .

We introduce for notational convenience the following parameter set which gathers important quantities appearing in the assumptions:

Θ := (T, α, β, κ 0 , κ 1 , d), (1.14) 
where again T > 0 stands for the fixed considered final time, α denotes the Hölder regularity index of the diffusion coefficient σ (see (1.6)), κ 0 is the uniform ellipticity constant in (1.5), κ 1 and β are related to the behavior of the drift b in (1.7), and d is the current underlying dimension.

Our main result is the following theorem.

Theorem 1.2. Let α ∈ (0, 1]. Under (H σ α ) and (H b 0 ), for any T > 0, (s, t) ∈ D T 0 and x ∈ R d , the unique weak solution X t,s (x) of (1.1) starting from x at time s admits a density p(s, x, t, y) which is continuous in x, y ∈ R d . Moreover, p(s, x, t, y) enjoys the following estimates:

(i) (Two-sided density bounds) There exist constants λ 0 ∈ (0, 1], C 0 1 depending on Θ such that for any (s, t) ∈ D T 0 and x, y ∈ R d ,

C -1 0 g λ -1 0 (t -s, θ (1) 
t,s (x) -y) p(s, x, t, y) C 0 g λ0 (ts, θ

t,s (x) -y).

(1.15)

(ii) (Gradient estimate in x) There exist constants λ 1 ∈ (0, 1], C 1 1 depending on Θ such that for any (s, t) ∈ D T 0 and x, y ∈ R d ,

|∇ x p(s, x, t, y)| C 1 (t -s) -1 2 g λ1 (t -s, θ (1) 
t,s (x) -y).

(1.16)

(iii) (Second order derivative estimate in x) If (H b β ) holds for some β ∈ (0, 1], then there exist constants λ 2 , C 2 > 0 depending on Θ such that for any (s, t) ∈ D T 0 and x, y ∈ R d ,

∇ 2 x p(s, x, t, y) C 2 (t -s) -1 g λ2 (t -s, θ (1) 
t,s (x) -y).

(1.17)

(iv) (Gradient estimate in y) If (H b β ) holds for some β ∈ (0, 1] and for some α ∈ (0, 1) and κ 2 > 0,

∇σ ∞ κ 2 , |∇σ(t, x) -∇σ(t, y)| κ 2 |x -y| α , (1.18) 
then there exists constants λ 3 ∈ (0, 1], C 3 1 depending on Θ and κ 2 such that for any (s, t) ∈ D T 0 and x, y ∈ R d ,

|∇ y p(s, x, t, y)| C 3 (t -s) -1 2 g λ3 (t -s, θ (1) 
t,s (x) -y).

( 

t,s (x) can be replaced as well by any Peano flow solving θt,s (x) = b(t, θ t,s (x)), θ s,s (x) = x. Indeed, it is plain to check that, in this case, the result of Lemma 1.1 still holds with θ t,s (x) instead of θ (ε) t,s (x). Remark 1.4. Under the assumptions of the theorem, in fact, we can show the Hölder continuiy of ∇ x p, ∇ 2

x p and ∇ y p in the variables x and y (see Appendix A).

Notations

In the following we will denote by •, • and | • | the Euclidean scalar product and norm on R d . We will use the notation ∇, ∇ 2 to denote respectively the gradient and Hessian matrix of real valued smooth functions on R d . By extension, we denote by ∇ j the j th order derivative of a smooth function. We use the letter C for constants that may depend on the parameters in Θ = (T, α, β, κ 0 , κ 1 , d) introduced in (1.14). We reserve the notation c for constant which only depend on the quantities α, β, κ 0 , κ 1 , d but not on T . Both type of constants c, C might change from line to line. Other possible dependencies are explicitly indicated when needed. Eventually, we will frequently use the notation . For two quantities Q 1 and Q 2 , we mean by Q 1 Q 2 that there exists C with the same previously described dependence such that Q 1 CQ 2 .

A priori heat kernel estimates for SDEs with smooth coefficients

In this section we suppose (H σ α ) and (H b β ), and consider the mollified b ε and σ ε . In particular, we have

κ (ε) j := k=1,••• ,j ∇ k x b ε ∞ + ∇ k x σ ε ∞ < ∞, ∀j ∈ N. (2.1)
In the following, for simplicity of notations, we shall drop the subscripts ε. In other words, we assume b and σ satisfy (H σ α ), (H b β ) and (2.1). (S) Under (S), it is well known that for each (s, x) ∈ R + × R d , the following SDE has a unique strong solution: dX t,s = b(t, X t,s )dt + σ(t, X t,s )dW t , X s,s = x, t s.

(2.

3)

The following theorem is well known and more or less standard in the theory of the Malliavin calculus. We refer to [START_REF] Nualart | The Malliavin Calculus and Related Topics[END_REF], [25, Remarks 2.1 and 2.2] or [START_REF] Zhang | Fundamental solutions of nonlocal Hörmander's operators[END_REF]Theorem 5.4] for more details.

Theorem 2.1. Under (S), for any j, j ∈ N, p > 1 and T > 0, there is a constant C = C(Θ, j, j , κ j+j ) such that for all (s, t)

∈ D T 0 , x ∈ R d and f ∈ C ∞ b (R d ), |∇ j E(∇ j f (X t,s (x)))| C p (t -s) -(j+j )/2 (E|f (X t,s (x)| p ) 1/p . (2.4)
In particular, X t,s (x) has a density p(s, x, t, y), which is smooth in x, y.

Remark 2.2. By Itô's formula, one sees that p(s, x, t, y) satisfies the backward Kolmogorov equation

∂ s p(s, x, t, y) + L s,x p(s, x, t, y) = 0, p(s, •, t, y) -→ δ y (•) weakly as s ↑ t, (2.5) 
and the forward Kolmogorov equation (Fokker-Planck equation):

∂ t p(s, x, t, y)-L * t,y p(s, x, t, y) = 0, p(s, x, t, •) -→ δ x (•) weakly as t ↓ s, (2.6) 
where, setting a = σσ * /2,

L s,x f (x) = Tr a(s, x)∇ 2 x f (x) + b(s, x), ∇ x f (x)
and

L * t,y f (y) = ∂ yi ∂ yj (a ij (t, y)f (y)) -div(b(t, •)f )(y).
Here, we use the usual Einstein convention for the adjoint operator.

The Duhamel representation for p(s, x, t, y)

Fix now (τ, ξ) ∈ R + ×R d as freezing parameters to be chosen later on. Let X (τ,ξ) t,s (x) denote the process starting at x at time s, with dynamics

d X (τ,ξ) t,s = b(t, θ t,τ (ξ))dt + σ(t, θ t,τ (ξ))dW t , t s, X (τ,ξ) s,s = x, (2.7) 
i.e. X 

p (τ,ξ) (s, x, t, y) = exp{-(C (τ,ξ) t,s ) -1 (ϑ (τ,ξ) t,s + x -y), ϑ (τ,ξ) t,s + x -y /2} (2π) d det(C (τ,ξ) t,s ) , (2.8) 
where

ϑ (τ,ξ) t,s := t s b(r, θ r,τ (ξ))dr, C (τ,ξ) t,s := t s σσ * (r, θ r,τ (ξ))dr.
In particular, p (τ,ξ) (s, x, t, y) satisfies for fixed (t, y) ∈ R + × R d :

∂ s p (τ,ξ) (s, x, t, y) + L (τ,ξ) s,x p (τ,ξ) (s, x, t, y) = 0, (s, x) ∈ [0, t) × R d , (2.9) 
subjected to the final condition

p (τ,ξ) (s, •, t, y) -→ δ y (•) weakly as s ↑ t, (2.10) 
where

L (τ,ξ) s,x = Tr a(s, θ s,τ (ξ)) • ∇ 2 x + b(s, θ s,τ (ξ)), ∇ x
denotes the generator of the diffusion with frozen coefficients in (2.7).

The following lemma is direct by the explicit representation (2.8), the uniform ellipticity condition (1.5) and the chain rule.

Lemma 2.3 (A priori controls for the frozen Gaussian density).

For any j = 0, 1, 2, • • • , there exist constants λ j , C j > 0 depending only on j, κ 0 , d such that for all (τ, ξ

) ∈ R + × R d , (s, t) ∈ D ∞ 0 and x, y ∈ R d , p (τ,ξ) (s, x, t, y) C 0 g λ -1 0 t -s, ϑ (τ,ξ) t,s + x -y , and 
∇ j x p (τ,ξ) (s, x, t, y) = ∇ j y p (τ,ξ) (s, x, t, y) C j (t -s) -j 2 g λj t -s, ϑ (τ,ξ) t,s + x -y .
Moreover, for each j, j ∈ N, there are constants C , λ depending on Θ and κ j such that

∇ j x ∇ j ξ p (τ,ξ) (s, x, t, y) C (t -s) -j 2 g λ t -s, ϑ (τ,ξ) t,s + x -y . (2.11)
Proof. We focus on (2.11) for which it suffices to note that for any k ∈ N, T > 0,

|∇ k ξ ϑ (τ,ξ) t,s | + |∇ k ξ C (τ,ξ) t,s | C k |t -s|, (s, t) ∈ D T 0 , (τ, ξ) ∈ [s, t] × R d , where the constant C k depends on the bound of ∇ j b and ∇ j σ, j = 1, • • • , k.
The starting point of our analysis is the following Duhamel type representation formula which readily follows in the current smooth coefficients setting from (2.5)-(2.6) and (2.9)-(2.10):

p(s, x, t, y) = p (τ,ξ) (s, x, t, y) + t s R d p (τ,ξ) (s, x, r, z)A (τ,ξ) r,z p(r, z, t, y)dzdr (2.12) = p (τ,ξ) (s, x, t, y) + t s R d p(s, x, r, z)A (τ,ξ) r,z p (τ,ξ) (r, z, t, y)dzdr, (2.13) 
where

A (τ,ξ) r,z := L r,z -L (τ,ξ) r,z = tr(A (τ,ξ) r,z • ∇ 2 z ) + B (τ,ξ) r,z • ∇ z (2.14)
and

A (τ,ξ) r,z := a(r, z) -a(r, θ r,τ (ξ)), B (τ,ξ) r,z := b(r, z) -b(r, θ r,τ (ξ)). (2.15) 
If we take (τ, ξ) = (s, x) in (2.12) and set p 0 (s, x, t, y) := p (s,x) (s, x, t, y), then we obtain the backward representation

p(s, x, t, y) = p 0 (s, x, t, y) + t s R d p 0 (s, x, r, z)A (s,x) r,z p(r, z, t, y)dzdr,
and in this case

ϑ (s,x) t,s + x -y = t s b(r, θ r,s (x))dr + x -y = θ t,s (x) -y; (2.16)
it involves the forward deterministic flow θ t,s (x) in the frozen Gaussian density. If we now take (τ, ξ) = (t, y) in (2.13) and set p 1 (s, x, t, y) := p (t,y) (s, x, t, y), we then obtain the forward representation p(s, x, t, y) = p 1 (s, x, t, y)

+ t s R d p(s, x, r, z)A (t,y) r,z p 1 (r, z, t, y)dzdr, (2.17) 
and in this case

ϑ (t,y) t,s + x -y = t s b(r, θ r,t (y))dr + x -y = x -θ s,t (y).
It involves the backward deterministic flow θ s,t (y) in the frozen Gaussian density.

Two-sided Estimates for the heat kernel

We first deal here with the two-sided estimates for the density in the current smooth coefficients setting. Importantly, we emphasize as much as possible that all the controls obtained are actually independent of the derivatives of the coefficients, or even of the continuity of the drift b, but only depend on the parameters gathered in Θ introduced in (1.14). We first iterate in Section 2.2.1 the Duhamel representation (2.17) (forward case) to obtain the so-called parametrix series expansion of the density. We then give some controls related to the smoothing effects in time of the parametrix kernel. A specific feature of the heat kernels associated with unbounded drifts is that the corresponding parametrix series needs to be handled with care. Indeed, it is not direct to prove that it converges and some truncation step is needed. This fact was already observed in [START_REF] Delarue | Density estimates for a random noise propagating through a chain of differential equations[END_REF] and we use here a similar kind of argument based on slightly different techniques deriving from the stochastic control representation of some Brownian functionals, see [START_REF] Boué | A variational representation for certain functionals of Brownian motion[END_REF], [START_REF] Zhang | A variational representation for random functionals on abstract Wiener spaces[END_REF] and Section 2.2.2 below. We can assume here without loss of generality that T 1. Indeed, once the two-sided estimates are established in this case, they can be easily extended to any compact time interval [0, T ] through Gaussian convolutions using the scaling properties (see Lemma 2.9).

Two-sided heat kernel estimates parametrix series

For notational convenience, we write from now on for (s, t) ∈ D T 0 and x, y ∈ R d , We shall now use the following notational convention without mentioning the flow θ

p 1 (s, x, t, y) = p (t,
t,s (x). For (s, t) ∈ D T 0 , x, y ∈ R d , we define for λ > 0:

g λ (s, x, t, y) := g λ t -s, θ (1) t,s (x) -y = (t -s) -d 2 exp -λ|θ (1) t,s (x) -y| 2 /(t -s) , (2.22) 
recalling (1.3) for the last equality. We therefore derive from Lemmas 2.3 and 1.1 the following lemma.

Lemma 2.4. For any T > 0 and j = 0, 1, 2, • • • , there exist constants λ j , C j > 0 depending only on Θ such that for all (s, t) ∈ D T 0 and x, y ∈ R d ,

p 1 (s, x, t, y) C 0 g λ -1 0 (s, x, t, y),
and for all α ∈ [0, 1],

|x -θ s,t (y)| α ∇ j x p 1 (s, x, t, y) C j (t -s) α 2 -j
2 g λj (s, x, t, y).

(2.23)

The following convolution type inequality is also an easy consequence of Lemma 1.1.

Lemma 2.5. For any T > 0, there is an ε = ε(Θ) ∈ (0, 1) such that for any λ > 0, there is a

C ε = C ε (Θ, λ) > 0 such that for all (s, t) ∈ D T 0 , r ∈ [s, t] and x, y ∈ R d , R d g λ (s, x, r, z)g λ (r, z, t, y)dz C ε g ελ (s, x, t, y).
Proof. By definition and Lemma 1.1, we have for some 0

< ε < ε < 1, R d g λ (s, x, r, z)g λ (r, z, t, y)dz = R d g λ r -s, θ (1) r,s (x) -z g λ t -r, θ (1) 
t,r (z) -y dz

R d g ε λ r -s, θ (1) r,s (x) -z g ε λ t -r, z -θ (1) r,t (y) dz = Cg ε λ t -s, θ (1) r,s (x) -θ (1) r,t (y) g ελ (s, x, t, y),
where the second equality is due to the Chapman-Kolmogorov (C-K in short) property for the Gaussian semigroup, and the last inequality again follows from Lemma 1.1 and the following control

|θ (1) t,s (x) -y| = |θ (1) t,r • θ (1) r,s (x) -θ (1) t,r • θ (1) r,t (y)| |θ (1) r,s (x) -θ (1) r,t (y)|. (2.24)
The proof is complete.

The next lemma is crucial since it actually allows to control the iterated convolutions of the parametrix kernel H which appears in the expansion (2.21).

Lemma 2.6 (Control of the iterated parametrix kernel). Under (H σ α ) and (H b 0 ), for any T > 0 and N ∈ N, there are constants C N , λ N > 0 depending only on Θ such that for all (s, t) ∈ D T 0 and x, y ∈ R d ,

|H ⊗N (s, x, t, y)| C N (t -s) -1+ N α 2 g λ N (s, x, t, y),
where λ N → 0 as N → ∞.

Proof. By the definition of H in (2.18), (2.15), Lemma 2.4 and (1.12), there exists λ := λ(Θ) > 0 and

C := C(Θ) s.t. |H(s, x, t, y)| |a(s, x) -a(s, θ s,t (y))| • |∇ 2 x p 1 (s, x, t, y)| + |b(s, x) -b(s, θ s,t (y))| • |∇ x p 1 (s, x, t, y)| |x -θ s,t (y)| α |∇ 2 x p 1 (s, x, t, y)| + (1 + |x -θ s,t (y)|)|∇ x p 1 (s, x, t, y)| (t -s) -1+ α 2 g λ (s, x, t, y). (2.25)
This gives the stated estimate for N = 1. From (2.25) and by Lemma 2.5, it is readily seen that:

|H ⊗2 (s, x, t, y)| t s (r -s) -1+ α 2 (t -r) -1+ α 2 dr g ελ (s, x, t, y) (t -s) -1+α g ελ (s, x, t, y).
For general N 2, by direct induction we have

|H ⊗N (s, x, t, y)| C N (t -s) -1+ N α 2 g ε N -1 λ (s, x, t, y).
The proof is complete.

From the above lemma, (2.21) and (2.23), we thus derive that for all N ∈ N, (s, t)

∈ D T 0 , x, y ∈ R d : p(s, x, t, y) Cg λ N -1 (s, x, t, y) + |p ⊗ H ⊗N (s, x, t, y)|, (2.26) 
which is almost the expected upper-bound except that we explicitly have to control the remainder to stop the iteration at some fixed N to avoid the collapse to 0 of λ N as N goes to infinity. This is precisely the purpose of the next subsection.

Stochastic control arguments and truncation of the parametrix series

In this section, we aim at controlling the remainder term (p ⊗ H ⊗N )(s, x, t, y) in the almost Gaussian upperbound (2.26).

To this end, we use the variational representation formula to show the a priori derivative estimates of heat kernel when the coefficients are smooth. The idea is essentially the same as in [START_REF] Delarue | Density estimates for a random noise propagating through a chain of differential equations[END_REF]. The following variational representation formula was first proved by Boué and Dupuis [START_REF] Boué | A variational representation for certain functionals of Brownian motion[END_REF]. The reader is referred to [START_REF] Zhang | A variational representation for random functionals on abstract Wiener spaces[END_REF] for an extension to the abstract Wiener space.

Theorem 2.7. Let F be a bounded Wiener functional on the classical Wiener space (Ω, F , P). Then it holds that

-ln Ee F = inf h∈S E 1 2 T 0 | ḣ(s)| 2 ds -F (ω + h) ,
where S denotes the set of all R d -valued F t -adapted and absolutely continuous processes with

E T 0 | ḣ(s)| 2 ds < ∞.
Using the above variational representation formula, we obtain the following important lemma.

Lemma 2.8. Let : R d → (0, ∞) be a bounded measurable function from above and below. Under (H σ α ) and (H b 0 ), for any T > 0, there is a constant C = C(Θ) > 0 such that for all x ∈ R d and (s, t)

∈ D T 0 , E (X t,s (x)) C sup z∈R d exp ln (z) -C -1 |z -θ (1) t,s (x)| 2 .
Proof. Without loss of generality, we assume s = 0 and write X t := X t,s (x). By Theorem 2.7 we have

-ln E (X t ) = inf h∈S E 1 2 t 0 | ḣ(s)| 2 ds-ln (X h t ) ,
where X h solves the following SDE:

dX h t = b(t, X h t ) + σ(t, X h t ) ḣ(t) dt + σ(t, X h t )dW t , X h 0 = x,
i.e. the control process h enters the dynamics in the drift part. Note that θ t := θ t,0 (x) solves the following ODE: θt = b(t, θ t ), θ 0 = x.

By Itô's formula, we have

E|X h t -θ t | 2 = E t 0 2 X h s -θ s , b(s, X h s ) -b(s, θ s ) + σ(s, X h s ) ḣ(s) + (σσ * )(s, X h s ) ds. Recalling |b(t, x) -b(t, y)| κ 1 (1 + |x -y|),
the Young inequality yields

E|X h t -θ t | 2 E t 0 |X h s -θ s | 2 ds + E t 0 | ḣ(s)| 2 ds + t.
From the Gronwall inequality, we thus obtain

E|X h t -θ t | 2 E t 0 | ḣ(s)| 2 ds + t.
Hence, for some C > 0, 1 2

E t 0 | ḣ(s)| 2 ds C -1 E|X h t -θ t | 2 -Ct.
Therefore, we eventually derive

-ln E (X t ) inf h∈S E C -1 |X h t -θ t | 2 -ln (X h t ) -C inf z∈R d C -1 |z -θ t | 2 -ln (z) -C.
The desired estimate eventually follows from Lemma 1.1.

We now state a direct yet important scaling lemma. We refer to Section 2.3 of [START_REF] Delarue | Density estimates for a random noise propagating through a chain of differential equations[END_REF] for additional details.

Lemma 2.9 (Scaling property of the density). Fix (s, t) ∈ D T 0 and let λ := ts. Introduce for u ∈ [0, 1],

X λ u := λ -1 2 X s+uλ . Then, ( X λ u ) u∈[0,1] satisfies the SDE d X λ u = λ 1 2 b s + uλ, X λ u λ 1 2 du + σ s + uλ, X λ u λ 1 2 d W λ u = b λ (u, X λ u )du + σ λ (u, X λ u )d W λ u ,
where W λ u = λ -1 2 W uλ is a Brownian motion. It also holds that:

p(s, x, t, y) = λ -d 2 p λ 0, λ -1 2 x, 1, λ -1 2 y ,
and introducing for z ∈ R d , u ∈ [0, 1], ∂ u θ λ u,0 (z) = b λ (u, θ u,0 (z)), θ λ 0,0 (z) = z, θ λ 1,0 (λ -1 2 x) -λ -1 2 y 2 = λ -1 |θ t,s (x) -y| 2 .
Proof. We only focus on the last statement. The other ones readily follow from the change of variable. Write:

λ -1 2 θ t,s (x) = λ -1 2 x + λ -1 2 t s b(r, θ r,s (x))dr = λ -1 2 x + λ 1 2 1 0 b(s + uλ, θ s+uλ,s (x))du.
Setting now for u ∈ [0, 1], θu,0 (x) = θ s+uλ,s (x), the above equation rewrites:

λ -1 2 θ1,0 (x) = λ -1 2 x + λ 1 2 1 0 b(s + uλ, θu,0 (x))du = λ -1 2 x + 1 0 b λ (u, λ -1 2 θu,0 (x) du
from which we readily derive by uniqueness of the solution to the ODE that for u ∈ [0, 1],

λ -1 2 θu,0 (x) = θ λ u,0 (λ -1 2 x) = λ -1 2 θ s+uλ,s (x),
which gives the statement.

We will now use the previous Lemmas 2.8 and 2.9 to establish the following result from which the Gaussian upper-bound will readily follow.

Lemma 2.10 (Control of the remainder). Choose N large enough in order to have:

-1 + N α 2 > d 2 .
(

2.27)

There exists constants C 0 , λ 0 > 0 depending only on Θ such that for all (s, t) ∈ D T 0 and x, y ∈ R d ,

|(p ⊗ H ⊗N )(s, x, t, y)| C 0 g λ0 (s, x, t, y).
Proof. From the scaling property obtained in Lemma 2.9 above, we can assume without loss of generality that s = 0 and t = 1. From the definition in (2.19) and Lemmas 2.6, 2.8, we have

|(p ⊗ H ⊗N )(0, x, 1, y)| 1 0 R d p(0, x, r, z)H ⊗N (r, z, 1, y)dz dr = 1 0 |EH ⊗N (r, X r,0 (x), 1, y)|dr C N 1 0 (1 -r) -1+ N α 2 Eg λ N (r, X r,0 (x), 1, y)dr C N 1 0 (1 -r) -1+ N α 2 sup z∈R d exp ln g λ N (r, z, 1, y) -C -1 |z -θ (1) 
r,0 (x)| 2 dr.

Since by (1.3),

ln g λ N (r, z, 1, y) = ln g λ N (1 -r, θ (1) 
1,r (z) -y) = -

d 2 ln(1 -r) -λ N |θ (1) 
1,r (z) -y| 2 /(1 -r),

we have sup z (ln g λ N (1 -r, θ (1) 1 
,r (z) -y) -C -1 |z -θ (1) 
r,0 (x)| 2 ) - d 2 ln(1 -r) -inf z (λ N |θ (1) 1,r (z) -y| 2 /(1 -r) + C -1 |z -θ (1) 
r,0 (x)| 2 ) - d 2 ln(1 -r) -λ N inf z (|z -θ (1) r,1 (y)| 2 /(1 -r) -C(1 -r) + |z -θ (1) r,0 (x)| 2 ) - d 2 ln(t -r) -λ N |θ (1) 
r,1 (y) -θ

r,0 (x)| 2 /2 + C - d 2 ln(t -r) -λ N |θ (1) 1,0 (x) -y| 2 + C, (1) 
where the last step is due to (2.24). Therefore, from the condition (2.27) and the above computations, there exist constants C 0 , λ 0 > 0 depending only on Θ such that

|(p ⊗ H ⊗N )(0, x, 1, y)| C 0 g λ0 (1, θ (1) 
1,0 (x) -y) = C 0 g λ0 (0, x, 1, y).

The general statement for arbitrary (s, t) ∈ D T 0 again follows from the scaling arguments of Lemma 2.9.

Final derivation of the two-sided heat kernel estimates

We are now in position to prove the following two-sided estimates.

Theorem 2.11. Under (H σ α ) and (H b 0 ), for any T > 0, there exists constants C 0 , λ 0 > 0 depending only on Θ such that for all (s, t) ∈ D T 0 and x, y ∈ R d , C -1 0 g λ -1 0 (s, x, t, y) p(s, x, t, y) C 0 g λ0 (s, x, t, y).

Proof. (i) (Upper bound) The upper bound is a direct consequence of the expansion (2.26) and the previous Lemma 2.10 up to a possible modification of the constants C 0 , λ 0 that anyhow still only depend on Θ.

(ii) (Lower bound) By the upper bound and Lemmas 2.6 and 2.5, we get for some λ 1 < λ 0 and ε ∈ (0, 1): 

|p ⊗ H(s, x, t, y)| t s (t -r) -1+ α 2 R d g λ1 (s, x,
p(s, x, t, y) C 1 -C 2 (t -s) α 2 g ελ1 (s, x, t, y) C 1 -C 2 (t -s) α 2 (t -s) -d/2 e -ελ1 .
In particular, letting ts δ with δ small enough, we obtain that p(s, x, t, y) C 3 (ts) -d/2 on D δ 0 and |θ

(1) t,s (x) -y| √ t -s.
(2.28)

We now precisely use a chaining argument to obtain the lower bound when |θ

(1) t,s (x) -y| √ t -s.
The idea is to consider a suitable sequence of balls between the points x and y, for which the diagonal lower estimate (2.28) holds, and which also have a large enough volume to consent to derive the global off-diagonal lower bound. The usual strategy to build such balls consists in considering the "geodesic" line between x and y. In the non-degenerate case, when the coefficients are bounded, this is nothing but the straight-line joining x and y, see e.g. [START_REF] Bass | Diffusions and Elliptic Operators[END_REF]. When dealing with unbounded coefficients, recall that b has linear growth and is smooth, a possibility is to consider the optimal path associated with the deterministic controllability problem φu = b(u, φ u ) + ϕ u , u ∈ [s, t], φ s = x, φ t = y with ϕ ∈ L 2 ([s, t], R d ). This was the choice in [START_REF] Delarue | Density estimates for a random noise propagating through a chain of differential equations[END_REF] for a Lipschitz continuous b. The constants in the lower bound estimates obtained therein actually depend on the Lipschitz modulus b. We adopt here a slightly different strategy which only involves the mollified flow θ (1) but which will have the main advantage to provide constants that will again only depend on Θ and not on the smoothness of b, using thoroughly the controls established in Lemma 1.1. We now detail such a construction which is in some sense original though pretty natural.

From the scaling arguments of Lemma 2.9, we can assume without loss of generality that δ = 1, s = 0 and t = 1. Suppose |θ (1) 1,0 (x) -y| > 1 and let M be the smallest integer greater than 4e 2 ∇b1 ∞ |θ

(1) 1,0 (x) -y| 2 , i.e., M -1 4e 2 ∇b1 ∞ |θ (1) 1,0 (x) -y| 2 < M.
(2.29) Importantly, we recall from (1.9) that under (H σ α ) and (H b 0 ), ∇b 1 ∞ C(κ 1 ). Let

t j := j/M, j = 0, 1, • • • , M.
The important point for the proof is the following claim. Claim: Set ξ 0 := x and ξ M := y. There exist (M + 1)-points

ξ 0 , ξ 1 , • • • , ξ M such that |ξ j+1 -θ (1) tj+1,tj (ξ j )| 1 2 √ M , j = 0, 1, • • • , M -1. Indeed, let Q 1 := B 1/(2 √ M ) (θ (1)
t1,0 (x)) and recursively define for j = 2, • • • , M ,

Q j := z∈Qj-1 B 1/(2 √ M ) (θ (1) tj ,tj-1 (z)) = z : dist z, θ (1) tj ,tj-1 (Q j-1 ) 1/(2 √ M ) .
Letting κ := ∇b 1 ∞ and noting that (see (1.13)) by the previous induction method and noting that θ

e -κ/M |z -z | |θ (1) tj+1,tj (z) -θ (1) tj+1,tj (z )| e κ/M |z -z |, x θt 1 ,0(x) ξ1 ξ2 θt 2 ,t1 (ξ1) y θt M ,tM-1 (ξM-1) θ1,0(x) θt 2 ,0(x) = θt 2 ,t1 (θt 1 ,0(x)) √ Me -κ 2 e -κ/M √ M 1 2 √ M
(1) tj+1,tj • θ (1) tj ,0 (x) = θ (1)
tj+1,0 (x), we have

B je -(j-1)κ/M /(2 √ M ) (θ (1) tj ,0 (x)) ⊂ Q j , j = 1, 2, • • • , M.
Intuitively, the image of a ball with radius r under the flow θ (1) tj ,tj-1 contains a ball with radius e -κ/M r. In particular, by (2.29),

ξ M = y ∈ B √ M e -κ /2 (θ (1) 1 
,0 (x)) ⊂ B M e -(M -1)κ/M /(2 √ M ) (θ (1) 
t M ,0 (x)) ⊂ Q M .
The claim then follows. The idea of the construction is illustrated in Figure 1. Now let γ := 1/(2(e ∇b1 ∞ + 1)) and z 0 := x, z M +1 := y and Σ j := B γ/ √ M (ξ j ). From the previous claim, we have that for z j ∈ Σ j and z j+1 ∈ Σ j+1 ,

|θ (1) tj+1,tj (z j ) -z j+1 | |θ (1) tj+1,tj (z j ) -θ (1) tj+1,tj (ξ j )| + |θ (1) tj+1,tj (ξ j ) -ξ j+1 | + |ξ j+1 -z j+1 | e ∇b1 ∞ |z j -ξ j | + |θ (1) tj+1,tj (ξ j ) -ξ j+1 | + |ξ j+1 -z j+1 | γ(e ∇b1 ∞ + 1) √ M + 1 2 √ M = 1 √ M = t j+1 -t j .
This precisely means that the previous diagonal lower bound holds for p(t j , z j , t j+1 , z j+1 ). Thus, by the Chapman-Kolmogorov equation and (2.28), we have

p(0, x, 1, y) = R d • • • R d p(t 0 , z 0 , t 1 , z 1 ) • • • p(t M -1 , z M -1 , t M , z M )dz 1 • • • dz M -1 Σ1 • • • Σ M -1 p(t 0 , z 0 , t 1 , z 1 ) • • • p(t M -1 , z M -1 , t M , z M )dz 1 • • • dz M -1 (C 3 M d/2 ) M Σ1 • • • Σ M -1 dz 1 • • • dz M -1 = (C 3 M d/2 ) M (M -d/2 γ d |B 1 |) M -1 = C M 3 M d/2 (γ d |B 1 |) M -1 = M d/2 exp{M log(C 3 γ d |B 1 |)}/(γ d |B 1 |) C 4 exp{M log(C 3 γ d |B 1 |)} C 5 exp{-C 6 |θ (1) 1,0 (x) -y| 2 },
recalling the definition of M in (2.29) and that C 3 γ d |B 1 | 1 for the last inequality.

Estimates for the derivatives of the heat kernel with smooth coefficients

We insisted in the previous section on the fact that, even though we considered smooth coefficients, all our estimates for the two-sided Gaussian bounds were actually uniform w.r.t. Θ which only depends on parameters appearing in (H b β ) and (H σ α ). Our point of view is here different since we mainly want to derive some a priori bounds on the derivatives of the heat-kernel when the coefficient are smooth which will then serve in a second time, namely in the circular argument developed in Section 3, to prove that those estimates are actually again independent of the smoothness of the coefficients. Anyhow, in the current section, we fully exploit such a smoothness and obtain controls on the derivatives which do depend on the derivatives of b, σ. To this end, we restart from the representation (2.20) of the density and exploit the gradient estimate (2.4).

Proof of the main estimates

Theorem 2.12 (Controls on the derivatives of the heat kernel with smooth coefficients). Under (S), for j ∈ {1, 2}, there exist constants C j := C j Θ, κ j , λ j := λ j (Θ) > 0, such that |∇ j x p(s, x, t, y)| C j (ts) -j 2 g λj (s, x, t, y), |∇ y p(s, x, t, y)| C 1 (ts) -1 2 g λ1 (s, x, t, y).

Proof. (i) Let us first establish the estimates on the derivatives w.r.t. the backward variable x. Write from (2.20):

∇ j x p(s, x, t, y) = ∇ j x p 1 (s, x, t, y) + ∇ j x p ⊗ H (s, x, t, y).
From Lemma 2.4 it readily follows that

|∇ j x p 1 (s, x, t, y)| C j (t -s) -j 2 g λj (s, x, t, y).
For the other contribution recall that for u := s+t 2 ,

p ⊗ H(s, x, t, y) = t u E[H(r, X r,s (x), t, y)]dr + u s E[H(r, X r,s (x), t, y)]dr =: I 1 (x) + I 2 (x).
For I 1 , choosing p > 1 such that d+α-2 2p > d 2 -1, by (2.4) and Lemmas 2.6 and 2.5, we get

|∇ j x I 1 (x)| t u (r -s) -j/2 (E|H(r, X r,s (x), t, y)| p ) 1/p dr (2.30) = t u (r -s) -j/2 R d p(s, x, r, z)|H(r, z, t, y)| p dz 1/p dr (t -s) -j/2 t u (t -r) -1 p + α 2p + d 2p -d 2 R d g λ0 (s, x, r, z)g pλ1 (r, z, t, y)dz 1/p dr (t -s) -j/2 t u (t -r) -1 p + α 2p + d 2p -d 2 dr g 1/p λ2 (s, x, t, y) (t -s) -j/2 (t -s) 1-1 p + α 2p + d 2p -d 2 g
1/p λ2 (s, x, t, y) (ts) -j/2 g λ2/p (s, x, t, y).

To treat I 2 (x), we only consider j = 1 since the case j = 2 is similar. By the chain rule, we have

∇ x E[ H(r, X r,s (x), t, y) ] = E[ ∇ x H (r, X r,s (x), t, y) • ∇ x X r,s (x)],
and for all k ∈ {1, • • • , d},

∂ x k H(s, x, t, y) := tr(∂ x k a(s, x) • ∇ 2 x p 1 (s, x, t, y) + ∂ x k b(s, x) • ∇ x p 1 (s, x, t, y) + tr(a(s, x) -a(s, θ s,t (y))) • ∂ x k ∇ 2 x p 1 (s, x, t, y) + (b(s, x) -b(s, θ s,t (y))) • ∂ x k ∇ x p 1 (s, x, t, y).
Thus by Lemma 2.4, (2.1) and (2.23), it is easy to see that for some λ 3 > 0,

|∇ x H(s, x, t, y)| (t -s) -1 g λ3 (s, x, t, y).
We carefully emphasize that the constant implicitly associated with the symbol here does depend on the smoothness of the coefficients. Using the same argument as above, from the Hölder inequality, one sees that for p = d d-1 ,

|∇ x I 2 (x)| u s (E|(∇ x H)(r, X r,s (x), t, y)| p ) 1/p dr u s
(tr) -1 (Eg p λ3 (r, X r,s (x), t, y)) 1/p dr (ts) -1 2 g λ4 (s, x, t, y).

We thus obtain the gradient estimate in the variable x.

(ii) Let us now turn to the gradient estimate w.r.t. y. We restart from (2.17) differentiating first w.r.t. y. This can be done for arbitrary freezing parameters (τ, ξ). Write:

∇ y p(s, x, t, y) = ∇ y p (τ,ξ) (s, x, t, y) + t s R d
p(s, x, r, z)A (τ,ξ) r,z ∇ y p (τ,ξ) (r, z, t, y)dzdr

= -∇ x p (τ,ξ) (s, x, t, y) - t s R d p(s, x, r, z)A (τ,ξ) r,z ∇ z p (τ,ξ) (r, z, t, y)dzdr, (2.31) 
where we have used the explicit expression (2.8) for the second equality. Still letting u = s+t 2 and taking (τ, ξ) = (t, y), we can split

∇ y p(s, x, t, y) = -∇ x p 1 (s, x, t, y) -J 1 (y) -J 2 (y),
where

J 1 (y) := u s R d p(s, x, r, z)A (t,y) r,z ∇ z p 1 (r, z, t, y)dzdr, J 2 (y) := t u R d
p(s, x, r, z)A (t,y) r,z ∇ z p 1 (r, z, t, y)dzdr.

For J 1 (y), from the Gaussian upper-bound of Theorem 2.11, (2.23) and Lemma 2.5 (see also Lemma 2.6), we have

|J 1 (y)| u s (t -r) -3/2
R d g λ0 (s, x, r, z)g λ5 (r, z, t, y)dzdr (ts) -1/2 g λ6 (s, x, t, y).

For J 2 , integrating by parts and recalling (2.14) and (2.15), we have

|J 2 (y)| t u R d ∇ z p(s, x, r, z)A (t,y) r,z p 1 (r, z, t, y)dz dr + t u R d p(s, x, r, z)∇ z b • ∇ z p 1 (r, z, t, y)dz dr + t u R d
p(s, x, r, z)∇ z a • ∇ 2 z p 1 (r, z, t, y)dz dr =: J 21 (y) + J 22 (y) + J 23 (y).

For J 21 (y), recalling from (2.18) that A (t,y) r,z p 1 (r, z, t, y) = H(r, z, t, y), we derive from (2.4) and as in (2.30) that

J 21 (y) = t u R d p(s, x, r, z)∇ z H(r, z, t, y)dz dr = t u |E(∇ z H)(r, X r,s (x), t, y)| dr t u (r -s) -1/2 (E|H(r, X r,s (x), t, y)| p ) 1/p dr (t -s) -1/2 g λ7 (s, x, t, y).
For J 22 (y), from the upper bound in Theorem 2.11 and (2.23), we have

J 22 (y) t u (t -r) -1/2 R d g λ0 (s, x, r, z)g λ1 (r, z, t, y)dzdr (t -s) -1/2 g λ8 (s, x, t, y). For J 23 , since |∇ 2 z p 1 (r, z, t, y)| has the singularity (t -r) -1 , noting that ∇ z a • ∇ 2 z p 1 = ∇ 2 z (∇ z a • p 1 ) -∇ 3 z a • p 1 -∇ 2 z a • ∇ z p 1 , as 
above, by (2.4) we still have J 23 (y) (ts) -1/2 g λ9 (s, x, t, y).

Combining the above estimates, we obtain the derivative estimate in y. The proof is complete.

Remark 2.13. We point out that Theorem 2.12 anyhow has some interest by itself. A careful reading of the proof shows that actually the statements about the derivatives w.r.t. x hold true if additionally to (H σ α ), (H b β ), the coefficients b, σ are twice continuously differentiable with bounded derivatives and that the second order derivatives are themselves Hölder continuous. In this framework, the Duhamel representation (2.20) coupled to the heat-kernel estimates of Theorem 2.11 provides an alternative approach to the full Malliavin calculus viewpoint developed in [START_REF] Gobet | LAN property for ergodic diffusions with discrete observations[END_REF].

Proof of Main Theorem

In the following proof, the final time horizon T > 0 is fixed. We first work under the assumptions (S) aiming at obtaining constants in the estimates of Section 2.3 that only depend on Θ := (T, α, β, κ 0 , κ 1 , d) introduced in (1.14). To this end, we introduce for δ > 0 the SDE (2.3) with diffusion coefficient σ(t, x) = δI d×d and denote by pδ the corresponding heat kernel. By the lower bound estimate proven in Theorem 2.11 and scaling techniques similar to those presented in Lemma 2.9, it holds that for any λ > 0, there exists δ := δ(λ) large enough and Cδ > 0, λ depending on Θ = (T, β, δ, κ 1 , d) such that for all (s, t) ∈ D T 0 and x, y ∈ R d , C-1 δ g λ (s, x, t, y) pδ (s, x, t, y) Cδ g λ (s, x, t, y).

We carefully mention that the Chapman-Kolmogorov equation satisfied by pδ plays a key role in the following proof when we use a Gronwall type argument. This important property had already been successfully used in [START_REF] Pascucci | On stochastic Langevin and Fokker-Planck equations: the two-dimensional case[END_REF] to derive Aronson type estimates for some degenerate SPDEs. We can as well refer to [START_REF] Pascucci | The parametrix method for parabolic SPDEs[END_REF] for other applications of the parametrix method to non degenerate parabolic SPDEs. Importantly, with the notations of Section 2.1, we will here choose λ, and then

δ := δ(λ) s.t. for all γ ∈ [0, 1], (s, t) ∈ D T 0 , x, y ∈ R d and j ∈ {0, 1, 2}, |θ t,s (x) -y| γ |∇ j y p 0 (s, x, t, y)| + |x -θ s,t (y)| γ |∇ j x p 1 (s, x, t, y)| C δ (t -s) γ 2 -j 2 pδ (s, x, t, y), (3.2) 
where C δ here only depends on Θ = (T, α, β, κ 0 , κ 1 , d) and δ, γ.

Without further declaration, we shall fix from now on a δ such that (3.2) holds. From the definition of H in (2.18) and the proof of Lemma 2.6, we also derive from this choice of δ that, under the sole assumptions (H σ α ) and (H b β ), there exists

C := C(Θ) s.t. for all (s, t) ∈ D T 0 , x, y ∈ R d : |H(s, x, t, y)| C(t -s) -1+ α 2 pδ (s, x, t, y). (3.3) 
For simplicity we will write from now on p = pδ . In particular, for all (s, t)

∈ D T 0 , x, y ∈ R d , r ∈ [s, t]: R d p(s, x, r, z)p(r, z, t, y)dz = p(s, x, t, y). (CK) 
For the rest of section, we use the convention that all the constants appearing below only depend on Θ = (T, α, β, κ 0 , κ 1 , d). Again, we have shown in the previous section that for smooth coefficients the expected bounds for the derivatives hold. The constants in Theorem 2.12 however do depend on the derivatives of the coefficients, since we use the gradient estimate (2.4). We aim here at proving that we can obtain the same type of estimates as in Theorem 2.12 under (H σ α ), (H b β ) and (2.1) but for constants that only depend on Θ. This is the purpose of Sections 3.1 to 3.3. We will then eventually derive in Section 3.4 the main results of Theorem 1.2 thanks to some compactness arguments (Ascoli-Arzelà theorem) thanks to the uniformity of the controls obtained for mollified parameters.

First order derivative estimates with respect to the backward variable x

Without loss of generality we shall assume s = 0 and for t ∈ (0, T ], we define

f 1 (t) := sup x,y |∇ x p(0, x, t, y)|/p(0, x, t, y).
From Theorem 2.12 and (3.1), we know that

T 0 f 1 (t)dt < ∞.
By the forward representation formula (2.20), we have

|∇ x p(0, x, t, y)| |∇ x p 1 (0, x, t, y)| + |∇ x p| ⊗ |H|(0, x, t, y).
Observe first that, from Lemma 2.4 and (3.2) |∇ x p 1 (0, x, t, y)| t -1/2 g λ (0, x, t, y) t -1/2 p(0, x, t, y).

Secondly, (3.3) yields

|∇ x p| ⊗ |H|(0, x, t, y) t 0 R d f 1 (r)p(0, x, r, z)|H(r, z, t, y)|dzdr t 0 f 1 (r)(t -r) -1+ α 2 R d
p(0, x, r, z)p(r, z, t, y)dzdr

= t 0 f 1 (r)(t -r) -1+ α 2 dr p(0, x, t, y),
using also (CK) for the last identity. Thus,

f 1 (t) t -1 2 + t 0 (t -r) -1+ α 2 f 1 (r)dr.
By the Volterra type Gronwall inequality, we obtain

f 1 (t) t -1 2 ⇒ |∇ x p(0, x, t, y)| t -1 2 p(0, x, t, y). (3.4) 

Second order derivative estimates with respect to the backward variable x

We assume for this section that (H b β ) holds for some β ∈ (0, 1]. It is crucial to take here β > 0. Below we fix t ∈ (0, T ] and define for s < t

f 2 (s) := (t -s) • sup x,y |∇ 2
x p(s, x, t, y)|/p(s, x, t, y).

By Theorem 2.12 and (3.1), we have sup

s t f 2 (s) < ∞.
To derive the estimate of the second order derivative of the heat kernel, we use the backward Duhamel representation (2.12). And for fixed freezing parameters (τ, ξ) we differentiate twice w.r.t. x to derive:

∇ 2 x p(s, x, t, y) = ∇ 2 x p (τ,ξ) (s, x, t, y) + t s R d ∇ 2
x p (τ,ξ) (s, x, r, z)A (τ,ξ) r,z p(r, z, t, y)dzdr = ∇ 2 y p (τ,ξ) (s, x, t, y)

+ t s R d ∇ 2
z p (τ,ξ) (s, x, r, z)A (τ,ξ) r,z p(r, z, t, y)dzdr, (3.6) using again the explicit expression (2.8) for the second equality. Let us now denote for a parameter ε > 0 that might depend on r to be specified later on,

A ε,(τ,ξ) r,z := a ε (r, z) -a ε (r, θ r,τ (ξ)), Ā(τ,ξ) r,z := A (τ,ξ) r,z -A ε,(τ,ξ) r,z , (3.7) 
where similarly to (1.8), a ε (r, z) = a(r, •) * ρ ε (z). Choosing the freezing point (τ, ξ) = (s, x) and setting as well p 0 (s, x, t, y) = p (s,x) (s, x, t, y), u := (t + s)/2, we decompose the expression in (3.6) as follows:

∇ 2 x p(s, x, t, y) =:

5 i=1 I i (s, x, t, y), (3.8) 
where I 1 (s, x, t, y) := ∇ 2 y p 0 (s, x, t, y) and 

I 2 (s, x, t, y) := u s R d ∇ 2 z p 0 (s, x, r, z)tr(A (s,x) r,z • ∇ 2 z p(
+ t u R d ∇ 2 z p 0 (s, x, r, z) • |∇ z A ε,(s,x) r,z | • |∇ z p(r, z, t, y)|dzdr.
Note that by the property of convolutions,

|∇ z A ε,(s,x) r,z | ε -1+α , |A ε,(s,x) r,z | |z -θ r,s (x)| α , | Āε,(s,x) r,z | ε α .
In particular, taking ε = (tr) 

• (rs) 

α 2 • p(r, z, t, y) (t -r) 1 2 dzdr + t u R d p(s, x, r, z) r -s • (t -r) α 2 • p(r,
β 2 + (r -s) 1 2 (r -s)(t -r) 1 2
dr p(s, x, t, y)(ts) -1 .

Combining the above estimates for the (I j ) j∈{1,••• ,5} , we obtain from (3.8) and (3.5) that:

f 2 (s) 1 + t s (r -s) -1+ α 2 f 2 (r)dr + t s (t -r) -1+ α 2 f 2 (r)dr.
Finally, from the Volterra type Gronwall inequality, we obtain sup s∈[0,t] f 2 (s) 1 ⇒ |∇ 2 x p(s, x, t, y)| (ts) -1 p(s, x, t, y).

(3.9)

First order derivative estimate in y

We assume for this section that (H b β ) holds for some β > 0 and the gradient of the diffusion coefficient σ satisfies (1.18). Fix s > 0. For t ∈ (s, T ], we define f 3 (t) := sup x,y |∇ y p(s, x, t, y)|/p(s, x, t, y).

(3.10) By Theorem 2.12 and (3.1) we know that

T 0 f 3 (t)dt < ∞.
In (2.31), taking (τ, ξ) = (t, y) and recalling the notations of (2.15) and p 1 (s, x, t, y) = p (t,y) (s, x, t, y), by the integration by parts, we have 3.4 Proof of Theorem 1.2

∇ y p(s, x, t, y) = -∇ x p 1 (s,
Now we turn to the notations of the beginning of Section 2 and keep the index ε, associated with the spatial mollification of the coefficients. Thus, let p ε be the corresponding heat kernel and X ε t,s (x) the solution of SDE (2.3) corresponding to b ε and σ ε . It is well known, see e.g. Theorem 11.1.4 in [START_REF] Stroock | Multidimensional diffusion processes[END_REF], that under (H b β ) and (H σ α ),

for any f ∈ C ∞ c (R d ) lim ε→0 Ef (X ε t,s (x)) = Ef (X t,s (x)).
Moreover, from Theorem 2.11 we have the following uniform estimate: there exist constants λ 0 , C 0 > 0 depending only on Θ such that for all ε ∈ (0, 1),

C -1 0 g λ -1
0 (s, x, t, y) p ε (s, x, t, y) C 0 g λ0 (s, x, t, y).

Similarly, we derive from (3.4), (3.9) and (3.12) that under (H σ α ) and (H b 0 ),

sup ε |∇ x p ε (s, x, t, y)| C 1 (t -s) -1/2 g λ1 (s, x, t, y), (3.13) 
and under (H σ α ) and In particular, for nonnegative measurable function f , we eventually derive

(H b β ) with β ∈ (0, 1), j ∈ {1, 2}, sup ε |∇ j x p ε (s, x, t, y)| C 2 (t -s) -j/2 g λ2 (s, x, t, y), (3.14 
C -1 0 R d g λ -1 0 (s, x, t, y)f (y)dy Ef (X t,s (x)) C 0 R d g λ0 (s, x, t, y)f (y)dy,
which implies that X t,s (x) has a density p(s, x, t, y) having lower and upper bound as in (1.15). This proves point (i) of the theorem. Moreover, for each s < t, we now aim at proving that

(x, y) → ∇ x p ε (s, x, t, y) is equi-continuous on any compact subset of R d × R d , ( C 1 ) 
and

(x, y) → ∇ 2 x p ε (s, x, t, y) is equi-continuous on any compact subset of R d × R d , (C 2 ) (x, y) → ∇ y p ε (s, x, t, y) is equi-continuous on any compact subset of R d × R d . (C 3 )
Assume for a while that such a continuity condition holds. Then, from the Ascoli-Arzelà theorem, one can find a subsequence ε k such that for each x, y ∈ R d , ∇ j x p ε k (s, x, t, y) → ∇ j x p(s, x, t, y), j = 0, 1, 2, ∇ y p ε k (s, x, t, y) → ∇ y p(s, x, t, y).

The gradient and second order derivative estimates follow, under the previously recalled additional assumptions when needed, from (3.13), (3.14) and (3.15). This completes the proof of points (ii) to (iv) of the theorem up to the proof of (C 1 ), (C 2 ) and (C 3 ). This equicontinuity property is proved in Appendix A.

and for some α, β ∈ (0, 1], κ j-2 1,

|∇ j-2 σ(t, x) -∇ j-2 σ(t, y)| κ j-2 |x -y| α , |∇ j-2 b(t, x) -∇ j-2 b(t, y)| κ j-2 |x -y| β , x, y ∈ R d ,
then we may derive |∇ j x p(s, x, t, y)| (ts) -j 2 p(s, x, t, y).

On the other hand, the derivative with respect to the forward variable ∇ j-1 y requires an additional assumption on ∇ j-1 σ. Again, assuming that for some α ∈ (0, 1), |∇ j-1 σ(t, x) -∇ j-1 σ(t, y)| κ j-1 |x -y| α for any x, y ∈ R d , then we may derive |∇ j-1 y p(s, x, t, y)| (ts) -j-1 2 p(s, x, t, y).

A Proof of the equicontinuity (C 1 ), (C 2 ) and (C 3 )

Importantly, we mention that we drop in this section the subscripts and superscripts in ε for notational convenience. However, it must be recalled that we aim at proving some equicontinuity properties for the densities associated with the SDE (2.3) with mollified coefficients and their derivatives.

In this section we devote to proving the following Hölder continuity of the derivatives.

Lemma A.1. Suppose that (H σ α ) and (H b β ) hold. Let T > 0 and γ 1 ∈ (0, 1) and γ 2 ∈ (0, α) and γ 3 ∈ (0, α∧β).

(C 1 ) There exist constants C, λ > 0 depending only on Θ, γ 1 , γ 2 such that for all (s, t) ∈ D T 0 and x, x , y, y ∈ R d ,

|∇ x p(s, x, t, y) -∇ x p(s, x , t, y)| C |x -x | γ1 (t -s) (1+γ1)/2 g λ (s, x, t, y) + g λ (s, x , t, y) |∇ x p(s, x, t, y) -∇ x p(s, x, t, y )| C |y -y | γ2 (t -s) (1+γ2)/2 g λ (s, x, t, y) + g λ (s, x, t, y ) . (C 2 ) If β ∈ (0, 1], there exist constants C, λ > 0 depending only on Θ such that for all (s, t) ∈ D T 0 and x, x , y ∈ R d , |∇ 2 x p(s, x, t, y) -∇ 2 x p(s, x , t, y)| C |x -x | (t -s) 3 2 + |x -x | α + |x -x | β t -s (A.1)
× g λ (s, x, t, y) + g λ (s, x , t, y) ,

|∇ 2 x p(s, x, t, y) -∇ 2 x p(s, x, t, y )| C |y -y | γ2 (t -s) 1+ γ 2 2 + |y -y | α + |y -y | β t -s
× g λ (s, x, t, y) + g λ (s, x , t, y) .

(C 3 ) If σ also satisfies (1.18) and β ∈ (0, 1), then there exist constants C, λ > 0 depending only on Θ, γ 1 , γ 3 such that for all (s, t) ∈ D T 0 and x, x , y, y ∈ R d ,

|∇ y p(s, x, t, y) -∇ y p(s, x, t, y )| C |y -y | γ3 (t -s) (1+γ3)/2 g λ (s, x, t, y) + g λ (s, x, t, y ) , |∇ y p(s, x, t, y) -∇ y p(s, x , t, y)| C |x -x | γ1 (t -s) (1+γ1)/2 g λ (s, x, t, y) + g λ (s, x, t, y ) .
Proof. We only prove (C 2 ) and focus on the sensitivity w.r.t the variable x. The sensitivity w.r.t. the variable y could be established similarly. Also, the inequalities in conditions (C 1 ) and (C 3 ) could be shown more directly.

First of all, if |x -x | 2 > (ts)/4, then by (3.14), we clearly have |∇ 2

x p(s, x, t, y) -∇ 2 x p(s, x , t, y)| (ts) -1 g λ (s, x, t, y) + g λ (s, x , t, y) r.h.s. of (A.1).

Next we restrict to the so-called diagonal case |x -x | 2 (ts)/4.

For any fixed freezing point (τ, ξ) and r ∈ (s, t), by (2.12), one sees that p(s, x, t, y) = P (τ,ξ) s,r p(r, •, t, y)(x) + r s R d p (τ,ξ) (s, x, u, z)A (τ,ξ) u,z p(u, z, t, y)dzdu,

where, with the notations of (2.7), P (τ,ξ) s,r f (x) = R d p (τ,ξ) (s, x, r, z)f (z)dz.

Let us now differentiate w.r.t. r. We obtain for all (τ, ξ) ∈ [0, T ] × R d : 0 = ∂ r [ P (τ,ξ) s,r p(r, •, t, y)(x)] + R d p (τ,ξ) (s, x, r, z)A (τ,ξ) r,z p(r, z, t, y)dz.

(A.2)

Fix s 0 ∈ (s, t). Now, integrating (A.2) between s 0 and t and taking ξ = ξ , we get 0 = p (τ,ξ ) (s, x, t, y) -P (τ,ξ ) s,s0 p(s 0 , •, t, y)(x) + t s0 dr R d p (τ,ξ ) (s, x, r, z)A (τ,ξ ) r,z p(r, z, t, y)dz.

Moreover, integrating (A.2) between s and s 0 , we obtain 0 = P (τ,ξ) s,s0 p(s 0 , •, t, y)(x) -p(s, x, t, y) + s0 s dr R d p (τ,ξ) (s, x, r, z)A (τ,ξ) r,z p(r, z, t, y)dz;

Summing up the two equalities we get the following new representation for p(s, x, t, y): p(s, x, t, y) = p (τ,ξ ) (s, x, t, y) + P (τ,ξ) s,s0 -P (τ,ξ ) s,s0

p(s 0 , •, t, y)(x)

+ t s0 dr R d
p (τ,ξ ) (s, x, r, z)A (τ,ξ ) u,z p(r, z, t, y)dz

+ s0 s dr R d
p (τ,ξ) (s, x, r, z)A (τ,ξ) r,z p ε (r, z, t, y)dz, which, together with (2.12) by taking x = x and ξ = ξ there, yields p(s, x, t, y) -p(s, x , t, y) = p (τ,ξ ) (s, x, t, y) -p (τ,ξ ) (s, x , t, y) + P (τ,ξ) s,s0 -P (τ,ξ ) s,s0

p(s 0 , •, t, y)(x) + ∆ τ,ξ ,ξ diag (s, t, x, x , y) + ∆ τ,ξ,ξ off-diag (s, t, x, x , y), (A.3) where ∆ τ,ξ ,ξ diag (s, t, x, x , y) = t s0 dr R d p (τ,ξ ) (s, x, r, z) -p (τ,ξ ) (s, x , r, z) A (τ,ξ ) r,z p(r, z, t, y)dz and ∆ τ,ξ,ξ off-diag (s, t, x, x , y) = s0 s dr R d p (τ,ξ) (s, x, r, z)A (τ,ξ) r,z p(r, z, t, y) -p (τ,ξ ) (s, x , r, z)A (τ,ξ ) r,z p(r, z, t, y) dz.

Observe that for any freezing couple (τ, ξ) and h ∈ R d , ∇ 2 x p (τ,ξ) (s, x + h, t, y) = ∇ 2 y p (τ,ξ) (s, x, t, yh). After differentiating twice in x for both sides of (A.3) and taking τ = s and ξ = x, ξ = x , we obtain ∇ 2

x p(s, x, t, y) -∇ 2 x p(s, x , t, y) = where, with the notation p 0 (s, x, t, y) = p (s,x) (s, x, t, y), I 1 (s, t, x, x , y) := ∇ 2 y p 0 (s, x , t, y + xx) -∇ 2 y p 0 (s, x , t, y), I 2 (s, t, x, x , y) := R d ∇ 2 z ( p (s,x) (s, x, s 0 , z) -p (s,x ) (s, x, s 0 , z))p(s 0 , z, t, y)dz, ∇ 2 z p 0 (s, x, r, z)A (s,x) r,z p(r, z, t, y) -∇ 2 z p 0 (s, x , r, z)A (s,x ) r,z p(r, z, t, y) dz. 

t,s (x) -y), (A.4) using Lemma 1.1 for the last step. On the other hand, we also have ∇ j y p 0 (s, x, t, y + h) (ts) -j/2 g λ (ts, θ

t,s (x) -y).

Thus, by interpolation, we get for any γ ∈ (0, 1), ∇ j y p 0 (s, x, t, y + h) -∇ j y p 0 (s, x, t, y) |h| γ (ts) -(j+γ)/2 g λ (ts, θ

t,s (x) -y).

Hence, |I 1 (s, t, x, x , y)| |x -x | γ (ts) -1-γ 2 g λ (s, x , t, y).

To treat the remaining terms, we take s 0 = s + |x -x | 2 . We have the following claim: p (s,x) (s, x, s 0 , y) -p (s,x ) (s, x, s 0 , y) |x -x | α + |x -x | β g λ (s, x, s 0 , y). (g λ1 (s, x, r, z) + g λ1 (s, x , r, z))g λ2 (r, z, t, y) (rs) 

  derived from (2.3), when freezing the spatial coefficients along the flow θ •,τ (ξ), where θ •,τ (ξ) is the unique solution of ODE (1.11) corresponding to b. It is clear that, for any choice of freezing couple (τ, ξ), X (τ,ξ) t,s has a Gaussian density
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For I 3

 3 , by (A.4) and using arguments completely similar to those of Section 3.2, we have|I 3 (s, t, x, x , y)| |x -x | α (ts) -1 g λ (s, x, t, y).

Finally, for I 4

 4 , from (3.2), we have|I 4 (s, t, x, x , y)| s0 s R d

  ByLemma 2.3, (2.16) and (3.2), it is easy to see that |I 1 (s, x, t, y)| (ts) -1 g λ (ts, θ t,s (x) -y) (ts) -1 p(s, x, t, y).

	For I 2 , by (1.6) and again (3.2), we have	
	|I 2 (s, x, t, y)|	s	u	R d	g λ (r -s, θ r,s (x) -z) r -s	|z -θ r,s (x)| α |∇ 2 x p|(r, z, t, y))dzdr
		s	u	(r -s) α/2 f 2 (r) (r -s)(t -r) R d	p(s, x, r, z)p(r, z, t, y)dzdr
		(t -s) -1 p(s, x, t, y)	t	(r -s) -1+ α 2 f 2 (r)dr.
							s
	For I 3 , integrating by parts, we have		
				t		
	|I 3 (s, x, t, y)|		u R d	∇ 3 z p 0 (s, x, r, z) • |A ε,(s,x) r,z	| • |∇ z p(r, z, t, y)|dzdr
							r, z, t, y))dzdr
				t		
	I 3 (s, x, t, y) :=	u R d	∇ 2 z p 0 (s, x, r, z)tr(A ε,(s,x) r,z	• ∇ 2 z p(r, z, t, y))dzdr
	I 4 (s, x, t, y) :=	t u R d	∇ 2 z p 0 (s, x, r, z)tr( Āε,(s,x) r,z	• ∇ 2 z p(r, z, t, y))dzdr
				t		
	I 5 (s, x, t, y) :=	s		R d	∇ 2 z p 0 (s, x, r, z)B (s,x) r,z • ∇ z p(r, z, t, y)dzdr.

  1/2 , by Lemma 2.3, (2.16), (3.2) and using as well the bound (3.4) on the gradient established in the previous section, we obtain

	|I 3 (s, x, t, y)|	t	p(s, x,
		u R d	

  x, t, y) + Combining the above above estimates for the (J i ) i∈{1,••• ,4} , we obtain from (3.11) and (3.10) that

					f 3 (t) (t -s) -1 2 +	t	f 3 (r)(t -r) -1+ α 2 dr,
								s
	which in turn yields	f 3 (t) (t -s) -1 2 ⇒ |∇ y p(s, x, t, y)| (t -s) -1 2 p(s, x, t, y).	(3.12)
								t
								s	R d	∇ z p(s, x, r, z)tr(A (t,y) r,z • ∇ 2 z p 1 )(r, z, t, y)dzdr
					t		
			+	s	R d	p(s, x, r, z)tr((∇ z a)(r, z) • ∇ 2 z p 1 )(r, z, t, y)dzdr
					t			4
			-	s	R d	p(s, x, r, z)B (t,y) r,z • ∇ 2 z p 1 (r, z, t, y)dzdr =:	i=1	J i (s, x, t, y).	(3.11)
	For J 1 , we readily get from (3.2)		
						|J 1 (s, x, t, y)| (t -s) -1 2 p s, x, t, y .
	For J 2 , using again (3.2) and (3.10) gives:
	|J 2 (s, x, t, y)|		t	|∇ z p(s, x, r, z)| • (t -r) -1+ α 2 p(r, z, t, y)dzdr
							s	R d
							t	f 3 (r)	p(s, x, r, z) • (t -r) -1+ α 2 p(r, z, t, y)dzdr
							s	R d
						p(s, x, t, y)	t	f 3 (r)(t -r) -1+ α 2 dr.
								s
	For J 3 , we further write						
		t					
	J 3 (s, x, t, y) =	s	R d	p(s, x, r, z)tr ((∇ z a)(r, z) -(∇ z a)(r, θ r,t (y))) • ∇ 2 z p 1 (r, z, t, y)dzdr
			t				
		+	s		R d	p(s, x, r, z)tr (∇ z a)(r, θ r,t (y)) • ∇ 2 z p 1 (r, z, t, y)dzdr
	=: J 31 (s, x, t, y) + J 32 (s, x, t, y).
	For J 31 , as above, by (3.2) we have	
	|J 31 (s, x, t, y)|			t		p(s, x, r, z) • (t -r)	α 2 -1 p(r, z, t, y)dzdr p(s, x, t, y).
						s	R d
	For J 32 , by the integration by parts again, we derive
								t
	|J 32 (s, x, t, y)|		|∇ z p(s, x, r, z)| • |∇ z p 1 (r, z, t, y)|dzdr
								s	R d
								t	f 3 (r)	p(s, x, r, z) • (t -r) -1 2 p(r, z, t, y)dzdr
								s	R d
							p(s, x, t, y)	t	f 3 (r)(t -r) -1 2 dr.
								s

For J 4 , we derive similarly to the term J 31 that |J 4 (s, x, t, y)| p(s, x, t, y).

  Note that by Lemma 2.3, for j ∈ N and h ∈ R d with |h| 2 (ts)/4, ∇ j y p 0 (s, x, t, y + h) -∇ j y p 0 (s, x, t, y) |h| sup∈[0,1]∇ j+1 y p 0 (s, x, t, y + h)|h|(t -s) -(j+1)/2 sup ∈[0,1] g λ (ts, θ t,s (x) + hy)|h|(t -s) -(j+1)/2 g λ (ts, θ

Acknowledgment

Research of S. Menozzi is funded by the Russian Academic Excellence Project '5-100'. Research of X. Zhang is funded by NNSFC grant of China (No. 11731009) and the DFG through the CRC 1283 "Taming uncertainty and profiting from randomness and low regularity in analysis, stochastics and their applications".

Extension to higher order derivatives

We explain here how the estimates (1.16), (1.17), (1.19) can be extended for higher order derivatives in our analysis. We claim that under (S) the a-priori bounds of Theorem 2.12 can be obtained for any j ∈ N, using the same techniques based on the Duhamel representation of the density and (2.4). On the other hand the circular arguments used in Section 3 can be repeated as well, provided that the coefficients are smooth enough.

For instance, let us assume (S) to be in force; assume as well that ∇σ ∞ + ∇b ∞ < ∞ and for some α, β ∈ (0, 1], κ 2 1,

We aim here at proving that we can obtain bounds on the third order derivatives which only depend on (H σ 1 ), (H b 1 ) and the constants in (4.1). Namely, we want to illustrate a kind of parabolic bootstrap property, i.e. in (4.1) we give some Hölder conditions on the first derivatives of the coefficients which together with the assumptions (H σ 1 ), (H b 1 ) lead to a uniform control of the third order derivatives. As in (3.6), for the choice of the freezing parameters (τ, ξ) = (s, x) and recalling p 0 (s, x, t, y) = p (s,x) (s, x, t, y), we have the following representation for the derivatives of order three: 

) • ∇ 2 z p(r, z, t, y) dzdr

When r ∈ [u, t], (rs) -3 2 (ts) -3 2 is not singular. Therefore we may control G 1 similarly to the terms I 3 and I 4 appearing in Section 3.2, owing to the fact that the upper bound on ∇ 2 z p is already available at this point.

When r ∈ [s, u], then (rs) -3 2 is indeed singular. Thus, to control G 2 the point is precisely to exploit the regularity of the coefficients and perform an integration by parts to balance the singularity. We write Then, exploiting the uniform bounds for the derivatives of order lower or equal than 2 obtained in Section 3, we eventually derive

which yields the desired estimate for ∇ 3 x p. In the same manner, starting from the Duhamel expansion (2.17), and assuming in addition that ∇ 2 σ ∞ < ∞ and |∇ 2 σ(t, x) -∇ 2 σ(t, y)| κ 3 |x -y| α for some α ∈ (0, 1) we could derive |∇ 2 y p(s, x, t, y)| (ts) -1 p(s, x, t, y). A careful reading of the proof suggests that the above arguments may be repeated for any derivative of order j > 3 in the backward variable x as soon as we have appropriate regularity assumptions on ∇ j-2 σ and ∇ j-2 b. More precisely, assuming that