
Bridging the Gap between Formal Verification and
Schedulability Analysis: The Case of Robotics

Mohammed Foughalia, Pierre-Emmanuel Hladikb

aUniversité Grenoble Alpes, CNRS, VERIMAG, Grenoble, France
bLAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France

Abstract

The challenges of deploying robots and autonomous vehicles call for further efforts
to bridge the gap between the robotics, the real-time systems and the formal methods
communities. Indeed, with robots being more and more involved in costly missions
and contact with humans, a rigorous formal verification of their behavior in the pres-
ence of various real-time constraints is crucial. In order to increase our trust in its
results, such verification should be carried out on models that are as close as possible
to reality, and thus take into account hardware and OS specificities such as the number
of cores provided by the robotic platform and the scheduling policy. In this paper, we
propose a novel binary-search-inspired technique that allows to extend timed automata
models of robotic specifications with dynamic-priority schedulers. Given a number of
cores, the extended models can then be checked against various real-time and behav-
ioral properties, including schedulability, within the same model checking framework.
Our technique is implemented in an automatic translation from a robotic framework to
UPPAAL, and evaluated on a real robotic case study, where it shows a significant gain
in scalability as opposed to the counting technique used in the literature.

1. Introduction

In robotics, schedulability analysis is important as it provides answers on the de-
ployability of an application given a hardware platform, a scheduling policy and some
real-time requirements (e.g. hard or weakly hard real-time [7]). However, such analysis
needs to be consolidated with the verification of other important behavioral and real-
time properties like liveness, bounded response and safety. This need is flagrant in,
e.g. mixed-criticality software, where some tasks are allowed to exceed their deadlines
in which case some lower criticality jobs can be dropped (see for example [29]). Du-
ally, while formal verification covers a wide range of properties, it classically abstracts
away important hardware-software settings (e.g. number of cores, scheduling policy).

Email address: mohammed.foughali@univ-grenoble-alpes.fr (Mohammed Foughali)

This simplification renders verification results valid only if all tasks run in parallel at
all times, which is seldom a realistic assumption.

Thus, bridging the gap between formal verification and schedulability analysis, and
in a broader sense, between the formal methods and the real-time systems communities,
would be of a great benefit to practitioners and researchers. One could imagine a unified
framework where schedulability, but also other behavioral and real-time properties can
be verified, on a model that is faithful to both the underlying robotic specification and
the characteristics of the OS and the robotic platform. This is however very difficult
in practice. For instance, theoretical results on schedulers are difficult to exploit in
the robotic context given the complex model of tasks characterized by, for instance,
a low-level fine-grain concurrency at the functional layer, where components directly
interact with sensors and actuators (details in Sect. 3.1). Similarly, enriching formal
models with scheduling policies usually penalizes the scalability of their verification,
e.g. by means of model checking, even in non-preemptive settings. As an example,
non-preemptive Earliest Deadline First scheduler (EDF) [27, 46] requires knowing the
waiting time of tasks in order to compute their priorities. Model checking frameworks
are hostile to this kind of behavior: UPPAAL [6], for instance, does not allow reading
the value of a clock (to capture waiting time), which requires using counting methods
that create further transitions in the model [26], leading to unscalable verification in the
context of complex robotic systems.

In this paper, we propose a novel approach that allows schedulability analysis and
formal verification of other properties within the same framework. We transform cap-
turing waiting times from a counting problem to a search problem, which we solve
using a binary-search-inspired technique. Integrated within a template, this technique
allows us to automatically obtain, from functional robotic specifications, scalable for-
mal models enriched with dynamic-priority cooperative schedulers. Our contribution
is thus threefold: we (i) propose a novel approach for the general problem of captur-
ing, at the model level, the value of time elapsed between some events, (ii) enable
scalable model checking of robotic specifications against various behavioral and real-
time properties, including schedulability, while taking into account hardware- and OS-
related specificities and (iii) automatize the process so the formal models are obtained
promptly from any robotic specification with no further modeling efforts. In addition,
we provide a means of optimizing verification results based on counterexample analy-
sis. We pay a particular attention to the readability of this paper by a broad audience in
the different communities of robotics, formal methods and real-time systems. In that
regard, we adopt a level of vulgarization with simple mathematical notions, together
with sufficient references for further readings.

The rest of this paper is organized as follows. First, we propose a novel search tech-
nique that ensures alleviating the effect of modeling schedulers on scalability (Sect. 2).
Then, in Sect. 3, we apply our search technique explained in Sect. 2 to a robotic case
study. We present the UPPAAL template [21], which automatically generates formal
(timed automata) models from robotic specifications, and show how we extend it with
dynamic-priority schedulers, for a given number of cores. The extended template is
then used to automatically generate UPPAAL models out of a real robotic specifica-
tion, the number of cores on a real Robotnik platform and a dynamic-priority schedul-
ing policy. Then, crucial behavioral and real-time properties are verified on the gener-

2

ated UPPAAL models (Sect. 4). In the same section, we show how the results can be
improved using an optimization of the task model through suspension mechanisms. Fi-
nally, we evaluate the scalability of our approach while discussing the results obtained
(Sect. 5), explore the related work in Sect. 6 and conclude with a summary and possible
directions of future work (Sect. 7).

This work is an extension of the DETECT workshop paper [17] where we initially
presented our approach and its application to a real robotic case study, with verifica-
tion restricted to schedulability and schedulability-related bounded response properties.
The extension we present here includes:

• The advantages of our search technique as opposed to another possible search-
based solution that we call interval test (Sect. 2.2.3). This was only hinted at at
the end of Sect. 2 of the workshop paper.

• Verification of properties that are not related to schedulability, that is properties
that are neither the schedulability of tasks nor the maximum amount of time by
which a task may overrun its period (Sect. 4.2). This shows further the efficiency
of our approach in verifying other important properties on which one cannot
obtain results using schedulability analysis techniques. The properties we verify
are liveness and leadsto properties, crucial from a roboticist point of view.

• An optimization, based on suspension mechanisms, to improve results on schedu-
lability (Sect. 4.3). We propose a new task model that allows to schedule, under
the same scheduling and resources constraints, all tasks including the task scan
which was not feasible in [17]. We explain how we come up with such a model
after analyzing the counterexamples provided by UPPAAL, and detail our exper-
iments that allow us, additionally, to reduce the response times for each task.

• An empirical evaluation of the scalability of our search technique as opposed
to the counting one (Sect. 5.1). Properties are verified on UPPAAL models (of
our robotic case study) that implement, respectively, the search method and the
counting method. Then, the verification cost (time and memory consumption) is
measured in both cases and compared, which shows a major gain in scalability
using our search method.

• Freely available artefacts (Sect. 4.4). All experimental results are backed up with
online freely accessible artefacts to allow reproducing the results,. This includes
the automatic generation of UPPAAL models from robotic specifications and the
verification of the generated UPPAAL models (Sect. 4), as well as the scalability
evaluation (Sect. 5.1).

2. Capturing Time

In this paper, we focus on dynamic-priority cooperative (i.e. non-preemptive)
schedulers, namely cooperative Earliest Deadline First (cEDF) and Highest Response
Rate Next (HRRN). The computations of either of these schedulers rely on a key infor-
mation: the waiting time. Let us consider n tasks T1 .. Tn. Whenever a core is free,

3

activation

<latexit sha1_base64="I34iDIgmbhBu3PBFq1fmUidM8Vo=">AAAC1nicjVHLTsJAFD3UF+ILdOmmkZi4IsVgdEl04xITeSRASDsMOKG0TTtFCcGdcesPuNVPMv6B/oV3xpKoxOg0bc+ce8+Zufc6gSsiaVmvKWNhcWl5Jb2aWVvf2NzK5rZrkR+HjFeZ7/phw7Ej7gqPV6WQLm8EIbeHjsvrzuBMxesjHkbC9y7lOODtod33RE8wWxLVyeZakt/Iic2kGGlq2snmrYKllzkPignII1kVP/uCFrrwwRBjCA4PkrALGxE9TRRhISCujQlxISGh4xxTZEgbUxanDJvYAX37tGsmrEd75RlpNaNTXHpDUprYJ41PeSFhdZqp47F2Vuxv3hPtqe42pr+TeA2Jlbgi9i/dLPO/OlWLRA8nugZBNQWaUdWxxCXWXVE3N79UJckhIE7hLsVDwkwrZ302tSbStave2jr+pjMVq/YsyY3xrm5JAy7+HOc8qB0WiqXC0UUpXz5NRp3GLvZwQPM8RhnnqKBK3td4xBOejYZxa9wZ95+pRirR7ODbMh4+AM0flyk=</latexit>

absolute deadline

<latexit sha1_base64="j1s4li3TvCpvHO80tXcygBwoQNk=">AAAC3XicjVHLSsNAFD2Nr1pfUTeCm2ARXJVEKrosunFZwT6glTJJpjU0TUIyEUupO3fi1h9wq78j/oH+hXfGFNQiOiHJmXPvOTP3XjvyvUSY5mtOm5mdm1/ILxaWlldW1/T1jXoSprHDa07oh3HTZgn3vYDXhCd83oxizga2zxt2/0TGG1c8TrwwOBfDiF8MWC/wup7DBFEdfast+LUYMTsJ/VRww+XMlV7jjl40S6ZaxjSwMlBEtqqh/oI2XIRwkGIAjgCCsA+GhJ4WLJiIiLvAiLiYkKfiHGMUSJtSFqcMRmyfvj3atTI2oL30TJTaoVN8emNSGtglTUh5MWF5mqHiqXKW7G/eI+Up7zakv515DYgVuCT2L90k8786WYtAF0eqBo9qihQjq3Myl1R1Rd7c+FKVIIeIOIldiseEHaWc9NlQmkTVLnvLVPxNZUpW7p0sN8W7vCUN2Po5zmlQ3y9Z5dLBWblYOc5Gncc2drBH8zxEBaeookbeN3jEE561jnar3Wn3n6laLtNs4tvSHj4ABwmZ8g==</latexit>

0

<latexit sha1_base64="XKJx5FIRCK8HqpVmm/B/dhpxU28=">AAACxHicjVHLSsNAFD2Nr1pfVZdugkVwVRKp6LIoiMsW7ANqkSSd1tC8mJkIpegPuNVvE/9A/8I74xTUIjohyZlz7zkz914/i0IhHee1YC0sLi2vFFdLa+sbm1vl7Z22SHMesFaQRinv+p5gUZiwlgxlxLoZZ17sR6zjj89VvHPHuAjT5EpOMtaPvVESDsPAk0Q1nZtyxak6etnzwDWgArMaafkF1xggRYAcMRgSSMIRPAh6enDhICOujylxnFCo4wz3KJE2pyxGGR6xY/qOaNczbEJ75Sm0OqBTIno5KW0ckCalPE5YnWbreK6dFfub91R7qrtN6O8br5hYiVti/9LNMv+rU7VIDHGqawippkwzqrrAuOS6K+rm9peqJDlkxCk8oDgnHGjlrM+21ghdu+qtp+NvOlOxah+Y3Bzv6pY0YPfnOOdB+6jq1qrHzVqlfmZGXcQe9nFI8zxBHZdooKW9H/GEZ+vCiixh5Z+pVsFodvFtWQ8fwqWPPQ==</latexit>

5

<latexit sha1_base64="BAA1yYqoF/2r6JpGRrPw4ZsOsug=">AAACxHicjVHLSsNAFD2Nr/quunQTLIKrkkiLLouCuGzBPqAWSabTGpoXMxOhFP0Bt/pt4h/oX3hnTEEtohOSnDn3njNz7/XTMJDKcV4L1sLi0vJKcXVtfWNza7u0s9uWSSYYb7EkTETX9yQPg5i3VKBC3k0F9yI/5B1/fK7jnTsuZJDEV2qS8n7kjeJgGDBPEdWs3ZTKTsUxy54Hbg7KyFcjKb3gGgMkYMgQgSOGIhzCg6SnBxcOUuL6mBInCAUmznGPNdJmlMUpwyN2TN8R7Xo5G9Nee0qjZnRKSK8gpY1D0iSUJwjr02wTz4yzZn/znhpPfbcJ/f3cKyJW4ZbYv3SzzP/qdC0KQ5yaGgKqKTWMro7lLpnpir65/aUqRQ4pcRoPKC4IM6Oc9dk2Gmlq1731TPzNZGpW71mem+Fd35IG7P4c5zxoH1fcaqXWrJbrZ/moi9jHAY5onieo4xINtIz3I57wbF1YoSWt7DPVKuSaPXxb1sMHzoWPQg==</latexit>

10

<latexit sha1_base64="W8SWBkALLuoUcm7yEhHXP23YIt8=">AAACxXicjVHLSsNAFD2Nr1pfVZdugkVwVRKp6LLoQpdVbCvUIsl0WkPzYjIplCL+gFv9NfEP9C+8M05BLaITkpw5954zc+/10zDIpOO8Fqy5+YXFpeJyaWV1bX2jvLnVypJcMN5kSZiIa9/LeBjEvCkDGfLrVHAv8kPe9oenKt4ecZEFSXwlxynvRt4gDvoB8yRRl65zW644VUcvexa4BlRgViMpv+AGPSRgyBGBI4YkHMJDRk8HLhykxHUxIU4QCnSc4x4l0uaUxSnDI3ZI3wHtOoaNaa88M61mdEpIryCljT3SJJQnCKvTbB3PtbNif/OeaE91tzH9feMVEStxR+xfumnmf3WqFok+jnUNAdWUakZVx4xLrruibm5/qUqSQ0qcwj2KC8JMK6d9trUm07Wr3no6/qYzFav2zOTmeFe3pAG7P8c5C1oHVbdWPbyoVeonZtRF7GAX+zTPI9Rxjgaa5N3HI57wbJ1ZkSWt0WeqVTCabXxb1sMHXQWPeA==</latexit>

time

<latexit sha1_base64="Yew8dgGZyim/I04BcoXZzDVTN8E=">AAACznicjVHLTsJAFD3UF+ILdemmkZi4IsVgdEl04xITARMgpi0DTugr0ymREOLWH3Crn2X8A/0L74xDohKj07Q9c+45d+be6yUBT6XjvOashcWl5ZX8amFtfWNzq7i900zjTPis4cdBLK49N2UBj1hDchmw60QwN/QC1vKG5yreGjGR8ji6kuOEdUN3EPE+911JVLsj2Z2cSB6y6U2x5JQdvex5UDGgBLPqcfEFHfQQw0eGEAwRJOEALlJ62qjAQUJcFxPiBCGu4wxTFMibkYqRwiV2SN8B7dqGjWivcqba7dMpAb2CnDYOyBOTThBWp9k6nunMiv0t90TnVHcb098zuUJiJW6J/cs3U/7Xp2qR6ONU18CppkQzqjrfZMl0V9TN7S9VScqQEKdwj+KCsK+dsz7b2pPq2lVvXR1/00rFqr1vtBne1S1pwJWf45wHzaNypVo+vqyWamdm1HnsYR+HNM8T1HCBOhq64494wrNVt0bW1Lr/lFo549nFt2U9fAA9x5Q5</latexit>

di � wi

<latexit sha1_base64="pjAvdbSNXlzIZR1U2M0jyXL02CI=">AAACynicjVHLSsNAFD2Nr1pfVZdugkVwY0mkosuiGxcuKtgH1FKS6bQOTZMwmSiluPMH3OqHiX+gf+GdMQW1iE5Icubcc+7MvdePA5Eox3nNWXPzC4tL+eXCyura+kZxc6uRRKlkvM6iIJIt30t4IEJeV0IFvBVL7o38gDf94ZmON2+5TEQUXqlxzDsjbxCKvmCeIqrZ64qDu67oFktO2THLngVuBkrIVi0qvuAaPURgSDECRwhFOICHhJ42XDiIietgQpwkJEyc4x4F8qak4qTwiB3Sd0C7dsaGtNc5E+NmdEpArySnjT3yRKSThPVptomnJrNmf8s9MTn13cb097NcI2IVboj9yzdV/tena1Ho48TUIKim2DC6OpZlSU1X9M3tL1UpyhATp3GP4pIwM85pn23jSUztureeib8ZpWb1nmXaFO/6ljRg9+c4Z0HjsOxWykeXlVL1NBt1HjvYxT7N8xhVnKOGuqnyEU94ti4saY2tyafUymWebXxb1sMHZFeR4Q==</latexit>

Figure 1: An illustrative Diagram of the cEDF policy. At each moment, the order of priority of tasks is
directly obtained by comparing in increasing order the values of di −wi. This value represents exactly how
early the absolute deadline is (the global time axis of the diagram), hence the policy name. For example, at
global time 5, the blue task has the highest priority, followed by the red task and finally the green task.

wi, the time each task Ti has been waiting in the queue so far, is used to compute its
priority (see Fig. 1). In cEDF (resp. HRRN), the smaller (resp. higher) the value of
di − wi (resp. 1 + wi

ei
), the higher the priority of Ti, where di is the (relative to task

activation) deadline (resp. ei is the estimated execution time) of Ti (more in Sect. 3.3).
The task with the highest priority is then released: it is removed from the queue and a
core is assigned to it. Since cores may be assigned to different tasks from an execution
to another, the approach used in this paper is a global approach, i.e. task migration is
possible [14].

Now, we need to integrate these schedulers into “model-checkable” formal mod-
els of robotic and autonomous systems. We explore thus two main formalisms: time
Petri nets (TPN) and timed automata with urgencies (UTA), both extended with data
variables. This is because most of paramount model checkers are based either on the
former (e.g. Fiacre/TINA [8] and Romeo [32]) or the latter (e.g. UPPAAL [6] and
IMITATOR [5]). Also, we already have templates that translate robotic specifications
to both Fiacre/TINA [19] and UPPAAL [21]. Exploring both TPN and UTA will help
us conclude which of these templates we need to extend with schedulers.

2.1. Premilinaries

We very briefly present TPN and UTA as to show the difference between these
formalisms in the context of this paper. In the original “model checkable” version of
each formalism, timing constraints (bounds of time intervals in TPN and clock con-
straints in UTA) are allowed in Q≥0 ∪∞, with time evolving over R≥0 . Since we can
always multiply all timing constraints by a natural that brings them to N ∪∞ (that is
the lowest common multiple LCM of their denominators), we use natural constraints in
our presentation. At the tooling level, this is done internally by tools like TINA, and
is a requirement in frameworks like UPPAAL, where non-natural constraints are not
allowed.

4

TPN:

Time Petri nets TPN [34] are Petri nets extended with time intervals (we only focus
on closed intervals in this succinct presentation). Each transition t is associated with
an interval I (t) = [at , bt] over R≥0 where at ∈ N (resp. bt ∈ N ∪∞) is the earliest
(resp. latest) firing deadline of t. The semantics of I (t) is as follows: (i) firing a transi-
tion t is timeless and (ii) if t was last enabled since date d, t may not fire before d + at

and must fire before or at d + bt unless it is disabled before then by firing another tran-
sition. Time intervals in TPN are thus relative to the enabledness of transitions: if t
is disabled, then I (t) has no semantic effect. We use a version of TPN where guards
and operations over data variables are possible on transitions. Note that, because of the
timeless nature of firing a transition in time Petri nets (which is similar to that of taking
transitions in timed automata), they are not to be confused with timed Petri nets [41],
where firing a transition may take an arbitrary amount of time.

Timed automata with urgencies (UTA):

Timed automata TA [2] extend finite-state Büchi automata with real-valued clocks. The
behavior of TA is thus restricted by defining (natural) constraints on the clock variables
and a set of accepting states. A simpler version allowing local invariant conditions is
introduced in [24], on which this paper and tools like UPPAAL rely. The syntax and
semantics of TA in this paper follow those in [1] except that we refer to switches as
edges. UTA [9] extend TA with a notion of urgency on edges, mainly (i) the strong
urgency eager, denoted

;

, meaning the edge is to be taken as soon as enabled and (ii)
the weak (by default) urgency lazy, meaning the edge may be taken when enabled.
Transitions resulting from synchronizing some clock-constraint-free edges inherit the
strongest urgency: if there is at least one

;

edge in the synchronization, the resulting
transition is also

;

. We use an extension of UTA where guards and operations over data
variables are possible on edges.

TPN vs UTA:

What we need to retain for the sake of understanding this paper relates uniquely to
the way time is handled in both formalisms. The main difference is that TPN feature
no clocks (time intervals depend on transitions enablendess) whereas clocks in UTA
evolve monotonically and independently from edges/transitions enabledness.

2.2. A High Level Presentation: Problem and Solution
We analyze the problem of capturing an arbitrary time, in both TPN and UTA mod-

els, at a framework-independent high level. We consider in each case a “process” that
needs to store the value of time τ separating two events e and e′, captured through the
Booleans b and b′, respectively. The value of τ is needed to perform further computa-
tions in the model. Since we are reasoning at a high level, we use standard algorithmic
notations: ← for assignment, = for equality and ¬ for negation. In UTA, reset(x)
denotes resetting the valuation of clock x to zero. In graphical representations, guards
are in green, operations in blue, and discontinued arcs/edges refer to missing parts of
the model.

5

t

t’

[0,0]

[0,0]

p

w

t_count

[1,1]p’
τ ← 0
b

¬b’b’
τ ← τ+1

Figure 2: Capturing waiting time in TPN

l

w

l’

b

x≤1

x=1
reset(x)
τ ++

b’

τ ← 0

∧ ¬b’

reset(x)

Figure 3: Capturing waiting time in UTA

Before we go any further, it is very important to distinguish between the model-
ing and the verification levels. Here, it is essential to capture and store τ in order
to construct the model (the model depends on the value of τ , as explained for cEDF
and HRRN above, and further detailed in Sect. 3.3). We cannot just use verification
techniques to, for example, look for the bounds τ lies within, because the model itself
relies on the exact value of τ for each e− > e ′ sequence, the tracking of which is far
from obvious. Indeed, TPN feature no clocks to capture τ directly in the model. Sur-
prisingly, this is also the case for UTA: UTA-based model-checkers allow comparing a
clock value to some constraints, but none of them permits reading such a value as to,
for example, store it in a variable, since that would prevent symbolic representations
like regions [3]. It follows that we can only approximate τ to its truncated natural value
(or the natural that upper-bounds it).

2.2.1. The Classical “Counting” Method
Fig. 2 shows the classical way to capture τ in TPN. The original net is in black

stroke: as soon as (denoted by the interval [0, 0]) b (resp. b′) is true, transition t (resp.
t′) is fired, which unmarks place p (resp. the “waiting” place w) and marks place w
(resp. p′). When p′ is marked, we need the value of τ to perform further computations.
The part in light blue is thus added to the net. Transition t count , whose input and
output place is w , is fired at each time unit as long as event e′ is not received, which
increments the value of τ . Consequently, as soon as p′ is marked, τ holds the truncated
natural value of the real duration d separating e and e′ (d − 1 if d is natural).

An equivalent solution is implemented in UTA (Fig 3). Location l is to wait for
event e. Eager (

;

) edges are taken as soon as their guard is true. The invariant on clock
x at location w enforces taking the added edge (in light blue) at each time unit, which
increments the value of τ . This method, referred to as integer clocks, is proposed to
solve a similar problem in [26]. Note that the term “integer clocks” should not be
confused with discrete-time models. Indeed, counting the waiting time here does not
change the continuous nature of time in UTA.

Now, in either formalism, this solution is costly: adding transitions triggered at
each time unit creates further interleavings and complexity that leads to combinatory
explosion in our robotic case study (Sect. 5.1).

6

l

w

l’

b
x<τ-1

b’
τ ← (u+d)/2

∧ x < τ

reset(x)
update(UP) u ← UP d ← 0

x>τ+1

 u ← τ-1

 d ← τ+1

x≥τ-1

x = τ+1

 τ ← τ-1
∧ x ≤ τ+1 x>τ

 τ ← τ+1

τ ← (u+d)/2

τ ← (u+d)/2

s

Figure 4: Capturing waiting time in UTA (search method)

2.2.2. An optimized “Search” Method
A key idea of this paper relies on transforming the counting problem into a search

problem: instead of counting the time elapsed between e and e′, we search for the value
of τ once e′ is received. This technique requires however an upper bound of τ (that is
a value UP we know τ will never exceed), but this bound is flexible, that is it may vary
from a sequence e− > e ′ to another (see below).

The solution in UTA is shown in Fig 4. At location s (for search), at which time
cannot elapse (all outgoing edges are

;

), we undertake a binary search (aka half-interval
search) that swings the value of τ within the bounds u (upper bound, initially UP) and
d (lower bound, initially 0) till x lies within [τ − 1 , τ + 1], after which we simply
assign τ the natural that lower-bounds the real value of x (by taking one of the edges
from s to l′). This method is not implementable in TPN due to the absence of clocks.

As mentioned above, the value of UP may freely vary for each new e− > e ′ se-
quence, that is each time location l is (re-)reached. This is done through the operation
update(UP), on the edge l → w , which assigns a new value to UP according to some
new estimation. The flexibility over UP is an important feature of our technique when
solving this problem in a generic context (more in Sect. 2.2.3)

Now, we already know that, generally, binary search algorithms (logarithmic com-
plexity) are faster than linear ones. We extrapolate that the number of times the self-
loop edges at location s (in our search solution, Fig. 4) are taken is generally (and
noticeably) smaller than the one of taking the self-loop at location w (in the counting
solution, Fig. 3). Thus, there is a considerable gain in terms of state space size (and
therefore scalability) when using the search technique, as we will confirm in Sect 5.1.

2.2.3. An Interval Test Method
Note that we can think of another solution, like simply testing the value of x be-

tween each pair of integers i and i + 1 within the range 0..UP on separate edges from
s to l′ (Fig. 5). Compared to our optimized search method (Sect. 2.2.2), this solution

7

l

w

l’

b

b’

reset(x)

…

∧ x < 1 x≥0

∧ x < 2 x≥1
τ ← 0

τ ← 1

…
∧ x < UPx≥UP-1

x=UP
τ ← UP-1

τ ← UP

s

Figure 5: Capturing waiting time in UTA (interval test method)

poses a number of problems.
For instance, the interval test method requires that the upper bound UP must be

itself upper bounded, that is, we need to upper-bound the values of UP for all e− > e ′

sequences. Indeed, if the value of UP is equal to, say, 10, for some e− > e ′ sequence
and 15 for another e− > e ′ sequence, the number of edges connecting location s to
location l′ (Fig. 5) must be 15 to allow finding the value of τ in both cases. This
limitation entails:

• Cumbersome models with a large number of edges (for instance, if the maximum
value of UP is equal to 2000 time units, we will need 2001 edges from location
s to location l′). This is disabling for a non-expert user to visualize, understand
and debug their models, while in the search solution we propose, the model is
uniform no matter how the value of UP varies.

• The impossibility to solve the problem when the upper bound of UP is unknown.
Indeed, in such a case, the interval test method is not suitable (the upper bound
of the interval within which testing edges are created is unknown), as opposed to
our solution where one needs simply to update the value of UP before assigning
it to u on the edge from l to s (Fig. 4). This renders the interval test solution
less generic: for instance, in the context of schedulability, it would not work for
variable deadline constraints the upper bound of which is not necessarily known
(see examples in [45]).

In sum, the interval test method is not suitable for the general problem of capturing
variable time separating several occurrences of events, and its cumbersome models are
not convenient for a non-expert user. For this reason, and for a better readability of this
paper, this method will be discarded henceforth as we will focus on opposing the novel
(search) method to the (counting) one used in the literature.

8

Activities

Control Task
Control

 Services

Clients

Ports

Execution Tasks

Codels

IDS

read/write

read/write

read/write

Requests Reports

start

ether

pa
us

e

Figure 6: A generic GenoM3 component

roblaser robloco

robmotionrobmap

Execution tasks:
scan 50ms
Services:
StartScan
StopScan
…

Execution tasks:
plan 500ms
Services:
Init
GotoPosition
Stop
…

Execution tasks:
odo 50ms
track 50ms
Services:
TSStart OdoStart
TSStop OdoStop
Init …

pos

pos

map

speed

Execution tasks:
fuse 50ms
Services:
FuseMap
StopFuse
…

Figure 7: The RobNav application

3. Application To Robotic Systems

In this section, we aim to implement our method in order to obtain formal models
of robotic specifications, enriched with dynamic-priority-based cooperative schedulers
and the hardware constraints (number of cores) of a real platform. Such models will
be then evaluated against a number of important behavioral and real-time properties,
including schedulability (Sect. 4).

In previous work, we developed mathematically proven translations from the robotic
framework GenoM3 (Sect. 3.1) to (TPN-based) Fiacre/TINA [18, 19] and (UTA-based)
UPPAAL [21], which are implemented in automatic generators known as templates.
Now, we only extend the UPPAAL template (since our search method, Sect. 2, is only
implementable in UTA) with EDF and HRRN schedulers, given a number of cores.

Before we go into details of the extension of the template, we first briefly present
GenoM3 in a high-level way (Sect. 3.1). Then, since the UPPAAL template output is
proven faithful to the semantics of GenoM3 [21, 20], we explain some of GenoM3’s
important behavioral and real-time aspects using an automatically generated UPPAAL
model of a GenoM3 component (Sect. 3.2).

3.1. GenoM3:

GenoM3 [20] is a component-based framework for specifying and implementing
functional layer specifications. Fig. 6 shows the organization of a GenoM3 component.
Activities, executed following requests from external clients, implement the core algo-
rithms of the functionality the component is in charge of, for example, reading laser
sensor, navigation. Two types of tasks are therefore provided: (i) a control Task to
process requests, validate the requested activity if the processing returns no errors, and
send reports to the clients and (ii) execution task(s) to execute activities. Tasks (resp.
components) share data through the Internal Data Structure IDS (resp. ports).

An execution task, periodic, is in charge of a number of activities. With each period,
it will run sequentially, among such activities, those that have been already validated
by the control task. Activities are finite-state machines FSM, each state called a codel,

9

at which a chunk of C or C++ code is executed. Each codel specifies a worst-case
execution time (WCET) on a given platform, and the possible transitions following its
execution. Taking a pause transition or a transition to the special codel ether ends the
execution of the activity. In the former (resp. latter) case, the activity is resumed at the
next period (resp. terminated).

IDS, ports & concurrency: At the OS level, tasks are parallel threads, with fine-
grain concurrent access to the IDS and the ports. For execution tasks, the concurrency
is at the codels level: a codel (in its activity, run in an execution task) locks only the
memory fields required for its execution (simultaneous readings are allowed). Control
tasks, on the other hand, use IDS fields when processing client requests and are thus
in concurrency with the execution tasks (through the codels that use the same IDS
fields). This aspect renders generalizing results on optimal schedulers very difficult in
the context of robotics, as referred to in Sect 1. In the remainder of this paper, a codel
that is in conflict (cannot execute at the same time) with another codel (or with the
control task) because of this locking mechanism is called thread unsafe (thread safe
otherwise). Because of the concurrency over ports, codels in conflict may belong to
different components.

Case study:

In this paper, we consider a variation of the RobNav application developed by fellow
researchers at LAAS (Fig. 7, technical details in [18]). The GenoM3 specification in-
cludes four components interacting to achieve autonomous terrestrial navigation. There
are five execution tasks. Additionally, each component has a control task. The total
number of tasks is therefore nine. The presentation in this paper focuses mainly on ex-
ecution tasks and is greatly simplified. For more details on control tasks (e.g. how they
are activated) and more complex aspects (e.g. interruption of activities), the interested
reader may refer to [20].

The components collaborate to achieve a navigation as follows. The task odo of
component ROBLOCO is in charge of writing the port pos, with the current position of
the robot, based on the data it reads from the wheels sensors. Such a position is fed
to the component ROBLASER. The latter’s task scan is in charge of reading the laser
sensor and augmenting the position in pos with the laser perception of its environment,
and writing the result to the port laser. Task fuse of component ROBMAP uses the
information on the laser port to update the map of the robot and its environment in the
port map. The map in map (produced by component ROBMAP) and the position in
pos (produced by component ROBLOCO) are used to compute the appropriate speed,
by task plan of component ROBMOTION to reach a goal position, which is written
on port speed. Finally, the loop closes with the task track of component ROBLOCO
using speed to apply it to the robot controller. Note that task track of ROBLOCO is
particularly critical due to a hardware contraint: the robot controller communicates at
a fixed rate of 20 Hz, equivalent to the task’s period (50 ms).

3.2. UPPAAL Template
We show in Fig. 8 a very simplified version of the automatically generated UP-

PAAL model of the periodic execution tasks odo and track (component ROBLOCO)

10

from our case study (one time unit in the model is equal to 1 ms). This model fol-
lows the implementation model shown in [21], proven faithful to the semantics of
GenoM3 [21, 20]. The urgency process is to enforce

;

transitions through the urgent
channel exe: UPPAAL supports

;

transitions only resulting from the synchronization
of two or more clock-constraint-free edges (it does not

;

edges as such). Note that not
all activities are shown.

Each task t is composed of a manager (to execute, at its location manage , activ-
ities sequentially), a timer (to send, through the Boolean tick t , period signals to the
manager), and a number of activities the task executes. The next() function browses
the array tab t , whose cells are records with two fields: n (activity name) and s (activ-
ity status), and returns the index of the first activity that is previously validated by the
control task and still not executed in this cycle (an information retrieved through the
s fields). The manager and the activities use this function, together with the variables
lock t and turn t , to communicate: the manager computes the identity of the next ac-
tivity to execute and gives it the control (through turn t and lock t). The activity will
then execute until it pauses (e.g. reaching track pause in TrackSpeedStart) or termi-
nates (e.g. reaching ether in InitPosPort), in which case it computes the identity of the
next activity to execute (in i) and gives the control back to the manager. When there
are no more activities to execute (i is equal to the size of tab t and the manager has the
control through lock t), the manager transits back to its initial location start .

Now, at the activity level, a signal is transmitted, when the activity pauses or ter-
minates (through the Boolean finished t), to the control task (not shown here), so the
latter informs the client that requested such activity and updates the status of the activ-
ity in tab t . A thread-unsafe codel c is represented using two locations, c and c exec
(e.g. compute and compute exec in TrackOdoStart). The guards and operations over
the array of Booleans mut ensure no codels in conflict (e.g. codel track in TrackSpeed-
Start and codel compute in TrackOdoStart) execute simultaneously, and the urgency
on c → c exec edges ensures the codel executes (or loses some resources) as soon as
it has the required resources. The invariants on locations c exec reflect the fact that a
codel is executed in its WCET at most. For thread-safe codels, c exec locations are not
needed, and the invariant is thus associated with c locations. Therefore, time at location
c exec (resp. c) is not allowed to progress further than the WCET of the thread-unsafe
(resp. thread-safe) codel c. The guards x > 0 on the edges of the form c → (cexec →
if codel c is thread unsafe) reflect the fact that a codel needs a non-zero time to execute.
In practice, since codels often write ports and the IDS, this guard is later replaced by
x ≥ bcetc where bcetc is the best-case execution time (BCET) of codel c, that is the
least amount of time allowing it to execute and write the data fields/ports it accesses.
Due to the heavy computations performed in the robotic context, the BCET and WCET
of a codel c are oftentimes close to one another.

As we can see, this model is highly concurrent: tasks may run on different cores and
locking shared resources is fine grain (at the codels level) with simultaneous readings
allowed. These features allow to maximally parallelize the tasks, but render manual
verification and analytical techniques for schedulability analysis impractical.

11

Task Odo

Manager Timer
Clock x

Activity TrackOdoStart
Clock x

Activity InitPosPort
Clock x

Urgency

Task Track

Timer
Clock x

Manager

Activity TrackSpeedStart
Clock x

Figure 8: Partial UPPAAL model of tasks odo and track (automatically generated)

12

3.3. Extending With Schedulers
We show how to extend the UPPAAL template with cEDF and HRRN sched-

ulers. First, we use the case study to exemplify on how to adapt the solution shown
in Sect. 2.2.2 to efficiently and correctly integrate such schedulers. Then, we explain
how control tasks, having no deadlines, are handled. Finally, we automatize the exten-
sion with schedulers within the template.

Example:

Let us get back to the ROBLOCO example. The manager processes are the only ones
that will be affected. Also, we will need a scheduler process. Let us first introduce
the constants, shared variables and channels that the scheduler and managers need to
communicate and synchronize.

Constants: The number of tasks in the application is denoted by the constant
size sched . An array of constant naturals periods is introduced in which, with each
task denoted by index i, a period periods[i] is associated.

Shared variables: We need a queue (array) T of size size sched in which we in-
sert tasks dynamic priorities. Then, since priorities change their position when T is
dequeued, we need an array p such that p[i] tracks the index of T that points to the cell
holding the dynamic priority of task i (that is T [p[i]]). Also, we need a natural len to
store the number of waiting tasks, an array w to store the waiting time for each task i,
and a natural s count to store the number of tasks for which the search for the waiting
time has already finished. Finally, the natural nc stores the number of available cores.

Channels: A handshake channel insert is introduced to increment len . A broad-
cast channel up synchronizes with as many tasks as len to start the search operation.
Besides, a broadcast channel en synchronizes the scheduler with all waiting tasks in
order to diffuse the decision for each task on whether it is released (given a core to
execute) or not (needs to wait further). Finally, a broadcast channel srch eliminates
interleaving between managers during the search operation (more explanation below).
We show now the scheduler, then how the manager of odo is modified accordingly:

Scheduler: The scheduler (Fig. 9) has three locations: start (initial), update and
give . The last two are committed. A committed location is a location that entails both
an urgency and a priority. That is, whenever the system’s global state contains at least
a committed location, time is not allowed to progress (urgency) and the next transition
in the system must involve an edge whose source location is committed (priority). In
our system, this will (i) prevent unnecessary interleaving with other interactions in the
system and (ii) enforce urgency on all the outgoing edges of committed locations.

The self-loop edge at location start , synchronized on insert , increments the num-
ber of waiting tasks each time a task wants to execute (we do not need a guard on this
edge to ensure T is not full, because the size of T is already equal to the number of
tasks in the application). From location start , it is possible to reach location update
providing there is at least one task to release.

At location update , an edge synchronized over the channel srch allows looping as
long as the search has not finished for all waiting tasks (with one search operation for all
tasks at once thanks to the broadcast channel srch). Another edge permits reaching the
location give as soon as the search has finished for all waiting tasks (captured through

13

len--,
nc--

update_queue(T,p,w),
dequeue(T,p)

s_count:= 0

s_count < len

len>0 && nc>0

s_count == len

srch!

en!

start up!

insert?
len++ update

give

Figure 9: UPPAAL model of the scheduler

the value of s count). On this very edge, the core of the scheduling algorithm is
implemented: function update queue() updates the dynamic priorities in each T [p[i]]
before the function dequeue() finds the task with the highest priority and removes its
priority by updating both p and T . The core of update queue() is given later in this
section.

Now, from location give , the initial location is immediately reached through an
edge synchronized on the channel en . The number of cores as well as the number of
waiting tasks is decremented as the task having the highest priority is released.

Manager: In the new manager model (Fig. 10), we have a clock x and four inter-
mediate locations: ask , search , decide , and error . To meet the upper-bound condition
(Sect. 2.2.2), we reason as follows. In such a real-time system, we do not tolerate that
a task is still waiting (for a core) since a duration equal to its period. Thus, we enforce
an urgency (through an invariant) from location ask (at which the clock x tracks the
waiting time) to location error as soon as the waiting time is equal to the task period.
Then, at the analysis step, we make sure error is unreachable in all managers in the
model. If this is not the case, the analysis becomes worthless (as soon as some man-
ager reaches location error), so we must drop it and, if possible, increase the number
of cores and retry.

The remaining aspects are rather straightforward considering the scheduler model
and the search technique in Sect. 2.2.2 (we reuse the variable names for search bounds,
u and d, from Fig. 4): p[i] is updated from start to ask , the edge from ask to search
is synchronized on up to drag all waiting tasks managers to the committed location
search at which they loop, synchronized on srch , until the search ends. When all
managers reach their respective decide locations, s count is equal to len (the number
of waiting tasks) and, in each manager, either the edge to manage or ask is taken,
depending on whether the task i is released (recognized through p[i] equalling −1), or
not (otherwise). In the latter case, d (resp. u), the lower (resp. upper) bound for the
next search is updated to the current value of w [i] (resp. period [i]). Finally, the task
frees the core at the end of execution (operation nc ++ on the edge from manage to
start).

14

Figure 10: UPPAAL model of the odo manager (enriched)

Control tasks:

So far, we explained how the scheduler handles periodic execution tasks. On the other
hand, control tasks do not have a particular deadline. Indeed, a control task is activated
only when a client sends it a request, an event following which it processes the request
and validates the activity corresponding to it. This absence of deadline breaks the spirit
of schedulers such as EDF.

From a roboticist point of view, control tasks should have the highest priority: they
must react to and process clients requests as soon as possible. Therefore, in the case of
EDF, for instance, we assign to control tasks the same strictly negative deadline (e.g.
-1), which allows any control task to be executed immediately (if a core is already
available) or as soon as a core is free (otherwise) whenever it receives a request from
a client. Indeed, we already know that the waiting time of an execution task is always
positive (otherwise location error of its manager is reached, see the Unreachable Error
Property UEP in Sect. 4.1), so a negative deadline gives a control task an immediate
higher priority than all execution tasks in the queue. This way, the spirit of EDF is met
with a classical FIFO tie-breaking for control tasks activated at the same time.

In practice, in a robotic application like ours, control tasks execute only once at the
very beginning where a client sends all requests of activities involved in the application
sequentially. As soon as all requests are processed, control tasks compete no more for
cores which become exclusively available for execution tasks. It follows that it is im-
portant to verify that, for example, each control task eventually receives and processes
the requests of which it is the destination, as we will see in Sect. 4.2.

15

1 <’if {$argv >= 10 && $argv < 30} {’>
2 /* scheduling */
3 /* update dynamic priorities */
4 void update_queue (int &T[size_sched], int &p[size_sched], int &w[size_sched]) {
5 int i;
6 for (i:= 0; i<size_sched; i++) {
7 if (p[i] >= 0) {T[p[i]]:=
8 <’if {$argv < 20} {’>lcm_p + w[i] * (lcm_p/period[i])
9 <’} else {’>period[i] - w[i]<’}’>;}}

10 }
11 <’}’>

Listing 1: Automatic generation example

Automatic synthesis:

At this stage, we are ready to automatize the process. The user may pass the flag
-sched to the UPPAAL template, followed by two numbers: the scheduling policy (1
for HRRN or 2 for cEDF) and the number of cores (a natural in 0 ..9). For instance,
the following command line generates the UPPAAL model of the GenoM3 specification
spec.gen, that integrates a cEDF scheduler over four cores:

genom3 uppaal/model -sched=24 spec.gen

Now, the core of the UPPAAL template is enriched to automatically integrate such
specificities in the generated model. As an example, Listing 1 shows the piece of the
template that generates the update queue() function. The interpreter evaluates what
is enclosed in <’ ’> in Tool Command Language (Tcl) and outputs the rest as is.
Line 1 conditions generating the function to the validity of the option passed by the
programmer: the variable argv captures the option passed as an integer, and since, as
we have said above, this integer is 1x for HRRN or 2x for cEDF where x∈ 0 ..9 , argv
should be superior to 10 and strictly inferior to 30 for the option to be valid. Then, lines
8-9 generate the right dynamic-priority formula according to the specified scheduler in
the option. In the case of cEDF (option comprised in 20 ..29 , that is argv superior to
201, line 9), we simply subtract the waiting time w [i] from the (relative) deadline, fixed
to the period period [i]. For HRRN (option comprised in 10 ..19 , that is argv strictly
inferior to 202, line 8), we proceed as follows. The estimated execution time is usually
an average computed dynamically. Here, we fix it statically to the period of the task
(the same reasoning was followed in [19] for the Shortest Job First (SJF) scheduling
policy). Then, since we can only perform integer divisions in UPPAAL, we look for
the LCM lcm p of all periods and multiply it by the priority formula. Since lcm p is
strictly positive, the comparison of priorities is not affected.

1the part strictly inferior to 30 is already guaranteed by the incorporating if at line 1
2the part superior to 10 is already guaranteed by the incorporating if at line 1

16

4. Results

At this point, we have a template that automatically generates the counterpart UP-
PAAL model from (i) a given robotic specification written in GenoM3 (ii) a cooperative
dynamic-priority scheduler (cEDF or HRRN) and (iii) the number of cores in a robotic
platform. We will use such template to analyze the deployability of our case study
(Sect. 3.1) on the Robotnik Summit-XL platform1, featuring an embedded four-core PC
running Linux. That is, given the specification (behavioral and real-time aspects) of
our case study and the real capacities of the robotic platform and OS (number of cores
and scheduling policy), we check whether a set of requirements, crucial to the correct
functioning and safety of the robot, can be satisfied.

Therefore, we automatically generate, from the case study and the number of cores
on the Robotnik platform (which we vary from 1 to 4), UPPAAL models extended
with cEDF and HRRN schedulers. Then, we check whether the requirements, broken
into two main sets (those that are related to schedulability, and those that are not),
are satisfied by formulating them as UPPAAL properties and verifying them using the
UPPAAL verifier (Sect. 4.1, Sect. 4.2). Finally, we propose an optimization to improve
both schedulability and maximum response time for all tasks (Sect. 4.3) and give details
about how to reproduce the experiments using our online artefacts (Sect. 4.4).

Also, we derive, from our automatically generated UPPAAL models, equivalent
counting-based models, where the managers implement the classical counting tech-
nique (detailed in Sect. 2.2.1) to count the waiting time of tasks instead of searching it.
We rely on such models to evaluate the scalability of our search technique in this case
study as opposed to the counting one (Sect. 5.1). For readability, we do not provide
details on the equivalent counting-based UPPAAL models of our case study as (i) such
models are available as public artefacts (Sect. 4.4) and (ii) implementing the counting
technique, explained in Sect. 2.2.1, in the manager models is rather straightforward.

Note that all the results we obtain are identical for both cEDF and HRRN. Thus,
the results presented in this paper are valid for both policies, with the condition that,
in the case of HRRN only, the period of each task is considered as its static estimated
execution time, as we explained under the “Automatic Synthesis” paragraph above.

4.1. Schedulability-Related Requirements

There are two schedulability-related requirements. The track task is hard real-
time: as explained in Sect. 3.1, the robot controller communicates at a fixed rate of
20 Hz. Thus, new computed speeds must be sent to the controller at 50 ms, so track
must always finish executing its activities within its period (R1). The remaining tasks
are soft real-time, with the condition that the time by which a task exceeds its period
must be always smaller than the period itself (R2).

1https://www.robotnik.eu/web/wp-content/uploads//2019/03/Robotnik DATASHEET
SUMMIT-XL-HL EN-web-1.pdf

17

https://www.robotnik.eu/web/wp-content/uploads//2019/03/Robotnik_DATASHEET_SUMMIT-XL-HL_EN-web-1.pdf
https://www.robotnik.eu/web/wp-content/uploads//2019/03/Robotnik_DATASHEET_SUMMIT-XL-HL_EN-web-1.pdf

Requirement R1:

In order to formulate R1 as an UPPAAL property, we reason as follows. A task is
busy (waiting or executing activities) as long as its manager is not at location start
(we verify beforehand that location manage is reachable). Thus, we check whether no
new signal from the timer is sent while the manager is not at location start . This is
expressed for task track as follows:

A[] (not manager_track.start imply not tick_track)

Which is a safety property that is strictly representative of the schedulability of task
track (R1). We call it the schedulability property (SP).

However, we must recall that, in order to ensure that the verification of any property
makes sense, location error must be unreachable in all managers of all tasks (see for
instance Fig. 10 for the manager of task odo):

A[] not (manager_odo.error or manager_track.error or manager_fuse.error or
manager_scan.error or manager_plan.error)

This is again a safety property, which we call the unreachable error property (UEP).
In order to check R1 (and any other requirement henceforth), UEP must hold, because
reaching location error in any task makes the analysis results worthless as we ex-
plained in Sect. 3.3. Therefore, we proceed as follows. We start by one core (nc = 1)
and verify SP. If it does not hold, we increase nc and reverify. Otherwise, we make
sure that UEP holds for all tasks.

The verification results using UPPAAL, which can be obtained using the links given
in the artefacts (Sect. 4.4), show that SP is violated for nc ∈ {1 , 2 , 3}. As soon as we
increase nc to four, SP holds. We proceed thus by verifying UEP, which we make sure
it also holds. Consequently, R1 is satisfied for nc = 4 . Thus, nc is fixed to four in
the remainder of this paper’s experiments. Also, as long as we bring no changes to the
UPPAAL model (which will not happen before Sect. 4.3), we will no longer recall that
UEP must hold in order to satisfy some requirement, since we already verified that it
holds for nc = 4 .

Requirement R2:

In order to check R2 through verifying UPPAAL properties, we ask, for each task t,
for the maximum value of clock x at location manage . To do this, we ask UPPAAL to
evaluate the following formula sup{manager t .manage} : manager t .x . Now, since
manage is the location at which activities are executed, the result of such evaluation
corresponds to the maximum amount of time t needs to execute, starting from its period
signal. This maximum value includes the time t waits in the queue, and is referred to
as the maximum response time of t in the remainder of this paper. Then, we simply
compare the maximum response time to the period of t. The results are given in table 1.
All tasks are feasible, besides scan (component roblaser) that may exceed its period
by up to 15 ms (which is inferior to its period). R1 and R2 are thus both met on the
four-core platform, and we can provide the precise maximum amount of time by which
the only non-schedulable task may overrun its periods.

18

t odo track plan fuse scan
period 50 50 200 50 50

sup{manager t .manage} : manager t .x 40 40 60 45 65

Table 1: Maximum response time per task (four cores).

4.2. Other Requirements
So far, the requirements we checked are all related to schedulability: we verify

whether a task is feasible, and if it is not, we look for the maximum amount of time
by which it may exceed its deadline. However, as said in Sect. 1, verifying schedu-
lability is often not sufficient in the context of robotic and autonomous systems. In
the following, we present further requirements of our case study that are not related to
schedulability, and thus cannot be checked through schedulability analysis techniques.

There are two non-schedulability-related requirements. For control tasks, it is very
important to ensure that any request received by a client at any time is eventually pro-
cessed (R3). Additionally, requested activities must eventually start executing (R4).
Due to the low-level mutual exclusion over the IDS in a GenoM3 component (involv-
ing both execution and control tasks), such requirements are not necessarily satisfied.
Additionally, schedulability does not provide any guarantee on either R3 or R4. For
instance, task odo may be feasible while one of its requested activities (e.g. TrackO-
doStart, Fig. 8) has never started, that is R4 is not met.

Requirement R3:

To check whether R3 is satisfied, we formulate it as an UPPAAL property using the
a leadsto b pattern, denoted a −− > b, which evaluates to true if and only if when-
ever atomic proposition a holds, atomic proposition b will eventually hold. The below
listing shows how to write, using such pattern, the UPPAAL leadsto property that en-
codes R3 for the control task of, for instance, component ROBLOCO:

CT_robloco.receive and cl.start --> CT_robloco.finish

Where CT robloco is the UPPAAL process mapping the control task of component
ROBLOCO (we recall that control tasks models are not shown in this paper), receive is
the location from which CT robloco receives client requests (which we verify before-
hand that it is reachable), and finish is the location that CT robloco reaches after
processing any received request. Additionally, cl is the UPPAAL process (not shown
here) mapping the client that sends activities requests to all components and start is its
initial location from which it starts sending requests when all control tasks are ready (at
their respective receive locations). The results show that R3 is satisfied for all control
tasks in the case study.

Requirement R4:

We know that, in the UPPAAL model, an activity is initially at location ether , and
that reaching location start (from ether) denotes the beginning of execution of such
activity (see for example Fig. 8). Thus R4 means that each UPPAAL process of each

19

requested activity must reach at some point of the system evolution its location start .
This can be formulated using the liveness formula A <> as follows:

A <> act.start

Where act is the UPPAAL process of some requested activity. This property means
that location start of act is eventually and inevitably reached in all possible evolution
paths of the global UPPAAL system. Our analysis (which can be reproduced using the
links given in the artefacts, Sect. 4.4) shows that R4 is met for all requested activities
in all components.

4.3. Improving Schedulability

In Sect. 4.1, we have seen that cEDF (and HRRN alike) allows us to satisfy both
schedulability-related requirement R1 and R2 on the four-core Robotnik platform.
However, the task scan is still unfeasible: it may exceed its deadline by up to 15 ms.
While this is acceptable according to R2, it is still undesirable. Indeed, scan reads the
laser sensor so it would be better if it could process sensor data within the deadline,
especially if the robot is evolving in a highly critical context. For instance, if the sensor
fails, it would be possible to detect the failure and react to it the earliest possible.

Therefore, we will try here to find a way to make all tasks schedulable, and thus
make our case study suitable for hard real-time applications as well, considering the
same scheduling policy (cEDF or HRRN) and the same Robotnik platform. To do so,
we reiterate the experiments of checking R2 (Sect. 4.1), and analyse the counterexam-
ples, given by UPPAAL that correspond to task scan violating its deadline.

Counterexample Analysis:

The analysis shows that the violation happens each time task plan (component ROB-
MOTION) and odo (component ROBLOCO) are running in parallel with task scan.
More precisely, some codels in activities run by plan (ROBMOTION) write the port
speed, which is read by some codels in activities run by odo in ROBLOCO (Fig. 7).
Similarly, some codels in activities run by odo (ROBLOCO) write the port pos, which
is read by some codels in activities run by scan in ROBLASER (Fig. 7). Thus, task odo
(ROBLOCO) delayed by task plan (ROBMOTION) because of the mutual exclusion over
port speed, delays in turn task scan (ROBLASER) because of the mutual exclusion over
port pos, which results in task scan missing its deadline.

Fig 11 gives an abstract view of this phenomenon. It is purely illustrative: it is
based neither on the exact timing constraints nor on the real activities behavior of tasks
in our case study. Solid (resp. dashed) stroke rectangles symbolize concrete (resp. de-
layed) codels execution, each codel of the form ci x where i is some unique identifier
and x the first letter of the task the codel is executed within. Colorful solid fills reflect
concurrency : c1 p and c2 s are not in conflict, but each of them is in conflict with
c1 o (due to the sharing of ports as explained above). Non-colored (white-filled) rect-
angles refer to thread-safe codels. The first period signal (to the left) is given at global
time zero or some global time that is a common multiple of the periods of tasks odo,
track and plan (we consider it zero for simplification). In this example, each task t is
supposed to execute codels c1 t and c2 t in this order. For simplicity, execution times

20

are fixed. In this example they have the values 14 ms, 34 ms, 26 ms, 6 ms, 16 ms and
20 ms for c1 p, c2 p, c1 o, c2 o, c1 s and c2 s , respectively.

Now, at the very start, either odo or plan has to wait, because c1 o is in conflict
with c1 p, but scan may execute since c1 s is thread safe. In the scenario shown in
Fig 11, c1 p seizes the shared memory (port speed) first, which delays the execution of
c1 o by 14 ms. In parallel, c1 s starts executing. At global time 14 ms, c1 p finishes
executing which means that c1 o may start. Two milliseconds later, c1 s finishes its
execution, which means that task scan needs to execute c2 s as soon as global time
is equal to 16 ms. However, this is not possible because c1 o, in conflict with c2 s
already started executing, which delays the start of c2 s to global time 40 ms, and thus
makes task scan miss its period.

This phenomenon originates from task plan, although it is actually not in conflict
with task scan: if task odo (in particular codel c1 o) had not been delayed by task
plan (in particular codel c1 p), scan would have not missed its period. Task odo, on
the other hand, is not affected at all by its conflicts with tasks plan and scan: it would
still respect its deadline in the other possible scenario, that is when c1 o seizes the
shared port first.

Core 1
(running task plan

in robmotion)

Core 3
(running task scan

in roblaser)

Core 4
(running some other

task)

…

Core 2
(running task odo

in robloco)

c1_s c2_s

Period signal
(plan, odo, scan)

Period signal
(odo, scan)

c2_s
(delayed)

c2_o c1_o
c1_o

(delayed)

c1_p c2_p

global time (ms)

2 ms

0 14 16 40 50

Figure 11: Abstract example: task scan missing its deadline

Thus, exceeding the period of task scan has nothing to do with the number of cores,
but with the concurrency aspect between codels over shared memory (more precisely,
ports in this case, Sect. 3.1). This is what we confirm when increasing nc further
than four: the results remain the same, all tasks are schedulable except scan, which
may exceed its period by up to 15 ms. This behavior is similar to the classical priority
inversion in scheduling theory (see chapter 2 in [30]) that caused the failure of the Mars
Pathfinder spacecraft in 1997.

21

In the example given in Fig 11, we can solve the problem by hard-cording shared
memory access rules at the OS level. However, such solution is tedious as it would
entail utilizing low-level OS libraries of shared memory management in order to hard-
code precedence between codels in accessing ports. Also, the changes made to memory
access may easily affect task track (in ROBLOCO), in conflict with both odo and scan
(in ROBLOCO and ROBLASER, respectively), the most critical task in our case study
(requirement R1, Sect. 4.1). Finally, Fig 11 is just an illustrative example, as we re-
call, which does not reflect the real complexity we have in the case study, with several
activities and dozens of interleaving scenarios.

Therefore, the solution of this problem needs to be exploitable by the robotic pro-
grammer within their area of expertise. In other words, we need to find a lightweight
approach that works in all possible scenarios and is easily implementable at the un-
derlying robotic application level, that is the GenoM3 specification or implementation.
This is not an easy task especially that we cannot, due to hardware (sensors and actua-
tors) constraints, modify period values or offset period signals in the style of [37].

A suspension-based solution:

The trick is borrowed from the notion of “self-suspension”, classically used in con-
texts where tasks access external devices [33]. The reasoning is as follows. Since
task plan schedules comfortably under four cores (table 1), suspending its execution
at its very beginning for some (statically defined) amount of time would relieve task
odo from memory constraints, and eventually lead to task scan meeting its deadline
requirements. We need however to know the value of suspension time, or suspension
delay, that we call sd , such that we manage to make task scan schedulable without
side effects on the schedulability of the remaining tasks.

We proceed through an empirical evaluation of sd . Firstly, we extend the model of
task plan, more precisely its manager, to take the suspension (at the very beginning of
the task) into account (Fig. 12). At location delay , the manager waits, using an addi-
tional clock y, for sd time units before it reaches location manage to start executing
the activities of task plan. This is the only difference with the basic model without
suspension (e.g. given previously in Fig. 10 for task odo). Then, we tune the value
of sd while verifying the schedulability of all tasks by (i) verifying UEP (Sect. 4.1),
since the UPPAAL model has changed and will change for each new value of sd , and
(ii) directly asking UPPAAL for the maximum value of clock x in location manage of
each manager (exactly like we did in Sect. 4.1 to obtain table 1).

Fig. 13 shows a plot of the empirical results, with sd varying between 0 ms and
50 ms (we make sure UEP holds in each case). The Y axis corresponds to the UPPAAL
response when we ask for the maximum response time of each task (including the
waiting time), using the same property in table 1. Any value of sd in the gray (light or
dark alike) area, that is in the interval I = [1 , 35] allows to schedule all tasks. In this
interval, the maximum response time of task scan, the only task that was not feasible
before adding the suspension delay, drops from 65 ms to 50 ms, which is exactly equal
to its period. Moreover, we may isolate the interval I ′ = [11 , 30], inside the interval I ,
which corresponds to the least maximum response time of all tasks combined: 35 ms,
25 ms, 40 ms, 50 ms, and 60 ms for odo, track, fuse, scan and plan respectively.

22

Figure 12: UPPAAL model of the manager of task plan (with suspension)

This means that, while suspending task plan with any value of sd within I ensures
schedulability for all tasks, choosing sd within I ′ guarantees, in addition, the smallest
maximum response time for all tasks.

Note that results on schedulability and/or maximum response time may only worsen
for values of sd above 50. Indeed, the experiments show that the pattern of maximum
response times repeats itself periodically (in [51 , 100], then in [101 , 150], etc.) for
all tasks except plan whose maximum response time keeps growing until plan is no
longer shcedulable. This is why we restrict the plot we show in Fig. 13 to the interval
[0 , 50].

Effect on other properties:

Our solution improves schedulability as well as the overall maximum response times,
which means that schedulability-related requirements R1 and R2 (Sect. 4.1) are largely
met with a considerable optimization. However, we need to make sure that the remain-
ing requirements R3 and R4 are still satisfied under the new solution, that is with a
suspension delay comprised within interval I , i.e. between 1 ms and 35 ms (or, ideally,
within interval I ′ = [11 , 30] as explained above).

Therefore, we follow the same steps as in Sect. 4.2 to verify liveness and leadsto
properties corresponding to R3 and R4. The results (see Sect. 4.4 for practical details)
show that both requirements are met for any value of sd in interval I (and thus for any

23

1 11 30 35 50
0

25

30

35

40

45

50

60

65

85

105

110

sd (ms)

m
ax

im
um

re
sp

on
se

tim
e

(m
s)

plan
scan
fuse
track
odo

Figure 13: Effect of sd values on tasks schedulability

value of sd in interval I ′, since I ′ ⊆ I).

Returning to GenoM3:

Our results are exploitable by robotic programmers. Indeed, they may consider sus-
pending task plan at the beginning of each period by, ideally, an amount of time in
I ′, using dedicated functions such as usleep(). This may be done through, for in-
stance, inserting such function call in the implementation of the task, generated from
GenoM3 specifications for the PocoLibs or ROS-Com middleware, just prior to codels
invocation.

4.4. Artefacts

All of our experiments material is freely available at https://github.com/Mo-F/
sched-artefact, with a detailed README file. The repository includes the GenoM3
files specifying the robotic components involved in the case study. Additionally, it pro-
vides the automatically generated UPPAAL models (as extended with a cEDF sched-
uler) as well as the query files with all the properties that we verified, to allow repro-
ducing the results in both cases: before and after the suspension-based optimization. In
the after-optimization case, we provide also all the results that produced the plot given
in Fig. 13. Moreover, there are instructions on how to generate the UPPAAL model
from the GenoM3 components if the user wants to reproduce the experiments wholly
following the complete transformation and verification chain. Finally, the equivalent
counting-based UPPAAL models are freely accessible, which the user may use to try

24

https://github.com/Mo-F/sched-artefact
https://github.com/Mo-F/sched-artefact

Property
SP

(nc=1)
SP

(nc=2)
SP

(nc=3)
SP

(nc=4)

Verification Cost
(Search-Based Model)

time (s) 0.35 0.63 83 5
Memory (Mb) 34 46 1620 799

Verification Cost
(Counting-Based Model)

time (s) 10 21 > 465 10
Memory (Mb) 1659 1691 OOM 1629

Table 2: Verification cost of schedulability of task track (search vs. counting).

to verify the same properties and compare the verification cost with that of the auto-
matically generated (search-based) models.

5. Discussion

5.1. Scalability
As explained in Sect. 2, we expect our novel binary-search-based technique to out-

perform the classical counting one. We need to confirm such expectations in our exper-
imental setting. For that, as said at the beginning of Sect. 4, counting-based UPPAAL
models, equivalent to the automatically generated ones from our case study (which,
we recall, rely on our search technique, see for example the manager in Fig. 10), are
derived and used to verify the same properties as in Sect. 4.1 and Sect. 4.2.

The results are, without surprise, identical with both models, with the difference
that the counting-based model fails to scale for some properties and provides thus no
answer as UPPAAL runs out of memory (OOM). The experiments show that, in all
cases, our search technique scales much better than the counting one. For instance,
table 2 shows the verification cost (time and memory consumption) for the UPPAAL
property that we named SP in Sect. 4.1, that is the schedulability property that en-
codes requirement R1, on a MacBook Pro laptop with 4 Gb of RAM dedicated to the
UPPAAL verifier. In this example, our search technique performs from two to 30
times (resp. two to 50 times) better than the counting one in terms of verification time
(resp. memory consumption). In addition, for nc = 3 (three cores), UPPAAL con-
sumes the whole 4 Gb of memory available without succeeding to give an answer with
the counting-based model. That is, on any computer with 4 Gb of RAM, we would not
have been able to verify SP for three cores, and thus would have failed to know whether
the requirements are satisfied for this particular setting.

However, even with our technique, model checking still suffers from the general
problem of state space explosion. For instance, we encounter scalability issues as soon
as we try to implement preemptive schedulers, or apply our approach to (significantly)
larger case studies such as the Osmosis experiment detailed in Sect. 2.4.1 of the PhD
thesis [16], involving ten components and over twenty tasks.

5.2. Design Optimisation
As shown in Sect. 4.3, using model checking, through UPPAAL, allows us to

progress from yes-or-no verification to answering the questions “why no?” and “can

25

we make it a yes?”. Through the analysis of counterexamples provided by the tool,
we manage to draw redesign principles that allow us to improve the verification re-
sults, and even satisfy some properties that did not hold beforehand. Such redesign
principles are accessible to the robotic programmer and applicable within the robotic
implementation.

Nevertheless, this is not obvious in the general case. Besides the user-friendly
interface of UPPAAL allowing to replay counterexamples, the analysis of the latter is
out of reach of practitioners with no formal background and no advanced knowledge
of the tool. In other words, contrary to the forward chain from robotic specification to
verification in UPPAAL, the details of which we conceal using automatic generation,
the backward chain, that is redesigning based on counterexamples analysis, still lacks
an important step to make it convenient for robotic programmers.

5.3. Summary
The results are encouraging. First, schedulability is verified for all tasks and, if

schedulability is violated, the precise upper bound of the time the period is exceeded
is retrieved. Second, we further verify other properties than schedulability, equally im-
portant to the correct functioning and safety of the robot. All this is done automatically
at both the modeling (template) and verification (model checker) levels, while taking
into account the real hardware and OS specificities. In addition, we manage, based on
counterexample analysis, to optimize the scheduling using suspension delays, which
results in feasibility of all tasks as well as a considerable reduction of their maximum
response time.

However, we do not know whether we can obtain better results (e.g. schedulability
with a smaller number of cores, reducing further the load on cores) with preemptive
schedulers. Indeed, we may not rely on generic theoretical results to know whether
preemptive schedulers may perform better than cooperative ones in the case of robotics,
and, unfortunately, preemption generally does not scale with model checking (Sect. 6).
Furthermore, counterexample analysis is done manually, which is not suitable for non-
expert practitioners. Possible directions to deal with these issues are given in Sect. 7.

6. Related Work

Real-time analysis and model checking in robotics:

Bridging the gap between analytical techniques (e.g. in schedulability analysis) and
model checking is generally not explored at the functional layer of robotic and au-
tonomous systems. On one hand, works focusing on model checking [28, 47, 36, 35]
ignore hardware and OS constraints (number of cores and scheduling policy) which re-
stricts the validity of results to only when the number of cores in the platform is at least
equal to that of the robotic tasks, which is usually an unrealistic assumption. On the
other hand, real-time analysis of functional robotic components [44, 40, 22], mainly fo-
cusing on schedulability, is non automatic and gives no guarantees on other important
behavioral and timed properties such as liveness, safety and bounded response.

Moreover, although schedulability analysis of preemptive and non-preemptive poli-
cies has been well studied on mono- and multi-processor architectures [14] (especially

26

for fixed priority and EDF), its theoretical findings are still hard to generalize to the
case of robotics. This is due, mainly, to the fact that such analysis is generally pes-
simistic and, more importantly, limited to simple task execution models that do not
allow the complexity of a robotic application to be expressed. For instance, the exper-
iments detailed in [39] show how, contrary to general theoretical results on schedula-
bility analysis, some non preemptive schedulers perform better than preemptive ones
in the case of a mobile robot application. This limitation on task models makes it hard
to adapt existing approaches, for example [48] where both schedulability and control
problems are considered, to the case of robotics.

Model-checking for schedulability:

Several works propose using generic model-checking tools to perform schedulability
analysis. These studies differ in the underlying task models, the considered scheduling
policies and the employed model-checking methods. The majority of works [49, 13, 43,
12, 10, 50] use Timed Automata with UPPAAL as model-checker and some with Stop-
watches. In contrast, the paper [23] uses of the symbolic model-checker nuSMV [11],
while [31] uses an approach based on the transformation of time Petri nets into linear
hybrid automaton and the verification of the transformed models with the HyTECH
model-checker [25]. The majority of the scheduling policies studied are preemptive
fixed priorities and EDF for mono- or multi-processor architectures. Only [12] pro-
poses different schedulers such as LLF and LLREF but this work is based on a deter-
ministic task model and is quite similar to a simulator. More recently, [50] focuses
on a non-preemptive policy with self-suspending tasks. Without surprise, papers that
present experimental evaluations note scalability issues both in terms of the number of
tasks and in relation to non-deterministic variables, i.e., variation in execution times,
uncertainty about task starts, etc. Moreover, all of these works rely on basic task mod-
els that are not suitable for robotics.

The trend of using model-checking-based techniques to verify schedulability has
even led to the development of tools and prototypes that are specific for schedulability
analysis, such as TIMES [4] and POLA [38]. Unfortunately, such tools are too high-
level to implement complex robotic applications, which prevents their use as a uniform
environment to verify various real-time and behavioral properties, including schedula-
bility, in the robotic context. Furthermore, they target mainly preemptive schedulers,
and consequently suffer from scalability issues in large applications.

Capturing time in formal models:

To the best of our knowledge, enriching formal models of robotic applications with
dynamic-priority cooperative schedulers is a non-explored research direction. Still, the
problem that arises, i.e. storing arbitrary time values in variables to construct the model,
has been already encountered in other domains. It is the case of [26], where the authors
use the counting technique that we explained in Sect. 2.2.1, to which they refer as
integer clocks, to perform arithmetics on clock values stored in natural variables. Such
integer clocks, relying on a classical counting algorithm, lead to unscalable models in
the case of large robotic applications like the one we verify in this paper.

27

Comparison to our previous work:

In [19], we extended the Fiacre template with First Come First Served (FCFS) and
Shortest Job First (SJF) cooperative schedulers. We concluded that we need to inte-
grate more “intelligent” schedulers with dynamic priorities (e.g. cEDF and HRRN),
which we efficiently achieve in this paper using a novel binary-search-based tech-
nique. Practitioners can thus automatically generate, from any robotic specification,
a formal model enriched with cEDF or HRRN, on which various properties can be
verified within the same framework, UPPAAL, with majors gains in terms of scalabil-
ity. Finally, compared to our paper [17], we verify also properties that are not related
to schedulability, propose a self-suspension-based solution to schedule all tasks and
provide public artefacts to reproduce all experiments (as detailed at the end of Sect. 1).

7. Conclusion

In this paper, we elaborate an effort to bridge the gap between the robotics, the
real-time systems and the formal methods communities. We aim at providing, automat-
ically, formal models of robotic specifications that take into account the actual hard-
ware and OS specificities. In order to take into account optimized (dynamic-priority)
schedulers, we propose a scalable search method that we implement and automatize
within the UPPAAL template developed in [21]. The results are encouraging, and al-
low to deploy our case study on a four-core robotic platform while fulfilling real-time
requirements, which we could not achieve using the classical FCFS and SJF schedulers
available since [19].

Additionally, we propose to improve the deployability of our case study by making
all tasks in the application schedulable, and improving their maximum response time.
To that end, we analyze the counterexamples provided by UPPAAL for tasks that were
not initially feasible on the platform. Afterwards, we propose inserting suspension
delays and identify the values of such delays that allow to schedule all tasks and reduce
the maximum response times. Therefore, we do not only verify the properties, but
further propose redesigning guidelines to improve the results and guarantee a better
deployability of the system.

We still face scalability issues when we try to implement preemptive schedulers.
Yet, such schedulers may further improve the deployability. It follows that a possible
direction of future work is to consider the extension of the UPPAAL-SMC (Statisti-
cal Model Checking) template [21] with preemptive schedulers in order to verify the
properties statistically (up to some high probability). Although exploring this direc-
tion would restrict us to non-critical contexts, works like [15] may help us deal with
the severe lack of probabilistic requirements in the robotics domain (i.e. to answer the
question of what could be considered as a “sufficiently high probability” for a robotic
application).

Also, analyzing counterexamples is not convenient for non-expert practitioners. A
possible direction of future work is to bridge GenoM3 and UPPAAL in the “backward”
direction: return counterexamples as GenoM3 traces, exploitable by robotic program-
mers. In order to achieve such promising yet tedious task (especially because of the
timed nature of UPPAAL), we need first to formally define what a trace is in the context

28

of GenoM3. Our work on formalizing the latter [20] would be a good starting point.
Finally, our models do not go all the way to more low-level specificities, such as

cache interferences and the effects of task migration on processor load and timing con-
straints. A possible direction of future work is to extend our models to take into account
such aspects. The recent work [42] uses UPPAAL to model cache interferences, and
may inspire us to progress in this direction.

References

[1] Rajeev Alur. Timed automata. In proc. of the International Conference on Com-
puter Aided Verification, CAV, pages 8–22. Springer, 1999. DOI: 10.1007/3-540-
48683-6 3.

[2] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Com-
puter Science, 126(2):183–235, 1994. DOI: 10.1016/0304-3975(94)90010-8.

[3] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-checking in
dense real-time. Information and computation, 104(1):2–34, 1993. DOI:
10.1006/inco.1993.1024.

[4] Tobias Amnell, Elena Fersman, Leonid Mokrushin, Paul Pettersson, and Wang
Yi. TIMES: a tool for schedulability analysis and code generation of real-time
systems. In Proc. of the International Conference on Formal Modeling and
Analysis of Timed Systems, FORMATS, pages 60–72. Springer, 2003. DOI:
10.1007/978-3-540-40903-8 6.

[5] Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat. Imitator
2.5: A tool for analyzing robustness in scheduling problems. In Proc. of the
International Symposium on Formal Methods, FM, pages 33–36. Springer, 2012.
DOI: 10.1007/978-3-642-32759-9 6.

[6] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL.
In Proc. of the Formal Methods for the Design of Real-Time Systems, SFM-RT,
pages 200–236. Springer, 2004. DOI: 10.1007/978-3-540-30080-9 7.

[7] Guillem Bernat, Alan Burns, and Albert Liamosi. Weakly hard real-time
systems. IEEE transactions on Computers, 50(4):308–321, 2001. DOI:
10.1109/12.919277.

[8] Bernard Berthomieu, Pierre-Olivier Ribet, and François Vernadat. The tool TINA
– construction of abstract state spaces for Petri nets and time Petri nets. In-
ternational Journal of Production Research, 42(14):2741–2756, 2004. DOI:
10.1080/00207540412331312688.

[9] Sébastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling urgency in
timed systems. In Proc. of the International Symposium on Compositionality,
COMPOS, pages 103–129. Springer, 1998. DOI: 10.1007/3-540-49213-5 5.

29

http://dx.doi.org/10.1007/3-540-48683-6_3
http://dx.doi.org/10.1007/3-540-48683-6_3
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1006/inco.1993.1024
http://dx.doi.org/10.1007/978-3-540-40903-8_6
http://dx.doi.org/10.1007/978-3-642-32759-9_6
http://dx.doi.org/10.1007/978-3-540-30080-9_7
http://dx.doi.org/10.1109/12.919277
http://dx.doi.org/10.1080/00207540412331312688
http://dx.doi.org/10.1007/3-540-49213-5_5

[10] Franco Cicirelli, Angelo Furfaro, Libero Nigro, and Francesco Pupo. Develop-
ment of a schedulability analysis framework based on ptpn and uppaal with stop-
watches. In Proc. of the IEEE/ACM 16th International Symposium on Distributed
Simulation and Real Time Applications, DS-RT, pages 57–64. IEEE, 2012. DOI:
10.1109/DS-RT.2012.16.

[11] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri.
NuSMV: a new symbolic model checker. International Journal on Software Tools
for Technology Transfer, 2(4):410–425, 2000. DOI: 10.1007/s100090050046.

[12] Mikel Cordovilla, Frédéric Boniol, Eric Noulard, and Claire Pagetti. Multipro-
cessor schedulability analyser. In Proc. of the ACM Symposium on Applied Com-
puting, SAC, pages 735–741. ACM, 2011. DOI: 10.1145/1982185.1982345.

[13] Alexandre David, Jacob Illum Rasmussen, Kim Guldstrand Larsen, and Arne
Skou. Model-based Framework for Schedulability Analysis Using Uppaal 4.1,
pages 93–119. Computational Analysis, Synthesis, and Design of Dynamic Sys-
tems. CRC Press, 1 edition, 2009. ISBN 978-1-4200-6784-2.

[14] Robert I. Davis and Alan Burns. A survey of hard real-time scheduling for mul-
tiprocessor systems. ACM Computer Survey, 43(4):35:1–35:44, 2011. DOI:
10.1145/1978802.1978814.

[15] José Louis Dı́az, Daniel Garcı́a, Kanghee Kim, Chang-Gun Lee, Lucia Lo Bello,
José Maria López, Sang Lyul Min, and Orazio Mirabella. Stochastic analysis of
periodic real-time systems. In Proc of the IEEE Real-Time Systems Symposium,
RTSS, pages 289–300. IEEE, 2002. DOI: 10.1007/s11241-008-9053-6.

[16] Mohammed Foughali. Formal Verification of the Functional Layer of Robotic
and Autonomous Systems. PhD thesis, Institut national des sciences appliquées
de Toulouse, 2018.

[17] Mohammed Foughali. On reconciling schedulability analysis and model checking
in robotics. In Proc. of International Conference on Model and Data Engineering,
MEDI, pages 32–48. Springer, 2019. DOI: 10.1007/978-3-030-32213-7 3.

[18] Mohammed Foughali, Bernard Berthomieu, Silvano Dal Zilio, Félix Ingrand, and
Anthony Mallet. Model checking real-time properties on the functional layer of
autonomous robots. In Proc. of the International Conference on Formal Engi-
neering Methods, ICFEM, pages 383–399. Springer, 2016. DOI: 10.1007/978-3-
319-47846-3 24.

[19] Mohammed Foughali, Bernard Berthomieu, Silvano Dal Zilio, Pierre-Emmanuel
Hladik, Félix Ingrand, and Anthony Mallet. Formal verification of complex
robotic systems on resource-constrained platforms. In Proc. of the Conference
on Formal Methods in Software Engineering, FormaliSE, pages 2–9. ACM, 2018.
DOI: 10.1145/3193992.3193996.

[20] Mohammed Foughali, Silvano Dal Zilio, and Félix Ingrand. On the Semantics of
the GenoM3 Framework. Technical Report 19036, LAAS/CNRS, 2019.

30

http://dx.doi.org/10.1109/DS-RT.2012.16
http://dx.doi.org/10.1007/s100090050046
http://dx.doi.org/10.1145/1982185.1982345
http://dx.doi.org/10.1145/1978802.1978814
http://dx.doi.org/10.1007/s11241-008-9053-6
http://dx.doi.org/10.1007/978-3-030-32213-7_3
http://dx.doi.org/10.1007/978-3-319-47846-3_24
http://dx.doi.org/10.1007/978-3-319-47846-3_24
http://dx.doi.org/10.1145/3193992.3193996

[21] Mohammed Foughali, Félix Ingrand, and Cristina Seceleanu. Statistical model
checking of complex robotic systems. In Proc. of the International Sympo-
sium on Model Checking Software, SPIN, pages 114–134. Springer, 2019. DOI:
10.1007/978-3-030-30923-7 7.

[22] Nicolas Gobillot, Charles Lesire, and David Doose. A design and analysis
methodology for component-based real-time architectures of autonomous sys-
tems. Journal of Intelligent & Robotic Systems, 96(1):123–138, 2019. DOI:
10.1007/s10846-018-0967-5.

[23] Nan Guan, Zonghua Gu, Mingsong Lv, Qingxu Deng, and Ge Yu. Schedulabil-
ity analysis of global fixed-priority or EDF multiprocessor scheduling with sym-
bolic model-checking. In Proc. of the 11th IEEE Symposium on Object Oriented
Real-Time Distributed Computing, ISORC, pages 556–560. IEEE, 2008. DOI:
10.1109/ISORC.2008.74.

[24] Thomas Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic
model checking for real-time systems. Information and computation, 111(2):
193–244, 1994. DOI: 10.1006/inco.1994.1045.

[25] Thomas Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A model
checker for hybrid systems. In Proc. of the International Conference on Computer
Aided Verification, pages 460–463. Springer, 1997. DOI: 10.1007/3-540-63166-
6 48.

[26] Xiaowan Huang, Anu Singh, and Scott A. Smolka. Using integer clocks to verify
clock-synchronization protocols. Innovations in Systems and Software Engineer-
ing, 7(2):119–130, 2011. DOI: 10.1007/s11334-011-0152-5.

[27] Mehdi Kargahi and Ali Movaghar. Non-preemptive earliest-deadline-first
scheduling policy: A performance study. In Proc. of the IEEE International Sym-
posium on Modeling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems, MASCOTS, pages 201–208. IEEE, 2005. DOI: 10.1109/MAS-
COTS.2005.44.

[28] Moonzoo Kim and Kyo Chul Kang. Formal Construction and Verification of
Home Service Robots: A Case Study. In Proc. of the International Symposium
on Automated Technology for Verification and Analysis, ATVA, pages 429–443.
Springer, 2005. DOI: 10.1007/11562948 32.

[29] Karthik Lakshmanan, Dionisio De Niz, Ragunathan Rajkumar, and Gabriel
Moreno. Resource allocation in distributed mixed-criticality cyber-physical sys-
tems. In Proc. of the International Conference on Distributed Computing Systems,
ICDCS, pages 169–178. IEEE, 2010. DOI: 10.1109/ICDCS.2010.91.

[30] Insup Lee, Joseph Y-T. Leung, and Sang H. Son. Handbook of Real-Time and
Embedded Systems. Chapman & Hall/CRC, 1st edition, 2007. ISBN 1584886781,
9781584886785.

31

http://dx.doi.org/10.1007/978-3-030-30923-7_7
http://dx.doi.org/10.1007/s10846-018-0967-5
http://dx.doi.org/10.1109/ISORC.2008.74
http://dx.doi.org/10.1006/inco.1994.1045
http://dx.doi.org/10.1007/3-540-63166-6_48
http://dx.doi.org/10.1007/3-540-63166-6_48
http://dx.doi.org/10.1007/s11334-011-0152-5
http://dx.doi.org/10.1109/MASCOTS.2005.44
http://dx.doi.org/10.1109/MASCOTS.2005.44
http://dx.doi.org/10.1007/11562948_32
http://dx.doi.org/10.1109/ICDCS.2010.91

[31] Didier Lime and Olivier H. Roux. Formal verification of real-time systems
with preemptive scheduling. Real-Time Systems, 41(2):118–151, 2009. DOI:
10.1007/s11241-008-9059-0.

[32] Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie Traonouez.
Romeo: A parametric model-checker for Petri nets with stopwatches. In Proc. of
the International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS, pages 54–57. Springer, 2009. DOI: 10.1007/978-3-
642-00768-2 6.

[33] Cong Liu and James H Anderson. Suspension-aware analysis for hard real-time
multiprocessor scheduling. In Proc. of the Euromicro Conference on Real-Time
Systems, ECRTS, pages 271–281. IEEE, 2013. DOI: 10.1109/ECRTS.2013.36.

[34] Philip Merlin and David Farber. Recoverability of Communication Protocols:
Implications of a Theoretical Study. IEEE Transactions on Communications, 24
(9):1036–1043, 1976. DOI: 10.1109/TCOM.1976.1093424.

[35] Alvaro Miyazawa, Pedro Ribeiro, Wei Li, Ana Cavalcanti, and Jon Timmis. Au-
tomatic property checking of robotic applications. In Proc. of the International
Conference on Intelligent Robots and Systems, IROS, pages 3869–3876. IEEE,
2017. DOI: 10.1109/IROS.2017.8206238.

[36] Levente Molnar and Sandor Veres. System verification of autonomous underwater
vehicles by model checking. In Proc. of the OCEANS-EUROPE Conference,
pages 1–10. IEEE, 2009. DOI: 10.1109/OCEANSE.2009.5278284.

[37] Mitra Nasri, Robert I Davis, and Björn B Brandenburg. FIFO with offsets: High
schedulability with low overheads. In Proc. of the Real-Time and Embedded
Technology and Applications Symposium, RTAS, pages 271–282. IEEE, 2018.
DOI: 10.1109/RTAS.2018.00035.

[38] Florent Peres, Pierre-Emmanuel Hladik, and François Vernadat. Specification
and verification of real-time systems using POLA. International Journal of
Critical Computer-Based Systems, 2(3-4):332–351, 2011. DOI: 10.1504/IJC-
CBS.2011.042332.

[39] Maurizio Piaggio, Antonio Sgorbissa, and Renato Zaccaria. Pre-emptive versus
non-pre-emptive real time scheduling in intelligent mobile robotics. Journal of
Experimental & Theoretical Artificial Intelligence, 12(2):235–245, 2000. DOI:
10.1080/095281300409856.

[40] Steve Qadi, Ala Goddard, Jiangyang Huang, and Shane Farritor. A performance
and schedulability analysis of an autonomous mobile robot. In Proc. of the IEEE
Euromicro Conference on Real-Time Systems, ECRTS, pages 239–248. IEEE,
2005. DOI: 10.1109/ECRTS.2005.2.

[41] Chander Ramchandani. Analysis of asynchronous concurrent systems by Petri
nets. Technical report, DTIC Document, 1974.

32

http://dx.doi.org/10.1007/s11241-008-9059-0
http://dx.doi.org/10.1007/978-3-642-00768-2_6
http://dx.doi.org/10.1007/978-3-642-00768-2_6
http://dx.doi.org/10.1109/ECRTS.2013.36
http://dx.doi.org/10.1109/TCOM.1976.1093424
http://dx.doi.org/10.1109/IROS.2017.8206238
http://dx.doi.org/10.1109/OCEANSE.2009.5278284
http://dx.doi.org/10.1109/RTAS.2018.00035
http://dx.doi.org/10.1504/IJCCBS.2011.042332
http://dx.doi.org/10.1504/IJCCBS.2011.042332
http://dx.doi.org/10.1080/095281300409856
http://dx.doi.org/10.1109/ECRTS.2005.2

[42] Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti. Modeling cache coher-
ence to expose interference. In Proc. of the IEEE Euromicro Conference on Real-
Time Systems, ECRTS. IEEE, 2019. DOI: 10.4230/LIPIcs.ECRTS.2019.18.

[43] Wei Sheng, Yanyan Gao, Li Xi, and Xuehai Zhou. Schedulability analysis for
multicore global scheduling with model checking. In Proc. of the 11th Interna-
tional Workshop on Microprocessor Test and Verification, pages 21–26. IEEE,
2010. DOI: 10.1109/MTV.2010.13.

[44] Jiazheng Shi, Steve Goddard, A. Lal, and Shane Farritor. A real-time model
for the robotic highway safety marker system. In Proc. of the IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS, pages 331–340.
IEEE, 2004. DOI: 10.1109/RTTAS.2004.1317279.

[45] Chi-Sheng Shih, Lui Sha, and Jane Liu. Scheduling tasks with variable deadlines.
In Proc. of the IEEE Real-Time and Embedded Technology and Applications Sym-
posium, RTAS, pages 120–122. IEEE, 2001. DOI: 10.1109/RTTAS.2001.929874.

[46] Michael Short. On the implementation of dependable real-time systems with non-
preemptive edf. Electrical Engineering and Applied Computing, 20, 2011. DOI:
10.1007/978-94-007-1192-1 16.

[47] Daniel Simon, Roger Pissard-Gibollet, and Soraya Arias. Orccad, a framework
for safe robot control design and implementation. In Proc. of the Workshop on
Control Architectures of Robots: software approaches and issues, CAR, 2006.

[48] Sakthivel Manikandan Sundharam, Nicolas Navet, Sebastian Altmeyer, and Li-
onel Havet. A model-driven co-design framework for fusing control and schedul-
ing viewpoints. Sensors, 18(2):628, 2018. DOI: 10.3390/s18020628.

[49] Libor Waszniowski and Zdeněk Hanzálek. Formal verification of multitasking
applications based on timed automata model. Real-Time Systems, 38(1):39–65,
2008. DOI: 10.1007/s11241-007-9036-z.

[50] Beyazit Yalcinkaya, Mitra Nasri, and Björn B. Brandenburg. An exact schedu-
lability test for non-preemptive self-suspending real-time tasks. In Proc. of the
Design, Automation Test in Europe Conference Exhibition, DATE, pages 1228–
1233. IEEE, 2019. DOI: 10.23919/DATE.2019.8715111.

33

http://dx.doi.org/10.4230/LIPIcs.ECRTS.2019.18
http://dx.doi.org/10.1109/MTV.2010.13
http://dx.doi.org/10.1109/RTTAS.2004.1317279
http://dx.doi.org/10.1109/RTTAS.2001.929874
http://dx.doi.org/10.1007/978-94-007-1192-1_16
http://dx.doi.org/10.3390/s18020628
http://dx.doi.org/10.1007/s11241-007-9036-z
http://dx.doi.org/10.23919/DATE.2019.8715111

	Introduction
	Capturing Time
	Premilinaries
	A High Level Presentation: Problem and Solution
	The Classical ``Counting'' Method
	An optimized ``Search'' Method
	An Interval Test Method

	Application To Robotic Systems
	G0Tto0enoM3:
	UPPAAL Template
	Extending With Schedulers

	Results
	Schedulability-Related Requirements
	Other Requirements
	Improving Schedulability
	Artefacts

	Discussion
	Scalability
	Design Optimisation
	Summary

	Related Work
	Conclusion

