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We investigate theoretically the dynamics of two quasidegenerate mechanical modes coupled through an open
quantum two-level system. A mean-field approach shows that by engineering the retarded response of the two-
level system with a coherent drive, the non-Hermitian mechanical spectrum exhibits an exceptional degeneracy
point where the two modes coalesce. We show that this degeneracy can be exploited to manipulate the vectorial
polarization of the mechanical oscillations. We find that adiabatically varying the detuning and the intensity of
the drive induces a rotation of the mechanical polarization, which enables the topological and chiral actuation of
one mode from the other. This topological manifestation of the degeneracy is further supported by quantum-jump
Monte Carlo simulations to account for the strong quantum fluctuations due to the spontaneous emission of the
two-level system. Our presentation focuses on a promising realization based on flexural modes of a carbon-
nanotube cantilever coupled to a single-molecule electric dipole irradiated by a laser.

DOI: 10.1103/PhysRevResearch.2.023268

I. INTRODUCTION

The manipulation and detection of nanometer oscillators
are important challenges in nanomechanics [1–3], and recent
progress has led to unprecedented high-resolution sensors
[4–9]. Most nano-oscillators exhibit a multimode dynamics
[10–15]. In particular, the flexural dynamics of suspended
nanowires involves nearly degenerate orthogonal modes,
which enables the detection of anisotropic and nonconser-
vative force fields [16–18]. Such advances in vectorial force
microscopy rely on vectorial oscillations whose control is
crucial to scan surfaces [19]. Strategies to accurately monitor
ultralight cantilevers, such as carbon nanotubes that allow
zN/

√
Hz force sensitivity [20], are then highly desirable

to develop more sensitive vectorial probes. One interesting
possibility that we investigate here is to exploit the non-
conservative force induced by the detection system. Indeed,
open systems can exhibit intriguing degeneracy points in the
analytic continuation of their spectra, associated with the co-
alescence of the eigenstates and known as exceptional points
(EPs) [21–24]. EPs have recently allowed efficient topological
energy transfers between two harmonic modes of a membrane
placed in the middle of an optical cavity [25].

Two-level systems (TLSs) constitute minimal quantum
systems to detect and manipulate mechanical motions [26,27].
For example, their coupling to flexural modes allows the
localization of emitters randomly distributed in micropillars
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[28,29]. It was also shown that single-molecule TLSs are
sensitive local probes to measure, through the Stark effect, the
small displacements of a charged nanotube [30,31]. Using a
TLS to detect and actuate nanomechanical oscillators brings
two fundamental differences with respect to the use of optical
or electromagnetic cavities. (i) A strongly pumped optical
cavity has a linear behavior, whereas the quantum nature
of a TLS is intrinsically nonlinear. (ii) In highly populated
optical cavities, the Poissonian fluctuations are negligible,
whereas the TLS experiences strong quantum fluctuations due
to spontaneous emission. Whether it is possible to observe
EPs in the electromechanical spectrum of a cantilever coupled
to a TLS naturally appears as a fundamental question.

In this paper, we show that by adiabatically varying, along
a closed path, the frequency and the intensity of a coherent
field driving a TLS coupled to two quasidegenerate mechan-
ical modes, it is possible to induce a change in the state of
the mechanical oscillator that depends on the topology of the
path. We show that this behavior is due to the presence of
an EP in the mean-field description of the electromechanical
spectrum. Using quantum-jump Monte Carlo simulations, we
prove that this property holds in the presence of strong TLS
fluctuations. The presence of the EP allows one to generate
elliptic mechanical eigenmodes, whose axis angles can be
controlled. Finally, we propose a detection scheme to probe
the topological switch between the two quasidegenerate flex-
ural modes in single-molecule spectroscopy.

II. MECHANICAL MODES COUPLED TO A DRIVEN TLS

A. The system Hamiltonian

We consider the generic Hamiltonian of a TLS driven by
a coherent field, linearly coupled to two nearly degenerate
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FIG. 1. Electronanomechanical system: two orthogonal funda-
mental modes of a suspended carbon nanotude couple electrically to
the TLS of a single molecule pumped by a far-field laser. See, also,
Ref. [30] for more details.

mechanical modes,

H = −ωTLS

2
σ̂z + �L cos(ωLt )σ̂x + ω1b†

1b1 + ω2b†
2b2

−
∑
i=1,2

gi(b
†
i + bi )σ̂z. (1)

The operators σx and σz are Pauli matrices and describe the
TLS of energy splitting ωTLS (h̄ = 1). The TLS is driven by a
coherent field of frequency ωL and intensity (Rabi frequency)
�L. It couples with strength gi, the mechanical modes of
frequencies ωi, and destruction (creation) operators bi (b†

i )
[30]. The Hamiltonian H describes the unitary evolution.
We further consider dissipation processes. The driven TLS
can spontaneously emit photons toward the electromagnetic
environment with decay rate �. The mechanical modes are
coupled to thermal baths and have damping rates γi [31]. Both
baths are assumed to have the same temperature T0.

B. Electronanomechanical system

The generic model introduced above can describe various
physical systems [28,29,32]. We will focus our presentation
on the system proposed in Ref. [30] and shown schematically
in Fig. 1. In this case, the TLS is given by the electronic
doublet in organic molecules embedded in a solid-state ma-
trix [33,34]. As discussed in Ref. [30], when a suspended
carbon nanotube kept at a fixed difference of potential from
the substrate oscillates, it modulates the electric field on the
electronic doublet, and by Stark effect it modulates the two-
level system energy splitting. The coupling is proportional to
the permanent electric dipole moment of the molecule, which
can reach values up to two debyes [35]. Performing molecular
spectroscopy, then, allows one to detect the displacement of
the oscillator. In this paper, we consider the presence of two
flexural modes that are quasidegenerate for symmetry reasons.

Concerning the typical parameters one has that the carbon
nanotube mass is m � 10−20 kg, the fundamental frequen-
cies satisfy ωi/(2π ) � 1–10 MHz with quality factors Qi =
γi/ωi � 103−105 in the underdamped regime [36]. In usual
single-molecule experiments performed at liquid-helium tem-
peratures, the TLS exhibits a lifetime limited dephasing rate
�/2, with �/(2π ) � 8−10 MHz. Realistic values of the
coupling strengths gi can be as large as gc � 1 GHz, which

corresponds to a discharged electric field of about 10 mV/nm
between the nanotube tip and the molecule substrate [37].

III. MEAN-FIELD MECHANICAL DYNAMICS

A. Langevin equation of motion

Now we aim to describe the non-Hermitian dynamics of
the mechanical modes that occurs when the TLS and the
environment are traced out. In usual cavity optomechanics,
the coupling between the mechanical oscillator and the cavity
field can be linearized to solve the problem exactly. This is
not possible with a TLS due to its intrinsic nonlinear nature.
On the other side, in our case, we can exploit the timescale
separation between the mechanical and the TLS dynamics,
γi � �. We then follows Refs. [1,38] and derive a Langevin
equation for the mechanical degree of freedom tracing out
the TLS quantum degree of freedom. This approach captures
the Gaussian contributions and, in this sense, it is not limited
to weak coupling. We obtain that the expectation value of
the displacement xi = xzpf

i 〈bi + b†
i 〉, where xzpf

i denotes the
zero-point fluctuations, satisfies the Langevin equation,

ẍi(t ) + γiẋi(t ) + ω2
i xi(t )

= gi

mxzpf
i

〈σ̂z〉0 + δFi(t )

m

+ 1

m

∑
j=1,2

gig j

xzpf
i xzpf

j

∫
dt ′SR(t − t ′)x j (t

′). (2)

With 〈·〉0, we indicate quantum averages evaluated in the
absence of mechanical coupling (gi = 0). The average force
associated with 〈σ̂z〉0 only shifts the equilibrium position of
the mechanical oscillator and we disregard it from now on.
The forces δFi denote the Brownian thermal fluctuations,
as well as the nonequilibrium stochastic fluctuations due to
the spontaneous emission. The last term describes the TLS-
mediated retarded coupling between the mechanical modes.
It involves the retarded response function of the TLS in
the presence of the laser field and the electromagnetic envi-
ronment: SR(t ) = −iθ (t )〈[δσ̂z(t ), δσ̂z(0)]〉0, where δσ̂z(t ) =
σ̂z(t ) − 〈σ̂z(t )〉0 characterizes the fluctuations of the popula-
tion difference.

B. Non-Hermitian mean-field dynamics

From Eq. (2), we derive an effective non-Hermitian Hamil-
tonian that describes the oscillator’s mode dynamics. We
begin by neglecting the fluctuation forces δFi. We then lin-
earize the equation of motion (2) for frequencies close to the
two mechanical resonances ±ωi (see Appendix A). We in-
troduce the positive-frequency complex amplitude X(t ) from
which one can obtain the physical oscillator displacements,
x = (x1, x2) = 2Re[X]. The X quantities formally obey a
Schrödinger equation iẊ = HX, where the effective Hamil-
tonian is non-Hermitian,

H =
(

ω1 − iγ1/2 − g2
1SR −g1g2SR

−g1g2SR ω2 − iγ2/2 − g2
2SR

)
. (3)

Here, we assume that the mechanical frequency splitting is
much smaller than the TLS linewidth, ω1 − ω2 � �. Thus,
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FIG. 2. TLS-mediated coupling: strength of the retarded TLS
response |SR| as a function of the detuning δ and Rabi frequency �L.

the coupling between the nearly degenerate mechanical modes
depends on the retarded response at the mean mechanical
frequency ω0 = (ω1 + ω2)/2, and so SR ≡ SR(ω0).

To determine the effective coupling between the mechan-
ical modes, we need to evaluate SR. This can be done by
using a standard Born-Markov approximation for the evo-
lution of the TLS reduced density matrix ρ obtained by
tracing out the electromagnetic environment. Defining ρ =
(ρ11, ρ12, ρ21, ρ22), one obtains that it satisfies the Liouville–
von Neumann equation ρ̇ = Lρ associated with the superop-
erator

L =

⎛
⎜⎜⎜⎝

0 i�L/2 −i�L/2 �

i�L/2 −iδ − �/2 0 −i�L/2

−i�L/2 0 iδ − �/2 i�L/2

0 −i�L/2 i�L/2 −�

⎞
⎟⎟⎟⎠, (4)

in the rotating wave approximation, where δ = ωL − ωTLS de-
fines the laser detuning. This corresponds to the optical Bloch
equations that are known to provide a realistic description of
electric dipoles in single-molecule experiments [33,34]. In the
stationary regime Lρ0=0, the quantum regression theorem
leads to the autocorrelations

S(t ) = 〈σz(t ) σz(0)〉 − 〈σz〉2

= 〈w0|Mze
LtMz|ρ0〉 − 〈w0|Mz|ρ0〉2, (5)

where w0 = (1, 0, 0, 1) denotes the kernel left-hand eigenvec-
tor of L, andMz = diag(1, 1,−1,−1) (see, also, Ref. [31]).
The power spectral density S(ω) = ∫

dteiωt S(t ) characterizes
the absorption (ω > 0) and emission (ω < 0) of the TLS.
The frequency asymmetry of the quantum noise relates to the
imaginary part of the response function through 2 Im SR(ω) =
S(−ω) − S(ω). We then obtain

SR(ω) = 8δ�2
L

�2 + (2δ)2 + 2�2
L

iω − �

P(−iω)
, (6)

where the polynomial P(z) = ∑3
n=0 an zn has real coefficients

a0 = �[�2 + (2δ)2 + 2�2
L]/4, a1 = [5�2 + (2δ)2 + 4�2

L]/4,
a2 = 2�, and a3 = 1. Figure 2 shows the coupling strength
SR ≡ SR(ω0) as a function of the laser detuning and the Rabi
frequency. The coupling vanishes when the coherent drive

is in resonance (δ = 0) or strongly detuned (|δ| 	 �) with
respect to the splitting of the TLS. It also vanishes when the
coherent drive is turned off (�L = 0) or when it is sufficiently
strong to saturate the populations of the TLS (�L 	 �). In
these situations, the two eigenstates are oscillations along
two orthogonal directions. Otherwise, the TLS mediates an
effective coupling that modifies the non-Hermitian dynamics
of the mechanical modes leading to complex eigenvalues λ±
and eigenstates X± of H . In the next section, we show how
degeneracies in the complex spectrum of H are associated
with singular properties of the eigenstates that affect the
polarization of the mechanical modes in real space.

IV. EXCEPTIONAL DEGENERACY POINTS

A. Electromechanical spectrum

For nonvanishing coupling (g1g2SR 
= 0), the electrome-
chanical spectrum may exhibit exceptional degeneracy points
in the parameter space (δ,�L), which describes the laser
driving. They occur when the retarded TLS response satisfies

SR = SEP± ≡ −�ω

G±
, (7)

where �ω = ω1 − ω2 − i(γ1 − γ2)/2 characterizes the split-
ting of the mechanical modes and G± = −(g2

1 − g2
2 ± i2g1g2)

relates to the coupling strengths between the mechanical oscil-
lators and the TLS. We focus in particular on the degeneracy
point SEP ≡ SEP−, which lies in the positive imaginary plane.
It is then convenient to chose this EP as a new origin of
the complex plane, such that SR = SEP + z. The mechanical
dynamics is described equivalently in terms of an effective
Hamiltonian H ′ similar to H (see, also, Appendix B). We find

H ∼ H ′ = 1

2

(
h0 0

G+�S h0

)
+ z

2

(
0 G−

G+ 0

)
, (8)

where �S ≡ SEP− − SEP+ depends on the distance be-
tween the two EPs and h0 = ω1 + ω2 − i(γ1 + γ2)/2 − (g2

1 +
g2

2) SR. This representation explicitly shows that the effective
Hamiltonian H supports a Jordan matrix representation at the
EP in z = 0.

The electromechanical spectrum presents the two eigenval-
ues

λ± = h0

2
± 1

2

√
G+G−(�S + z)z. (9)

Therefore, the EP in z = 0 also corresponds to the branch
point of the complex square root

√
z. The resonance frequen-

cies �± = Re[λ±] and the damping rates �± = − Im[λ±]
then support a Riemann-surface representation in the vicinity
of the EP [Fig. 3(a)]. This can be evidenced by varying
the detuning δ and Rabi frequency �L of the TLS drive.
Figure 3(b) shows that strongly detuning the TLS drive from
the resonance (δ = 0) outlines a loop in parameter space.
The response function goes away from and back to SR = 0,
where the mechanical coupling mediated by the TLS van-
ishes (Fig. 2). This point corresponds to the bare mechanical
frequencies and damping rates, which are �± = ω1,2 and
�± = γ1,2. One can check in Fig. 3(c) that the mechanical
frequencies and damping rates go back to their bare initial
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FIG. 3. Mean-field mechanical spectrum and eigenmode polarization. (a)–(e) The parameters are ω1 = � and ω2 = ω1 − 10−3�, γi =
10−5�, and gi = 0.1�. (a) Riemann-surface representation of the mechanical spectrum near the exceptional point SEP, where the resonance
frequencies �± and damping rates �± of the mechanical eigenmodes are degenerate. (b) Oriented loops of the retarded TLS response SR when
varying the detuning δ from 0 to −8� for various Rabi frequencies �L. (c) Evolution of the eigenvalues λ± in the complex plane when SR

varies along the loops in (b). The loops enclosing the exceptional point SEP lead to the switch of the mechanical frequencies ω1,2 and damping
rates γ1,2. (d) Oscillations of the eigenmodes x± over a timescale of 50/� for various values of δ along the red loop �L = 0.3� in (b). The
elliptical polarization of the oscillations undergoes a rotation of angle ϕ, which is specified by the color map in (b). (e) Oscillations of the
eigenmodes x± near the EP over a timescale of 50/�, for δ = −0.85� and �L = 0.17�.

values when the loop does not enclose the EP in parame-
ter space. For EP-enclosing loops, however, the mechanical
frequencies �± and damping rates �± do not come back
on their initial values, but are exchanged. This eigenvalue
switch is an evidence of the Riemann-surface topology in the
electromechanical spectrum.

For the case of an optical cavity coupled to two eigenmodes
of a membrane, this effect has been observed in Ref. [25].
Here we showed that one can have a similar behavior for
a TLS. Specifically, for the electromechanical system that
we propose in Fig. 1, the condition of existence for the
EP in the positive imaginary plane reads SEP � i�ω/(2g2

i ),
assuming g1 � g2. Since SEP is nearly pure imaginary in the
underdamped regime (γi � ωi), varying the TLS response
SR around this degeneracy point requires Re[SR] to change
signs and |SR| � |SEP|. These two conditions give ωi > �/2
and ��ω � 2g2

i , for the maximum of SR is obtained when
δ ∼ �L ∼ � (Fig. 2). For the TLS of electric dipoles recently
observed [35], experiencing the EP then implies a typical
coupling gi/(2π ) ≈ 0.3 MHz. It is much smaller than the
critical coupling gc � 103 MHz and could be realized, for
instance, by positioning the tip of a carbon nanotube 100 nm
away from the molecule with a 100 μV bias. We emphasize
that such a coupling is not strong enough to excite higher
flexural modes. According to Euler-Bernoulli beam theory
[39], their frequencies are at least six times larger than the
fundamental ones.

B. Eigenmode polarization around the EP

The detailed analysis of the eigenvectors unveils a very
interesting dynamics of the oscillator tip. To investigate them,

we choose the biorthogonal left and right eigenstates of the
effective Hamiltonian H ′ as

Y± = 1√
2

(±Z
1
4 ; Z− 1

4

)
and X± = 1√

2

(±Z− 1
4

Z
1
4

)
, (10)

where we use the polar representation z = ρeiθ around the EP,
so that

Z (θ ) = G+
G−

(
�S

ρ
e−iθ + 1

)
. (11)

The exceptional degeneracy point is associated with a phase
singularity for the eigenstates, which can also be evidenced
by varying SR smoothly around the degeneracy. For a ρ-radius
loop that encloses only SEP (ρ < |�S|), the eigenstates fulfill
the condition of parallel transport Y±(θ ) · ∇θX±(θ ) = 0 and
are multivalued. They change as X±(θ + 2nπ ) = (−i)nX±(θ )
if n is even, and X±(θ + 2nπ ) = (−i)nX∓(θ ) if n is odd.
Therefore, additionally to the eigenvalues, the eigenstates also
switch after one loop around the EP.

The multivaluation of the eigenstates further affects the
polarization of the mechanical oscillations x±(t ) in real space.
The eigenstates are solutions of the effective Schrödinger
equation, that is, X±(t ) = x±(0) e−iλ±t X±, where x±(0) are
initial amplitudes that we assume to be real. The mechanical
dynamics then consists of damped oscillations with elliptical
polarization (see, for more details, Appendix B). We find

x±(t ) = R(ϕ) x±(0) e−�±t

(
α cos(�±t )
β sin(�±t )

)
. (12)

The semiaxes α and β of the ellipse determine the eccen-
tricity of the mechanical oscillations, and R(ϕ) = τ0 cos ϕ −
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FIG. 4. Chiral nature of the polarization around the EP. (a)–(h) The parameters are ω1 = � and ω2 = ω1 − 10−3�, γi = 10−5�, and gi =
0.1�. (a) Clockwise-oriented loop obtained by varying δ from 0 to −8�. (b) Evolution of the eigenvalues along the loop in (a). (c) Comparison
between the exact and adiabatic time evolutions when X(0) = X−(0) = X2. (d) Comparison between the exact and adiabatic time evolutions
when X(0) = X+(0) = X1 over a timescale T = 105�. (e)–(h) Same as the first row, but for a counterclockwise-oriented loop obtained by
varying δ from −8� to 0.

iτ2 sin ϕ is a rotation matrix where the Pauli matrices τi

are written in the orthogonal basis (e1, e2) of the uncoupled
modes. The rotation angle ϕ thus characterizes the orientation
of the polarization with respect to one of the modes in the
absence of coupling (g1g2SR = 0).

Figure 3(d) presents the dynamics of the mechanical oscil-
lations when the retarded response of the driven TLS performs
a loop around the EP in parameter space. The semiaxes of
the elliptical polarization remain unchanged after the loop.
We find that this property generally holds for any loop since
the semiaxes vary as α(θ + 2π ) = α(θ ) and β(θ + 2π ) =
β(θ ) (Appendix B). Nevertheless, the mechanical oscillations
do not go back to the initial polarization at the end of the
loop, for the polarization undergoes a rotation of ϕ = π/2.
We can more generally show that the polarization rotates as
ϕ(θ − 2nπ ) = ϕ(θ ) + nπ/2 (Appendix B). This fourfold in-
variance is reminiscent of the fourth-root multivaluation of the
eigenstates in Eq. (10). We emphasize that the π/2 rotation of
the polarization also comes with the switch of the resonance
frequencies and damping rates. Thus, an eigenmode initially
activated as x(t ) = x(0)e−γ2t cos(ω2t ) e2 is transferred into
the eigenmode of orthogonal polarization, that is, x(t ) ∝
x(0)e−γ1t cos(ω1t + �φ) e1, where �φ is the phase accumu-
lated along the EP-enclosing loop. This transfer of energy
from one eigenmode to the other only depends on whether
SR encircles SEP, regardless of the precise loop geometry. The
actuation between mechanical modes is therefore topological.

C. Chiral nature of the polarization

The topological actuation from one mode to the other is
an intrinsic property of the instantaneous eigenstates X±. To
observe the effects of their multivaluation around the EP,
we further investigate their adiabatic transport. In Hermitian
systems, the adiabatic theorem ensures that one can neglect
the nonadiabatic transitions over some typical timescale T 	
1/|λ+ − λ−|. In open systems, however, this is no longer

true for all the eigenstates [25,40,41]. For a two-state system,
in particular, only the least dissipative state is expected to
be transported adiabatically around the EP [42]. Here we
study this issue by solving numerically the Schrödinger-like
equation iẊ = HX.

We focus on the EP-enclosing loop associated with the
Rabi frequency �L = 0.3� in Fig. 3(b). We ramp the detuning
linearly over the timescale T = 105/� between δ = 0 and δ =
−8�. Then, |X±(t )|2 = |Y±(t )U(t, 0)X(0)|2 provides the ex-
act dynamics, where U denotes the time-evolution operator
for the Hamiltonian H . We assume the initial eigenstates
are either X(0) = X+ = X1 or X(0) = X− = X2 associated
with the frequencies ω1 = � and ω2 = ω1 − 10−3�. We then
compare the exact dynamics to their adiabatic evolutions
|Ad±(t )|2 = | exp [−i

∫ t
0 λ±(τ )dτ ]Y±(0) X(0)|2. The results

are presented in Fig. 4 for two orientations of the EP-enclosing
loop in parameter space.

For a clockwise loop [Fig. 4(a)], the eigenstate X− is the
least dissipative one [Fig. 4(b)],∫ T

0
dt[�+(t ) − �−(t )] > 0. (13)

We find that only this state can experience the adiabatic
transport [Figs. 4(c) and 4(d)]. When reversing the orientation
of the loop, the situation is reversed too. The eigenstate X+
becomes the least dissipative one and follows the adiabatic
evolution, whereas X− does not [Figs. 4(e)–4(h)]. Thus, both
modes x± can experience the topological actuation, but for
opposite orientations of the loop. This asymmetry with respect
to the orientation of the loop reveals the chiral nature of the
π/2 rotation of the eigenmode polarization around the EP.

D. Eigenmode polarization at the EP

We can also investigate the fate of the mechanical oscil-
lations when approaching the EP. Figure 3(e) illustrates this
situation. We find that the two mechanical modes coalesce into
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a single mode of circular polarization. The coalescence results
from the eigenstates that become collinear in the limit of small
ρ in Eq. (10). The circular polarization is reminiscent of the
Jordan matrix representation of H and is then a manifestation
of the EP. Nevertheless, it is a local property in parameter
space for which noise may be detrimental, especially because
noise is known to be enhanced by the extreme nonorthogonal-
ity of the eigenstates close to the EP [43–46]. Another draw-
back is that the EP is a degeneracy point where, by definition,
the band gap closes and around which nonadiabatic transitions
then become unavoidable [47]. In contrast, the π/2 rotation
of the polarization that we have introduced above evidences a
global (topological) property of the EP for which the adiabatic
transport is possible. It does not require to approach the EP
and, therefore, should be a more robust manifestation.

V. QUANTUM NOISE AND BACKACTION

A. TLS quantum fluctuations

The mean-field picture discussed above is appealing, for
it introduces a topological property of the EP to manipulate
the vectorial polarization of mechanical oscillations. Now, we
show that this manifestation of the EP can also survive the
fluctuations of the open quantum system that dresses the me-
chanical modes. In optical cavities, the number of circulating
photons nc obeys a Poisson distribution, and so 〈δn2

c〉 = 〈nc〉.
The fluctuations of the radiation pressure force F then satisfy
〈δF 2〉/〈F 〉2 = 1/〈nc〉, which becomes negligible for the usual
cavities that are strongly populated. For the TLS, however,
the force scales as F ∝ n̂g − n̂e, where the populations of the
ground and excited states satisfy the constraints n̂g + n̂e = 1
and n̂g − n̂e = σz. The force fluctuations verify

〈δF 2〉
〈F 〉2

= 〈n̂e〉(1 − 〈n̂e〉)

1/4 − 〈n̂e〉(1 − 〈n̂e〉)
, (14)

where we used 〈n̂2
e〉 = 〈n̂e〉. Since 〈n̂e〉 � 1/2, the fluctuations

can be arbitrarily large compared to the mean force, and
eventually 〈δF 2〉/〈F 〉2 → ∞.

To describe the TLS force fluctuations due to spontaneous
emission and test the mean-field description based on Eq. (2),
we perform quantum-jump Monte Carlo simulations [48–50].
This implies solving, on short timescales �t � 1/�, the
differential equations

iȧg = δ[x(t )]ag/2 + �Lae/2,

iȧe = (δ[x(t )]/2 − i�)ae + �Lae/2, (15)

mẍi = −mω2
i xi − mγiẋi + δFth + gi

xzpf
i

〈σz〉,

where we introduce δ[x(t )] = δ − ∑
i gixi(t )/xzpf

i , the Brown-
ian thermal force δFth with variance

√
2mγikBTi, and the wave

function of the TLS, |ψ (t )〉 = ag(t )|g〉 + ae(t )|e〉, so that
〈σz(t )〉 = |ag(t )|2 − |ae(t )|2. At each time step, one randomly
either allows a transition to the ground state with probability
��t |ae|2, or normalizes the wave function and proceeds with
the time evolution.

B. Mechanical cooling via the TLS noise

The mean-field description introduced above involves the
response function of the bare TLS, that is, in the absence
of electromechanical coupling (gi = 0). This neglects the
effects of the detuning shift δ[x(t )] induced by the mechanical
displacement. In particular, large oscillations may lead to
important effects when gixi/xzpf

i ∼ �, since the oscillations
can effectively change the laser-TLS detuning. It is then
interesting to work at low temperature. We investigate here
how the system can be cooled down by coupling to the TLS
[30].

The power spectrum S(ω) of the TLS noise can be obtained
from Eq. (5). We denote its symmetric- and asymmetric-in-
frequency parts, S±(ω) = S(ω) ± S(−ω). The optical damp-
ing induced by the TLS noise relates to the asymmetry be-
tween emission and absorption as γTLS = g2

0S−(ω0), where
we assume g1,2 = g0. Cooling the mechanical oscillator via
the TLS then requires the optical damping to be stronger
than the intrinsic damping of the thermal baths, γ0 � γTLS,
where γ1,2 = γ0. The natural frequency scale of the noise must
relate to the spontaneous emission rate �, so one can expect
S− = −2 Im SR ∼ 1/�. One can check that this is indeed
the case for δ = �L = � = ω0 in Eq. (6). As the coupling
cannot be larger than the critical one of the discharge electric
field between the TLS and the carbon nanotube, we find that
mechanical cooling is possible when

ω0γ0 � g2
0 < g2

c. (16)

For the electromechanical system in Fig. 1, one has ω0γ0

that is at least three orders of magnitude smaller than the
critical coupling gc, which leads to a large range of possible
coupling strength g0. Besides, the TLS temperature verifies
2kBTTLS/(h̄ω0) = S+/S−. This leads to the effective tempera-
ture Teff for the mechanical modes dressed by the TLS,

2kBTeff

h̄ω0
= γ0

2kBT0
h̄ω0

+ γTLS
2kBTTLS

h̄ω0

γ0 + γTLS
. (17)

Figure 5(a) represents the map of the effective temperature as
a function of TLS drive parameters δ and �L. It shows that the
mechanical system can be cooled below h̄� (� 0.5 mK).

We further verify this possibility of mechanical cooling
by means of quantum-jump Monte Carlo simulations. Fig-
ure 5(b) presents the evolution of the mechanical energies
averaged over 1000 dynamics for δ = −� and �L = �, which
corresponds to the region of maximum cooling predicted
in Eq. (17) and Fig. 5(a). We study the mechanical energy
through the dimensionless parameter Ei defined as

Ei = 4ωi

�

1

h̄�

(
p2

i

2m
+ 1

2
mω2

i x2
i

)
. (18)

Each mechanical mode is initially assumed to be in thermal
equilibrium with a bath of typical dilution-fridge tempera-
ture T0 = 10 mK. Thus, we begin with randomly generating
the position and momentum of each mode according to a
Boltzmann distribution. The equipartition theorem implies
that the initial mean mechanical energy in the figures corre-
sponds to Ei = 4ωn

�
kBTn
h̄�

= 80. We then simulate the stochas-
tic dynamics based on Eq. (15) with the usual parame-
ters ω1 = 1�, ω2 = ω1 − 10−3�, γi = 10−5�, and gi = 0.1�.
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FIG. 5. Mechanical cooling via the TLS noise. (a)–(c) The parameters are ω1 = 1.000� and ω2 = 0.999�, γi = 0.00001�, and gi = 0.1�.
(a) Effective temperature as a function of the detuning δ and Rabi frequency �L. (b) Evolution of the dimensionless mechanical energies
Ei during a time period of 10 000/�, obtained from quantum-jump Monte Carlo simulations averaged over 1000 dynamics for δ = −� and
�L = �. (c) Zoom of (b) showing that the two modes can be cooled below h̄� (� 0.5 mK) via their coupling to the TLS.

Figure 5(c) shows from the mean dynamics that the system
can be cooled down h̄� (∼0.5 mK), to about 50 μK, in
agreement the mechanical cooling predicted in Fig. 5(a).

C. Mean rotation of the mechanical polarization

We come to the main question we want to address with the
simulations: does the EP remain stable in the presence of fluc-
tuations and backaction? To test the mean-field manifestation
of the EP, we study the evolution of the mechanical mode 1 or
2 with initial amplitude 10xzpf and ramp adiabatically δ from
0 to −8� over the timescale T = 104/� for various values of
�L. Such an initial actuation can be achieved by forcing the
charged nanotube tip with a transverse electric field oscillating
at a frequency tuned on the selected mode frequency. The
mean dynamics of the oscillator, averaged over 102 simulated
trajectories, consists of quasiperiodic elliptical oscillations in
real space. We thus identify the semiaxes in each quasiperiod
and determine their rotation angle ϕ at a given value of δ

and �L.
Figure 6(a) presents the prediction of the mean-field de-

scription, clearly showing the presence of the EP at δ �
−0.85�. In comparison, Fig. 6(b) shows the rotation angle
for the same parameters, but obtained from the Monte Carlo
simulations. Though fluctuations seem to blur the EP, where

the noise is enhanced by the coalescence of the nonorthog-
onal eigenstates [43–46], the axis of the oscillations per-
forms on average a rotation in agreement with the mean-
field description. Starting with an oscillation in the horizontal
direction (ϕ = 0), one ends with a perpendicular oscillation
(ϕ = π/2), showing that the adiabatic picture remains valid. If
the rotation implies a transfer of energy from mode 1 to mode
2, continuously following the evolution of the oscillation axis
proves that this transfer is purely due to the adiabatic evolution
predicted by the mean-field approach, and not to dissipation or
stochastic effects. Figure 6(c) shows the same evolution from
mode 1. No energy transfer is realized, as expected from the
mean-field adiabatic transport. We would like to stress that the
numerical calculation fully takes into account the nonlinearity
and non-Gaussian behavior of the TLS, thus confirming the,
at least approximate, validity of the mean-field approach. In
the next section, we finally discuss a possible experimen-
tal implementation for the direct detection of the energy
transfer.

VI. DETECTION VIA FREQUENCY MODULATIONS

After the adiabatic loop in parameter space, the mechanical
energy of one mode is transferred to the other one. This im-
plies that the mechanical oscillation frequency has changed,

π/2
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FIG. 6. Noise-averaged rotation of the mechanical polarization. (a)–(c) The parameters are ω1 = 1.000� and ω2 = 0.999�, γi =
0.00001�, and gi = 0.1�. (a) Rotation angle ϕ of the mechanical polarization as a function of the laser detuning δ and Rabi frequency
�L obtained from the mean-field description. (b) Same as (a), but obtained from the quantum-jump Monte Carlo simulations averaged over
100 dynamics when the mode 2 is initially activated. (c) Same as (b) when the mode 1 is initially activated. (d) Luminescence excitation
spectrum of the TLS driven by a coherent field of frequency modulation βλ = 1. The interference peaks, resolved in the inset, are centered on
the mechanical frequencies ω1 = 1.000� or ω2 = 0.999�, depending on the mode topologically activated at the end of the loop.
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but the variation is extremely small. Here we show that de-
tecting such a small change can be performed by modulation
of the frequency of the coherent field that drives the TLS.

At the semiclassical level, the Hermitian Hamiltonian of
the driven TLS can be written as

HTLS(t ) =
( −ωTLS

2 − gi xi(t ) �L(eiF (t )+e−iF (t ) )/2

�L(eiF (t ) + e−iF (t ) )/2 ωTLS
2 + gi xi(t )

)
,

(19)

where F (t ) = ∫ t
0 dτ [ωL + f (τ )] and f (t ) = aλ cos(ωλt +

φλ) describes the frequency modulation around frequency ωL.
Let ψ (t ) be a wave function satisfying the time-dependent
Shrödinger equation iψ̇ (t ) = HTLS(t ) ψ (t ). We can then in-
troduce the gauge transformation φ(t ) = U †(t )ψ (t ) based on
the unitary operator

U =
(

eiF (t )/2 0
0 e−iF (t )/2

)
. (20)

This leads to iφ̇(t ) = [U †(t )HTLS(t )U (t ) − iU †(t )U̇ (t )]φ(t ),
where the effective Hamiltonian is

H̃TLS(t ) =
(

δ(t )/2 − gi xi(t ) �L/2
�L/2 −δ(t )/2 + gi xi(t )

)
, (21)

and δ(t ) = δ − (βλωλ) cos(ωλt ) − gixi(t ). Thus, the fre-
quency modulation induces an additional detuning shift,
which adds up to the one of the mechanical oscillator in the
modulated rotating frame. The frequency modulation and the
mechanical oscillations may then lead to interference when
ωλ = ωi, since only the mode i is exited at the end of the loop.
We can show, in particular, that the interference affects the
excited-state population of the driven TLS, and so its lumi-
nescence excitation spectrum (Appendix C). This is illustrated
in Fig. 6(d). The Lorentzian background of width � and cen-
tered on ωλ = 0 already exists in the absence of mechanical
mode (gi=0) and, thus, is not due to any interference. The
interference, however, appears through a narrow Lorentzian
peak of width γi centered on the mechanical frequency ωi in
the figure. The width of the peak verifies γi � ω1 − ω2, so
that the two quasidegenerate modes could be resolved clearly
in the experiments.

VII. CONCLUSION

Manipulating mechanical systems at the nanometer scale
is an important challenge of present research. The possibility
of using EP in the excitation spectrum to transfer energy
from one mechanical mode to the other had been proposed
and observed in the past for mechanical modes coupled to
optical cavities. In this paper, we have shown that EP can be
equally generated by coupling mechanical modes to TLSs.
Specifically, we considered a concrete example of single

molecules coupled to flexural modes of carbon nanotubes,
for which we performed detailed simulations. We have shown
quite generally that the topological and chiral energy transfer
is possible. Remarkably, the prediction of the analytical mean-
field theory is confirmed by the quantum-jump Monte Carlo
approach. This guarantees that even if a TLS is quite different
from an optical cavity, since it is a strongly nonlinear quantum
system and has strong quantum fluctuations, it can be used to
manipulate a mechanical oscillator exploiting the EP.

From a conceptual point of view, the flexural mode eigen-
states allow one to understand, in a transparent way, the
mechanism of formation of the EP. We find that the evolution
from the standard orthogonal eigenvectors to the coincident
eigenvectors at the EP is performed by evolving the eigen-
vectors into elliptical oscillations, which eventually become
circular at the EP. The energy transfer is then simply obtained
by a rotation of the axis of the elliptic oscillation of π/2
when a loop is performed around the EP. These findings can
allow a manipulation of the tip of the nanotube without the
addition of any external electric fields. This possibility of
quantum manipulation could, for instance, find applications in
vectorial force microscopy, where monitoring the eigenmode
polarization is crucial to scan a surface.
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APPENDIX A: DERIVATION OF THE NON-HERMITIAN
HAMILTONIAN

The expectation value of the displacement operator obeys
the Langevin equation (2). We begin with neglecting the
fluctuating forces δFi and 〈σ̂z〉0 that only shift the equilibrium
position of the oscillator. In Fourier space, this leads to

m(−ω2 − iγiω + ω2
i )xi(ω) =

∑
j=1,2

gi

xzpf
i

g j

xzpf
j

SR(ω)x j (ω).

(A1)

Since we consider the underdamped regime (γi � ωi), the
bare mechanical poles verify ωi± � ±ωi − iγi/2. We can
linearize Eq. (A1) in the vicinity of the two mechanical
frequencies ωi±. The displacement can then be written as xi �
xi+ + xi−, where xi+ (xi−) describes the mechanical oscilla-
tions of positive (negative) frequency ωi+ (ωi−). The positive-
and negative-frequency oscillations satisfy

+i2mωi(−iω)xi+(ω) = 2mωi

(
ωi − i

γi

2

)
xi+(ω) −

∑
j=1,2

gi

xz
i

g j

xz
j

SRx j+(ω),

(A2)

−i2mωi(−iω)xi−(ω) = 2mωi

(
ωi + i

γi

2

)
xi−(ω) −

∑
j=1,2

gi

xz
i

g j

xz
j

S∗
Rx j−(ω),
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where SR ≡ SR(ω0) and ω0 = (ω1 + ω2)/2 is the mean mechanical frequency. Since xi � xi+ + xi− = 2Re[xi+],
we only focus on the positive-frequency solution xi+. Fourier transforming back to the time domain finally

results in

−iẋi+(t ) =
(
ωi − i

γi

2

)
xi+(t ) +

∑
j=1,2

gig jSRx j+(t ), (A3)

where we have used 2mωi � xzpf
i xzpf

j .
Therefore, the positive-frequency oscillations of the me-

chanical modes are described by the vector X = (x1,+, x2,+).
It obeys the Shrödinger-like equation iẊ = H X with the non-
Hermitian effective Hamiltonian,

H =
(

ω1 − i γ1

2 − g2
1SR −g1g2SR

−g1g2SR ω2 − i γ2

2 − g2
2SR

)
. (A4)

This relates to the mechanical displacement vector x =
(x1, x2) in real space as x=2 Re[X].

APPENDIX B: EXCEPTIONAL POINT PROPERTIES

1. Branch point in the spectrum

We are now interested in the consequences of degeneracies
in the non-Hermitian spectrum of H on the dynamics of the
mechanical modes. To make them more explicit, we perform
two subsequent π/2 rotations of axes y and z with respect
to the Bloch sphere of H eigenstates. Thus, we introduce the
unitary operator

U = e−i π
4 τy e−i π

4 τz = 1

2

(
1 − i −1 − i
1 − i 1 + i

)
(B1)

and perform the transformation H ′ = UHU †. This results in
H ′ = ∑

i hiτi/2 with

h0 = ω1 + ω2 − i(γ1 + γ2)/2 − (
g2

1 + g2
2

)
SR,

h1 = ω1 − ω2 − i(γ1 − γ2)/2 − (
g2

1 − g2
2

)
SR,

h2 = −2g1g2 SR,

h3 = 0. (B2)

Degeneracies in the electromechanical spectrum then occur
when SR = SEP±, where

SEP± ≡ −�ω

G±
. (B3)

Here, �ω = ω1 − ω2 − i(γ1 − γ2)/2 characterizes the split-
ting of the mechanical modes and G± = −(g2

1 − g2
2 ± i2g1g2)

relates to the coupling strengths between the mechanical oscil-
lator and the TLS. We focus, in particular, on the degeneracy
point SEP ≡ SEP−, which lies in the positive imaginary plane.
It is then convenient to set it as the new origin of the complex
plane by introducing the variable z = SR − SEP. Thus, we find
that the effective Hamiltonian reads

H ′ = 1

2

(
h0 0

G+�S h0

)
+ z

2

(
0 G−

G+ 0

)
, (B4)

where �S ≡ SEP− − SEP+ depends on the distance between
the two EPs. This explicitly shows that the effective Hamil-
tonian H supports a Jordan matrix representation at the EP

in z = 0. The electromechanical spectrum relies on the two
eigenvalues

λ± = h0

2
± 1

2

√
G+G−(�S + z)z. (B5)

Therefore, the EP in z = 0 also corresponds to the branch
point of the complex square root

√
z, and hence the Riemann

surface of the electromechanical spectrum in Fig. 3(a). The
same features hold when focusing on the degeneracy point
SEP+ in the negative imaginary plane.

2. Eigenstate multivaluation

The square-root behavior of the spectrum near the EP also
leads to singular properties for the eigenstates. To investigate
them, we choose the biorthogonal left and right instantaneous
eigenstates of the effective Hamiltonian H ′ as

Y±(θ ) = 1√
2

(±Z
1
4 ; Z− 1

4

)
and X±(θ ) = 1√

2

(±Z− 1
4

Z
1
4

)
.

(B6)

Using the polar representation z = ρeiθ around the EP, we find

Z (θ ) = G+
G−

(
�S

ρ
e−iθ + 1

)
. (B7)

Let us assume that SR can be varied smoothly along a ρ-radius
loop that encloses only SEP (ρ < |�S|). Then, we find

Z1/4(θ = 2π ) = −iZ1/4(θ = 0), (B8)

so that the eigenstates, which meet the condition of parallel
transport Y± · ∇θX± = 0, change as follows:

X±(2π ) = −i X∓(0),

X±(4π ) = −1 X±(0),

X±(6π ) = +i X∓(0),

X±(8π ) = +1 X±(0). (B9)

Thus, we expect the two eigenstates to swap after one loop,
to pick up a geometrical Berry phase π after two loops, and
then the eigenstates come back onto the initial states without
any geometrical phase only after four loops. The eigenstate
swap comes from the multivaluation of the eigenstates around
the EP. The fourfold multivaluation results from the complex
fourth root in the parallel-transported eigenstates in Eq. (B6).

Note that if the loop encircles the two exceptional points
(ρ > |�S|), one can choose single-valued eigenstates along
the loop, so that X±(2πn) = X±(0) for any integer n. The
eigenstates neither pick a geometrical phase nor swap in this
case.

3. Eigenmode polarization

The instantaneous eigenstates obey the Shrödinger-like
equation iẊ(t )± = H ′X±(t ), and so X±(t ) = x±(0) e−iλ±t X±.
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In real space, the mechanical eigenmodes evolve in time as

x±(t ) = 2Re[U †X±(t )]

= x±(0)Re

(
e−iλ±t ei π

4 (Z
1
4 ± Z− 1

4 )

−ie−iλ±t ei π
4 (Z

1
4 ∓ Z− 1

4 )

)
. (B10)

We can ignore the overall phase shift of π/4 and rewrite it as

x±(t ) = x±(0) e−�±t

(
a± cos (�±t + φ±)

a∓ sin (�±t + φ∓)

)
. (B11)

The amplitudes and the phases of the oscillations depend on
the polar angle θ around the EP through

a± = |Z 1
4 ± Z− 1

4 |,
(B12)

φ± = Arg[Z
1
4 ± Z− 1

4 ],

where Z has been introduced in Eq. (B7). In particular, if SR

varies on a clockwise-oriented loop around SEP, the multival-
uation in Eq. (B8) requires the amplitudes and the phases of
the oscillations to vary as

a±(−2π ) = a∓(0),

φ±(−2π ) = φ∓(0) + π

2
. (B13)

In addition, Eq. (B11) is the parametric equation of a
rotated (damped) ellipse. To make it explicit, we introduce a
counterclockwise rotation matrix of angle ϕ, namely,

R(ϕ) =
(

cos ϕ − sin ϕ

sin ϕ cos φ

)
, (B14)

so that(
a± cos (�±t + φ±)

a∓ sin (�±t + φ∓)

)
= R(ϕ)

(
α cos(ω±t )

β sin(ω±t )

)
. (B15)

This straightforwardly leads to the following equalities:

a+ cos(φ+) = α cos(ϕ),

a+ sin(φ+) = β sin(ϕ),

a− cos(φ−) = β cos(ϕ),

a− sin(φ−) = α sin(ϕ). (B16)

Along with Eq. (B13), this implies that if SR varies on a
clockwise-oriented loop around SEP from θ = 0 to θ = −2π ,

α(−2π ) cos[ϕ(−2π )] = α(0) cos[ϕ(0) + π/2],
(B17)

α(−2π ) sin[ϕ(−2π )] = α(0) sin[ϕ(0) + π/2],

and we find similar relations for β. This demonstrates that the
semiaxes α and β have undergone a π/2 rotation at the end of
the loop, albeit their lengths remain unchanged.

Therefore, the mechanical oscillations of the two eigen-
modes have elliptical polarizations in real space,

x±(t ) = x±(0) e−�±t R(ϕ)

(
α cos(�±t )
β sin(�±t )

)
. (B18)

The ϕ rotation of the polarization semiaxes α and β is
controlled by the polar angle θ around the EP in parameter

space. This behavior is illustrated in Fig. 3(d). If the distance
ρ to the EP vanishes, then a+ � a− and φ+ � φ− according to
Eq. (B12). The ellipse eccentricity vanishes (α � β) and the
two mechanical eigenmodes coalesce into a single circularly
polarized mode. This is shown in Fig. 3(e).

APPENDIX C: FREQUENCY MODULATION
OF THE TLS DRIVE

We start from the effective Hamiltonian of the driven TLS,

H̃TLS(t ) =
(

δ(t )/2 − gx(t ) �L/2

�L/2 −δ(t )/2 + gx(t )

)
. (C1)

The luminescence excitation spectrum scales linearly with
the excited-state population of the TLS. The equations of
motion for the reduced density matrix components σ12 = σ ∗

21
and σ22 = 1 − σ11 are obtained from H̃TLS within the Born-
Markov approximation. They correspond to the usual optical
Bloch equations,

σ̇12 = −i[δ(t ) − 2gx(t ) − i�/2] σ12 − i�L(2σ22 − 1)/2,

σ̇22 = �L Im σ12 − �σ22. (C2)

They can be rewritten as

dX

dτ
= −i[D(τ ) − i/2] X − iε[Y − 1/2],

(C3)
dY

dτ
= −Y + ε Im X,

where we have introduced X = σ12 = σ ∗
21, Y = σ22 = 1 −

σ11, τ = �t , and ε = �L/�. We then look for perturbative
solutions of the type X = ∑

n εnXn and Y = ∑
n εnYn in the

limit ε � 1.

1. Order n = 0

The Bloch equations lead to

dX0

dτ
= −i[D(τ ) − i/2] X0,

(C4)
dY0

dτ
= −Y0,

and the solutions generically read

X0 = X0(τ0) e−(τ−τ0 )/2−i
∫ τ

τ0
dτ ′D(τ ′ )

,

Y0 = Y0(τ0) e−(τ−τ0 ).

In the limit τ0 → −∞, they reduce to

lim
τ0→−∞ X0 = 0,

lim
τ0→−∞Y0 = 0. (C5)

2. Order n = 1

The Bloch equations lead to

dX1

dτ
= −i[D(τ ) − i/2] X1 − i[Y0 − 1/2],

(C6)
dY1

dτ
= −Y1 + Im X0,
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and the solutions generically read

X1 = X1(0) e−i(τ−τ0 )/2−i
∫ τ

τ0
dτ ′D(τ ′ ) − i

∫ τ

τ0

dτ ′[Y0(τ ′) − 1/2] e(τ ′−τ )/2+i
∫ τ ′
τ

dτ ′′D(τ ′′ ),

Y1 = Y1(0) e−(τ−τ0 ) +
∫ τ

τ0

dτ ′ Im X0(τ ′) e(τ ′−τ ). (C7)

In the limit τ0 → −∞, they reduce to

lim
τ0→−∞ X1 = i/2

∫ τ

−∞
dτ ′e(τ ′−τ )/2+i

∫ τ ′
τ

dτ ′′D(τ ′′ ),

lim
τ0→−∞Y1 = 0. (C8)

3. Order n = 2

The Bloch equations lead to

dX2

dτ
= −i[D(τ ) − i/2] X2 − i Y1,

(C9)
dY2

dτ
= −Y2 + Im X1,

and the solutions generically read

X2 = X2(0) e−(τ−τ0 )2−i
∫ τ

τ0
dτ ′D(τ ′ ) − i

∫ τ

τ0

dτ ′Y1(τ ′) e(τ ′−τ )/2+i
∫ τ ′
τ

dτ ′′D(τ ′′ ),

Y2 = Y2(0) e−(τ−τ0 ) +
∫ τ

τ0

dτ ′ Im X1(τ ′) e(τ ′−τ ). (C10)

In the limit τ0 → −∞, they reduce to

lim
τ0→−∞ X2 = −i

∫ τ

−∞
dτ ′Y1(τ ′) e(τ ′−τ )/2+i

∫ τ ′
τ

dτ ′′D(τ ′′ ),

lim
τ0→−∞Y2 =

∫ τ

−∞
dτ ′ Im X1(τ ′) e(τ ′−τ ). (C11)

At the end of the loop around the EP, either the flexural modes have gotten exchanged or they have not. In both cases, the
flexural dynamics is of the type x(t ) = Ae−γit cos(ωit + φi ). From now on, we consider φi = 0, which fixes an arbitrary origin
of time. The luminescence excitation spectrum scales linearly with

σ22(t ) � ε2Y2(t ) � �2
L

2
e−�t Re

∫ t

−∞
dt1 e( �

2 −iδ)t1−iβλ sin(ωλt1+φλ )
∫ t1

−∞
dt2 e( �

2 +iδ)t2+iβλ sin(ωλt2+φλ )e−i2g
∫ t2

t1
dt3x(t3 )

, (C12)

where βλ = aλ/ωλ, and we introduce the dimensionless parameter β = 2gA/ωi. In the limit β � 1, the luminescence excitation
spectrum can be approximated by

σ22(t ) � �2
L

4

∑
m,n

Jm(βλ)Jn(βλ) Re[e−i(m−n)φλ (A0 + A1 − A2 − A3 + A4)], (C13)

where the sum involves positive and negative values of the integers m and n. In addition, Jk denotes the kth-order Bessel function
of the first kind, and

A0 = e−i(m−n)ωλt(
δ + nωλ − i �

2

)
[(m − n)ωλ + i�]

,

A1 = β

(
1 − i

γi

ωi

)
e[−i(m−n)ωλ+iωi−γi]t(

δ + nωλ − i �
2

)
[(m − n)ωλ − ωi + i�]

,

A2 = β

(
1 − i

γi

ωi

)
e[−i(m−n)ωλ+iωi−γi]t(

δ + nωλ + ωi − i �
2

)
[(m − n)ωλ − ωi + i�]

,

A3 = β

(
1 + i

γi

ωi

)
e[−i(m−n)ωλ−iωi−γi]t(

δ + nωλ − i �
2

)
[(m − n)ωλ + ωi + i�]

,

A4 = β

(
1 + i

γi

ωi

)
e[−i(m−n)ωλ−iωi−γi]t(

δ + nωλ − ωi − i �
2

)
[(m − n)ωλ + ωi + i�]

. (C14)
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The term A0 does not depend on β and describes the luminescence excitation spectrum in the absence of electromechanical
coupling. We focus on �σ22 = σ22�g
=0 − σ22�g=0. We can then accumulate the luminescence over time, which results in∫ ∞

0
dt �σ22(t ) � β

�2
L

4

∑
m,n

Jm(βλ)Jn(βλ) Re[ie−i(m−n)φλ (B1 − B2 − B3 + B4)], (C15)

where

B1 =
(

1 − i
γi

ωi

)
δ + nωλ + i�/2

(δ + nωλ)2 + (�/2)2

(m − n)ωλ − ωi − i�

[(m − n)ωλ − ωi]2 + �2

(m − n)ωλ − ωi + iγi

[(m − n)ωλ − ωi]2 + γ 2
i

,

B2 =
(

1 − i
γi

ωi

)
δ + nωλ + ωi + i�/2

(δ + nωλ + ωi )2 + (�/2)2

(m − n)ωλ − ωi − i�

[(m − n)ωλ − ωi]2 + �2

(m − n)ωλ − ωi + iγi

[(m − n)ωλ − ωi]2 + γ 2
i

,

B3 =
(

1 + i
γi

ωi

)
δ + nωλ + i�/2

(δ + nωλ)2 + (�/2)2

(m − n)ωλ + ωi − i�

[(m − n)ωλ + ωi]2 + �2

(m − n)ωλ + ωi + iγi

[(m − n)ωλ + ωi]2 + γ 2
i

,

B4 =
(

1 + i
γi

ωi

)
δ + nωλ − ωi + i�/2

(δ + nωλ − ωi )2 + (�/2)2

(m − n)ωλ + ωi − i�

[(m − n)ωλ + ωi]2 + �2

(m − n)ωλ + ωi + iγi

[(m − n)ωλ + ωi]2 + γ 2
i

. (C16)

Every term Bk consists of a product of three Lorentzian functions. The last one, which has the smallest width γi(� �),
results from the interferences due to the frequency modulation. It describes narrow luminescence peaks of width γi every time
the condition (m − n)ωλ = ωi is fulfilled. For the typical values of the parameters that we are considering here, the nearly
degenerate flexural frequencies verify |ω1 − ω2| � γ0, so the two modes should be well resolved through the interference peaks
in experiments.

We can further estimate the characteristic amplitude of the interference peaks. We consider that the laser frequency is
modulated around the resonance (δ = 0), where the two flexural modes are not coupled. The interference condition reads
(m − n)ωλ = ωi and requires m 
= n. The main contribution in Eq. (C15) involves the zeroth-order Bessel function, and m
and n have to be as small as possible. Thus, the main contributions when ωλ = ωi arise from B1 for (m, n) = (1, 0), B2 for
(m, n) = (0,−1), B3 for (m, n) = (−1, 0), and B4 for (m, n) = (0, 1). This leads to a peak of amplitude

∫ ∞

0
dt �σ22(t ) � −J0(βλ)J1(βλ)

(
cos φλ − γi

ωi
sin φλ

)
β

γi

(
�L

�

)2

. (C17)

This explains the two interference peaks centered on the mechanical frequencies ω1 and ω2 in Fig. 6(b).
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