
HAL Id: hal-02864872
https://hal.science/hal-02864872v1

Submitted on 11 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Browser Fingerprinting: A Survey
Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, Gildas Avoine

To cite this version:
Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, Gildas Avoine. Browser Fingerprinting: A Survey.
ACM Transactions on the Web, 2020, 14 (2), pp.1-33. �10.1145/3386040�. �hal-02864872�

https://hal.science/hal-02864872v1
https://hal.archives-ouvertes.fr


Browser Fingerprinting: A survey

PIERRE LAPERDRIX, CNRS, Univ Lille, Inria Lille, France
NATALIIA BIELOVA, Inria Sophia Antipolis, France
BENOIT BAUDRY, KTH Royal Institute of Technology, Sweden
GILDAS AVOINE, Univ Rennes, INSA Rennes, CNRS, IRISA, France

With this paper, we survey the research performed in the domain of browser fingerprinting, while providing
an accessible entry point to newcomers in the field. We explain how this technique works and where it stems
from. We analyze the related work in detail to understand the composition of modern fingerprints and see how
this technique is currently used online. We systematize existing defense solutions into different categories and
detail the current challenges yet to overcome.

CCS Concepts: • Security and privacy→Web application security; Browser security; Privacy protec-
tions;

Additional Key Words and Phrases: Browser fingerprinting, user privacy, web tracking

1 INTRODUCTION
The web is a beautiful platform and browsers give us our entry point into it. With the introduction
of HTML5 and CSS3, the web has become richer and more dynamic than ever and it has now the
foundations to support an incredible ecosystem of diverse devices from laptops to smartphones
and tablets. The diversity that is part of the modern web opened the door to device fingerprinting,
a simple identification technique that can be used to collect a vast list of device characteristics
on several layers of the system. As its foundations are rooted into the origin of the web, browser
fingerprinting cannot be fixed with a simple patch. Clients and servers have been sharing device-
specific information since the beginning to improve user experience.

The main concept behind browser fingerprinting is straight-forward: collecting device-specific
information for purposes like identification or improved security. However, when this concept is
implemented, its exact contours are constantly changing as its mechanisms are entirely defined by
current web browser technologies.

1.1 Definition
A browser fingerprint is a set of information related to a user’s device from the hardware to
the operating system to the browser and its configuration. Browser fingerprinting refers to the
process of collecting information through a web browser to build a fingerprint of a device. Via
a simple script running inside a browser, a server can collect a wide variety of information from
public interfaces called Application Programming Interface (API) and HTTP headers. An API
is an interface that provides an entry point to specific objects and functions. While some APIs
require a permission to be accessed like the microphone or the camera, most of them are freely
accessible from any JavaScript script rendering the information collection trivial. Contrarily to
other identification techniques like cookies that rely on a unique identifier (ID) directly stored
inside the browser, browser fingerprinting is qualified as completely stateless. It does not leave any
trace as it does not require the storage of information inside the browser.

Authors’ addresses: Pierre Laperdrix, CNRS, Univ Lille, Inria Lille, Lille, France, pierre.laperdrix@inria.fr; Nataliia Bielova,
Inria Sophia Antipolis, Sophia Antipolis, France, nataliia.bielova@inria.fr; Benoit Baudry, KTH Royal Institute of Tech-
nology, Stockholm, Sweden, baudry@kth.se; Gildas Avoine, Univ Rennes, INSA Rennes, CNRS, IRISA, Rennes, France,
gildas.avoine@irisa.fr.

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.

ar
X

iv
:1

90
5.

01
05

1v
2 

 [
cs

.C
R

] 
 4

 N
ov

 2
01

9



2 Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine

For the rest of this article, the terms “browser fingerprint” and “device fingerprint” will be used
interchangeably. We also consider cross-browser device fingerprinting as detailed in Section 4.1.2.
However, it should be noted that we focus only on information collected through a web browser.
We do not cover the identification of devices through smartphone applications like Kurtz et al. [92]
or Wu et al. [129] as they have access to more information than with a simple browser and they
require additional permissions to get installed. We also do not focus on the analysis of the structure
of network packets similar to the features offered by tools like nmap [51] as they fall out of context
of what the browser has access to. Finally, we do not study how the IP address or the geolocation
of the user can contribute to the identification of a device. While they can be used to complement
a fingerprint, we focus here on what can be done entirely from the information given by a web
browser.

1.2 Contributions
The goal of this work is twofold: first, to provide an accessible entry point for newcomers by
systematizing existing work, and second, to form the foundations for future research in the domain
by eliciting the current challenges yet to overcome. We accomplish these goals with the following
contributions:

• A thorough survey of the research conducted in the domain of browser fingerprinting with
a summary of the framework used to evaluate the uniqueness of browser fingerprints and
their adoption on the web.

• An overview of how this technique is currently used in both research and industry.
• A taxonomy that classifies existing defense mechanisms into different categories, providing
a high-level view of the benefits and drawbacks of each of these techniques.

• Adiscussion about the current state of browser fingerprinting and the challenges it is currently
facing on the science, technological, business and legislative aspects.

1.3 Organization
The remainder of this work is organized as follows. Section 2 reports on the evolution of web
browsers over the years to gain an understanding of why browser fingerprinting became possible.
Section 3 provides a detailed survey on the work done in the domain. Section 4 introduces the
different approaches designed to protect users against it. Section 5 discusses the different usage of
this technique and the current challenges in both research and industry. Section 6 concludes this
paper.

2 A BRIEF HISTORY OFWEB BROWSERS
In this section, we look at howweb browsers turned from HTML renderers to full-fledged embedded
operating systems.

2.1 Indicating browser limitations with the user-agent header
One of the key ideas of the early development of the web is that, for anyone to get access to this
vast network of machines, it should be device agnostic, i.e. run on any device with any type of
architecture. HTTP [2] and HTML [1] were born from that need of having a universal way of
communicating between machines and in the early 90s, web browsers started to appear from
various teams around the world to support these soon-to-be standards. However, as the foundations
of the web started to evolve to keep pushing what is possible online, not every browser and not
every platform supported the latest additions. Some browsers conformed to only a subset of the

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



Browser Fingerprinting: A survey 3

specifications and developed their own features. This started the now infamous era of the “Best
viewed with X” banners.

To prevent incompatibility problems, the HTTP protocol includes the “User-Agent request-
header” [2]. Browsers started to include their name, their version and even sometimes the platform
on which they were running to avoid particular user agent limitations. As reported by [4] and
[5], the story of the user-agent header is very rich and it keeps writing itself today as modern
browsers still bear the legacy of the very first browsers. The information contained in this header
has become complex as browser vendors started copying the value of their competitors to declare
their compatibility with a different rendering engine. For example, the user-agent for version 68 of
a Chrome browser running on Linux is the following:

Mozilla /5.0 (X11; Linux x86_64) AppleWebKit /537.36 (KHTML , like Gecko)
Chrome /68.0.3440.75 Safari /537.36

The only relevant pieces of information here are “(X11; Linux x86_64)” and “Chrome/68.0.3440.75”.
Other strings like “Gecko”, “KHTML” or “Safari” are present to declare their compatibility with
other layout engines. The string “Mozilla/5.0” even dates back from the time where the first ever
version of Firefox was released to the public. All modern web browsers now include it in the
user-agent header for no particular reason.
In the end, the user-agent header can be considered as the very first piece of information that

deliberately indicated differences between devices to help developers take into account browser
limitations.

2.2 Bridging the gap between web browsers and native software applications
At the very beginning of the web, pages needed to be reloaded completely to allow live modifications.
In 1995, Brendan Eich added a scripting language called JavaScript inside the Netscape Navigator
to make web pages more dynamic. From then on, the language quickly gained a lot of traction and
was implemented in most browsers in the months following its introduction. The specification of
the language became standardized in June 1997 under the name “ECMAScript”, with JavaScript
being the most well known of its implementations at the time.

As the language started growing and as browsers started to offer more and more features to their
users, developers pushed to create a bridge between the browser and the platform it is running
on. The goal was to incorporate information from the user’s environment inside the browser to
feel more like a native software application. The very first edition of the ECMAScript specification
offers the first traces of such integration with details on the “Date” object [3]. To conform to the
specification, browsers directly got the timezone of the device from the operating system.

2.3 The development of modern APIs
The modern browser has slowly shifted from being a tool that displays simple HTML pages to
a very rich multimedia platform compatible with many formats and devices. Over the years, the
W3C has developed many novel web standards to offer a rich browsing experience to users and to
support the rising popularity of mobile browsing.
The Canvas API “provides objects, methods, and properties to draw and manipulate graphics

on a canvas drawing surface” [12]. Users can draw and animate any number of shapes and they
can render textual content directly in the browser by using the graphical capabilities of the device.
The Khronos Group [67] introduced WebGL which is a graphics API that can render interactive
3D objects in the browser and manipulate them through JavaScript without the need for plugins.
The Web Audio API provides an interface to create a pipeline to process audio [64]. By linking
audio modules together, anyone can generate audio signals and apply very specific operations

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



4 Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine

like compression or filtering to generate a very specific output. Additional APIs were introduced
to enrich the user experience like WebRTC for real-time communications [68], Geolocation for
real-time positioning [18] or WebAssembly to take browser performance to the next level [66].
Other APIs are still being designed and discussed like WebPayments [65] and WebXR [69] to make
the web an even richer platform. Finally, modern browsers embraced user customization from the
beginning by allowing anyone to develop their own browser extensions, small add-ons that can
extend the functionalities of a browser. The most popular ones today are ad blockers, password
managers or video downloaders [54].

3 BROWSER FINGERPRINTING
In this section, we answer the fundamental questions surrounding the browser fingerprinting
domain: Where does it stem from? How effective is it? How do we evaluate current techniques?
How widespread is it on the web? The aim of this section is to provide a thorough survey of the
research conducted in the domain of browser fingerprinting with a summary of current techniques.

3.1 Discovery of browser fingerprinting
In 2009, Mayer investigated if the differences that stem from the origins on the Internet could lead
to the deanonymization of web clients [97]. Especially, he looked to see if differences in browsing
environments could be exploited by a remote server to identify users. He noticed that a browser
could present “quirkiness” that came from the operating system, the hardware and the browser
configuration. He conducted an experiment where he collected the content of the navigator, screen,
navigator.plugins, and navigator.mimeTypes objects of browsers who connected to the website of
his experiment. Out of 1328 clients, 1278 (96.23%) could be uniquely identified. However, he added
that the small scale of his study prevented him from drawing a more general conclusion.
A year later, Peter Eckersley from the Electronic Frontier Foundation (EFF) conducted the

Panopticlick experiment [84]. By communicating on social media and popular websites, he amassed
470,161 fingerprints in the span of two weeks. Contrarily to Mayer, the amount of collected
fingerprints gives a much more precise picture on the state of device diversity on the web. With
data from HTTP headers, JavaScript and plugins like Flash or Java, 83.6% of fingerprints were
unique. If users had enabled Flash or Java, this number rose to 94.2% as these plugins provided
additional device information. This study coined the term “browser fingerprinting” and was the
first to prove that it was a reality on a very large scale. The privacy implications that emerged from
it are really strong as a device with a not-so-common configuration can easily be identified on the
Internet.

3.2 Advancing fingerprinting
3.2.1 Full example. Table 1 provides a full example of the main attributes collected in the browser
fingerprinting literature along with their source.

3.2.2 Adding new attributes. Coupled with the seminal study from Eckersley, the enrichment of
browser features prompted many different works aimed at adding new information in browser
fingerprints and tracking them over time.

Canvas. The Canvas API “provides objects, methods, and properties to draw and manipulate
graphics on a canvas drawing surface” [12]. Users can draw and animate any number of shapes
and they can render textual content directly in the browser by using the graphical capabilities of
the device. In 2012, Mowery and Shacham were the first to study the canvas API and the canvas
2D context in their Pixel Perfect study [100] to produce fingerprints. As the font handling stacks
can vary between devices, they state that the operating system, browser version, graphics card,

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



Browser Fingerprinting: A survey 5

Table 1. Example of a browser fingerprint.

Attribute Source Example

User agent HTTP
header

Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/64.0.3282.119 Safari/537.36

Accept HTTP
header

text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,i
mage/apng,*/*;q=0.8

Content encoding HTTP
header gzip, deflate, br

Content language HTTP
header en-US,en;q=0.9

List of plugins JavaScript Plugin 1: Chrome PDF Plugin. Plugin 2: Chrome PDF Viewer. Plugin 3:
Native Client. Plugin 4: Shockwave Flash...

Cookies enabled JavaScript yes
Use of local/session

storage JavaScript yes

Timezone JavaScript -60 (UTC+1)
Screen resolution
and color depth JavaScript 1920x1200x24

List of fonts Flash or JS Abyssinica SIL,Aharoni CLM,AR PL UMing CN,AR PL UMing HK,AR
PL UMing TW...

List of HTTP headers HTTP
headers

Referer X-Forwarded-For Connection Accept Cookie Accept-Language
Accept-Encoding User-Agent Host

Platform JavaScript Linux x86_64
Do Not Track JavaScript yes

Canvas JavaScript

WebGL Vendor JavaScript NVIDIA Corporation
WebGL Renderer JavaScript GeForce GTX 650 Ti/PCIe/SSE2

Use of an ad blocker JavaScript yes

installed fonts, sub-pixel hinting, and antialiasing all play a part in generating the final user-visible
bitmap. From 300 canvas samples using a specially crafted test, they observed 50 distinct renderings
with the largest cluster containing 172 samples.

Later, Acar et al. performed a large-scale study of canvas fingerprinting in “The Web Never
Forgets” [73]. They found that scripts utilize the techniques outlined by Mowery and Shacham
and notably, they take advantage of the fallback font mechanism of modern browsers to generate
even more differences between devices. This is the first time that such techniques were reported
on the Internet. They also noticed that most scripts share a very similar codebase and they ex-
plained this similarity by the availability on GitHub of an open source fingerprinting library called
fingerprintjs [30].

WebGL. The Khronos Group [67] introduced WebGL which is a graphics API that can render
interactive 3D objects in the browser and manipulate them through JavaScript without the need for
plugins.Mowery and Shacham also studied in Pixel Perfect [100] the use ofWebGL for fingerprinting.
In their test, they created a 3D surface on which they apply a very specific image and they add
different ambient lights. They observed 50 distinct renders from 270 samples. They explain this
heterogeneity by the difference in hardware and software where the processing pipeline is not
exactly identical between devices. However, it is not until 2017 that progress was made with regards
to the capabilities of WebGL for fingerprinting.

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



6 Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine

Cao et al. designed a fingerprinting technique that relies heavily onWebGL to identify devices [82].
Through a series of 31 rendering tasks, they test carefully selected computer graphics parameters
to extract device features and they were able to uniquely identify more than 99% of 1,903 tested
devices.

AudioContext. TheWeb Audio API provides an interface to create a pipeline to process audio [64].
By linking audio modules together, anyone can generate audio signals and apply very specific
operations like compression or filtering to generate a very specific output. Discovered by Englehardt
et al. while crawling the web looking for trackers, AudioContext fingerprinting is one of the latest
additions in a fingerprinter’s toolbox [85]. They found scripts that process an audio signal generated
with an OscillatorNode to fingerprint devices. The authors add that the fingerprinting process is
similar to what is done with canvas fingerprinting as processed signals will present differences due
to the software and hardware stack of the device. The relative novelty of this technique explains
that scripts using this API were only found on a very small number of websites.

Browser extensions. Modern browsers embraced user customization from the beginning by allow-
ing anyone to develop their own browser extensions, small add-ons that can extend the function-
alities of a browser. The most popular ones today are ad blockers, password managers or video
downloaders [54]. Detecting a browser extension is challenging as there is no API to query to
get the exact list of installed extensions in the browser. However, because of the way addons are
integrated in browsers, it is possible to detect some of them. A study conducted by Sjösten et
al. looked at the use of web accessible resources to detect extensions [116]. By accessing very
specific URLs, they can know if an extension is installed or not. For example, to display the logo
of an extension, the browser knows where it is stored on the device and it follows a URL of the
form “extension://<extensionID>/<pathToFile>” to fetch it. However, since these resources can be
accessed in the context of any web page, this mechanism can be abused by a script to detect the
presence or absence of a particular extension. Not every extension has such accessible resources,
and thus not every extension is detectable with this technique. Sjösten et al. were able to detect
12,154 Chrome extensions out of 43,429 and 1,003 Firefox ones out of 14,896.

A second study was done by Starov and Nikiforakis and consists in identifying side effects
produced by extensions [121]. For example, if an extension adds a button on YouTube to provide
new controls over a video, the added button is detectable by analyzing the DOM of the web page
(the Document Object Model represents the structure of a page). Detecting an ad blocker is similar
as the blocking of an ad script will prevent some ads from being displayed. The authors of the
study performed an analysis of the 10,000 most popular Chrome extensions. They found that 9%
of them produce DOM modifications that can be detected on any domain and 16.6% introduce
detectable changes on popular domains. In the user study based on 854 users and by detecting
1,656 extensions, Starov and Nikiforakis concluded that 14.10% of users are unique.

A third study by Sánchez-Rola et al. [110] used a timing side channel attack to detect browser
extensions: they query resources of fake and existing extensions and measure the time difference
between the calls. By using this method, they claimed to be able to detect any browser extension.
Sánchez-Rola et al. have also conducted a user study of 204 users and aimed at detecting 2,000
extensions: they found that 56.86% of users are unique.
Recently, Gulyás et al. [90] have conducted the biggest user study with 16,393 participants to

evaluate uniqueness of users based on their browser extensions and Web logins. They used the
method of Sjösten et al. [116] based on web accessible resources and evaluated that out of 7,643
Chrome users, 39.29% of them are unique based on the detection of 16,743 Chrome extensions.
Additionally, Gulyás et al. found out that it is sufficient to test only 485 carefully chosen extensions
in order to achieve the same level of uniqueness.

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



Browser Fingerprinting: A survey 7

Finally, Starov et al. [120] looked at extension’s bloat, i.e. the unnecessary side-effects caused by
faulty application logic that reveal an extension’s presence without providing any useful function-
ality. These include injecting empty placeholders, injecting script or style tags, or sending messages
on a page. Out of 58,034 extensions from the Google Chromestore, they found that 5.7% of them
contained fingerprintable bloat and 61% of them can be uniquely identified because of their bloat.
They propose a client-side access control mechanism for Chrome to protect users against bloat by
controlling the reach of extensions.

JavaScript standards conformance. Muzanni et al. proposed a method to reliably identify a browser
based on the underlying JavaScript engine [101]. They analyzed browsers to see if they complied
with the JavaScript standard and they tested them to detect which features were supported. By
collecting a dataset from more than 150 browser and operating system combinations, they were able
to compute the minimal suite of tests that needs to be run to uniquely identify each combination.
Their approach is possible because web browsers present differences in the JavaScript engine even
between two subsequent versions.
At the same time, Nikiforakis et al. explored the same idea by analyzing the mutability of the

navigator and screen objects [104]. They highlighted that they can not only distinguish between
browser families and versions but even between minor versions of the same browser.
Finally, much later, Schwarz et al. extended on this idea to go beyond the browser and find

information on the system itself [113]. They enumerated as many properties as they could in an
automated fashion to find information that could reveal a difference on the OS and architecture
levels .

CSS querying. Unger et al. performed a series of test to detect CSS properties that are unique
to some browsers [125]. For example, Firefox presents CSS properties prefixed with “-moz-” [50]
while Chrome and Safari have some properties prefixed with “-webkit-” [7]. With their method,
they can easily detect the browser family as these prefixes are not shared between browsers.
Saito et al. used the same technique to identify the browser and its family but they also went

further by collecting information about the screen and the installed fonts through the use of@media
and @font-face queries [122].

Font metrics. Fifield et al. looked into the analysis of character glyphs to identify devices on
the web [87]. They noticed that the same character with the exact same style may be rendered
with different bounding boxes depending on the browser and the device used. By testing 125,000
different Unicode characters on more than 1,000 web browsers, they were able to uniquely identify
34% of their population. With the data they collected, they were able to reduce the number of tested
characters to 43 to reach the same conclusion.

Benchmarking. Another way to uncover information about a device is to benchmark its CPU and
GPU capabilities. Through JavaScript, a script can launch a series of tasks and measures the time
it takes to complete them. However, the biggest difficulty when using benchmarks is to interpret
differences and fluctuations correctly. Two time values can be different because they have been
collected from two different devices but they could also belong to a single device where a new
background process came disrupting the actual measurements.
Mowery et al. used 39 different tests to identify the performance signature of the browser’s

JavaScript engine [99]. They showed that they are able to detect the browser and its version with
a 79.8% accuracy. However, the biggest downside of their approach is that it takes in total 190.8
seconds to run the complete benchmark suite. Contrarily to the majority of the attributes presented
in this section that can be collected in a matter of milliseconds, this time difference makes it almost
impossible to deploy such methods in the wild.

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



8 Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine

Nakibly et al. turned to the WebGL API to display complex 3D scenes and measure the number
of frames rendered by the browser [102]. They showed that benchmarking the GPU can produce
very noticeable differences between devices as a small GPU on a smartphone will behave very
differently than the latest high-end graphic card.
Finally, Saito et al. tried estimating the presence of specific CPU features like AES-NI and

TurboBoost through benchmarking [108]. Saito et al. went even further by identifying the CPU
family and the number of cores with high accuracy [109].
Finally, Sánchez-Rola et al. measured clock difference on a device to perform device-based

fingerprinting [111]. With native code, the authors can differentiate devices with the same hardware
and software by measuring the time it takes to execute certain functions like “string::compare”,
“std::regex” or “std::hash”. For the web implementation, they rely on the “Crypto.getRandomValues()”
function and while they cannot differentiate all devices, it offers better results than Canvas or
WebGL fingerprinting. However, the main problem here is that it is unclear if their approach can
still work today with recent changes to the JavaScript Performance API because of side-channel
attacks as no information is provided on the browser versions being used in the paper. There is
also no information on the impact of the CPU load or the OS on the returned result.

Battery Status. Drafted as early as 2011 [6], the “Battery Status” specification defines “an API
that provides information about the battery status of the hosting device” [14]. The API is composed
of a BatteryManager interface that reports if the device is charging or not. It also includes extra
information like the charge level of the device along with its remaining charging and discharging
time. As detailed by the W3C, giving knowledge of the battery status to web developers would
lead to power-efficient applications. The intent behind the addition of this API seemed entirely
legitimate.

However, they underestimated how much information regarding the battery could be misused in
the wild. In 2015, Olejnik et al. performed a privacy analysis of the Battery Status API [105]. They
highlighted the fact that the level of the battery could be used as a short-term identifier across
websites and that repeated readouts could help determine the capacity of the battery. The persons
responsible for the standard did not anticipate all these problems as they only indicated in their
original draft that the “the information disclosed has minimal impact on privacy or fingerprint-
ing” [8]. In order to address the issues posed by this API, many browser vendors decided to either
remove this API [16, 17] or spoof the given information [15]. Olejnik et al. documented extensively
the complete history of the Battery Status API in [106].

Evolution of browser fingerprints over time. Another core aspect of browser fingerprints concerns
their evolution over time. As a fingerprint is a direct reflection of a user’s device and its environment,
it is highly prone to changes as system’s components are modified, configured or updated. In order
to enable long-term tracking, one must have the ability to understand these changes and anticipate
how a fingerprint can change.
Eckersley was the first to look at this question in his Panopticlick study [84]. He implemented

an algorithm to heuristically estimate whether a given fingerprint might be an evolved version of a
fingerprint seen previously. From the fingerprints he collected, he was able to make a correct guess
in 65% of cases but he noted that the algorithm was “very crude”.

Vastel et al. recently performed a more extensive study with FP-Stalker [127]. Thanks to browser
extensions for Firefox and Chrome, they collected fingerprints daily from volunteers and were able
to witness first-hand the different changes a browser fingerprint can go through. They first identified
three different types of evolution: automatic evolutions caused by organic software updates, context-
dependent evolutions reflected by changes in the user’s environment, and user-triggered evolutions
caused by a change in the browser preferences. They observed that the evolution of a fingerprint

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



Browser Fingerprinting: A survey 9

strongly depends on the device’s type and how it is utilized. At least one change was observed for
45.52% of the collected fingerprints after one day, while it can take several weeks for other devices
to see a single change. Finally, they tried linking fingerprints belonging to the same device over
time. By collecting a fingerprint every three days, the algorithm behind FP-Stalker was capable of
tracking a device for 51.8 days on average. They were also able to track 26% of devices for more
than 100 days, proving that browser fingerprinting can effectively be used to complement other
methods of identification.

3.3 Analysing uniqueness of fingerprints
One of the most important aspects of browser fingerprints is their uniqueness. If one device presents
a combination of values that is unique, the impact on its privacy is strong as no stateful identifiers
are required to track its whereabouts online. Here, we look at the different measurements used in
the literature to asses the effectiveness of fingerprinting techniques.

3.3.1 Evaluating fingerprinting techniques.

Entropy. Entropy is used to quantify the level of identifying information in a fingerprint. The
higher the entropy is, the more unique and identifiable a fingerprint will be.
Let H be the entropy, X a discrete random variable with possible values {x1, ...,xn} and P(X ) a

probability mass function. The entropy follows this formula:

H (X ) = −
∑
i

P(xi ) logb P(xi )

In fingerprinting studies, the entropy of Shannon is in bits where b = 2. One bit of entropy reduces
by half the probability of an event occurring.

Normalized Shannon’s entropy. To compare datasets which are of different sizes, a normalized
version of Shannon’s entropy is used:

H (X )
HM

HM represents the worst case scenario where the entropy is maximum and all values of an attribute
are unique (HM = log2(N ) with N being the number of fingerprints in our dataset). The advantage
of this measure is that it does not depend on the size of the anonymity set but on the distribution
of probabilities. The quality of our dataset is quantified with respect to an attribute’s uniqueness
independently from the number of fingerprints in a database. This way, datasets can be compared
despite their different sizes.

Anonymity sets. One way adopted in the literature to visualize the distribution of collected
fingerprints is through anonymity sets. They give a direct representation of the distribution of a
dataset by showing how devices or attributes with identical values are clustered together. Notably,
they can be used to show if one attribute has many different values spread evenly across different
devices or if the majority of devices share a single unique value. It can also be used to quantify how
much protection can be provided by a defense mechanism by analyzing the difference in sets with
and without the protection.

3.3.2 Large scale studies. We detail here the only three large scale studies performed on the
effectiveness of tracking with browser fingerprinting. Table 2 provides an overview of three large
scale fingerprinting studies, while Table 3 gives a summary of the attributes along with their
detailed entropy numbers.

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



10 Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine

Table 2. Overview of large scale studies on browser fingerprinting.

Panopticlick
(2010)

AmIUnique
(2016)

Hiding in the
Crowd (2018)

Desktop Desktop Mobile Desktop Mobile
Number of
fingerprints 470,161 105,829 13,105 1,816,776 251,166

Unique
fingerprints 94.2% 89.4% 81% 35.7% 18.5%

Panopticlick. As detailed in Section 3.1, Eckersley conducted the Panopticlick experiment in
2010 [84]. From 470,161 fingerprints, he concluded that browser fingerprinting can be used to track
users online as 83.6% of collected fingerprints were unique. This number rose to 94.2% if users had
enabled Flash or Java. The most discriminating attributes at the time were the list of plugins, the
list of fonts and the user-agent.

AmIUnique. Laperdrix et al. performed an analysis of 118,934 fingerprints in 2016 [96] and their
study brought to light new results. First, they confirm Eckersley’s findings from 2010 as 89.4% of
their collected fingerprints were unique. However, in the 6 years that separated both studies, they
saw an evolution in the different attributes that compose a fingerprint. While the list of plugins
and fonts were kings at the beginning of the decade, it is not the case anymore as plugins have
been deprecated in major browsers because of the security threat they pose [13, 112]. Newcomers
like canvas fingerprinting provide very strong results as they observed an important entropy in
the collected values. Then, at a time where the use of smartphones is booming, they show that
mobile fingerprinting is possible but for different reasons than on desktops. In their dataset, 81%
of fingerprints from mobile devices are unique. HTTP headers and HTML5 canvas fingerprinting
play an essential role in identifying browsers on these devices. Finally, they simulate scenarios
to assess the impact of future web evolutions. They show that certain scenarios would limit the
detriment these technologies have on privacy, while preserving the current trend towards an ever
more dynamic and rich web. In their study, simple changes like having generic HTTP headers or
removing plugins reduce fingerprint uniqueness in desktop fingerprints by a strong 36%.

Hiding in the Crowd. In 2018, Gómez-Boix et al. analyzed 2,067,942 fingerprints collected on
one of the top 15 French websites [89]. Their findings provide a new layer of understanding to
the domain as 33.6% of fingerprints from their dataset were unique. Compared to the other two
large scale studies, this number is two to three times lower. When considering mobile devices, the
difference is even larger as 18.5% of mobile fingerprints were unique compared to the 81% from [96].
Their study highlights the importance of the data collection process. In the past, fingerprints have
been collected on websites that explicitly target visitors who are aware of online privacy or who
might be more cautious than the average web user. Here, their data is collected on a commercial
website targeting a more global audience. This characteristic of the dataset coupled with the very
high number of collected fingerprints are the keys to understand the differences in fingerprint
uniqueness. They also demonstrate that desktop fingerprints are mostly unique because of their
combination of attributes whereas mobile devices present attributes that have unique values.

3.4 Adoption of fingerprinting on the web
Since Eckersley’s study in 2010, different studies have been conducted to quantify the adoption
rate of browser fingerprinting on the web. Table 4 provides an overview of the major four studies.

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



Browser Fingerprinting: A survey 11

Table 3. Browser attributes, their entropy and their normalized entropy from the Panopticlick [84],
AmIUnique [96] and Hiding in the Crowd [89] studies.

Attribute Panopticlick (2010) AmIUnique (2016) Hiding (2018)

Entropy Normalized
entropy Entropy Normalized

entropy Entropy Normalized
entropy

User agent 10.000 0.531 9.779 0.580 7.150 0.341
Accept - - 1.383 0.082 0.729 0.035

Content encoding - - 1.534 0.091 0.382 0.018
Content language - - 5.918 0.351 2.716 0.129
List of plugins 15.400 0.817 11.060 0.656 9.485 0.452
Cookies enabled 0.353 0.019 0.253 0.015 0.000 0.000

Use of local/session
storage - - 0.405 0.024 0.043 0.002

Timezone 3.040 0.161 3.338 0.198 0.164 0.008
Screen resolution
and color depth 4.830 0.256 4.889 0.290 4.847 0.231

List of fonts 13.900 0.738 8.379 0.497 6.904 0.329
List of HTTP headers - - 4.198 0.249 1.783 0.085

Platform - - 2.310 0.137 1.200 0.057
Do Not Track - - 0.944 0.056 1.919 0.091

Canvas - - 8.278 0.491 8.546 0.407
WebGL Vendor - - 2.141 0.127 2.282 0.109
WebGL Renderer - - 3.406 0.202 5.541 0.264

Use of an ad blocker - - 0.995 0.059 0.045 0.002
HM (worst scenario) 18.843 16.860 20.980

Number of FPs 470,161 118,934 2,067,942

In 2013, Nikiforakis et al. with the Cookieless Monster study [104] crawled up to 20 pages for
each of the the Alexa top 10,000 sites to look for fingerprinting scripts from the three following
companies: BlueCava, Iovation, ThreatMetrix. They discovered 40 sites (0.4%) making use of these
companies’ fingerprinting code.

The same year, Acar et al. performed a much larger crawl by visiting the homepages of top Alexa
1 million websites and 25 links of 100,000 Alexa websites with the FPDetective framework [74].
They made modifications to the rendering engine to intercept and log access to browser and device
properties that could be used for fingerprinting. They decompile the Flash files they encounter
during crawling to verify the presence of fingerprinting related function calls. FPDetective study
was the first to measure adoption of fingerprinting scripts without relying on a known list of
tracking scripts as they directly looked for behaviors related to fingerprinting activities. They found
404 sites out of 1 million performing JavaScript-based font probing and 145 sites out of 10,000
performing Flash-based font probing.
In 2014, Acar et al. performed the “The Web Never Forgets” study [73], where they measured

adoption of canvas fingerprinting on homepages of 100,000 Alexa websites. They instrumented
the browser to intercept calls and returns to Canvas related methods, and tried to remove false
positives by a set of rules (more details in Section 3.1 of [73]). They found 5542 sites out of 100,000
performing Canvas fingerprinting.
In 2016, Engelhardt and Narayanan released the OpenWPM platform, “a web privacy measure-

ment framework which makes it easy to collect data for privacy studies on a scale of thousands to

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



12 Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine

Table 4. Overview of four studies measuring adoption of browser fingerprinting on the web.

Fingerprinting
techniques detected Sites crawled Prevalence Detection method

Cookieless
Monster [104]

(2013)

Detection of 3
known

fingerprinting
libraries

10K sites (up to 20
pages per site) 0.4%

Presence of JS libraries provided by
BlueCava, Iovation and

ThreatMetrix.

FPDetective
[74] (2013)

JS-based and
Flash-based font

probing

1M sites
(homepages)

100K sites (25 links
per site) for JS

10K (homepages) for
Flash

0.04% (404 of 1M) for
JS-based

1.45% (145 of 10K)
for Flash-based

Logging calls of font probing
methods. A script that loads more
than 30 fonts or a Flash file that
contains font enumeration calls is

considered to perform
fingerprinting.

The Web
Never Forgets
[73] (2014)

Canvas
fingerprinting

100K sites
(homepages) 5.5%

Logging calls of canvas
fingerprinting related methods. A
script is considered to perform
fingerprinting if it also checks
other FP-related properties.

1M Alexa
study with
OpenWPM
[85] (2016)

Canvas
fingerprinting,

canvas-based font
probing, WebRTC
and AudioContext

1M sites
(homepages)

1.4% for canvas
fingerprinting
0.325% for canvas
font probing

0.0715% for WebRTC
0.0067% for

AudioContext

Logging calls of advanced
FP-related JavaScript functions.

10K Majestic
study [76]
(2018)

17 attributes
(including OS,

screen, geolocation,
IP address among

others)

10K sites
(homepages) 68.8%

Data leaving the browser must
contain at least one of the 17

monitored attributes.

millions of websites” [53]. To demonstrate the capabilities of their tool, they made an analysis of
the Alexa top 1 million sites to detect and quantify emerging online tracking behaviours [85]. Their
findings provide more accurate results than in the past as they instrumented extensively a very high
number of JavaScript objects to build a detection criterion for each known fingerprint technique
(more details in Section 3.2 of [85]). Out of 1 million websites, they found 14,371 sites performing
canvas fingerprinting, 3,250 sites performing canvas font fingerprinting, 715 sites performing
WebRTC-based fingerprinting, and only 67 sites performing AudioContext fingerprinting.

Finally, in 2018, Al-Fannah et al. crawled the top Majestic 10,000 websites and recorded what was
sent out by the browser [76]. Their definition of fingerprinting is much broader and inclusive than
the other studies presented in this section. A website is deemed to be performing fingerprinting if
at least one attribute out of a list of 17 is present in the recorded payloads. They identified 6,876
(68.8%) websites as performing fingerprinting which is a much higher number than what was
reported in the past. 84.5% of them are third parties and, by analyzing what was collected, the
authors identified in total 284 attributes that can be used for fingerprinting.

Challenges in measuring adoption. In order to quantify the number of websites that are currently
using fingerprinting scripts on the Internet, one needs the means to identify them. However, even
if the collection process in a browser is straightforward, the reality is in fact much more complex.
If a script accesses the user-agent header and the list of plugins, it could be for legitimate purposes
to tailor the current web page to the user’s device. But it could also be the first-step towards
building a complete browser fingerprint. If a script makes hundreds of calls to the Canvas API,
it may be rendering a 2D animation in the browser. But it may also probe for the list of fonts

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



Browser Fingerprinting: A survey 13

installed on the system. These simple examples illustrate that the line between a benign script and
a fingerprinting one is far from being clearly defined. As we saw in the previous paragraph, the
protocol to identify a fingerprinting script can lead to very different numbers on the adoption of
this technique. Researchers are currently facing a lot of challenges to classify scripts correctly as
the goal of two scripts can vastly vary even if they present very similar content.
Here, we list some telltale signs that indicate that a script may be partaking in fingerprinting

activities.

• Accessing specific functions In the fingerprinting literature, many functions and objects
are known to return device-specific information (see Table 1). For example, the navigator
object contains the user-agent and the platform. Does the script access these very specific
functions and objects?

• Collecting a large quantity of device-specific information Even if a script access the
screen resolution, this information alone is not sufficient to identify a device on the Internet. If
a script queries specific APIs, how many of them are accessed? Can the collected information
be used to identify a single device? Studies like [73, 85] have looked specifically at APIs like
Canvas, WebRTC or AudioContext. They did not consider the full list of attributes that could
be collected to assess if a script is performing fingerprinting or not.

• Performing numerous access to the same object or value If a function is called an
incredible number of times, can it be considered as a normal usage of the API? Or is the script
testing different parameters to expose a certain property of the device? How can we consider
a usage as normal or abnormal?

• Storing values in a single object Is the script storing all collected values in the same object?
From a design perspective, having all the values in the same object means that they probably
share a similar purpose.

• Hashing values Scripts can hash very long strings to ease processing, transfer or server-side
storage. The popularfingerprintjs library [30] as a default option hashes the entirety of the
device’s fingerprint. Is the script hashing any value, especially ones that come from known
fingerprinting functions?

• Creating an ID Does the script generate a string that looks like an identifier? Is this ID
stored in a cookie or in any cache mechanisms of the browser?

• Sending information to a remote address Are there any pieces of data containing device-
specific information sent to a remote server?

• Minification and Obfuscation “Minifying” a script consists in removing all unnecessary
characters from its source code like white space characters, new line characters or comments
without changing its functionality. A lot of well-known JavaScript libraries are “minified”
to reduce the amount of data that needs to be transferred when they are downloaded. For
example, the weight of the famous jQuery library [49] in version 3.3.1 is cut in three just
by minifying the code (from 271.8kb to 86.9kb). Figure 1 shows a simple implementation of
the Fibonacci sequence in JavaScript. The minified version is much more compact than the
original version.
On top of minification, a JavaScript file can be obfuscated, i.e. modified to make it difficult to
read and understand. Some variables can be renamed to very short and meaningless names.
Some sections can be intertwined to make it difficult to follow the flow of the program. Some
parts of the code can also self-generate the true payload similar to what is observed with
packing mechanisms in malwares. Most developers use obfuscation to protect their source
code and to prevent other developers from copying it but others see it as a way to hide the
true meaning of their code. In the end, it requires reverse-engineering efforts to know the true

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



14 Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine

intent of the author and it requires far more means to correctly find if a script is conducting
fingerprinting activities.

function fib(n) {
if(n <= 1) {

return n;
} else {

return fib(n - 1) + fib(n - 2);
}

}

Standard

function fib(a){return a<=1?a:fib(a-1)+fib(a-2)}

Minified

eval(function(p,a,c,k,e,d){e=function(c){return c};if(!''.replace (/^/, String)){
while(c--){d[c]=k[c]||c}k=[ function(e){return d[e]}];e=function (){return '\\w+'
};c=1}; while(c--){if(k[c]){p=p.replace(new RegExp('\\b'+e(c)+'\\b','g'),k[c])
}} return p}('4 3(0){5 0 <=1?0:3(0 -1) +3(0 -2)}',6,6,'a|||fib|function|return '.
split('|') ,0,{}))

Obfuscated by [48]

Fig. 1. JavaScript code for the Fibonacci sequence. The three pieces of code are all equivalent.

In the end, fine tuning all of these rules and identifying a script as a fingerprinting one present
many difficulties. Engelhardt and Narayanan noted in [85] that a large number of fingerprinting
scripts were not blocked by popular privacy tools, especially the lesser known ones. The number
of actors actually performing device fingerprinting on the web may very well be much higher than
what is currently reported by large crawls.

4 DEFENSE TECHNIQUES
In this section, we detail techniques and solutions aimed at mitigating the effects of browser
fingerprinting. The goal is to improve users’ privacy by preventing unwanted tracking. As we will
see, there is no ultimate approach that can prevent fingerprinting while keeping the richness of a
modern web browser. Designing a strong defense requires a fine-tuned balance between privacy
and usability that can be challenging to get right.
Table 5 provides a summary of all the defenses detailed in this section. While some solutions

provide very strong protection against browser fingerprinting, it is often at the cost of usability
as we can see for example with NoScript or the Tor Browser. From the scientific publications,
we can see that the biggest challenge met by researchers is to provide a complete coverage of
modified attributes as the slightest mismatch render users more visible to trackers. A solution can
be rendered useless in a matter of months as browsers are constantly updated and new APIs are
surfacing frequently.

4.1 Increasing device diversity
4.1.1 Modifying the content of fingerprints. The first defense to mitigate browser fingerprinting is
to increase the diversity of devices so that real fingerprints are hidden in noise. The intuition behind
this method is that third parties rely on fingerprint stability to link fingerprints to a single device.

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



Browser Fingerprinting: A survey 15

Table 5. Summary of existing defense solutions. M = Modifying the fingerprint content. M* = Modifying the
fingerprint content by switching browsers. U = Universal fingerprint. BS = Blocking Scripts. BA = Blocking
APIs or Access.

Solution Ref. Type Comments

Sc
ie
nt
ifi
c
pu

bl
ic
at
io
ns

FP-Block [123] M +: Separation of web identities
−: Incomplete coverage

FPGuard [86] M +: Detection and prevention of fingerprinting
−: Lack of details

Fiore et al. [88] M +: Aims at creating consistent fingerprints
−: Incomplete coverage

DCB [79] M
+: N:1/1:N strategies, changes at each session, creation of groups with
similar configurations
−: Incomplete coverage

PriVaricator [103] M +: Custom randomization policies
−: Incomplete coverage

Blink [95] M +: Produces genuine and diverse fingerprints with no inconsistencies
−: Takes HDD space

FPRandom [94] M
+: Introduces noise into the Canvas, AudioContext APIs and randomizes
the enumeration order of JavaScript objects
−: Other vectors can still be used

Changing
browsers [80, 82] M* +: Presents distinct and genuine fingerprints

−: Can be bypassed

Cliqz browser [37, 130] BS +: Strong protection against scripts with unique identifiers
−: Relies on a central server

Latex Gloves [115] BA +: Protection against extension fingerprinting
−: Relies on user-curated whitelists

CloakX [124] M +: Strong protection against extension fingerprinting
−: Other vectors an still be used

UniGL [128] U +: Protection against WebGL fingerprinting for all devices
−: Other vectors can still be used

O
nl
in
e
to
ol
s

Canvas Defender [22] M +: Modifications consistent across a browsing session
−: Only canvas

Random Agent
Spoofer [20] M +: Uses real database of browser profiles

−: Incomplete coverage

Tor Browser [62] U BA +: Very strong protection against fingerprinting
−: Tor fingerprint is brittle

NoScript [52] BS
+: Blocks all JavaScript scripts including fingerprinting scripts
−: Blocks all JavaScript scripts including scripts needed to correctly
display a webpage

Filter list-based
ad/tracker
blocker

[28, 45, 47,
63] BS +: Extensive blocking list

−: Relies on lists of known trackers

Privacy Badger [55] BS +: Heuristics-based approach
−: Blocking may be too aggressive

Canvas Blocker [35] BA +: Blocks the entire canvas API
−: Other vectors can still be used

Brave browser [34] BA +: Blocks the entire Canvas, WebGL, AudioContext and WebRTC APIs
−: Other vectors can still be used

Firefox
fingerprinting
resistance

[56–58] M BA
U

+: Blocks the entire Canvas API and reduces the quantity of information
on several attributes
−: Still a work in progress, other vectors can still be used

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



16 Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine

By sending randomized or pre-defined values instead of the real ones, the collected fingerprints are
so different and unstable that a tracker is unable to identify devices on the web.

The inconsistency problem. While this approach can appear to be strong on paper, the reality is
much more complicated as Peter Eckersley called it the Paradox of Fingerprintable Privacy Enhancing
Technologies [84]. Instead of enhancing users’ privacy, some tools make fingerprinting easier by
rendering a fingerprint more distinctive. By looking through the extensions available for both
Chrome and Firefox, one can find many spoofers or switchers to modify the actual values that are
collected by scripts. One of the most popular ones on Firefox called Random Agent Spoofer [20]
claims more than 100,000 users at the time of writing and it provides the ability to rotate “complete
browser profiles ( from real browsers / devices ) at a user defined time interval”. Nikiforakis et
al. performed an analysis of these extensions and found many issues with regards to browser
fingerprinting [104]. These extensions can modify a property but may forget to change another one,
creating a mismatch between attributes. One browser could announce in its user-agent that the
underlying OS is Linux while the navigator.platform property indicates it is running on Windows.
Another example would be a device claiming to be an iPhone while the reported screen resolution
is far bigger than what is currently supported on these devices. While the idea of switching values
with other ones is promising, the constant evolution of browsers coupled with very strong links
between attributes prevent this approach from being recommended. To fix the shortcomings of
these agent spoofers, the scientific community turned itself to new approaches.

Replacing the values of attributes. Torres et al. explored the concept of separation of web identities
with a solution called FP-Block [123]. When the browser connects to a new domain, it will generate
a new identity (i.e. a new fingerprint) for this particular domain. The intuition behind FP-Block is
that third parties will see different fingerprints on each site they are embedded so that tracking is
hampered.
FaizKhademi et al. developed the FPGuard solution which runs in two phases: detection and

prevention [86]. First, they detect fingerprinting-related activities with a series of 9 metrics. Then,
from these metrics, they compute a suspicion score and if this score goes above a specific threshold,
the second phase kicks in where a series of components will modify the content of the device
fingerprint.

Fiore et al. worked to counter unwanted tracking by creating fingerprints that resemble the ones
left by someone else [88]. They claim that they have to alter data in a way that is consistent to
prevent being detected. They modify a very specific subset of fingerprintable attributes with a fake
browsing profile.
Baumann et al. designed a solution to disguise the Chromium browser called DCB (Disguised

Chromium Browser) by changing the following parameters: the screen resolution, the browser
language, the user-agent, the time and date, the list of fonts and the list of plugins [79]. When DCB
launches, it contacts the main server that “maintains a database of real world fingerprinting features
to enforce a robust browser configuration on the client” and then applies one of the two following
strategies: “N:1 Many Browsers, One Configuration” or “1:N One Browser, Many Configurations”.
Nikiforakis et al. explored with PriVaricator the use of randomization to render browser fin-

gerprints unreliable for tracking [103]. Instead of blatantly lying as it can seriously degrade the
user experience, they introduced the concept of randomization policies. Each policy details the
modifications made to a specific attribute along with a set of requirements that define when it kicks
in. This way, any developer can define her own modification strategy that balances effectiveness
with usability.

Trickel et al. designed CloakX, a solution based on client-side diversification to prevent the
detection of installed extensions [124]. The core idea behind CloakX is that it randomizes what

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



Browser Fingerprinting: A survey 17

makes an extension identifiable while maintaining equivalent functionality. CloakX follows different
steps to completely cloak an extension: it randomizes the path of web accessible resources to prevent
probing attacks, it changes the behavioral fingerprint by changing ID and class names that are
injected and it adds a proxy to perform the necessary mappings from dynamic calls.

Finally, Laperdrix et al. argued that the diversity of software components that is at the source of
browser fingerprinting provides strong foundations for a counter measure [95]. They proposed an
original application of dynamic software reconfiguration techniques to establish a moving target
defense against browser fingerprint tracking. With a tool called Blink, they randomly assemble a
coherent set of components (an OS, a browser, plugins, etc.) every time the user wants to browse
the web. Exposed fingerprints then break the stability needed for their exploitation as they are
very different from each other. The strongest advantage of Blink compared to other tools is that
the exhibited fingerprints are genuine with no mismatches between attributes since they rely on
real components running on the user’s device.

Introducing noise. While most attributes are collected in string form, other ones from the Canvas
or AudioContext APIs produce more complex data structures. Instead of simply replacing an output
with another pre-defined one, one can introduce noise into the rendering process of these APIs.
This way, a Canvas or AudioContext test can be ever so slightly different at each execution.

One way to introduce noise is to position the modification at the very end of the processing
pipeline where a script collect its values. An extension called Canvas Defender on Firefox does
exactly this [22]. When a script renders an image, the browser will behave normally and the user
will see the intended image. However, when the script tries to read the content of the rendered
canvas element, it will go through a function that modifies the actual RGB values of each pixel.
The image collected by the script is then different from the image that the user can see.

Baumann et al. positioned themselvesmuch earlier in the rendering pipeline by directlymodifying
the Chromium source code in DCB [79]. They modified the fillText() and strokeText() that are heavily
used in canvas fingerprinting scripts to alter the renderings of canvas elements at runtime. Their
approach also provides consistency in the same browsing session as they use a random session
identifier generated at startup to steer the modifications.

Laperdrix et al. proposed with FPRandom to exploit browsers’ untapped flexibility to introduce
randomness [94]. Their goal was to increase non-determinism in browsers to reduce the side-effects
that cause fingerprintable behaviours. The authors modified the source code of Firefox to target
modern fingerprinting techniques, namely canvas fingerprinting, AudioContext fingerprinting and
the unmasking of browsers through the order of JavaScript properties.

The challenges in modifying the content of fingerprints. This section showed that it is possible to
increase the diversity of exposed fingerprints and modify their content but the challenges to have a
working and undetectable solution are numerous. Attributes cannot be modified in a way that will
break browsing. The slightest mismatch between two attributes can make a user more visible to
trackers which defeats the entire purpose of running a defense solution. All the techniques detailed
here pose the question if such kind of approach should be explored further or if the constant
evolution of web browsers render current implementations incredibly hard to maintain and to
recommend. Vastel et al. developed FP-Scanner [126], a test suite that explores browser fingerprint
inconsistencies to detect potential alterations. By applying a progressive detection logic from
attributes collected at the browser level to the OS level, the scanner can detect if an attribute was
modified and, to some extent, reveal the original unaltered value hidden by the countermeasure.
The authors also argue that detecting a fingerprinting countermeasure does not necessarily imply
that a user can be tracked more easily as it depends on what information is being leaked by the
defense mechanism and how stable it can be. In the end, this article shows that, while researchers

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



18 Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine

and developers are finding many ways to make fingerprints unstable, there are always really small
details that are easy to overlook that make current solutions ineffective. Modern web browsers
are such complex pieces of machinery that it is incredibly hard to predict where the next piece of
revealing information will be.

4.1.2 Changing browsers. Since a large part of a device fingerprint is composed of browser-specific
information, one could decide to use two different browsers to have two distinct device fingerprints.
This way, it is harder for a third party to have a complete picture of a user’s browsing patterns
as the tracking party will obtain two decorrelated browsing profiles. While the premise behind
this idea is really simple, the truth behind it is more complicated. Two studies have shown that
collecting attributes that are specific to the OS and the hardware can be sufficient to uniquely
identify a device.
In 2012, Boda et al. were the first to design a browser-independent fingerprinting algorithm

that rely mainly on attributes like the list of fonts, the timezone and the screen resolution [80].
Their findings show that the list of fonts provide a solid base for identification and that they were
able to identify returning visitors who used more than one browser or changed their IP addresses
dynamically. However, their dataset contained only 989 users, which was not diverse enough and
therefore prevented them from concluding whether the same results hold at a larger scale.

In 2017, Cao et al. designed a fingerprinting technique that relies heavily on the OS and hardware
functionalities of a device [82]. By rendering 31 different tasks with the WebGL API, they are able
to extract device features from carefully selected computer graphics tests and they show that they
are able to uniquely identify devices even if the user switches browser. One important detail is
that their whole suite of tests take several seconds to be fully executed contrarily to more standard
fingerprinting scripts which take less than a second. However, their dataset was also relatively
small (3,615 fingerprints from 1,903 users) and therefore more studies are needed to evaluate how
unique users are based on this technique at a larger scale.

In the end, cross-browser fingerprinting is a reality even if its deployment in a real-world solution
may prove very challenging mainly due to time constraints. By collecting enough data from the OS
and hardware layers of a system, a third party can uniquely identify a device.

4.2 Presenting a homogeneous fingerprint
Another defense strategy is to make all devices on the web present the same fingerprint. This is the
approach chosen by the Tor Browser [62] also known as TBB (the Tor Browser Bundle) which uses
the Tor network. Wu et al. also designed UniGL to remove the discrepancies between devices when
performing WebGL fingerprinting.

4.2.1 The Tor Browser.

The theory. While the Tor network prevents an attacker from finding out the real IP address
of a client, it does not modify the actual content of an HTTP request. If a cookie ID or a browser
fingerprint is present in the payload, a server can uncover the true identity of a user. To fix this
problem, the Tor Browser was developed. As detailed by the official design document [59], the
Tor Browser follows a set of requirements and one of them includes a Cross-Origin Fingerprinting
Unlinkability section which specifically targets browser fingerprinting. While they acknowledge
that randomization can be effective to protect against fingerprinting, they chose uniformity or the
one fingerprint for all strategy for Tor users. The design document lists 24 different modifications
that have been introduced in the Tor Browser. The most notable ones are the blocking of the
Canvas and WebGL API, the complete removal of plugins, the inclusion of a default bundle of fonts
to prevent font enumeration and the modification of the user-agent along with HTTP headers.

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



Browser Fingerprinting: A survey 19

Whether a user is on Windows, Mac and Linux, the Tor Browser will always report that the device
is on Windows.

The reality. While the Tor Browser can be considered as one of the strongest defenses against
browser fingerprinting, it still presents some shortcomings. The fingerprint exposed by the Tor
Browser is known and easily identifiable. Data like the user-agent, the screen resolution and the
IP addresses from known Tor exit nodes are enough information to distinguish the Tor browser
from a standard one. While this may not be important with respect to identification as one website
cannot distinguish one Tor user from another one, it can still impact their browsing experience as
shown by Khattak et al. [91]. They reported that 3.67% of the top 1,000 Alexa sites either block or
offer degraded service to Tor users to reduce Internet abuse.
The second problem with Tor browser fingerprints is their brittleness as differences can still

between browsers like the screen resolution. When first launched, the Tor Browser window has a
size of 1,000x1,000. However, if the user decides to maximize the window, the browser displays
the following message: “Maximizing Tor Browser can allow websites to determine your monitor
size, which can be used to track you. We recommend that you leave Tor Browser windows in their
original default size.”. If the user has an unusual screen resolution, this information could be used
to identify her as she will be the only Tor user with this screen resolution.

The third problem is that detectable differences exist between operating systems running the Tor
Browser. The design document notes that they intend to reduce or eliminate OS type fingerprinting
to the best extent possible but they add that the efforts in that area is not a priority. While this may
provide very few information compared to other fingerprinting vectors, OS differences are yet an
additional vector that can be used to distinguish a user from the pool of all Tor users.
In the end, developers of the Tor Browser have made some very strong modifications to limit

the fingerprintability of the browser as much as possible. If users stick with the default browser
fingerprint that most users share, it provides the strongest protection against known fingerprinting
techniques. However, if one starts to deviate from this one and unique fingerprint, the user may
end up being more visible and more easily trackable than with a standard browser like Chrome or
Firefox.

Firefox’s fingerprinting resistance. Since its debut, the Tor Browser has been based on the Extended
Support Release (ESR) versions of Firefox. With each new Firefox release, Tor developers had to
update all their privacy-enhancing patches to continue building their browser. In order to reduce
as much as possible this time consuming process, the Tor Uplift project was launched in 2016 [58].
Its goal is to bring most patches and security features of the Tor Browser directly into Firefox,
including all the modifications made to counter fingerprinting. Now, Tor developers do not have
to redevelop their patches for Firefox anymore. At the same time, Mozilla can experiment with
advanced privacy features being tested in the Tor Browser to see if they could be brought to their
audience. From version 59 released in March 2018, a fingerprinting protection can be activated in
Firefox with the privacy.resistFingerprinting flag. When it is enabled, the fingerprint is changed: the
Canvas API is blocked and the user-agent, the timezone and the screen resolution are modified
similarly to what the Tor Browser is doing. The protection is being actively developed and the
complete list of upcoming changes can be seen on [56]. Fingerprinting resistance is expected to get
even stronger in the coming months with the launch of the Fusion project (Firefox USIng ONions -
[57]).

4.2.2 UniGL. Over the years, two studies have shown that the WebGL API can be used to create
differences between devices by rendering complex 3D scenes [82, 100]. Wu et al. looked specifically
at that API to identify the source of these differences [128]. Throughmanual testing and experiments,

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



20 Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine

they found the single reason behind them: the results of floating-point operations can vary between
devices across the various graphics layers of a system. In order to make 3D rendering uniform, they
designed a software solution called UniGL that redefines floating operations explicitly written in
GLSL programs or implicitly invoked by WebGL. That way, every device running UniGL will have
the exact same WebGL fingerprint for a specific rendering task.

UniGL is a prime example of how uniformity can be achieved through a purely software solution
that can be easily deployed to users. By identifying the exact source of discrepancies, it is possible
to remove differences without having to modify or update the hardware.

4.3 Decreasing the surface of browser APIs
The last defense is to decrease the surface of browser APIs and reduce the quantity of information
that can be collected by a tracking script. One approach is to simply disable plugins so that additional
fingerprinting vectors like Flash or Silverlight are not available to leak extra device information.

Another straight-forward way is to simply not run tracking scripts. One can go into the browser
preferences and disable the execution of JavaScript code for all web pages. However, by doing
so, the user will meet a static and broken web where it is impossible to login to most services.
An alternative is to use a browser extension like NoScript which uses a whitelist-based blocking
approach [52]. By default, all JavaScript scripts are blocked and it is up to the user to choose which
scripts can run. The major problem with NoScript is that it is hard sometimes to distinguish which
scripts are necessary to display a web page correctly and which domains belong to unwanted third
parties. In the end, the user ends up authorizing all scripts on the page including the fingerprinting
ones.
Another approach is to use ad and tracker blockers which block scripts and domains based on

curated lists. When a page is loaded, the extension analyses its content. If it finds a script or a
domain that is present in one of its lists, it will block it. The most popular addons based on this
workflow are Adblock Plus [28], Ghostery [47], uBlock Origin [63] and Disconnect [45]. Merzdovnik
et al. report on the effectiveness of these third-party tracker blockers on a large scale [98]. One of
the main downside of this type of extensions is that it can take a lot of time before a new script is
detected and blocked, leaving the user vulnerable in the meantime.

Yu et al. proposed a concept in which users collectively identify unsafe data elements and report
them to a central server [130]. In their model, all data elements are considered unsafe when they
are first reported. Then, if enough users report the same value for a given script, the data elements
are considered to be safe as it cannot be used to uniquely identify a user or a group of users. Their
approach is now in Cliqz [37].

The EFF who was behind the original Panopticlick study [84] released an extension called Privacy
Badger in 2014 [55]. The tool is similar to the approach chosen by Yu et al. to identify unsafe scripts
but instead of relying on a global network of users, everything is computed locally by the extension.
The list of blocked scripts is somehow unique to each instance of Privacy Badger as it is being built
alongside the websites that the user visits. However, the main downside of Privacy Badger is that
the heuristic creation of blocking rules can be too aggressive and can lead to a high number of
unresponsive websites as reported by [98].
Sjösten et al. designed a solution called Latex Gloves that addresses the problem of extension

fingerprinting. To protect against probing attacks, their solution restricts the accessibility of WARs
through a whitelist system. When a request with the chrome-extension:// scheme is made, a browser
extension checks if the domain was whitelisted and if not, blocks the request. For revelation attacks,
Latex Gloves rewrites the manifest file of extensions to specify on which domain it is allowed to
run. This way, the browser would not reveal the presence of its extensions on a arbitrary page

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



Browser Fingerprinting: A survey 21

controlled by an attacker. One of the downside of this approach is that whitelists require the user
to maintain them and to allow each visited domain accordingly.
In terms of blocking protection, the last approach consists in disabling browser functions and

even entire APIs to prevent trackers from using them. This way, tracking scripts cannot collect
values that could help them differentiate one device from another. For example, an extension
like CanvasBlocker [35] on Firefox disables the use of the Canvas API for all websites. The Tor
Browser [62] blocks by default APIs like Canvas or WebGL and the Brave browser [34] provides a
built-in fingerprinting protection [46] against techniques like Canvas, WebGL, or AudioContext
fingerprinting.

4.4 Summary
All in all, there is simply no ultimate solution against browser fingerprinting. As this technique is
anchored in years of web evolution, it cannot be fixed with a simple patch. Changing the default
behavior of the browser to fight it requires finding the right balance between privacy and usability
and as we saw in this section, it can be very tricky. One misstep and a protective solution can be
rendered useless.

Datta et al. evaluated in depth 26 anti-fingerprinting tools [83] and came to the same conclusion:
not all defense solutions are equal and some of them are performing better than others. For 24 of
them, the protection they provide is apparently so marginal that it makes almost no difference not
using them. The authors also acknowledge that it is sometimes better to use one tool over another
just because it is more popular even if it provides less protection. The reason behind this is that it
is better to hide in a large pool of users that have the same extension than being picked out as one
of the few who uses this less popular one.

On the side of browser vendors, progress is being slowly made. Since its debut, the Brave browser
has had a built-in fingerprinting protection that blocks or disables several APIs [46]. In 2018,
Apple launched a version of Safari that specifically targets fingerprinting by removing differences
between users [31]. Mozilla has launched in 2018 the Fusion project that is bringing modifications
made in the Tor Browser directly in Firefox [57]. They also turned on by default in 2019 a feature
called Enhanced Tracking Protection that blocks fingerprinting scripts based on a list provided
by Disconnect [72]. Finally, Google who currently has the biggest market share with Chrome [70]
announced plans in August 2019 to “aggressively block fingerprinting” [71]. In the end, it is hard to
assess the impact of all these defenses on browser fingerprinting going forward but the frantic pace
at which the web keeps evolving will surely maintain the field alive and bring its load of surprises.

5 CHALLENGES IN BROWSER FINGERPRINTING
In this section, we look at the usage of browser fingerprinting for two distinct purposes: tracking
activities of the user and defending users from security threats. We them discuss questions and
challenges surrounding the browser fingerprinting domain.

5.1 Usage of browser fingerprinting
Though browser fingerprinting is often considered as a web tracking technology, in practice is
it used for a variety of purposes. We classify the usage of browser fingerprinting in two main
categories:

• Negative or destructive use An unknown third party would want to track a user without
her consent or to attack her device by identifying a known vulnerability.

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



22 Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine

• Positive or constructive use Users can be warned if their device is out of date by recom-
mending specific updates. The security of online services can also be reinforced by verifying
that a device is genuine and that it is known to the system.

5.1.1 Web Tracking. As browser fingerprinting can uniquely identify a device on the web, the
implications on privacy are important. By collecting browser fingerprints on several websites, a
third party can recognize a user and correlate his browsing activity within and across sessions.
Most importantly, the user has no control over the collection process as it is completely transparent
since the tracking scripts are silent and executed in the background. The Panopticlick study outlines
in more details how fingerprinting can a be a threat to web privacy [84].

• Fingerprints as Global Identifiers If a device has a fingerprint that is unique, it can be
identified on the web without the need of other identifiers like a cookie or an IP address.
Peter Eckersley add in his study that it is “akin to a cookie that cannot be deleted”. Users
funneling their network packets through a VPN (Virtual Private Network) are particularly
vulnerable to browser fingerprinting as the VPN will only mask the IP address but it will not
change the browser’s information.

• Fingerprint + IP address as Cookie Regenerators Coupled with a fixed IP address, a
browser fingerprint can be used to regenerate deleted cookies. Researchers have already
observed in the wild that any browser storage mechanisms like Flash local storage [117],
HTML5 Web storage [78] or IndexedDB databases [73], can be used to “respawn” HTTP
cookies.

• Fingerprint + IP address in the Absence of Cookies In the absence of cookies, browser
fingerprinting can be used to unmask different machines hiding behind the same IP address.

5.1.2 Identifying device vulnerabilities. A browser fingerprint is not just a simple collection of
device-specific information. It truly reflects the actual set of components that are running on a
device. By analysing its content, attackers can identify potential security vulnerabilities by cross-
referencing the list of installed components with a database like CVE (Common Vulnerabilities and
Exposures [39]). They can then design the perfect payload to target a specific device knowing its
vulnerabilities in advance. For example, through the navigator.plugins property, one can know if a
device is running an outdated version of the Flash plugin. At the time of writing, the CVE database
reports 1,045 Flash vulnerabilities and more than 84% are labelled as critical, including the most
recent ones [29]. If the Flash player is not up to date, users open themselves to serious security
risks as any attacker on the web could execute malicious code remotely on their device.
Launching a targeted attack with the help of browser fingerprinting is not new and has been

observed in the wild. Malwarebytes and GeoEdge have documented extensively with the “Oper-
ation fingerprint” how malicious advertising campaigns use fingerprinting to deliver malwares
to vulnerable devices [19]. Their process is very straightforward. They hide fingerprinting code
directly into the JavaScript of fake advertisers and they look from there if the device is vulnerable
or not. If it is, the device will be presented with “an ad laced with malicious code that ultimately
redirects to an exploit kit”. If it is not, the ad will be “benign”. To illustrate their findings, they detail
several types of malvertising campaigns like the DoubleClick or the musical4 campaigns.

5.1.3 Patching vulnerable systems. Directly following the previous section, browser vulnerabilities
could be identified with the aim of patching them. In 2015, Duo Security reported that 46% of
corporate PCs ran outdated versions of browsers, Flash and Java [11]. With a simple security scan,
system administrators who handle thousands of different configurations on a network could easily
identify devices with outdated components and they could deploy fixes and updates really quickly.

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



Browser Fingerprinting: A survey 23

5.1.4 Bot and fraud prevention. Another use of browser fingerprinting is to improve security on
the web by verifying the actual content of a fingerprint. As there are many dependencies between
collected attributes, it is possible to check if a fingerprint has been tampered with or if it matches
the device it is supposedly belonging to (see Section 4.1 for details on the inconsistency problem).
ThreatMetrix, a security company that specializes in the verification of online transactions,

announced in 2010 the adoption of browser fingerprinting techniques to prevent online fraud [61].
They wrote that fraudsters change their IP address, delete cookies and botnet scripts randomize
device attributes. Moreover, relying exclusively on cookies is no longer adequate to verify an online
transaction. Other security companies like Distil Networks [60], MaxMind [44], PerimeterX [32],
IPQualityScore [43], ShieldSquare [33] or Sift Science [42] also utilize browser fingerprinting to
detect bots and unusual activity. In that landscape, companies are turning to browser fingerprinting
to be competitive in this continual arms race against fraudsters.
On the academic side, the literature on fraud detection is much thinner with only a single

publication addressing this problem. Researchers at Google designed a solution called Picasso based
on canvas fingerprinting to filter inorganic traffic [81]. By using specific graphical primitives from
the canvas API, they are able to successfully detect the browser and OS family of a device and see if
there is a mismatch between the exhibited fingerprint and the actual device running the code. For
example, they can distinguish between traffic sent by an authentic iPhone running Safari on iOS
from an emulator or desktop client spoofing the same configuration. They add that the applications
are numerous including locking non-mobile clients from application marketplaces, detecting rogue
login attempts and identifying emulated clients. Their study does not give information on the
deployment of Picasso in a current Google solution but a talk at Black Hat Asia 2016 hints at its
integration into Google’s reCAPTCHA technology [114].

5.1.5 Augmented authentication. At a time where passwords are the go-to solution for authenti-
cation on the web, browser fingerprinting can provide a much needed addition to reinforce the
security of online accounts. By verifying the fingerprint of a device at login time, a system can
easily block unauthorized access from new and unknown devices. Alaca et al. studied extensively
the use of device fingerprinting for web authentication [77]. They classify in total 29 different
attributes from browser information to the network stack according to criteria like repeatability,
low resource use or spoofing resistance. One important aspect considered in their study is the
notion of stability. As a fingerprint is the direct reflection of what is installed on a device, a browser
fingerprint constantly changes. It is then up to the login system to decide if the differences between
two fingerprints are acceptable or not. For example, does a change of browser version in the
user-agent come from a legitimate update of the device or from a different device altogether? If
ten fonts are removed, did the user uninstall a particular software or does it come from a different
device that does not belong to the user? These questions have no easy answer and each collected
attribute has its own behavior depending on the system being used or the type of the device.
Spooren et al. looked at mobile devices and noticed that mobile fingerprints are predictable

contrarily to desktop fingerprints [118]. The same authors also investigated the use of battery
information for mobile devices in a multi-factor authentication scheme [119]. By using binary
classifiers to classify battery draining and charging behaviors, they confirm that battery charge
measurements can be used to contribute to an active authentication system.

In 2019, two different studies reported on the use of canvas fingerprinting to augment authenti-
cation with a challenge-response scheme. After the user connects with a password, the browser
is asked to render a canvas image that will then be verified by the server. While they use a very
similar protocol, the inner-workings of the two systems are very different. The first by Rochet
et al. uses deep learning to create a personalized model for each device [107]. After a training

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



24 Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine

phase with 2,000 canvas images, features are extracted to build a binary classification model for
the user. To accept or deny connection, the browser must score above a specific threshold and the
authors discuss different strategies in the paper for setting that particular threshold. The second by
Laperdrix et al. adopts a different approach [93]. To verify the current connection, the browser must
be able to replicate the exact same canvas rendering that was observed in the previous connection.
If the current image matches with pixel-perfect precision the previous one, the device is allowed to
continue. If not, it is blocked and the user must authenticate through another means. In the end, the
authors of both papers state clearly that their solution cannot be the only means of authentication
as it should be used in a multi-factor authentication scheme. They both describe the advantages
and limits of their solution and they highlight how the level of security can be changed depending
on the strategy adopted with each tool.

Finally, some companies include in their portfolio fingerprinting solutions to augment authenti-
cation. SecurAuth is a provider of an adaptive access control solution. As part of their multi-factor
authentication process, they include an heuristic-based authentication system through device
fingerprinting [41]. Another company called Iovation has a solution named ClearKey [36] that inte-
grates the collection of device information as part of their multi-factor authentication framework.
They provide their own approach to deal with fingerprint changes with fuzzy logic algorithms [40].

All in all, the amount of research done to use browser fingerprinting positively is extremely thin
and we hope that this area will see major advancements in the future.

5.2 Current challenges
We now discuss the current challenges in browser fingerprinting in both research and industry.

5.2.1 Arms-race between new fingerprinting methods and protection mechanisms. Browser finger-
printing should be placed in the larger debate about online tracking. If third-parties feel the need
to resort to such kinds of techniques to bypass current protection mechanisms, the current ad
ecosystem is not quite right. On one side, ad blockers are seeing a surge in popularity [26] and
companies like Mozilla [56] or Brave [46] are integrating a native fingerprinting protection directly
in their browsers. On the other side, major web actors are struggling to decide what is the right
path going forward as illustrated by the divide created by two new ad initiatives. One called
Coalition for Better Ads [38] is supported by actors like Google, Facebook, Microsoft or Criteo.
The other one called Acceptable Ads initiated by Eyeo GmbH, developer of the famous Adblock
Plus extension, is led by a coalition of digital rights organizations, advertising agencies, content
creators and academics [27]. In the end, there is no clear direction of where the industry is going.
Browser fingerprinting is caught in the crossfire of this ongoing debate as developers are already
adding defensive solutions in anticipation of what could be and the consequence is that it affects
all companies from the biggest ones to the smallest.

Since browser fingerprinting can pose a serious threat to privacy by bypassing current protection
mechanisms, should researchers study it? We believe the answer to this question has two sides.
Indeed, researching browser fingerprinting is needed because we want to inform users, developers,
policy makers and lawyers about it so that they can make informed decision going forward. By
knowing its underlying mechanisms, we can understand what is possible with it and act accordingly.
We can also design appropriate defenses and protect ourselves against it. For example, the web
crawl performed by Englehardt et al. [85] discovered the existence of AudioContext fingerprinting
in the wild and the research into the Battery Status API [105] revealed the threat that was hidden
in our browsers for several years. Thanks to these studies, fingerprinting defenses made a step
forward to improve online privacy for users. However, on the other side, we do not want to promote
aggressive use of this technology and make it more efficient. Research in offensive security is

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



Browser Fingerprinting: A survey 25

encouraged today so that an attack is known to the public and not kept in the hands of a few
adversaries. The same reasoning applies here for browser fingerprinting where studying it benefits
users more than it benefits attackers.

5.2.2 How to effectively measure uniqueness of fingerprints? An important challenge in browser
fingerprinting is to understand exactly in which circumstances fingerprinting is effective in uniquely
recognizing website visitors. While Panopticlick [84] and AmIUnique [96] showed a high rate of
fingerprint uniqueness, the Hiding in the Crowd study [89] highlighted the potential demographic
issues in browser fingerprinting research. Depending on the targeted audience and the type of
users who connects to a website, the capacity to uniquely identify users with only their fingerprint
can greatly vary. Moreover, only one study has partially studied the correlation between fingerprint
uniqueness and the size of a dataset in case of fingerprinting via browser extensions [90].
Predicting uniqueness for large datasets can be a successful process as reported by [75] but

it remains to be seen if such an approach can work for fingerprints, especially because of their
constantly changing nature. This question is also impacted by the quality of current fingerprint
datasets. As it is complicated for researchers to collect data on a large scale, their experiments
can run for several months up to more than a year. In that time frame, browsers are updated and
some APIs may undergo some key changes. Comparing two fingerprints that were collected several
months apart does not make sense for identification or tracking. Additional research in this area is
definitely needed as the reality of fingerprint tracking may be much more nuanced than what is
currently reported.

5.2.3 How to detect fingerprinting and measure its adoption? The next challenge is to measure
precisely adoption of browser fingerprinting online. In order to quantify the number of websites
that are currently using fingerprinting scripts on the Internet, one needs the means to identify them.
However, even if the collection process in a browser is straightforward, the reality is in fact much
more complex. If a script accesses the language header and the platform, it could be for legitimate
purposes to tailor the current web page to the user’s device and propose the right version of a
software to a user. But it could also be the first-step towards building a complete browser fingerprint.
If a script makes hundreds of calls to the WebGL API, it may be rendering a 3D animation in the
browser. But it may also test complex animations to differentiate this device from others. These
simple examples illustrate that the line between a benign script and a fingerprinting one is far from
being clearly defined. When crawling the web, researchers are facing a lot of challenges to classify
scripts correctly as the goal of two scripts can vastly vary even if they present very similar content.
Dynamic information flow analysis is required here to precisely identify fingerprinting scripts. We
discuss this challenge in more details in Section 3.4.

5.2.4 A constant need to monitor for security and privacy issues of new browser APIs. One of the
main challenges surrounding browser fingerprinting is that it is hard to assess precisely what is
possible with it. As its mechanisms are entirely defined by current web browser technologies, its
exact contours are constantly changing. Each new browser version that adds, modifies or even
removes an API has a direct impact on the domain. For example, the introduction of the Canvas API
brought new capabilities to the domain while the end of NPAPI plugins removed a strong source of
information. The browser fingerprinting of the past is already different from the ones we see today
and will surely be different from the one we will encounter in the next few years. Browser vendors
and standard organizations are continually shaping the future of the domain as they discuss about
what is next for the web and what will run in tomorrow’s browsers. One certainty is that they will
be very careful going forward when designing new APIs and releasing them to the public. The

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



26 Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine

Battery Status API showed that privacy cannot be an afterthought and that extra help from the
industry and the research worlds is needed to fully asses any potential lurking threats.

5.2.5 How to detect violations of data protection laws? As a whole, browser fingerprinting can
be particularly dangerous to privacy as browsers do not provide any controls over it. In Europe,
the European Data Protection Board (EDPB)1, which seeks to harmonize the application of data
protection rules throughout the EU, published back in 2014 an opinion on device fingerprinting [10]
and in 2012 an opinion on exemptions from user consent [9]. According to these two opinions,
what determines user consent in case of browser fingerprinting is the purpose of usage. For example,
fingerprinting can be used without consent for user authentication [9, Section 3.2], that corresponds
to the usage we described in Section 5.1.5. Consent is also not required for “increasing the security of
the service that has been explicitly requested by the user” [9, Section 3.3] (see our Sections 5.1.3 and
5.1.4 for more details). It is also clear that browser fingerprinting used for tracking (see Section 5.1.1)
or profiling (Section 5.1.2) requires user consent. Interestingly, our intuitive classification of negative
and positive use of fingerprinting set in Section 5.1 is closely related to the requirements of user
consent described by the European Data Protection Board (EDPB).

Next to the General Data Protection Regulation (GDPR) [21] that came in force on May 25, 2018,
another law that specifically regulates web tracking in the EU is currently being updated to ePrivacy
Regulation [24, 25]. The latest amendments to the ePrivacy Regulation draft [25] requires user’s
consent for fingerprinting “and for specific and transparent purposes”, but with some exceptions.
For example, it allows websites to check browser’s configuration for any needed security updates
without user’s consent. It also allows first-party servers to use fingerprinting (and any stateful
tracking) for web audience measurement but requires that the user still maintains the right to object,
and that no personal data is made accessible to any third party. However, EDBP latest report [23] is
very specific: the analytics technology used on a website should prevent re-identification, and the
collected data cannot be linked in any way to other identifiable data. Under these requirements, it
is questionable whether fingerprinting can be used for audience measurement at all without user’s
consent as it is possible to re-identify users based on their fingerprints.
In the end, regulators are already in an uphill battle to verify if companies are complying with

these European rules as the necessary controls cannot easily be performed online. For fingerprinting,
the detection is very complex as the browser has no mechanism dedicated to detecting it precisely.
As a fingerprint is an extremely versatile object, it is hard to reason about it and to verify that a
website is partaking in fingerprinting activities or not. Moreover, it is even a greater challenge
from a legal perspective to obtain the purpose of the usage of browser fingerprinting in order to
establish whether user consent is needed. Regulators will need to find new ways to cooperate with
companies to make sure that the privacy of users is respected.

6 CONCLUSION
The development of the Internet along with progress in mobile technology brought a booming
diversity of devices at the turn of the century. This diversity gave birth to browser fingerprinting, a
simple technique that consists in collecting information about the configuration and the composition
of a user’s device. Its fascinating aspect is that it is at a crossroads between companies, academic
research groups, law makers and privacy advocates. As it got out of the research lab, it has a
concrete impact on the web as it is now used in real-world scenarios. For business companies,
browser fingerprinting represents an alternative to current methods of tracking and identification
at a time where the ad landscape is undergoing tremendous changes with the rise of ad blockers.
For research groups, browser fingerprinting brought unexpected questions about the privacy status
1European Data Protection Board (EDPB) is used to be called Article 29 Data Protection Working Party before 2018.

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.



Browser Fingerprinting: A survey 27

of current and future web APIs. Especially, the work done by researchers on the Battery API
exposed the possible privacy problems that could be hiding in current browsers. For law makers,
browser fingerprinting represents an additional tracking mechanism that must be regulated so that
the control is given back in users’ hands. For journalists, activists, businesses or members of the
military that rely on the confidentiality and privacy of their communications, they must now take
this technique into account to protect their activities. All in all, browser fingerprinting is still a
fairly new technique. Yet, it already had a lot of impact in its short time of existence. Our effort to
systematize existing knowledge proves there are still many open challenges and problems to be
solved as researchers and developers are coming to grasp with its intricacies. We hope that our
paper will provide the necessary basis for researchers to analyze even further the inner-workings
of fingerprinting as novel solutions based on it have the potential to provide real-world benefits to
millions by improving online security.

REFERENCES
[1] 1995. RFC 1866 - Hypertext Markup Language - 2.0. https://tools.ietf .org/html/rfc1866.
[2] 1996. RFC 1945 - Hypertext Transfer Protocol – HTTP/1.0. https://tools.ietf .org/html/rfc1945.
[3] 1997. ECMA-262, 1st edition, June 1997. https://www.ecma-international.org/publications/files/ECMA-ST-

ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf.
[4] 2008. History of the browser user-agent string. http://webaim.org/blog/user-agent-string-history/.
[5] 2010. History of the user-agent string. https://www.nczonline.net/blog/2010/01/12/history-of-the-user-agent-

string/.
[6] 2011. Battery Status Event Specification - W3C Working Draft 26 April 2011. https://www.w3.org/TR/2011/WD-

battery-status-20110426/.
[7] 2011. Informative Historical Notes - List of known CSS prefixes by W3C. https:

//www.w3.org/TR/CSS21/syndata.html#vendor-keyword-history.
[8] 2012. Battery Status API - W3C Candidate Recommendation 08 May 2012. https://www.w3.org/TR/2012/CR-

battery-status-20120508/.
[9] 2012. WP29 Opinion 04/2012 on the Cookie Consent Exemption - ARTICLE 29 DATA PROTECTION WORKING

PARTY. https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2012/wp194en.pdf.
[10] 2014. Opinion 9/2014 on the application of Directive 2002/58/EC to device fingerprinting - ARTICLE 29 DATA

PROTECTION WORKING PARTY. http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-
recommendation/files/2014/wp224en.pdf.

[11] 2015. Detecting Out of Date and Vulnerable Flash Versions on Your Network - Duo Security. https:
//duo.com/blog/detecting-out-of-date-and-vulnerable-flash-versions-on-your-network.

[12] 2015. HTML Canvas 2D Context - W3C Recommendation 19 November 2015. https://www.w3.org/TR/2dcontext/.
[13] 2015. NPAPI Plugins in Firefox. https://blog.mozilla.org/futurereleases/2015/10/08/npapi-plugins-in-firefox/.
[14] 2016. Battery Status API - W3C Candidate Recommendation 07 July 2016. https://www.w3.org/TR/battery-status/.
[15] 2016. Beware Evil APIs. https://browser.yandex.com/blog/beware-evil-apis.
[16] 2016. Bug 1313580 - Remove web content access to Battery API. https://bugzilla.mozilla.org/showbug.cgi?id=

1313580.
[17] 2016. Bug 164213 - Remove Battery Status API from the tree. https://bugs.webkit.org/showbug.cgi?id=164213.
[18] 2016. Geolocation API. https://www.w3.org/TR/geolocation-API/.
[19] 2016. Operation Fingerprint - A look into several Angler Exploit Kit malvertising campaigns. https:

//malwarebytes.app.box.com/v/operation-fingerprint.
[20] 2016. RandomAgent Spoofer - Firefox extension. https://addons.mozilla.org/firefox/addon/random-agent-spoofer/.
[21] 2016. Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of

natural persons with regard to the processing of personal data and on the free movement of such data, and repealing
Directive 95/46/EC (General Data Protection Regulation) (Text with EEA relevance). https://eur-lex.europa.eu/legal-
content/EN/TXT/?uri=celex:32016R0679.

[22] 2017. Canvas Defender - Firefox add-on that adds unique and persistent noise to a canvas element. https:
//addons.mozilla.org/en-US/firefox/addon/no-canvas-fingerprinting/.

[23] 2017. Opinion 01/2017 on the Proposed Regulation for the ePrivacy Regulation (2002/58/EC). http:
//ec.europa.eu/newsroom/document.cfm?docid=44103.

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.

https://tools.ietf.org/html/rfc1866
https://tools.ietf.org/html/rfc1945
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
https://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%201st%20edition,%20June%201997.pdf
http://webaim.org/blog/user-agent-string-history/
https://www.nczonline.net/blog/2010/01/12/history-of-the-user-agent-string/
https://www.nczonline.net/blog/2010/01/12/history-of-the-user-agent-string/
https://www.w3.org/TR/2011/WD-battery-status-20110426/
https://www.w3.org/TR/2011/WD-battery-status-20110426/
https://www.w3.org/TR/CSS21/syndata.html#vendor-keyword-history
https://www.w3.org/TR/CSS21/syndata.html#vendor-keyword-history
https://www.w3.org/TR/2012/CR-battery-status-20120508/
https://www.w3.org/TR/2012/CR-battery-status-20120508/
https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2012/wp194_en.pdf
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2014/wp224_en.pdf
http://ec.europa.eu/justice/data-protection/article-29/documentation/opinion-recommendation/files/2014/wp224_en.pdf
https://duo.com/blog/detecting-out-of-date-and-vulnerable-flash-versions-on-your-network
https://duo.com/blog/detecting-out-of-date-and-vulnerable-flash-versions-on-your-network
https://www.w3.org/TR/2dcontext/
https://blog.mozilla.org/futurereleases/2015/10/08/npapi-plugins-in-firefox/
https://www.w3.org/TR/battery-status/
https://browser.yandex.com/blog/beware-evil-apis
https://bugzilla.mozilla.org/show_bug.cgi?id=1313580
https://bugzilla.mozilla.org/show_bug.cgi?id=1313580
https://bugs.webkit.org/show_bug.cgi?id=164213
https://www.w3.org/TR/geolocation-API/
https://malwarebytes.app.box.com/v/operation-fingerprint
https://malwarebytes.app.box.com/v/operation-fingerprint
https://addons.mozilla.org/firefox/addon/random-agent-spoofer/
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32016R0679
https://addons.mozilla.org/en-US/firefox/addon/no-canvas-fingerprinting/
https://addons.mozilla.org/en-US/firefox/addon/no-canvas-fingerprinting/
http://ec.europa.eu/newsroom/document.cfm?doc_id=44103
http://ec.europa.eu/newsroom/document.cfm?doc_id=44103


28 Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine

[24] 2017. Proposal for a Regulation of the European Parliament and of the Council, concerning the re-
spect for private life and the protection of personal data in electronic communications and repealing Di-
rective 2002/58/EC (Regulation on Privacy and Electronic Communications), COM(2017) 10 final. http:
//ec.europa.eu/newsroom/dae/document.cfm?docid=41241.

[25] 2017. Report on the proposal for a regulation of the European Parliament and of the Council concerning the respect
for private life and the protection of personal data in electronic communications and repealing Directive 2002/58/EC
(Regulation on Privacy and Electronic Communications) (COM(2017)0010 ? C8-0009/2017 ? 2017/0003(COD)), 23 Oc-
tober 2017. http://www.europarl.europa.eu/sides/getDoc.dotype=REPORT&reference=A8-2017-0324&language=
EN#top.

[26] 2017. The state of the blocked web - 2017 Global Adblock Report by PageFair. https:
//pagefair.com/downloads/2017/01/PageFair-2017-Adblock-Report.pdf.

[27] 2018. Acceptable Ads initiative. https://acceptableads.com/.
[28] 2018. Adblock Plus Official website. https://adblockplus.org/.
[29] 2018. Adobe Flash Player: List of security vulnerabilities. https://www.cvedetails.com/vulnerability-list/vendorid-

53/productid-6761/Adobe-Flash-Player.html.
[30] 2018. Anonymous browser fingerprint - fingerprintjs. https://github.com/Valve/fingerprintjs.
[31] 2018. Apple Declares War on ’Browser Fingerprinting,’ the Sneaky Tactic That Tracks You in Incognito Mode -

Gizmodo. https://gizmodo.com/apple-declares-war-on-browser-fingerprinting-the-sneak-1826549108.
[32] 2018. Bot Detection and Botnet Protection - PerimeterX Bot Defender Web. https:

//www.perimeterx.com/products/bot-defender/.
[33] 2018. Bot Prevention Technology - ShieldSquare. https://www.shieldsquare.com/bot-prevention-technology/.
[34] 2018. Brave Official website - Browse faster and safer with Brave. https://brave.com/.
[35] 2018. CanvasBlocker - Firefox extension to block the Canvas API. https:

//addons.mozilla.org/fr/firefox/addon/canvasblocker/.
[36] 2018. ClearKey - iovation. https://www.iovation.com/clearkey.
[37] 2018. CLIQZ Official website - Secure browser with built-in quick search. https://cliqz.com/en/.
[38] 2018. Coalition for Better Ads initiative. https://www.betterads.org/.
[39] 2018. Common Vulnerabilities and Exposures - The Standard for Information Security Vulnerability Names. https:

//cve.mitre.org/.
[40] 2018. Customer Authentication Datasheet - iovation. https://www.iovation.com/resources/datasheets/clearkey.
[41] 2018. Device / Browser Fingerprinting - Heuristic-based Authentication - SecurAuth. https:

//docs.secureauth.com/pages/viewpage.action?pageId=40045162.
[42] 2018. Device Fingerprinting and Fraud Detection Software - Sift Science. https://siftscience.com/device-

fingerprinting.
[43] 2018. Device fingerprinting, Device signature fraud detection, Fraud prevention - IPQualityScore. https:

//www.ipqualityscore.com/device-fingerprinting.
[44] 2018. Device Tracking Add-on for minFraud Services - MaxMind. https://dev.maxmind.com/minfraud/device/.
[45] 2018. Disconnect Official website. https://disconnect.me/.
[46] 2018. Fingerprinting Protection Mode - Brave browser. https://github.com/brave/browser-

laptop/wiki/Fingerprinting-Protection-Mode.
[47] 2018. Ghostery Official website. https://www.ghostery.com/.
[48] 2018. JavaScript Obfuscator. http://www.danstools.com/javascript-obfuscate/index.php.
[49] 2018. jQuery Official Website. https://jquery.com/.
[50] 2018. Mozilla CSS Extensions. https://developer.mozilla.org/en-US/docs/Web/CSS/MozillaExtensions.
[51] 2018. Nmap: the Network Mapper - OS Detection. https://nmap.org/book/man-os-detection.html.
[52] 2018. NoScript Official website. https://noscript.net/.
[53] 2018. OpenWPM - A web privacy measurement framework. https://github.com/citp/OpenWPM.
[54] 2018. Popular extensions - Add-ons for Firefox. https://addons.mozilla.org/firefox/search/?sort=users&type=

extension.
[55] 2018. Privacy Badger Official website - Electronic Frontier Foundation. https://www.eff .org/privacybadger.
[56] 2018. Security/Fingerprinting - Mozilla wiki. https://wiki.mozilla.org/Security/Fingerprinting.
[57] 2018. Security/Fusion - Mozilla wiki. https://wiki.mozilla.org/Security/Fusion.
[58] 2018. Security/Tor Uplift - Mozilla wiki. https://wiki.mozilla.org/Security/TorUplift.
[59] 2018. The Design and Implementation of the Tor Browser [DRAFT] - Tor Project Official website. https:

//www.torproject.org/projects/torbrowser/design/.
[60] 2018. The Evolution of Hi-Def Fingerprinting in Bot Mitigation - Distil Networks. https:

//resources.distilnetworks.com/all-blog-posts/device-fingerprinting-solution-bot-mitigation.

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.

http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=41241
http://ec.europa.eu/newsroom/dae/document.cfm?doc_id=41241
http://www.europarl.europa.eu/sides/getDoc.dotype=REPORT&reference=A8-2017-0324&language=EN#top
http://www.europarl.europa.eu/sides/getDoc.dotype=REPORT&reference=A8-2017-0324&language=EN#top
https://pagefair.com/downloads/2017/01/PageFair-2017-Adblock-Report.pdf
https://pagefair.com/downloads/2017/01/PageFair-2017-Adblock-Report.pdf
https://acceptableads.com/
https://adblockplus.org/
https://www.cvedetails.com/vulnerability-list/vendor_id-53/product_id-6761/Adobe-Flash-Player.html
https://www.cvedetails.com/vulnerability-list/vendor_id-53/product_id-6761/Adobe-Flash-Player.html
https://github.com/Valve/fingerprintjs
https://gizmodo.com/apple-declares-war-on-browser-fingerprinting-the-sneak-1826549108
https://www.perimeterx.com/products/bot-defender/
https://www.perimeterx.com/products/bot-defender/
https://www.shieldsquare.com/bot-prevention-technology/
https://brave.com/
https://addons.mozilla.org/fr/firefox/addon/canvasblocker/
https://addons.mozilla.org/fr/firefox/addon/canvasblocker/
https://www.iovation.com/clearkey
https://cliqz.com/en/
https://www.betterads.org/
https://cve.mitre.org/
https://cve.mitre.org/
https://www.iovation.com/resources/datasheets/clearkey
https://docs.secureauth.com/pages/viewpage.action?pageId=40045162
https://docs.secureauth.com/pages/viewpage.action?pageId=40045162
https://siftscience.com/device-fingerprinting
https://siftscience.com/device-fingerprinting
https://www.ipqualityscore.com/device-fingerprinting
https://www.ipqualityscore.com/device-fingerprinting
https://dev.maxmind.com/minfraud/device/
https://disconnect.me/
https://github.com/brave/browser-laptop/wiki/Fingerprinting-Protection-Mode
https://github.com/brave/browser-laptop/wiki/Fingerprinting-Protection-Mode
https://www.ghostery.com/
http://www.danstools.com/javascript-obfuscate/index.php
https://jquery.com/
https://developer.mozilla.org/en-US/docs/Web/CSS/Mozilla_Extensions
https://nmap.org/book/man-os-detection.html
https://noscript.net/
https://github.com/citp/OpenWPM
https://addons.mozilla.org/firefox/search/?sort=users&type=extension
https://addons.mozilla.org/firefox/search/?sort=users&type=extension
https://www.eff.org/privacybadger
https://wiki.mozilla.org/Security/Fingerprinting
https://wiki.mozilla.org/Security/Fusion
https://wiki.mozilla.org/Security/Tor_Uplift
https://www.torproject.org/projects/torbrowser/design/
https://www.torproject.org/projects/torbrowser/design/
https://resources.distilnetworks.com/all-blog-posts/device-fingerprinting-solution-bot-mitigation
https://resources.distilnetworks.com/all-blog-posts/device-fingerprinting-solution-bot-mitigation


Browser Fingerprinting: A survey 29

[61] 2018. ThreatMetrix Announces Cookieless Device Identification to Prevent Online Fraud While Protecting Customer
Privacy - ThreatMetrix. https://www.threatmetrix.com/press-releases/threatmetrix-announces-cookieless-device-
identification-to-prevent-online-fraud-while-protecting-customer-privacy/.

[62] 2018. Tor Browser - Tor Project Official website. https://www.torproject.org/projects/torbrowser.html.
[63] 2018. uBlock Origin - An efficient blocker for Chromium and Firefox. Fast and lean. https:

//github.com/gorhill/uBlock.
[64] 2018. Web Audio API. https://www.w3.org/TR/webaudio/.
[65] 2018. Web Payments API. https://www.w3.org/TR/payment-request/.
[66] 2018. WebAssembly API. http://webassembly.org/.
[67] 2018. WebGL - OpenGL ES for the Web. https://www.khronos.org/webgl/.
[68] 2018. WebRTC API. https://www.w3.org/TR/webrtc/.
[69] 2018. WebXR Device API. https://immersive-web.github.io/webxr/spec/latest/.
[70] 2019. Browser Market Share Worldwide - StatCounter. https://gs.statcounter.com/browser-market-share.
[71] 2019. Building a more private web - Google. https://www.blog.google/products/chrome/building-a-more-private-

web/.
[72] 2019. Firefox Now Available with Enhanced Tracking Protection by Default Plus Updates to Facebook Container,

Firefox Monitor and Lockwise - Mozilla. https://blog.mozilla.org/blog/2019/06/04/firefox-now-available-with-
enhanced-tracking-protection-by-default/.

[73] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind Narayanan, and Claudia Diaz. 2014.
The Web Never Forgets: Persistent Tracking Mechanisms in the Wild. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’14). ACM, New York, NY, USA, 674–689. https:
//doi.org/10.1145/2660267.2660347

[74] Gunes Acar, Marc Juarez, Nick Nikiforakis, Claudia Diaz, Seda Gürses, Frank Piessens, and Bart Preneel. 2013.
FPDetective: dusting the web for fingerprinters. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security (CCS ’13). ACM, New York, NY, USA, 1129–1140. https://doi.org/10.1145/2508859.2516674

[75] Jagdish Prasad Achara, Gergely Ács, and Claude Castelluccia. 2015. On the Unicity of Smartphone Applications.
CoRR abs/1507.07851 (2015). arXiv:1507.07851 http://arxiv.org/abs/1507.07851

[76] Nasser Mohammed Al-Fannah, Wanpeng Li, and Chris J. Mitchell. 2018. Beyond Cookie Monster Amnesia: Real
World Persistent Online Tracking. In Information Security - 21st International Conference, ISC 2018, Guildford, UK,
September 9-12, 2018, Proceedings. 481–501. https://doi.org/10.1007/978-3-319-99136-826

[77] Furkan Alaca and P. C. van Oorschot. 2016. Device Fingerprinting for Augmenting Web Authentication: Classification
and Analysis of Methods. In Proceedings of the 32Nd Annual Conference on Computer Security Applications (ACSAC
’16). ACM, New York, NY, USA, 289–301. https://doi.org/10.1145/2991079.2991091

[78] Mika D Ayenson, Dietrich James Wambach, Ashkan Soltani, Nathan Good, and Chris Jay Hoofnagle. 2011. Flash
cookies and privacy II: Now with HTML5 and ETag respawning. (2011).

[79] Peter Baumann, Stefan Katzenbeisser, Martin Stopczynski, and Erik Tews. 2016. Disguised Chromium Browser:
Robust Browser, Flash and Canvas Fingerprinting Protection. In Proceedings of the 2016 ACM on Workshop on Privacy
in the Electronic Society (WPES ’16). ACM, New York, NY, USA, 37–46. https://doi.org/10.1145/2994620.2994621

[80] Károly Boda, Ádám Máté Földes, Gábor György Gulyás, and Sándor Imre. 2012. User Tracking on the Web via
Cross-Browser Fingerprinting. Lecture Notes in Computer Science, Vol. 7161. Springer Berlin Heidelberg, Berlin,
Heidelberg, 31–46. https://doi.org/10.1007/978-3-642-29615-44

[81] Elie Bursztein, Artem Malyshev, Tadek Pietraszek, and Kurt Thomas. 2016. Picasso: Lightweight Device Class
Fingerprinting for Web Clients. In Proceedings of the 6th Workshop on Security and Privacy in Smartphones and Mobile
Devices (SPSM ’16). ACM, New York, NY, USA, 93–102. https://doi.org/10.1145/2994459.2994467

[82] Yinzhi Cao, Song Li, and Erik Wijmans. 2017. (Cross-)Browser Fingerprinting via OS and Hardware Level Features.
In 24nd Annual Network and Distributed System Security Symposium, NDSS.

[83] Amit Datta, Jianan Lu, and Michael Carl Tschantz. 2019. Evaluating Anti-Fingerprinting Privacy Enhancing
Technologies. In The World Wide Web Conference (WWW ’19). ACM, New York, NY, USA, 351–362. https:
//doi.org/10.1145/3308558.3313703

[84] Peter Eckersley. 2010. How Unique is YourWeb Browser?. In Proceedings of the 10th International Conference on Privacy
Enhancing Technologies (PETS’10). Springer-Verlag, Berlin, Heidelberg, 1–18. http://dl.acm.org/citation.cfm?id=
1881151.1881152

[85] Steven Englehardt and Arvind Narayanan. 2016. Online Tracking: A 1-million-site Measurement and Analysis. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS ’16). ACM, New
York, NY, USA, 1388–1401. https://doi.org/10.1145/2976749.2978313

[86] Amin FaizKhademi, Mohammad Zulkernine, and Komminist Weldemariam. 2015. FPGuard: Detection and Prevention
of Browser Fingerprinting. In Data and Applications Security and Privacy XXIX. Lecture Notes in Computer Science,

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.

https://www.threatmetrix.com/press-releases/threatmetrix-announces-cookieless-device-identification-to-prevent-online-fraud-while-protecting-customer-privacy/
https://www.threatmetrix.com/press-releases/threatmetrix-announces-cookieless-device-identification-to-prevent-online-fraud-while-protecting-customer-privacy/
https://www.torproject.org/projects/torbrowser.html
https://github.com/gorhill/uBlock
https://github.com/gorhill/uBlock
https://www.w3.org/TR/webaudio/
https://www.w3.org/TR/payment-request/
http://webassembly.org/
https://www.khronos.org/webgl/
https://www.w3.org/TR/webrtc/
https://immersive-web.github.io/webxr/spec/latest/
https://gs.statcounter.com/browser-market-share
https://www.blog.google/products/chrome/building-a-more-private-web/
https://www.blog.google/products/chrome/building-a-more-private-web/
https://blog.mozilla.org/blog/2019/06/04/firefox-now-available-with-enhanced-tracking-protection-by-default/
https://blog.mozilla.org/blog/2019/06/04/firefox-now-available-with-enhanced-tracking-protection-by-default/
https://doi.org/10.1145/2660267.2660347
https://doi.org/10.1145/2660267.2660347
https://doi.org/10.1145/2508859.2516674
http://arxiv.org/abs/1507.07851
http://arxiv.org/abs/1507.07851
https://doi.org/10.1007/978-3-319-99136-8_26
https://doi.org/10.1145/2991079.2991091
https://doi.org/10.1145/2994620.2994621
https://doi.org/10.1007/978-3-642-29615-4_4
https://doi.org/10.1145/2994459.2994467
https://doi.org/10.1145/3308558.3313703
https://doi.org/10.1145/3308558.3313703
http://dl.acm.org/citation.cfm?id=1881151.1881152
http://dl.acm.org/citation.cfm?id=1881151.1881152
https://doi.org/10.1145/2976749.2978313


30 Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine

Vol. 9149. Springer International Publishing, 293–308. https://doi.org/10.1007/978-3-319-20810-721
[87] David Fifield and Serge Egelman. 2015. Fingerprinting web users through font metrics. In Proceedings of the 19th

international conference on Financial Cryptography and Data Security. Springer-Verlag, Berlin, Heidelberg.
[88] Ugo Fiore, Aniello Castiglione, Alfredo De Santis, and Francesco Palmieri. 2014. Countering Browser Fingerprinting

Techniques: Constructing a Fake Profile with Google Chrome. In Network-Based Information Systems (NBiS), 2014
17th International Conference on. IEEE, 355–360.

[89] Alejandro Gómez-Boix, Pierre Laperdrix, and Benoit Baudry. 2018. Hiding in the Crowd: an Analysis of the
Effectiveness of Browser Fingerprinting at Large Scale. In WWW 2018: The 2018 Web Conference. Lyon, France.
https://doi.org/10.1145/3178876.3186097

[90] Gábor György Gulyás, Dolière Francis Somé, Nataliia Bielova, and Claude Castelluccia. 2018. To Extend or not to
Extend: on the Uniqueness of Browser Extensions and Web Logins. In 2018 Workshop on Privacy in the Electronic
Society (WPES’18). ACM, 14–27.

[91] Sheharbano Khattak, David Fifield, Sadia Afroz, Mobin Javed, Srikanth Sundaresan, Damon McCoy, Vern Pax-
son, and Steven J. Murdoch. 2016. Do You See What I See? Differential Treatment of Anonymous Users. In
23nd Annual Network and Distributed System Security Symposium, NDSS 2016, San Diego, California, USA, February
21-24, 2016. http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/do-you-see-what-i-see-
differential-treatment-anonymous-users.pdf

[92] Andreas Kurtz, Hugo Gascon, Tobias Becker, Konrad Rieck, and Felix Freiling. 2016. Fingerprinting mobile devices
using personalized configurations. Proceedings on Privacy Enhancing Technologies 2016, 1 (2016), 4–19.

[93] Pierre Laperdrix, Gildas Avoine, Benoit Baudry, and Nick Nikiforakis. 2019. Morellian Analysis for Browsers: Making
Web Authentication Stronger with Canvas Fingerprinting. In Detection of Intrusions and Malware, and Vulnerability
Assessment - 16th International Conference, DIMVA 2019, Gothenburg, Sweden, June 19-20, 2019, Proceedings. 43–66.
https://doi.org/10.1007/978-3-030-22038-93

[94] Pierre Laperdrix, Benoit Baudry, and Vikas Mishra. 2017. FPRandom: Randomizing core browser objects to break
advanced device fingerprinting techniques. In 9th International Symposium on Engineering Secure Software and Systems
(ESSoS 2017). Bonn, Germany. https://hal.inria.fr/hal-01527580

[95] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2015. Mitigating browser fingerprint tracking: multi-
level reconfiguration and diversification. In 10th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems (SEAMS 2015). Firenze, Italy. https://hal.inria.fr/hal-01121108

[96] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the Beast: Diverting modern web browsers
to build unique browser fingerprints. In 37th IEEE Symposium on Security and Privacy (S&P 2016). San Jose, United
States. https://hal.inria.fr/hal-01285470

[97] Jonathan R Mayer. 2009. Any person... a pamphleteer”: Internet Anonymity in the Age of Web 2.0. Undergraduate
Senior Thesis, Princeton University (2009).

[98] Georg Merzdovnik, Markus Huber, Damjan Buhov, Nick Nikiforakis, Sebastian Neuner, Martin Schmiedecker, and
Edgar Weippl. 2017. Block me if you can: A large-scale study of tracker-blocking tools. In 2nd IEEE European
Symposium on Security and Privacy, Paris, France.

[99] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. 2011. Fingerprinting Information in JavaScript
Implementations. In Proceedings of W2SP 2011, Helen Wang (Ed.). IEEE Computer Society.

[100] Keaton Mowery and Hovav Shacham. 2012. Pixel Perfect: Fingerprinting Canvas in HTML5. In Proceedings of W2SP
2012, Matt Fredrikson (Ed.). IEEE Computer Society.

[101] Martin Mulazzani, Philipp Reschl, Markus Huber, Manuel Leithner, Sebastian Schrittwieser, Edgar Weippl, and
FH Campus Wien. 2013. Fast and reliable browser identification with javascript engine fingerprinting. InWeb 2.0
Workshop on Security and Privacy (W2SP), Vol. 5.

[102] Gabi Nakibly, Gilad Shelef, and Shiran Yudilevich. 2015. Hardware Fingerprinting Using HTML5. CoRR abs/1503.01408
(2015). http://arxiv.org/abs/1503.01408

[103] Nick Nikiforakis, Wouter Joosen, and Benjamin Livshits. 2015. PriVaricator: Deceiving Fingerprinters with Lit-
tle White Lies. In Proceedings of the 24th International Conference on World Wide Web (WWW ’15). Interna-
tional World Wide Web Conferences Steering Committee, Republic and Canton of Geneva, Switzerland, 820–830.
https://doi.org/10.1145/2736277.2741090

[104] Nick Nikiforakis, Alexandros Kapravelos, Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna.
2013. Cookieless Monster: Exploring the Ecosystem of Web-Based Device Fingerprinting. In Proceedings of the
2013 IEEE Symposium on Security and Privacy (SP ’13). IEEE Computer Society, Washington, DC, USA, 541–555.
https://doi.org/10.1109/SP.2013.43

[105] Łukasz Olejnik, Gunes Acar, Claude Castelluccia, and Claudia Diaz. 2016. The Leaking Battery. Springer International
Publishing, Cham, 254–263. https://doi.org/10.1007/978-3-319-29883-218

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.

https://doi.org/10.1007/978-3-319-20810-7_21
https://doi.org/10.1145/3178876.3186097
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/do-you-see-what-i-see-differential-treatment-anonymous-users.pdf
http://wp.internetsociety.org/ndss/wp-content/uploads/sites/25/2017/09/do-you-see-what-i-see-differential-treatment-anonymous-users.pdf
https://doi.org/10.1007/978-3-030-22038-9_3
https://hal.inria.fr/hal-01527580
https://hal.inria.fr/hal-01121108
https://hal.inria.fr/hal-01285470
http://arxiv.org/abs/1503.01408
https://doi.org/10.1145/2736277.2741090
https://doi.org/10.1109/SP.2013.43
https://doi.org/10.1007/978-3-319-29883-2_18


Browser Fingerprinting: A survey 31

[106] Lukasz Olejnik, Steven Englehardt, and Arvind Narayanan. 2017. Battery Status Not Included: Assessing Privacy in
Web Standards. In 3rd International Workshop on Privacy Engineering (IWPE’17). San Jose, United States.

[107] Florentin Rochet, Kyriakos Efthymiadis, François Koeune, and Olivier Pereira. 2019. SWAT: Seamless Web Au-
thentication Technology. In The World Wide Web Conference (WWW ’19). ACM, New York, NY, USA, 1579–1589.
https://doi.org/10.1145/3308558.3313637

[108] T. Saito, K. Yasuda, T. Ishikawa, R. Hosoi, K. Takahashi, Y. Chen, and M. Zalasiński. 2016. Estimating CPU Features by
Browser Fingerprinting. In 2016 10th International Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS). 587–592. https://doi.org/10.1109/IMIS.2016.108

[109] Takamichi Saito, Koki Yasuda, Kazuhisa Tanabe, and Kazushi Takahashi. 2017. Web Browser Tampering: Inspecting
CPU Features from Side-Channel Information. In 2017 12th International Conference on Broadband and Wireless
Computing, Communication and Applications (BWCCA). 392–403. https://doi.org/10.1007/978-3-319-69811-336

[110] Iskander Sánchez-Rola, Igor Santos, and Davide Balzarotti. 2017. Extension Breakdown: Security Analysis of Browsers
Extension Resources Control Policies. In 26th USENIX Security Symposium. 679–694.

[111] Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti. 2018. Clock Around the Clock: Time-Based Device
Fingerprinting. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (CCS
’18). ACM, New York, NY, USA, 1502–1514. https://doi.org/10.1145/3243734.3243796

[112] J. Schuh. 2013. Saying Goodbye to Our Old Friend NPAPI. https://blog.chromium.org/2013/09/saying-goodbye-to-
our-old-friend-npapi.html.

[113] Michael Schwarz, Florian Lackner, and Daniel Gruss. 2019. JavaScript Template Attacks: Automatically Inferring
Host Information for Targeted Exploits. In 26th Annual Network and Distributed System Security Symposium, NDSS
2019, San Diego, California, USA, February 24-27, 2019. https://www.ndss-symposium.org/ndss-paper/javascript-
template-attacks-automatically-inferring-host-information-for-targeted-exploits/

[114] Suphannee Sivakorn, Jason Polakis, and Angelos D Keromytis. 2016. I’m not a human: Breaking the Google re-
CAPTCHA. (2016). https://www.blackhat.com/docs/asia-16/materials/asia-16-Sivakorn-Im-Not-a-Human-
Breaking-the-Google-reCAPTCHA-wp.pdf.

[115] Alexander Sjösten, Steven Van Acker, Pablo Picazo-Sanchez, and Andrei Sabelfeld. 2019. Latex Gloves: Protecting
Browser Extensions from Probing and Revelation Attacks. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019, San Diego, California, USA, February 24-27, 2019. https://www.ndss-symposium.org/ndss-
paper/latex-gloves-protecting-browser-extensions-from-probing-and-revelation-attacks/

[116] Alexander Sjösten, Steven Van Acker, and Andrei Sabelfeld. 2017. Discovering Browser Extensions via Web Accessible
Resources. In Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy (CODASPY
’17). ACM, New York, NY, USA, 329–336. https://doi.org/10.1145/3029806.3029820

[117] Ashkan Soltani, Shannon Canty, Quentin Mayo, Lauren Thomas, and Chris Jay Hoofnagle. 2010. Flash Cookies and
Privacy. In AAAI spring symposium: intelligent information privacy management, Vol. 2010. 158–163.

[118] Jan Spooren, Davy Preuveneers, and Wouter Joosen. 2015. Mobile Device Fingerprinting Considered Harmful for
Risk-based Authentication. In Proceedings of the Eighth European Workshop on System Security (EuroSec ’15). ACM,
New York, NY, USA, Article 6, 6 pages. https://doi.org/10.1145/2751323.2751329

[119] Jan Spooren, Davy Preuveneers, and Wouter Joosen. 2017. Leveraging Battery Usage from Mobile De-
vices for Active Authentication. Mobile Information Systems 2017 (2017), 1367064:1–1367064:14. https:
//doi.org/10.1155/2017/1367064

[120] Oleksii Starov, Pierre Laperdrix, Alexandros Kapravelos, and Nick Nikiforakis. 2019. Unnecessarily Identifiable:
Quantifying the Fingerprintability of Browser Extensions Due to Bloat. In The World Wide Web Conference (WWW
’19). ACM, New York, NY, USA, 3244–3250. https://doi.org/10.1145/3308558.3313458

[121] Oleksii Starov and Nick Nikiforakis. 2017. XHOUND: Quantifying the Fingerprintability of Browser Extensions. In
38th IEEE Symposium on Security and Privacy (S&P 2017). San Jose, United States.

[122] N. Takei, T. Saito, K. Takasu, and T. Yamada. 2015. Web Browser Fingerprinting Using Only Cascading Style Sheets. In
2015 10th International Conference on Broadband and Wireless Computing, Communication and Applications (BWCCA).
57–63. https://doi.org/10.1109/BWCCA.2015.105

[123] Christof Torres, Hugo Jonker, and Sjouke Mauw. 2015. FP-Block: usable web privacy by controlling browser
fingerprinting. In Proceedings of the 20th European Symposium on Research in Computer Security (ESORICS 2015).

[124] Erik Trickel, Oleksii Starov, Alexandros Kapravelos, Nick Nikiforakis, and Adam Doupé. 2019. Every-
one is Different: Client-side Diversification for Defending Against Extension Fingerprinting. In 28th USENIX
Security Symposium (USENIX Security 19). USENIX Association, Santa Clara, CA, 1679–1696. https:
//www.usenix.org/conference/usenixsecurity19/presentation/trickel

[125] T. Unger, M. Mulazzani, D. Frühwirt, M. Huber, S. Schrittwieser, and E. Weippl. 2013. SHPF: Enhancing HTTP(S)
Session Security with Browser Fingerprinting. In 2013 International Conference on Availability, Reliability and Security.
255–261. https://doi.org/10.1109/ARES.2013.33

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.

https://doi.org/10.1145/3308558.3313637
https://doi.org/10.1109/IMIS.2016.108
https://doi.org/10.1007/978-3-319-69811-3_36
https://doi.org/10.1145/3243734.3243796
https://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html
https://blog.chromium.org/2013/09/saying-goodbye-to-our-old-friend-npapi.html
https://www.ndss-symposium.org/ndss-paper/javascript-template-attacks-automatically-inferring-host-information-for-targeted-exploits/
https://www.ndss-symposium.org/ndss-paper/javascript-template-attacks-automatically-inferring-host-information-for-targeted-exploits/
https://www.blackhat.com/docs/asia-16/materials/asia-16-Sivakorn-Im-Not-a-Human-Breaking-the-Google-reCAPTCHA-wp.pdf
https://www.blackhat.com/docs/asia-16/materials/asia-16-Sivakorn-Im-Not-a-Human-Breaking-the-Google-reCAPTCHA-wp.pdf
https://www.ndss-symposium.org/ndss-paper/latex-gloves-protecting-browser-extensions-from-probing-and-revelation-attacks/
https://www.ndss-symposium.org/ndss-paper/latex-gloves-protecting-browser-extensions-from-probing-and-revelation-attacks/
https://doi.org/10.1145/3029806.3029820
https://doi.org/10.1145/2751323.2751329
https://doi.org/10.1155/2017/1367064
https://doi.org/10.1155/2017/1367064
https://doi.org/10.1145/3308558.3313458
https://doi.org/10.1109/BWCCA.2015.105
https://www.usenix.org/conference/usenixsecurity19/presentation/trickel
https://www.usenix.org/conference/usenixsecurity19/presentation/trickel
https://doi.org/10.1109/ARES.2013.33


32 Pierre Laperdrix, Nataliia Bielova, Benoit Baudry, and Gildas Avoine

[126] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018. FP-Scanner: The Privacy Implications
of Browser Fingerprint Inconsistencies. In 27th USENIX Security Symposium (USENIX Security 18). USENIX Association,
Baltimore, MD, 135–150. https://www.usenix.org/conference/usenixsecurity18/presentation/vastel

[127] Antoine Vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018. FP-STALKER: Tracking Browser
Fingerprint Evolutions. In 39th IEEE Symposium on Security and Privacy (S&P 2018). San Fransisco, United States.

[128] Shujiang Wu, Song Li, Yinzhi Cao, and Ningfei Wang. 2019. Rendered Private: Making GLSL Execution Uniform to
Prevent WebGL-based Browser Fingerprinting. In 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, Santa Clara, CA, 1645–1660. https://www.usenix.org/conference/usenixsecurity19/presentation/wu

[129] W. Wu, J. Wu, Y. Wang, Z. Ling, and M. Yang. 2016. Efficient Fingerprinting-Based Android Device Identification
With Zero-Permission Identifiers. IEEE Access 4 (2016), 8073–8083. https://doi.org/10.1109/ACCESS.2016.2626395

[130] Zhonghao Yu, Sam Macbeth, Konark Modi, and Josep M. Pujol. 2016. Tracking the Trackers. In Proceedings of the
25th International Conference on World Wide Web (WWW ’16). International World Wide Web Conferences Steering
Committee, Republic and Canton of Geneva, Switzerland, 121–132. https://doi.org/10.1145/2872427.2883028

arXiv, Vol. 1, No. 1, Article . Publication date: November 2019.

https://www.usenix.org/conference/usenixsecurity18/presentation/vastel
https://www.usenix.org/conference/usenixsecurity19/presentation/wu
https://doi.org/10.1109/ACCESS.2016.2626395
https://doi.org/10.1145/2872427.2883028

	Abstract
	1 Introduction
	1.1 Definition
	1.2 Contributions
	1.3 Organization

	2 A brief history of web browsers
	2.1 Indicating browser limitations with the user-agent header
	2.2 Bridging the gap between web browsers and native software applications
	2.3 The development of modern APIs

	3 Browser fingerprinting
	3.1 Discovery of browser fingerprinting
	3.2 Advancing fingerprinting
	3.3 Analysing uniqueness of fingerprints
	3.4 Adoption of fingerprinting on the web

	4 Defense techniques
	4.1 Increasing device diversity
	4.2 Presenting a homogeneous fingerprint
	4.3 Decreasing the surface of browser APIs
	4.4 Summary

	5 Challenges in browser fingerprinting
	5.1 Usage of browser fingerprinting
	5.2 Current challenges

	6 Conclusion
	References

