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Abstract. A current challenge in graph clustering is to tackle the issue
of complex networks, i.e, graphs with attributed vertices and/or edges. In
this paper, we present GraphTrees, a novel method that relies on random
decision trees to compute pairwise dissimilarities between vertices in a
graph. We show that using different types of trees, it is possible to extend
this framework to graphs where the vertices have attributes. While many
existing methods that tackle the problem of clustering vertices in an
attributed graph are limited to categorical attributes, GraphTrees can
handle heterogeneous types of vertex attributes. Moreover, unlike other
approaches, the attributes do not need to be preprocessed. We also show
that our approach is competitive with well-known methods in the case
of non-attributed graphs in terms of quality of clustering, and provides
promising results in the case of vertex-attributed graphs. By extending
the use of an already well established approach – the random trees – to
graphs, our proposed approach opens new research directions, by lever-
aging decades of research on this topic.

Keywords: Graph clustering · Attributed graph · Random tree ·
Dissimilarity · Heterogeneous data

1 Introduction

Identifying community structure in graphs is a challenging task in many appli-
cations: computer networks, social networks, etc. Graphs have an expressive
power that enables an efficient representation of relations between objects as
well as their properties. Attributed graphs where vertices or edges are endowed
with a set of attributes are now widely available, many of them being created
and curated by the semantic web community. While these so-called knowledge
graphs1 contain a lot of information, their exploration can be challenging in
practice. In particular, common approaches to find communities in such graphs
rely on rather complex transformations of the input graph.
1 Although many definitions can be found in the literature [9].
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In this paper, we propose a decision tree based method that we call Graph-
Trees (GT) to compute dissimilarities between vertices in a straightforward man-
ner. The paper is organized as follows. In Sect. 2, we briefly survey related work.
We present our method in Sect. 3, and we discuss its performance in Sect. 4
through an empirical study on real and synthetic datasets. In the last section of
the paper, we present a brief discussion of our results and state some perspectives
for future research.

Main Contributions of the Paper:

1. We propose a first step to bridge the gap between random decision trees and
graph clustering and extend it to vertex attributed graphs (Subsect. 4.1).

2. We show that the vertex-vertex dissimilarity is meaningful and can be used
for clustering in graphs (Subsect. 4.2).

3. Our method GT applies directly on the input graph without any preprocess-
ing, unlike the many community detection in vertex-attributed graphs that
rely on the transformation of the input graph.

2 Related Work

Community detection aims to find highly connected groups of vertices in a graph.
Numerous methods have been proposed to tackle this problem [1,8,24]. In the
case of vertex-attributed2 graph, clustering aims at finding homogeneous groups
of vertices sharing (i) common neighbourhoods and structural properties, and (ii)
common attributes. A vertex-attributed graph is thought of as a finite structure
G = (V,E,A), where

– V = {v1, v2, . . . , vn} is the set of vertices of G,
– E ⊆ V × V is the set of edges between the vertices of V , and
– A = {x1, x2, . . . , xn} is the set of feature tuples, where each xi represents the

attribute value of the vertex vi.

In the case of vertex-attributed graphs, the problem of clustering refers to
finding communities (i.e., clusters), where vertices in the same cluster are densely
connected, whereas vertices that do not belong to the same cluster are sparsely
connected. Moreover, as attributes are also taken into account, the vertices in
the same cluster should be similar w.r.t. attributes.

In this section, we briefly recall existing approaches to tackle this problem.

Weight-Based Approaches. The weight-based approach consists in trans-
forming the attributed graphs in weighted graphs. Standard clustering algo-
rithms that focus on structural properties can then be applied.

The problem of mapping attribute information into edge weight have been
considered by several authors. Neville et al. define a matching coefficient [20] as
2 To avoid terminology-related issues, we will exclusively use the terms vertex for

graphs and node for random trees throughout the paper.
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a similarity measure S between two vertices vi and vj based on the number of
attribute values the two vertices have in common. The value Svi,vj

is used as the
edges weight between vi and vj . Although this approach leads to good results
using Min-Cut [15], MajorClust [26] and spectral clustering [25], only nominal
attributes can be handled. An extended matching coefficient was proposed in [27]
to overcome this limitation, based on a combination of normalized dissimilarities
between continuous attributes and increments of the resulting weight per pair
of common categorical attributes.

Optimization of Quality Functions. A second type of methods aim at finding
an optimal clustering of the vertices by optimizing a quality function over the
partitions (clusters).

A commonly used quality function is modularity [21], that measures the den-
sity differences between vertices within the same cluster and vertices in different
clusters. However, modularity is only based on the structural properties of the
graph. In [6], the authors use entropy as the quality metric to optimize between
attributes, combined with a modularity-based optimization. Another method,
recently proposed by Combe et al. [5], groups similar vertices by maximizing
both modularity and inertia.

However, these methods suffer from the same drawbacks as any other mod-
ularity optimization based methods in simple graphs. Indeed, it was shown by
[17] that these methods are biased, and do not always lead to the best clustering.
For instance, such methods fail to detect small clusters in graphs with clusters
of different sizes.

Aggregated Distance Measures. Another type of methods used to find
communities in vertex-attributed graphs is to define an aggregated vertex-
vertex distance between the topological distance and the symbolic distance.
All these methods express a distance dvi,vj

between two vertices vi and vj as
dvi,vj

= αdT (vi, vj) + (1 − α)dS(vi, vj) where dT is a structural distance and
dS is a distance in the attribute space. These structural and attribute distances
represent the two different aspects of the data. These distances can be chosen
from the vast number of available ones in the literature. For instance, in [4] a
combination of geodesic distance and cosine similarities are used by the authors.
The parameter α is useful to control the importance of each aspect of the over-
all similarity in each use case. These methods are appealing because once the
distances between vertices are obtained, many clustering algorithms that cannot
be applied to structures such as graphs can be used to find communities.

Miscellaneous. There is yet another family of methods that enable the use of
common clustering methods on attributed graphs. SA-cluster [3,32] is a method
performing the clustering task by adding new vertices. The virtual vertices rep-
resent possible values of the attributes. This approach, although appealing by its
simplicity, has some drawbacks. First, continuous attributes cannot be taken into
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account. Second, the complexity can increase rapidly as the number of added
vertices depends on the number of attributes and values for each attribute. How-
ever, the authors proposed an improvement of their method named Inc-Cluster
in [33], where they reduce its complexity.

Some authors have worked on model-based approaches for clustering in
vertex-attributed settings. In [29], the authors proposed a method based on
a bayesian probabilistic model that is used to perform the clustering of vertex-
attributed graphs, by transforming the clustering problem into a probabilistic
inference problem. Also, graph embeddings can be used for this task of vertex-
attributed graph clustering. Examples of these techniques include node2vec [13]
or deepwalk [23], and aim to efficiently learn a low dimensional vector represen-
tation of each vertex. Some authors focused on extending vertex embeddings to
vertex-attributed networks [11,14,30].

In this paper, we take a different approach and present a tree-based method
enabling the computation of vertex-vertex dissimilarities. This method is pre-
sented in the next section.

3 Method

Previous works [7,28] have shown that random partitions of data can be used
to compute a similarity between the instances. In particular, in Unsupervised
Extremely Randomized Trees (UET), the idea is that all instances ending up
in the same leaves are more similar to each other than to other instances. The
pairwise similarities s(i, j) are obtained by increasing s(i, j) for each leaf where
both i and j appear. A normalisation is finally performed when all trees have
been constructed, so that values lie in the interval [0, 1]. Leaves, and, more
generally, nodes of the trees can be viewed as partitions of the original space.
Enumerating the number of co-occurrences in the leaves is then the same as
enumerating the number of co-occurrence of instances in the smallest regions of
a specific partition.

So far, this type of approach has not been applied to graphs. The intuition
behind our proposed method, GT, is to leverage a similar partition in the ver-
tices of a graph. Instead of using the similarity computation that we described
previously, we chose to use the mass-based approach introduced by Ting et al.
[28] instead. The key property of their measure is that the dissimilarity between
two instances in a dense region is higher than the same interpoint dissimilarity
between two instances in a sparse region of the same space. One of the inter-
esting aspects of this approach is that a dissimilarity is obtained without any
post-processing.

Let H ∈ H(D) be a hierarchical partitioning of the original space of a dataset
D into non-overlapping and non-empty regions, and let R(x, y|H) be the smallest
local region covering x and y with respect to H. The mass-based dissimilarity
me estimated by a finite number t of models – here, random trees – is given by
the following equation:
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me(x, y|D) =
1
t

t∑

i=1

P̃ (R(x, y|Hi)) (1)

where P̃ (R) = 1
|D|

∑
z∈D 1(z ∈ R). Figure 1 presents an example of a hierarchical

partition H of a dataset D containing 8 instances. These instances are vertices
in our case. For the sake of the example, let us compute me(1, 4) and me(1, 8).
We have me(1, 4) = 1

8 (2) = 0.25, as the smallest region where instances 1 and 4
co-appear contains 2 instances. However, me(1, 8) = 1

8 (8) = 1, since instances 1
and 8 only appear in one region of size 8, the original space. The same approach
can be applied to graphs.

, 3, 4, 5, 6,

1, 41, 4

, 3, 4, 5, 6,1, 2 7, 8

1, 3, 4, 5

3, 5

2, 6, 7, 8

2 6, 7, 8

Fig. 1. Example of partitioning of 8 instances in non-overlapping non-empty regions
using a random tree structure. The blue and red circles denote the smallest nodes (i.e.,
regions) containing vertices 1 and 4 and vertices 1 and 8, respectively. (Color figure
online)

Our proposed method is based on two steps: (i) obtain several partitions of
the vertices using random trees, (ii) use the trees to obtain a relevant dissimilarity
measure between the vertices. The Algorithm 1 describes how to build one tree,
describing one possible partition of the vertices. Each tree corresponds to a model
of (1). Finally, the dissimilarity can be obtained using Eq. 1.

The computation of pairwise vertex-vertex dissimilarities using Graph Trees
and the mass-based dissimilarity we just described has a time complexity of
O(t · Ψlog(Ψ) + n2tlog(Ψ)) [28], where t is the number of trees, Ψ the maximum
height of the trees, and n is the number of vertices. When Ψ << n, this time
complexity becomes O(n2).

To extend this approach to vertex-attributed graphs, we propose to build a
forest containing trees obtained by GT over the vertices and trees obtained by
UET on the vertex attributes. We can then compute the dissimilarity between
vertices by averaging the dissimilarities obtained by both types of trees.

In the next section, we evaluate GT on both real-world and synthetic
datasets.

4 Evaluation

This section is divided into 2 subsections. First, we assess GT’s perfor-
mance on graphs without vertex attributes (Subsect. 4.1). Then we present
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Algorithm 1. Algorithm describing how to build a random tree partition-
ing the vertices of a graph.
Data: A graph G(V, E), an uninitialized stack S
root node = V ; // The root node contains all the vertices of G
vs = a vertex sampled without replacement from V ;
Vleft = N (vs) ∪ {vs} ; //N (v) returns the set of neighbours of v
Vright = V \ Vleft ;
Push Vleft and Vright to S ;
leaves = []; //leaves is an empty list
while S is not empty do

Vnode = pop the last element of S;
if |Vnode| < nmin then

Append Vnode to leaves; //node size in lower than nmin, it is a leaf
node

end
else

vs = a vertex sampled without replacement from Vnode;
Vleft = (Vnode ∩ N (vs)) ∪ {vs};
Vright = Vnode \ Vleft ;
Push Vleft to S;
Push Vright to S;

end

end
return leaves;

the performance of our proposed method in the case of vertex-attributed graphs
(Subsect. 4.2). An implementation of GT, as well as these benchmarks are avail-
able on https://github.com/jdalleau/gt.

4.1 Graph Trees on Simple Graphs

We first evaluate our approach on simple graphs with no attributes, in order to
assess if our proposed method is able to discriminate clusters in such graphs.
This evaluation is performed on both synthetic and real-world graphs, presented
Table 1.

Table 1. Datasets used for the evaluation of clustering on simple graphs using
graph-trees

Dataset # vertices # edges Average degree # clusters

Football 115 1226 10.66 10

Email-Eu-Core 1005 25571 33.24 42

Polbooks 105 441 8.40 3

SBM 450 65994 293.307 3

https://github.com/jdalleau/gt
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The graphs we call SBM are synthetic graphs generated using stochastic
block models composed of k blocks of a user-defined size, that are connected by
edges depending on a specific probability which is a parameter. The Football
graph represents a network of American football games during a given season
[12]. The Email-Eu-Core graph [18,31] represents relations between members
of a research institution, where edges represents communication between those
members. We also use a random graph in our first experiment. This graph is
an Erdos-Renyi graph [10] generated with the parameters n = 300 and p = 0.2.
Finally, the PolBooks data [16] is a graph where nodes represent books about
US politics sold by an online merchant and edges books that were frequently
purchased by the same buyers.

Our first empirical setting aims to compare the differences between the mean
intracluster and the mean intercluster dissimilarities. These metrics enable a
comparison that is agnostic to a subsequent clustering method.

The mean difference is computed as follows. First, the arithmetic mean of
the pairwise similarities between all vertices with the same label is computed,
corresponding to the mean intracluster dissimilarity μintra. The same process
is performed for vertices with a different label, giving the mean intercluster
similarity μinter. We finally compute the difference Δ = |μintra − μinter|. In
our experiments, this difference Δ is computed 20 times. Δ̄ denotes the mean of
differences between runs, and σ its standard deviation. The results are presented
Table 2. We observe that in the case of the random graph, Δ̄ is close to 0, unlike
the graphs where a cluster structure exists. A projection of the vertices based
on their pairwise dissimilarity obtained using GT is presented Fig. 2.

Table 2. Mean difference between intercluster and intracluster similarities in different
settings.

Dataset Δ̄ σ

Random graph 0.0003 0.0002

SBM 0.29 0.005

Football 0.25 0.002

We then compare the Normalized Mutual Information (NMI) obtained using
GT with the NMI obtained using two well-known clustering methods on simple
graphs, namely MCL [8] and Louvain [1]. NMI is a clustering quality metric
when a ground truth is available. Its values lie in the range [0, 1], with a value
of 1 being a perfect matching between the computed clusters and the reference
one. The empirical protocol is the following:

1. Compute the dissimilarity matrices using GT, with a total number of trees
ntrees = 200.

2. Obtain a 2D projection of the points using t-SNE [19] (k = 2).
3. Apply k-means on the points of the projection and compute the NMI.
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Fig. 2. Projection of the vertices obtained using GT on (left) a random graph, (mid-
dle) an SBM generated graph (middle) and (right) the football graph. Each cluster
membership is denoted by a different color. Note how in the case of the random graph,
no clear cluster can be observed. (Color figure online)

We repeated this procedure 20 times and computed means and standard devia-
tions of the NMI.

The results are presented Table 3. We compared the mean NMI using the
t-test, and checked that the differences between the obtained values are statisti-
cally significant.

We observe that our approach is competitive with the two well-known meth-
ods we chose in the case of non-attributed graphs on the benchmark datasets.
In one specific case, we even observe that Graph trees significantly outperforms
state of the art results, on the graphs generated by the SBM model. Since the
dissimilarity computation is based on the method proposed by [28] to find clus-
ters in regions of varying densities, this may indicate that our approach performs
particularly well in the case of clusters of different size.

Table 3. Comparison of NMI on benchmark graph datasets. Best results are in bold-
face.

Dataset Graph-trees Louvain MCL

Football 0.923 (0.007) 0.924 (0.000) 0.879 (0.015)

Email-Eu-Core 0.649 (0.008) 0.428 (0.000) 0.589 (0.012)

Polbooks 0.524 (0.012) 0.521 (0.000) 0.544 (0.02)

SBM 0.998 (0.005) 0.684 (0.000) 0.846 (0.000)

4.2 Graph Trees on Attributed Graphs

Now that we have tested GT on simple graphs, we can assess its performance
on vertex-attributed graphs. The datasets that we used in this subsection are
presented Table 4.

WebKB represents relations between web pages of four universities, where
each vertex label corresponds to the university and the attributes represent the
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words that appear in the page. The Parliament dataset is a graph where the
vertices represent french parliament members, linked by an edge if they cosigned
a bill. The vertex attributes indicate their constituency, and each vertex has a
label that corresponds to their political party.

Table 4. Datasets used for the evaluation of clustering on attributed graphs using GT

Dataset # vertices # edges # attributes # clusters

WebKB 877 1480 1703 4

Parliament 451 11646 108 7

HVR 307 6526 6 2

The empirical setup is the following. We first compute the vertex-vertex dis-
similarities using GT, and the vertex-vertex dissimilarities using UET. In this
first step, a forest of trees on the structures and a forest of trees on the attributes
of each vertex are constructed. We then compute the average of the pairwise dis-
similarities. Finally, we then apply t-SNE and use the k-means algorithm on the
points in the embedded space. We set k to the number of clusters, since we have
the ground truths. We repeat these steps 20 times and report the means and
standard deviations. During our experiments, we found out that preprocessing
the dissimilarities prior to the clustering phase may lead to better results, in par-
ticular with Scikit learn’s [22] QuantileTransformer. This transformation tends
to spread out the most frequent values and to reduce the impact of outliers.
In our evaluations, we performed this quantile transformation prior to every
clustering, with nquantile = 10.

The NMI obtained after the clustering step are presented in Table 5.

Table 5. NMI using GT on the structure only, UET on the attributes only and
GT+UET. Best results are indicated in boldface.

Dataset GT UET GT+UET

WebKB 0.64 (0.07) 0.73 (0.08) 0.98 (0.01)

HVR 0.58 (0.06) 0.58 (0.00) 0.89 (0.06)

Parliament 0.65 (0.02) 0.03 (0.00) 0.66 (0.02)

We observe that for two datasets, namely WebKB and HVR, considering
both structural and attribute information leads to a significant improvement in
NMI. For the other dataset considered in this evaluation, while the attribute
information does not improve the NMI, we observe that is does not decrease it
either. Here, we give the same weight to structural and attribute information.
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Fig. 3. Projection of the WebKB data based on the dissimilarities computed (left)
using GT on structural data, (middle) using UET on the attributes data and (right)
using the aggregated dissimilarity. Each cluster membership is denoted by a different
color. (Color figure online)

In Fig. 3 we present the projection of the WebKB dataset, where we observe
that the structure and attribute information both bring a different view of the
data, each with a strong cluster structure.

HVR and Parliament datasets are extracted from [2]. Using their proposed
approach, they obtain an NMI of 0.89 and 0.78, respectively. Although the NMI
we obtained using our approach are not consistently better in this first assess-
ment, the methods still seems to give similar results without any fine tuning.

5 Discussion and Future Work

In this paper, we presented a method based on the construction of random
trees to compute dissimilarities between graph vertices, called GT. For vertex
clustering purposes, our proposed approach is plug-and-play, since any clustering
algorithm that can work on a dissimilarity matrix can then be used. Moreover,
it could find application beyond graphs, for instance in relational structures in
general.

Although the goal of our empirical study was not to show a clear superior-
ity in terms of clustering but rather to assess the vertex-vertex dissimilarities
obtained by GT, we showed that our proposed approach is competitive with well-
known clustering methods, Louvain and MCL. We also showed that by comput-
ing forests of graph trees and other trees that specialize in other types of input
data, e.g, feature vectors, it is then possible to compute pairwise dissimilarities
between vertices in attributed graphs.

Some aspects are still to be considered. First, the importance of the vertex
attributes is dataset dependent and, in some cases, considering the attributes can
add noise. Moreover, the aggregation method between the graph trees and the
attribute trees can play an essential role. Indeed, in all our experiments, we gave
the same importance to the attribute and structural dissimilarities. This choice
implies that both the graph trees and the attribute trees have the same weight,
which may not always be the case. Finally, we chose here a specific algorithm to
compute the dissimilarity in the attribute space, namely, UET. The poor results
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we obtained for some datasets may be caused by some limitations of UET in
these cases.

It should be noted that our empirical results depend on the choice of a
specific clustering algorithm. Indeed, GT is not a clustering method per se,
but a method to compute pairwise dissimilarities between vertices. Like other
dissimilarity-based methods, this is a strength of the method we propose in this
paper. Indeed, the clustering task can be performed using many algorithms,
leveraging their respective strengths and weaknesses.

As a future work, we will explore an approach where the choice of whether
to consider the attribute space in the case of vertex-attributed graphs is guided
by the distribution of the variables or the visualization of the embedding. We
also plan to apply our methods on bigger graphs than the ones we used in this
paper.
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