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Introduction

In cold mountainous regions, under particular snow and weather conditions, avalanches are likely to produce important damages to people and buildings. Consequently, concrete structures are used to protect some areas and prevent these damages, supporting the load of the snow. The term of "avalanche" covers a range of various kinds of flows: dense, aerosol flows, multilayer ones, with a large range of speed and amplitude. Dense flows are characterized by the relative low speed at the front (40 m/s) and the pressure exerted on the obstacle is increasing with the concerned amount of snow. Contrary to that, fronts of powder snow avalanches move at higher speed (up to 100 m/s) and the profile of the pressure along an obstacle is highly varying in time, the impact pressure being followed by a great depression due to the vertical flow of the snow. More often, the flows are generally composed by one dense layer at the bottom, an intermediate one and an aerosol layer at the top of the flow.

Concrete structures, under the action of loadings due to avalanches, are damaged before reaching partial or total fracture. This damage state represents the rate of microcrackings inside the material. These kind of structures has been studied with various mechanical damage models for example in [START_REF] Bertrand | Physical vulnerability of reinforced concrete buildings impacted by snow avalanches[END_REF] to provide a damage index of the structure.

In this article, we are interested in the study of the mechanical response of the structure to an impact produced by an avalanche flow. As we use the framwork of quasi-static mechanics with continuous damage under small perturbations, we then focus on dense avalanches with quite low speed front, and on the forecast of the onset of damage.

In order to model the evolution of the damage in the structure, we use the Francfort and Marigo mechanical damage model based on a variational approach with the fundamental assumption that the resulting elastic modulus does not vanish when the material is fully damaged. The variational approach is based on the minimization of the total energy which yields, on turns, a natural numerical approach. The main advantage of this model, under the fundamental assumption, is to provide a stable solution, without resorting to a non-local or a second-order gradient model, [START_REF] Francfort | Stable damage evolution in a brittle continuous medium[END_REF].

11/06/2020 3 Moreover, modeling concrete structures implies also to take into account the difference in behaviors between tension and compression. As these characteristics are not present in the original model of Francfort and Marigo, we extend it in that direction. Models that take into account a different material behavior in tension and in compression have already been developed in the literature, but largely consider that the elastic tensor vanishes when the material is fully damaged. For example, in [START_REF] Mazars | Continuum damage theory -application to concrete[END_REF]], a damage model with a differentiation tensioncompression with two terms depending on the sign of the strain tensor and two damage variables is introduced.

Another formulation can be found in [START_REF] Bernard | Damage growth modeling using the thick level set (tls) approach: Efficient discretization for quasi-static loadings[END_REF] in the context of Thick Level-Set method, which consists in introducing a modulation between tension and compression damage through a user defined coefficient β. In the context of the variational approach to fracture, or equivalently phase-field models, [START_REF] Miehe | Thermodynamically consistent phasefield models of fracture: Variational principles and multi-field fe implementations[END_REF], Miehe et al., 2010a] introduced an anisotropic formulation of the functional of global energy to model the different behavior in tension and compression. Other anisotropic models of damage can be found in [START_REF] Bleyer | Phase-field modeling of anisotropic brittle fracture including several damage mechanisms[END_REF] where the mixity of fracture modes is taken into account. In all these works, the objective is to model fracture in materials with a phase-field approach. The elastic modulus goes to zero when the material is fully damaged and this lead to severe instability that are regularized with a non-local model of damage and/or viscosity regularization (see discussion in part 2).

In the present work, we prefer to use a model with a non-zero elastic modulus when the material is fully damaged.

This is justified by the fact that a) the mathematical and numerical framework based on a variational approach keeps its stability and its simplicity, b) we are mainly interested by the onset of damage in the structure, and c) the assumption of a non-zero elastic modulus for reinforced concrete is reasonable. We then introduce the formulation tension-compression introduced by Comi in [Comi, 2001] and modify it to incorporate the previous hypothesis.

One question is raised: assuming that we know the main characteristics of an avalanche, are we able to a priori estimate the critical load that reveals the onset of damage of a concrete structure under the effect of the snow pressure?

One objective of this work is to calculate an a priori estimate of the damage, assuming that we know the complete pressure profile or at least the maximum value reached.

The paper is organized in four main sections. In Section 2, the general framework of the damage model used in this study is introduced. Section 3 is dedicated to the study of the damage zone a priori estimation on a 1-D beam in plane strains. First, we introduce an analytical solution of the problem, assuming that we know the specific constant load, and then, we validate this estimation by numerical simulations. In Section 4, we present a 2-D model of damage, including tension and compression mechanisms, as introduced by Comi in [Comi, 2001], and extended in the framework of Francfort and Marigo. In Section 5, the model is validated on several academic and more realistic numerical experiments. Finally, we present some realistic experiments of dense avalanche flows on a concrete structure.

Section 6 concludes the article.
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A variational model for damage of concrete

We consider that the material constitutive law of the structure follows a quasi-brittle behavior. This material is damaged if the applied pressure force applied is sufficiently high. In the model, the damage modelling the damage is represented by a function χ(x, t) which varies between 0 and 1. An increase in this damage state induces a softening of the material. Finally, damage is an irreversible process: the damage zone of the structure can only increase. The inner variable modelling the damage follows a yield law, depending on the strains in the material.

Models which represent damage evolution in an elastic material are numerous and can be classified into two main families. The first one is the family of local damage models. In these models, the damage rate of the material is represented by an inner scalar variable and depends on the values of the strain tensor at each local point. The induced system of equations is mathematically ill-posed (loss of ellipticity) and leads to physically unacceptable results. Moreover, this formulation, when implemented in finite elements framework, in order to perform numerical simulations, presents severe drawbacks and leads to unrealistic numerical results: when the number of elements of the mesh increases, the volume of the damaged zone tends to zero while failure occurs without energy dissipation ( [START_REF] Mazars | Size effect and continuous damage in cementious materials[END_REF], [START_REF] Peerlings | Some observations on localisation in non-local and gradient damage models[END_REF]). To avoid these drawbacks, non-local models have been developed: the damage evolution is computed using an averaging method over a vicinity of the local point and needs the introduction of a characteristic length scale. As these averages imply numerous additional calculus, algorithms have been developed to separate pure elastic computations (local) and damage computations (non-local) as in [START_REF] Pijaudier-Cabot | Non local damage theory[END_REF]. Another way to overcome these difficulties is to introduce some gradient quantities (gradient of internal variables or higher order gradient of the displacement). As described in [START_REF] Lorentz | Gradient constitutive relations: numerical aspects and application to gradient damage[END_REF], these formulations need adapted and sophisticated numerical algorithms to be solved efficiently. As stated by [START_REF] Peerlings | Some observations on localisation in non-local and gradient damage models[END_REF], these two approaches, non-local and higher-order continua, present qualitative similarities. To give to these nonlocal model a thermodynamic consistency, the damage evolution has also been treated in [START_REF] Frémond | Damage, gradient of damage and principle of virtual power[END_REF] by introducing an inner variable in the free energy balance, through internal forces. This formulation not only depends on the damage state, but also on its gradient.

As developed in [START_REF] Luege | An energetic formulation of a gradient damage model for concrete and its numerical implementation[END_REF], the simulation of non-local interactions are done through the gradient damage and need a specific splitting of variable to be solved numerically. As shown in [START_REF] Tanné | Crack nucleation in variational phase-field models of brittle fracture[END_REF], to accurately determine the onset and the propagation of cracks, the model needs to take into account gradient of damage, an internal length and a critical stress level. Under that conditions, variational phase-field models address the following issues associated with brittle fracture: scale effects, nucleation, the existence of a critical stress, and path prediction. Finally, models with gradient damage formulation, including only partial damage have been studied from a mathematical point of view and Thomas and Mielke in [START_REF] Thomas | Damage of nonlinearly elastic materials at small strain -Existence and Regularity results[END_REF] have proven existence and regularity results.

Note that Mardare in [Mardare, 2011], in the non-linear elasticity framework, showed the existence on a nonlinear Korn inequality and the existence of a minimizer of an energetic formulation of the associated problem.

Nevertheless, as we do not focus on macro-cracks and their propagation, but only on global damage state, to 11/06/2020 tackle the problem of modeling the spatial-temporal evolution of the damage of concrete structures, we choose to follow the variational approach developed in [START_REF] Francfort | Stable damage evolution in a brittle continuous medium[END_REF] in quasi-statics under the assumption of small perturbations and a non-vanishing elastic modulus. The use of this model will imply to keep a residual damage state (the whole structure cannot be damaged), but it is not too restrictive as our main idea is to evaluate the global damaged state and not to localize the macro-cracks and their propagation.

The elastic stiffness tensor evolution with damage

We consider an elastic body as an open bounded set

Ω in R d , with a C 1 boundary Γ. A point M in R d is defined by its coordinates x = (x i ) i=1.
.d in the reference frame (i, j, k). Let us denote by M d s ∈ R d×d , the set of symmetric matrices and T l s the set of symmetric tensor of order l. Let u(x) be the displacement vector at a point x ∈ R d and ε ∈ T d s be the strain tensor under the assumptions of small perturbations defined by

ε(u) = ∇ T s u T = 1 2 (∇u + ∇ T u).
Let us define σ(x) ∈ T d s the stress tensor. At a time t i , we consider that the domain Ω is decomposed into two sub-domains: a sub-domain of sound material Ω 0 and a subdomain of damaged material Ω 1 , such that Ω = Ω 0 ∪ Ω 1 and Ω 0 ∩ Ω 1 = ∅. These two sub-domains are characterized by a "damage factor" evolving from sound material to damaged material, in space and time. Since the damage phenomenon is irreversible, a point x 1 that belongs to Ω 1 (damaged part of the domain) at time t stays in Ω 1 at every time t ≥ t . Hereafter, the damage evolution problem of the elastic material whose stiffness tensor drops from the sound value to the damaged one is presented following the pioneering work of [START_REF] Francfort | Mathematical analysis of the damage evolution in a brittle damaging continuous medium. Mécanique, modélisation numérique et dynamique des matériaux[END_REF]. The elastic stiffness tensor, denoted by E(x) ∈ T 4 s depends on the local damage state at a point x. Under the small strain assumption, the relation between the stress and strain tensors is assumed to be linear:

σ(x) = E(x) : ε(u(x)),
11/06/2020 where the symbol ":" denotes the double contracted tensor product. In our model, the stiffness tensor is assumed to drop from E 0 in the sound domain Ω 0 to E 1 in the damaged domain Ω 1 with the following fundamental assumption:

ε : E 0 : ε > ε : E 1 : ε > 0, ∀ε ∈ T d s , (1) 
that will be simply denoted in the sequel by

E 0 > E 1 > 0.
We assume that damage is an irreversible process governed by a yield criterion and depending on the strain history [START_REF] Francfort | Mathematical analysis of the damage evolution in a brittle damaging continuous medium. Mécanique, modélisation numérique et dynamique des matériaux[END_REF]).

If we denote by χ the damage index at a position (x, t) of the domain, the resulting stiffness tensor E(x, t) depends on time and x position through the damage index χ as:

E(χ(x, t)) = (1 -χ(x, t))E 0 + χ(x, t)E 1 (2)
Moreover, it is noteworthy that χ is the characteristic function of the damaged domain.

The time interval of study [0, T ] is decomposed into intervals ]t i-1 , t i ] and a discrete incremental problem is solved on this time (loading) interval. The exponent i denotes the quantities at time t i . Given the domain Ω i-1 1 and its associated characteristic variable χ i-1 (x) at time t i-1 , the incremental problem becomes:

Find ε i , σ i , χ i and u i such that: 2ε i (u(x)) = ∇u i (x) + ∇u i (x) T for all x ∈ Ω (3) 
σ i (x) = ((1 -χ i (x))E 0 + χ i (x)E 1 ) : ε i (u((x)) for all x ∈ Ω (4) div(σ i (x)) + f i (x) = 0 for all x ∈ Ω (5) Ω i-1 1 ⊂ Ω i 1 (6)
with the following boundary conditions:

σ i (x).n(x) = T i (x) on Γ 1 and u i (x) = V i (x) on Γ 2 (7) 
where n(x) is the normal vector on the boundary of the domain, the function f i (x) is the body forces, T i (x) the applied external force and V i (x) the prescribed displacement.

To complete the incremental problem, the constitutive law for the evolution of damage is developed in the sequel.

Variational approach to damage

In order to catch a stable solution of this problem, Francfort and Marigo proposed a variational approach that yields a stability criterion. The admissible solution must satisfy the incremental problem and also minimize the energy of the system. The classical mechanical problem at a time t i is solved by finding a weak solution of the variationnal form of the system of equations ( 3)-( 4)-( 6) on the domain Ω:

Ω ε(u i (x)) : E(χ i (x)) : ε(v i (x))dx = Ω f i (x)v i (x)dx + Γ T i (x)v i (x)dx (8) 11/06/2020
Solving this weak formulation of the problem does not necessarily provides us with a stable solution.

Hence, Francfort and Marigo have chosen to solve the energetical formulation, introducing a stability criterion in the definition of the total energy of the system J at time t i :

J(u i , χ i ) = 1 2 Ω ε(u i (x)) : E(χ i (x)) : ε(u i (x)) dx + Ω κχ i (x) dx - Ω f i (x)u i (x) dx - Γ1 T i (x)u i (x) dx (9) 
with the remaining constraints

     χ i-1 ≤ χ i ≤ 1 u i (x) = V i (x) on Γ 2 ( 10 
)
where κ is characteristic of the material and represents the dissipated energy by unit volume of the damage part of the domain.

They have shown in [START_REF] Francfort | Stable damage evolution in a brittle continuous medium[END_REF] that solving equations of system (3) under the constraints defined in [START_REF]mesh with constant ∆P = 10000 Pa: scenario of charge (left), displacement (U ) at the top point (center) and damage evolution[END_REF] was equivalent to the following sequence of minimization problems:

min (χi,ui) χi-1≤χi ui∈Vi J(u i (x), χ i (x)) = min χi χi-1≤χi min ui ui∈Vi 1 2 Ω ε(u i (x)) : E i (χ i (x), χ i (x)) : ε(u i (x))dx + Ω κχ i (x) dx - Ω f i (x)u i (x)dx - Γ1 T i (x)u i (x) dx (11)
3 Analysis of the damage model for Euler-Bernoulli beams

In order to validate the model, we choose to apply it first in a simple 1-D configuration, given by a Euler-Bernoulli beam. The objective is to give some analytical insight on the damage evolution and to be able to analyze the different stages of the minimization.

Basics on Euler-Bernoulli beam subjected a line load

Let L be the length of the beam and I the second moment of inertia of the cross area. We briefly recall that for a squared beam of thickness h, one gets

I = h/2 -h/2 hz 2 dz = h 4 12 .
Let us consider a line load perpendicular to the axis of the beam given by p, such the beam supports a deformation due to bending (see Figure 2). For this curvilinear model, the stiffness tensor is reduced to a scalar value E which depends on E 0 value for the sound material and E 1 for damaged material through the following relation:

E(χ) = (1 -χ)E 0 + χE 1 . (12) 
In this configuration, solving (3) amounts to solving the equilibrium equation on a domain Ω = (0, L) at each load increment i:

d 2 dx 2 [E(χ i (x))I d 2 u i (x) dx 2 ] = p i (x). ( 13 
)
where u(x) ∈ R is the transverse displacement of the beam and x the abscissa, and E(χ i (x)) the stiffness tensor defined in [START_REF]Comparison between different load steps with constant size of grid: scenario of charge (left), U at the top point (center) and damage evolution (right)[END_REF].

Noting V the test functions set that satisfies the boundary conditions, we obtain the following expression for the weak formulation on the domain Ω = [0, L]:

Ω d 2 dx 2 [E(χ i (x))I(u i ) ]v i (x) dx = Ω p i (x)v i (x) dx ∀v i ∈ V. ( 14 
)

A priori analytical estimate of the damaged domain

The main objective of this part is to determine the critical pressure P min to apply onto the beam to initiate the damage. We then have to solve the following equation, with U, the set of admissible displacements.

min (ui,u i )∈U J(u i , χ i (x)) = min (ui,u i )∈U 1 2 L 0 IE i (x)u i 2 (x)dx + L 0 κχ i (x)dx - L 0 p i (x)u i (x)dx = min (ui,u i )∈U 1 2 L 0 L(x, u i , u i )dx such that u i (0) = 0; u i (L) = 0 χ i-1 (x) ≤ χ i (x), ∀x ∈ Ω (15) 
The a priori estimation of the damaged zone from the energy formulation and classical estimation tools such as Korn inequality does not lead to pertinent results due to the additional terms that cannot be easily estimated. We have quickly noted that the problem formulation was not suited for this kind of estimates because we have not be able to establish a relation between the damage zone quantity and the applied pressure load in a satisfying way. We then decided to tackle it in a direct way by searching for the minimum of the energy depending on the parameters of our problem. This calculus will be done in various steps: we first solve the Euler-Lagrange equation to get an expression of u i , we then define the associated energy function and finally get an expression of the critical load.

Solving Euler-Lagrange equation

First, we suppose that the constraint applied on the beam is a constant function:

p i (x) = P 0,i , ∀x ∈ [0, L]. By
integrating two times the relation ( 13) between x and L, we get:

u i (x) = P 0,i (x -L) 2 2I [(1 -χ i (x))E 0 + χ i (x)E 1 ] (16) 
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Two more integrations of equation ( 16) are needed to get an expression of u i .

To go further in our analytic approach, we also assume that the damaged domain is continuous from the clamped point x = 0 up to a point of the beam denoted by α i . The function χ i (x) is then defined on the interval [0, L] by:

χ i (x) = 1 , ∀x ∈ [0, α i ) and χ i (x) = 0 , ∀x ∈ [α i , L]. (17) 
The value α i is also the measure of the damage domain at time t i :

α i = L 0 χ i (x)dx. ( 18 
)
For each interval [0, α i ) and [α i , L], the calculus of the functions (u i and u i ) must distinguish two cases:

0 ≤ x < α i , χ i (x) = 1, u(x, α i ) = P 0,i 2IE 1 (x -L) 4 12 - L 4 12 + L 3 x 3 α i ≤ x ≤ L, χ i (x) = 0, u(x, α i ) = P 0,i 2IE 1 (α i -L) 4 12 - L 4 12 + L 3 α i 3 + P 0,i 2IE 0 (x -L) 4 12 - (α i -L) 4 12 + L 3 (x -α i ) 3 - P 0,i 2IE 1 (α i -L) 3 3 + L 3 3 E 1 -E 0 E 0 (x -α i ) (19) 

Definition of the energy function

From equations ( 16) and ( 19), we obtain a new formulation for the energy function at time t i :

J(u i (x, α i ), χ i (x)) = L 0 1 2 I E(χ i (x))u i 2 (x)dx + L 0 κχ i (x)dx - L 0 P 0,i u i (x, α i )dx = L 0 I[(1 -χ i (x))E 0 + χ i (x)E 1 ] P 2 0,i 8I 2 (x -L) 4 (1 -χ i (x)) E 0 + χ i (x) E 1 2 dx + L 0 κχ i (x)dx - L 0 P 0,i u i (x, α i )dx (20) 
Integrating the previous equation, we obtain:

J(α i ) = -P 2 0,i (E 0 -E 1 ) 40IE 0 E 1 (α i -L) 5 + κα i + P 2 0,i (7E 0 -10E 1 ) 120IE 0 E 1 L 5 (21) 
Equation ( 21) depends only on α i and therefore can be differentiated with respect to α i . One gets:

J (α i ) = κ - P 2 0,i (E 0 -E 1 ) 8IE 0 E 1 (α i -L) 4 (22) 
Finally, the explicit calculus of J shows that on the interval [0, L[, J is always strictly positive ensuring the convexity of J, and then the uniqueness of the minimizer.

Calculus of the critical load to damage

In this section, an analytical expression of the damaged length α i with respect to the load P 0,i is given by solving 11/06/2020 explicitly the minimization problem. Due to the assumption on the geometry of the damaged length, this calculus also provides us with the critical load P c for which the damages length increases for a given α i-1 , because in this special configuration test case, the damage at time t i does not depend on historic of loads.

At time t i , we apply a load P 0,i on the beam and the previous damaged domain α i-1 is assumed to be known. To evaluate the current damaged domain α i , the following minimization problem must be solved:

min J(α i ) subject to α i-1 ≤ α i ≤ L (23) 
To simplify the formulation of the optimality conditions, we introduce the vectors a T = 1 -1 and b T = α i-1 -L such that the constraints are a α ib ≥ 0. Since the function J(α i ) is convex and the feasible domain is also convex, the minimization problem ( 23) is equivalent to the Karush-Kuhn-Tucker conditions:

     J (α i ) -a T λ = 0 0 ≤ aα i -b ⊥ λ ≥ 0, (24) 
where λ ∈ R 2 is a Lagrange multiplier. Substituting the a and b, we obtain

           J (α i ) -λ 1 + λ 2 = 0 0 ≤ λ 1 ⊥ α i -α i-1 ≥ 0 0 ≤ λ 2 ⊥ L -α i ≥ 0. (25) 
Solving the complementarity system [START_REF]TC Model: tension-compression cycle. Evolution of σ 11 , σ 22 (left), ε 11 and ε 22 during the loads (center)[END_REF] provides us with an optimal point noted α * i . Depending on the set of active constraints at optimality, three cases must be distinguished that corresponds to different behaviours of the beam:

1. λ 1 ≥ 0, λ 2 = 0, α * i = α i-1 , 0 ≤ J (α * i ) = λ 1 ≥ 0 (no
increase of the damage zone) The applied load P 0,i is too small to increase the damaged domain that remains unchanged, i.e., α *

i = α * i-1 . The gradient J (α * i )
given in ( 21) must be positive which leads to the following upper bound for the load to keep a constant damaged zone:

P 0,i < 2 √ 2κ E 0 E 1 I (L -α i-1 ) 2 (E 0 -E 1 ) = P c (α i-1 ) (26) 
This last equation ( 26) provides us with a critical load P c (α i-1 ) under which the damage domain does not evolve from a given α i-1 . This function is depicted in Figure 4a. If the beam was completely sound at the previous loading step (α i-1 = 0), we obtain the critical pressure for P 0,i to start to damage of the beam:

P min = P c (0) = 2 √ 2κ E 0 E 1 I L 2 (E 0 -E 1 ) (27) 
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2. λ 1 = λ 2 = 0, α i-1 < α * i < L, J (α * i ) = 0
(increase of the damage zone) The condition J (α * i ) = 0 leads to the value of the damaged zone with respect to the applied load:

α * i = L - 8κE 0 E 1 I (E 0 -E 1 )P 2 0,i 1/4 (28)
The inequality α i-1 < α * i yields a condition on the applied load that must be sufficiently high to increase the damage of the beam. Due to the complementarity in the optimality condition, we obtain

P 0,i ≥ P c (α i-1 ). ( 29 
)
Note that the value of the damaged zone with respect to the applied load in (28) does not depend on α i-1 . The relation ( 28) may be understood as the level of damage of the beam for a given continuously increasing load P 0,i .

This relation appears as the inverse of the relation ( 26) and is illustrated in Figure 4b. [START_REF]14 χ t evolution from the first damage state[END_REF].

λ 2 ≥ 0, λ 1 = 0, α * i = L, J (α * i ) = -λ 2 ≤ 0 (full
damage of the beam) In the last case, the applied load P 0,i must be sufficiently large to damage all the domain. For α i = L, we obtain for the gradient

J (α i ) = κ > 0 (30) 
which contradicts the optimality conditions. This case is not a valid solution. This conclusion is consistent with the previous relations ( 26) and ( 28), from which we can remark that lim αi-1→L

P (α i-1 ) = +∞, and α * i < L for any P 0,i < +∞. 

J (αi) αi P0=100 P0=200 P0=400 P0=600 P0=700 P0=800 (b) J (α i )
Figure 3: J and its derivative J functions of P 0,i , from equations ( 21) and ( 22)

Numerical illustrations

For different given values of P 0,i , the function J(α i ) and its derivative are plotted in Figure 3a and 3b. One observes that the function J is convex and the maximum value of J (α i ) increases with P 0,i . In other words, when P 0,i increases the minimal value of J(α i ) is shifted to the right.

Plotting the evolution of the critical load P c with respect to the previous damage state of the beam in Figure 4a shows that to damage the beam more than roughly 80%, the load must increase very drastically, leading to infinite load to completely damage the beam. 11/06/2020

Numerical simulations with the damage model in 1D

To validate the analytical solution obtained for a line load on a cantilever beam, the same problem is now solved using a FEM numerical approach. We perform the miminization with alternate directions using two steps for the function J built from energy estimation. The Euler-lagrange differential equation can be numerically solved using a classic weak formulation using finite elements discretization to find the displacement u i , assuming a given value χ i-1 . Then, the current damage state χ i is updated keeping the computed values of the displacement u i .

Computation of the discrete displacements.

The discrete weak formulation equation:

Ωe E i (x)I[ d 2 u i (x) dx 2 ][ d 2 v(x) dx 2 ]dx = Ωe p i (x)v(x)dx (32) 
for all test functions v satisfying the boundary conditions.

The elementary displacement vector is defined as:

u i e = u i 1 θ i 1 u i 2 θ i
2 with two degrees of freedom defined at each node of an element (a displacement and a rotation). The chosen finite elements shape functions matrix N e (x) is composed of cubic Hermite polynomials which allow C 1 continuity between elements. The interpolation formulas are then given on each element e by: u i e (x) = N e,v1 (x) N e,θ1 (x) N e,v2 (x) N e,θ2 (x)

        u i e1 θ i e1 u i e2 θ i e2         = N e (x)u i e
and v e (x) = N e (x)v e . By substitution in (32), the weak approximation is obtained for an element e:

v e T Ωe E i (x)IN T e (x)N e (x)dx u i e = v e T Ωe
N T e p i e (x)dx, for all v e [START_REF]35 Damage area in tension: χ t field at loads 9, 11 and 14[END_REF] which leads to the discrete equilibrium equation:

K i e u i e = F i e , (34) 
with the stiffness matrix and the applied load vector defined by

K i e = Ωe E i (x)IN T e (x)N e (x)dx, F i e = Ωe N T e (x)p i e (x)dx. ( 35 
)
One can note that the computation of the stiffness matrix K i e on the element e depends on the function E i (x) = E(χ i (x)) which depends on the damage function χ i (x). The choice of P 2 elements would have allowed a continuous description of the damage state on each element but in this first approximation of the problem, we have chosen to keep it constant element by element, providing that each one is little enough. This function E i (x) is then piecewise constant on the beam. The assembled system K i u i = F i is obtained on each element as K i e u i e = F i e under the assumption 11/06/2020 that χ i (x) = χ i e ∈ {0, 1}, ∀x ∈ Ω e . The fact that E i (x) is constant on each element e and its formulation is given by

E i (x) = (1 -χ i e )E 0 + χ i e E 1 = E i e , ∀x
∈ Ω e , leads to the following expression of K i e :

K i e = I Ωe E i e N T e (x)N e (x)dx = IE i e Ωe N T e (x)N e (x)dx (36) 
The external force matrix depends on the load on the direction x and as the load is supposed to be constant in space (p i (x) = P i 0 , ∀x ∈ [0, L]):

F i e = Ωe N T e (x)p i (x)dx = P i 0 Ωe N T e (x)dx (37) 
For a given damage state χ i piecewise constant over the elements, the displacements u i are computed by solving the linear system

K i u i = F i .

Calculus of the damaged state

Assuming that the function χ(x) is approximated as a piecewise constant function on an element, the energy function J is given for each element e by:

J e (u i e , χ i e ) = 1 2 IE i e u iT e ( Ωe N T e (x)N e (x)dx)u i e + l e κχ i e -P 0 u iT e F i e = 1 2 u iT e K i e u i e + l e κχ i e -u iT e F i e
where l e is the length of the element e.

The total sum provides the expression of J for the whole beam:

J(u i , χ i ) = N e=1 J e (u i e , χ i e ) = N e=1 1 2 u iT e K i e u i e + l e κχ i e -u iT e F i e (38) 
At each iteration in time i, in order to know the damage state of the beam given on each element by χ i e , we need to find the function χ i , at iteration i, which minimize the following discrete equation:

min χ J(u i , χ) (39) 
under the following constraints:

• χ e ≥ χ i-1 e
for all e ∈ 0, ..., N : χ i e depends on the previous values of the damaged zone (damage is an irreversible process)

• χ e ∈ {0, 1}, for all e ∈ 0, ..., N : χ i e function has discrete values in 0, 1.

In a first attempt, we have tried to use a fixed point method with a convergence criterium as Jouve et al. in [START_REF] Allaire | Simulation numérique de l'endommagement à l'aide du modèle Francfort-Marigo, in Actes du 29ième congrès d'analyse numérique[END_REF]] but the convergence was difficult in our configuration. This problem can also be considered as a Mixed-Integer Programming Problem and solved with corresponding external library like for example lp_solve. But, finally, due to the hypothesis of our problem and to be able to verify each step, we have written an enumerative technique to find the minimum of the functional of energy. We test every case, under the hypothesis that the damage domain is propagating from the basis to the top and cannot present some discontinuities.
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Sensitivity experiments

This part is dedicated to the study of the sensitivity of the numerical model to the parameters of the simulation, with various loading schemes. In a first part, we have tested the sensitivity of the model to the mesh size to find the critical load P min of the applied pressure for damaging the beam and then we analyzed the associated dissipated energy.

Finally, we performed a sensitivity experiment to test the role of the size of the load step increment in pressure.

In a second part, we present some realistic avalanche test cases and their impact on the concrete structure.

To build these scenarii, we have used the characteristic avalanche pressure impacts on a structure described in [START_REF] Ancey | Dynamique des avalanches. Presses polytechniques et universitaires romandes[END_REF], [START_REF] Berthet-Rambaud | Characterization of avalanche loading on impacted structures: a new approach based on inverse analysis[END_REF] and [START_REF] Bertrand | Physical vulnerability of reinforced concrete buildings impacted by snow avalanches[END_REF] and our previous numerical results

about the impact of avalanches on a beam ( [START_REF] Dutykh | Numerical simulation of powder-snow avalanche interaction with an obstacle[END_REF]). We retain mainly two avalanche schemes: a monolayer avalanche flow and a three-layers flow. As the matter of fact, if we consider an approximation of an avalanche flow in a single-layer fluid flow, the pressure repartition along the concrete structure is supposed to be lightly higher at the bottom of the structure and its time evolution is composed of three main parts: a huge impact with a rapid pressure increase, then a stay at a threshold value and then followed by a less steep decrease (this evolution is detailed for example in [START_REF] Berthet-Rambaud | Characterization of avalanche loading on impacted structures: a new approach based on inverse analysis[END_REF] and [START_REF] Bertrand | Physical vulnerability of reinforced concrete buildings impacted by snow avalanches[END_REF]). The majority of huge avalanches are multi-layers flows with a dense part at the bottom (characterized by a high pressure and a low velocity), a powder part at the top (lower pressure and higher velocities) and an intermediate part. To mimic this kind of avalanche, we can built a three layers scenario, with a time evolution of the pressure in intensity along the beam (not shown in this study). Critical load for damage We have seen that we were able to explicitly calculate the critical bound for the pressure P min assuming a specific geometry of the damaged zone. The first experiment is performed with an increasing load, uniformly distributed along the height. This first experiment helps us to determine if the numerical simulations allow to retrieve the same value, and the precision of the mesh we need to correctly catch the critical pressure. The theoretical critical load is P min = 5976 Pa (found in the analytical study) and the relative error with respect to mesh size is represented in Figure 5. In this experiment, the pressure increment is ∆P = 10 Pa. We can remark that from 200 elements, for L = 2 m that is to say ∆x = 0.01 m, the critical pressure is computed by the numerical approximation with a relative error less than 6.10 -3 .

Dissipated energy by the damage of the beam As detailed in Section 2, the main drawback of local damage models is characterized by an important dependance of the solution to the mesh size. Without homogeneization, dissipated energy by damage depends on the mesh and tends to decrease with the size of elements. Contrary to that, the model proposed by Francfort and Marigo in [START_REF] Francfort | Stable damage evolution in a brittle continuous medium[END_REF] introduces a global minimisation of the energy in the whole structure and avoids this drawback for a value of E 1 > 0. The energy dissipation is represented in Figure 6. We can observe that the evolution of the dissipated energy by damage depends on the discretisation, but converges towards a finite limit curve. 

Realistic scenario of avalanches

In this second part, we study a realistic scenario of loading. This is a class of realistic mono-layer avalanche with a constant load along the height of the beam. For this experiment, we have chosen a mesh size of ∆x = 0.01 m, which is sufficient to accurately capture the critical load (see Figure 5).

Increasing loading in time and discharge

In this part, we highlight the irreversibility of the processus of damage.

This scenario is built with an increasing part, a stable stage at a constant level of pressure followed by a discharge. In Figure 9b, we illustrate with bars the percentage of the damaged beam relative to the total height. We can see that above the critical load, the damaged part of the beam increases while the pressure load increases. And, as expected, we can see that the damaged part of the beam never decreases although the applied pressure decreases, showing the irreversibility of the damage mechanism. The top displacement of the beam is also correlated with the value of the load as we can see in Figure 9c. 

Discussion

The results in these 1D experiments show for one hand that the analytical results are validated by the numerical model. Above a given grid size, the critical load is well catched by the numerical model. As the matter of fact, we have seen that for mesh with elements under 0.012 m, the critical load remains nearly unchanged and the sensitivity to the mesh size is neglegible. Moreover, the model is able to reproduce the irreversibility of the process and allows to underline the effects of the softening of the material and the difference induced in the tip displacement.

A variational model with tension and compression damage mechanisms

The damage model presented in Section 2 does not make any difference between the behaviour of the material in tension and compression, which is a severe drawback for quasi-brittle materials such as concrete or rock materials. In this section, we extend the model including a different evolution of the damage variable in tension and also in compression.

To this aim, we formulate a new model with a non-zero elastic tensor when the material is fully damaged. The considered theoretical framework is still a variational approach to damage to keep the stability properties. Following the work in [Comi, 2001] and [START_REF] Comi | Fracture energy based bi-dissipative damage model for concrete[END_REF], we formulate the energy separated in two terms: a term using the positive part (reps. negative part) of the trace of the strains and an elastic modulus depending of the damage variable in tension (resp. in compression).

As explained in the introduction, in the present work, we use a model with a positive residual elastic modulus when the material is fully damaged to avoid instabilities.
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Definition of the constitutive law

In [Comi, 2001], the constitutive law reads as:

σ(u) = E 0 1 + ν (1 -χ t )(1 -χ c )ε d (u) + 1 3 E 0 (1 -2ν) (1 -χ t ) tr + (ε(u))I + 1 3 E 0 (1 -2ν) (1 -χ c ) tr -(ε(u))I (40)
where ε d is the deviator part of the strain, E 0 represents the Young modulus of the sound material and χ t and χ c are the damage variables respectively in tension and compression. The operator tr is the trace operator and the superscript + and -stand for the positive and the negative parts1 . In this formulation, the equivalent elastic tensor vanishes if χ t = 1 in traction, or χ c = 1 in compression. We want to avoid this feature as in one hand we consider reinforced concrete with a residual elastic behavior, and on the other hand, from a mathematical point of view, it is a mandatory ingredient for the stability of the solution.

We propose here a new formulation for this equivalent elastic tensor that respects the drop of the elastic modulus from E 0 (sound state) to E 1 (damaged state), while distinguishing tension and compression by considering the following modified elastic moduli that depend on χ c and χ t :

E d (χ t , χ c ) = E 0 (1 + χ t χ c -χ t -χ c ) + E 1 (χ t + χ c -χ t χ c ) E t (χ t ) = E 0 (1 -χ t ) + E 1 (χ t ) E c (χ c ) = E 0 (1 -χ c ) + E 1 (χ c ) (41) 
with the modified constitutive law as follows:

σ(u) = E d (χ t , χ c ) 1 + ν ε d (u) + 1 3 E t (χ t ) (1 -2ν) tr + (ε(u))I + 1 3 E c (χ c ) (1 -2ν) tr -(ε(u))I (42) 
With this model, considering a complete damage state in tension or in compression, that is to say χ t = 1 or χ c = 1 leads to a value of E 1 for the Young modulus. More precisely, it is easy to check that

E d (1, χ c ) = E 1 and E d (χ t , 1) = E 1 E t (1) = E 1 E c (1) = E 1 (43) 
To simplify the notation, we introduce the elastic tensors E d , E t and E c in ∈ T 4 s that can be easily identified from (42) to obtain:

σ(u) = E d (χ t , χ c ) : ε d (u) + 1 3 E t (χ t ) tr + (ε(u)) : I + 1 3 E c (χ c ) tr -(ε(u)) : I. ( 44 
)
The free energy associated to the model in ( 44) is given by

ψ(u, χ t , χ c ) = 1 2 ε d (u) : E d (χ t , χ c ) : ε d (u) + 1 3 ε(u) : E t (χ t ) : tr + (ε(u))I + 1 3 ε(u) : E c (χ c ) : tr -(ε(u))I .(45)

Damage evolution

As in the isotropic case in Section 2, the damage state χ i and the displacement u i at each time t i and each load f i are given by minimizing the following functional of energy over the displacement u and the damage state (χ c , χ t ):

J(u(x), χ t (x), χ c (x)) = Ω ψ(u(x), χ t (x), χ c (x))dx+ Ω κ t χ t (x)dx+ Ω κ c χ c (x)dx- Ω f i (x)u(x)dx- Γ T i (x)u i (x) dx (46) 
subjected to the constraints:

           χ i-1 t ≤ χ i t ≤ 1 χ i-1 c ≤ χ i c ≤ 1 u i ∈ V i . (47) 
The constant κ c and κ t are respectively the damage parameters for compression and traction.

Numerical implementation

To solve our problem, we use an algorithm based on alternating directions: first, we calculate the displacement field at time t i by solving a non-linear problem for a given χ i-1 , and then we minimize the energy function to find the corresponding damage state χ i , with a Quasi-Newton method. The nonlinear problem for computing displacement is nonsmooth and is solved with a semi-smooth Newton method; the algorithm is initialized with the solution of the equivalent linearized system.

Calculus of the displacement

The free energy can be decomposed in the total strain and a trace term:

ψ(u, χ t , χ c ) = 1 2 ε(u) : E d : ε(u) - 1 3 ε(u)E d tr(ε(u))I + 1 3 ε(u)E t tr + (ε(u))I + 1 3 ε(u)E c tr -(ε(u))I (48) 
After the finite element discretization, the first term is nearly the same as in 1D, i.e of the form K e u e on each element (see equation 35) :

K e = Ωe B T e (x) : E d (χ i-1 t , χ i-1 c ) : B e (x) dx. ( 49 
)
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On each element, the new terms containing the trace terms, can be written introducing the generic notation T e (u e ).

Calculating these terms leads to:

v T e T d,e (u e ) = -

1 3 Ωe tr(ε(u e ))ε(v e ) : E d (χ i-1 t , χ i-1 c ) : I dx (50) = - 1 3 v T e Ωe tr(B e (x)u e )B T e (x) : E d (χ i-1 t , χ i-1 c ) : I dx v T e T t,e (u e ) = 1 3 Ωe tr + (ε(u e ))ε(v e ) : E t (χ i-1 t , χ i-1 c ) : I dx (51) = 1 3 v T e Ωe tr + (B e (x)u e )B T e (x) : E t (χ i-1 t , χ i-1 c ) : I dx v T e T c,e (u e ) = 1 3 Ωe tr -(ε(u e ))ε(v e ) : E c (χ i-1 t , χ i-1 c ) : I dx (52) = 1 3 v T e Ωe tr -(B e (x)u e )B T e (x) : E c (χ i-1 t , χ i-1 c ) : I dx (53)
Finally, from the variational formulation, we drop the v function in admissible displacement set, and we get the following non-linear residual to solve for u i :

R(u) = N e=1 1 2 K e (χ i-1 t,e , χ i-1 c,e )u e + T d,e (u e ) + T t,e (u e ) + T c,e (u e ) -F i e . (54) 
Remark: under the plane-strain hypothesis, we use Voigt formulation and thus all the tensors reduce to 2D matrices.

The residual R(u) is a nonsmooth function. More precisely it is a piecewise linear function of u due to the presence the positive and negative part of the trace. Some care must be taken to solve it with a Newton method, since the Jacobian of the residual is not defined everywhere, but only almost everywhere since it is a Lipschitz continuous function. The solution u i is sought as the limit of the sequence {u k } given by semi-smooth Newton technique:

     u 0 = u i-1 H(u k )(u k+1 -u k ) = -R(u k ) (55) 
where H(u) is an element of the generalized Jacobian. From a practical point of view, we consider the following choice for computing the elements of the generalized Jacobian, g ∈ ∂ x (x) + and h ∈ ∂ x (x) -:

g =      0 if x ≤ 0 1 if x > 0 and h =      0 if x ≥ 0 1 if x < 0. ( 56 
)
The convergence of the Newton method is based on the comparison of the norm of the residual with respect to a user tolerance.

Calculus of the damaged state

Given the displacement of the beam at time t i , to calculate the damage state at each iteration, we minimize the corresponding energy function as defined in (46) depending on the displacement u i : 

J(u, χ t , χ c ) = N e=1 1 2 u T e K e (
           χ i-1 t ≤ χ i t ≤ 1 χ i-1 c ≤ χ i c ≤ 1 u i ∈ V i . (58) 
This minimization problem is solved with a quasi-Newton method with projection, suited for bound constrained nonlinear optimization problems [Bonnans, 1983].

A case study on avalanche prevention structures

In this section, the model developed in Section 4.3 is validated and commented on academic experiments (tension, compression, cyclic and bending experiments in Section 5.1.1, and three-point flexural test in Section 5.1.2). In Section 5.2, the interest of this model is demonstrated on the forecast of the onset of damage in avalanche prevention structures made of concrete.

Validation and sensitivity experiments

In this section, some experiments are performed to test the sensitivity of the model to various numerical parameters and validate the global behaviour in tension, compression and bending. For each experiment, the configuration is explained and the loading scenario is detailed. Our goal is to show that the model does not exhiting sensitivity to mesh sizes and loading step sizes. We sum up in Table 2 the In order to validate our model with tension-compression terms, we perform different numerical test scenarios. First a pure tension or compression simulation allows testing separately the effect of the damage coefficients κ c and κ t . Then, a cyclic experiment allows to verify the irreversibility of the phenomenon. Finally a bending test shows the ability of the model to consider mixed damage modes. In each situation, the sensitivity to some numerical parameters (mesh size, E 1 values, initial default, load step size, . . . ) is tested.

Pure tension or compression experiment

A tension force is applied to the superior part of the beam, increasing in time and equally distributed on the upper face of the beam as we can see on the left side in Figure 10. We also observe in Figure 10 that the damage part in compression is null, as expected, and the displacement at the top of the beam is consistent with the applied force, and reveals the two slopes representing the elasticity of the sound and damaged material. In order to analyze the sensitivity of the model to the mesh size, we performed the same experiment with different mesh sizes, and we compare the resulting damage states. We can observe in Figure 11 that if the mesh is too coarse, the critical load for damage is not correctly caught by the model. Increasing slightly the number of elements solves this problem. Above a threshold in the number of elements, the sensitivity of the results to the mesh size is small. We also note that the arrangement of the elements is different from one mesh to another, especially on the boundaries.

This explains the small differences between the cases. Finally, for the experiment in the pure tension test, we can remark that no spurious damage in compression appears due to the mesh choice.

11/06/2020 Concerning the sensitivity to the load step, in Figure 12, which represents three different load step sizes, we can observe that the evolution of damage is modified. This shows that the damage state depends on the history of loading and also reflects the non-linearity between the exerted force and the resulting damage. Note that the chosen numerical strategy might also have an influence, since, at each loading step, we do not use fixed point iterations between the displacement problem and the damage problem to get convergence. Regarding the compression experiment, we obtain comparatively equivalent results that are not reported in the article for the sake of length.

Experiments on E 1 damage state values (same configuration as in Figure 10)

A fundamental assumption of the model is that E 1 must be positive to preserve the stability of the solution. In the following experiments, we test different values of E 1 from 2.10 9 Pa to 2.10 3 Pa during a tension experiment. We can observe in Figure 13 that the evolution damage is rather different, which can be explained by the modified law of E d , 11/06/2020 and E t and E c as well. We can see that the critical bound for damage is also different. As it is not so easy to find the numerical value for the Young modulus of damaged concrete, we can note that the global behaviour does not change in shape except for the very small value 2.10 3 Pa. 

Tensile test with an initial default

With no initial default, the evolution of damage is illustrated in Figure 14 and Figure 15. The onset of damage occurs near the clamped boundary condition. Adding a partially damage element at the center of the beam as an initial default (χ t = 0.9), the onset of damage is substantially modified. In Figure 16 and 17, we see that the damage zone propagates from the zone of the initial default. In spite of the initial default, the propagation of damage in the structure is very similar with respect to the load (the load scenario is the same as the experiment without initial default, with ∆P = 10000 Pa). Only the onset of damage is quicker due to the presence of the initial default. We can also observe that at the onset of the damage, we still have a non-negligeable level of stress at the basis of the beam.

In these experiment, we also calculated the Von Mises norm of the stress, called hereafter VMS.
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Cyclic experiment with equal threshold values and damage

In this paragraph, we perform here a cyclic experiment (a tension phase followed by a compression phase) with equal 11/06/2020 threshold values in tension and compression), κ t = κ c = 300 such that the damage may develop in both directions. In Figure 18, we see that before ending the tension phase, the damage by compression begins. Moreover, both percentage of final damage are not equal: compression damage percentage is higher, which means that the structure due to its geometry is more sensible to compression. The final value of damage percentage is around 62%. We have to note that the damage in compression occurs in an already damaged structure, which leads to unsymmetrical results.

If we have look at the (σ, ε) diagram, we can see that the two parts of the cycle are not identical neither the displacement at the top of the beam, as the damage in compression begins before the end of tension phase.

11/06/2020 The damage in tension propagates from the bottom towards the top of the beam, in nearly continuous manner.

Contrary to that, the damage in compression presents a different spatial distribution, with layers of damaged and undamaged areas. In the last Figure 22, the damage state slowly evolves, showing the vertical propagation of the damage in tension and the localized damage in compression.
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To compare we perform another cycle experiment, but we begin with the compression phase as we will see below.

Reverse cyclic experiment with equal threshold values

In this experiment, we begin with the compression phase and we can see that the resulting compression damage rate is higher at the beginning of the experiment (Figure 23). At the end, contrary to the previous experiment, the final damage rate in tension is higher. We have to notice that the final value of the damage is around 50% in this experiment. The difference between the two experiments can be explained by the geometry of the beam. In these examples, the beam is thin compared to its length. Therefore, when the compression phase occurs, the transverse efforts are supported by the very thin part of the beam, while the tension effort tends to contract the structure. We also can observe as a consequence that the (σ, ε) diagram is also slightly different.

Cyclic experiment with realistic threshold values

We perform here a cyclic experiment (a tension phase followed by an equivalent compression phase) with differentiated threshold values in tension and compression (See table 2).

11/06/2020 We can see in Figure 24, that as the threshold values are very different, mimicking real concrete materials, the resulting damage state in compression remains null. We also note that the damage state in tension never decreases even during compression phase, showing the irreversibility of the process. We can observe in Figure 25 that decreasing the value of E 1 in the cyclic experiment, on one hand increases the 11/06/2020 value of stress and strain during the tension phase (horizontal scale is not the same) but not affect the compression phase.

Bending experiment with realistic threshold values

In this part we perform a real bending experiment. The force is applied on the left face of the beam and is for the moment spatially constant along the face, but varying in intensity with time (∆P = 500 Pa).

First, we can note that due to high threshold value in compression, no damage appears in that direction. On the other hand, we can see in Figure 26 that the percentage of total damage in tension slightly varies with the mesh size.

The most varying quantity is the displacement at the top of the beam at the end of the experiment: it is due to the position of the elements in the unstructured mesh. We made some tests concerning the damage threshold in compression in this bending configuration. As expected, the more the threshold increases the more the percentage of the damage zone decreases. We can also state from these results that the modifications of the damage zone in compression does not affect the damage part in tension (see Figure 27). Due to the high threshold in compression, no damage in compression is observed in this experiment (Figure 29 and Figure 30). The damage in tension is initiated at first free point, in the middle of the beam. No initial default is integrated in the structure but only a virtual crack in the lower center of the beam. The damaged area then propagates up along the vertical as we can see on figure [START_REF]χ in tension (left) and VMS (right) fields during the propagation of the damage[END_REF], leading to the complete break of the beam. 

Realistic configuration

In this configuration, the snow is composed of three different density layers and does not reach all the height of the beam. The size of the beam is slightly different because we take a greater dimension in the horizontal direction. The exerted pressure is distributed up to a prescribed height of the structure as we can see in Figure 33b. The pressure values and profile are realistic ones as given, for example, in [START_REF] Sovilla | Impact pressures and flow regimes in dense snow avalanches observed at the vallée de la sionne test site[END_REF] or in [START_REF] Sovilla | Gravitational wet avalanche pressure on pylon-like structures[END_REF].
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Discussions

In this experiment the numerical parameters have been chosen to be close to the real situation. In so far as each real situation has its own characteristics, we choose on special configuration and scenario of avalanche to probe our model.

This experiment shows us that the model is able to reproduce in a realistic way the effects of a three-layers dense avalanche with various scenarios. The difference between damage in tension and compression is correctly reproduced in the expected areas. Moreover, this can be easily adapted to other geometries and other load scenarios.

Conclusion

In this article, a mechanical model of damage which considers a different behavior in traction and in compression is developed in the framework of a variational approach to damage pioneered by Francfort & Marigo. A numerical method for this mechanical model is also proposed based on the minimization of the total energy, by alternating the minimization on the displacements and on the damage variables. Beyond the development of the model and the numerical method, the main achievements detailed in this article are:

• In the one-dimensional (1-D) setting, analytical developments have been carried out to give closed-form formulae of the limit pressure that causes the onset of damage. A sequence of 1-D experiments validates our model, and 11/06/2020 we analyze its mathematical and numerical properties such as convergence and sensitivity to parameters. We have shown that our numerical approach was in good agreement with the analytical results.

• In the two-dimensional (2-D) setting, the numerical experiments demonstrated good properties with respect to the sensitivity to numerical parameters. They have shown good agreement with what was expected, i.e. a low sensitivity to the grid size and a good behavior during charge and discharge cycles. Furthermore, the model was able to reproduce the main expected features of the damage evolution related to the introduction of tension-compression terms. Naturally, the results depend on the critical parameters of the model such as the history of loads, the geometry and the Young modulus, but in a coherent way. In several standard mechanical configurations, such as a tension/compression cycle and a three-point flexural test, the resulting solutions are in good agreement regards to the literature. The three-point flexural test shows that the numerical method succeeds in finding the initial damage point. In the traction test on the beam, the initiation of the propagation of damage is also well reproduced in the experiment with an initial default.

• Finally, realistic experiments have been performed to analyze the response of a concrete structure to avalanche impacts.

As a conclusion, we can stat that the model shows its interest for forecasting the structural safety of concrete protection walls As a perspective to this work, the following items can be listed:

• The numerical method needs to be implemented in a High-Performance Computing (HPC) context to enable the simulation of large 3-D structures. Our implementation is quite time-consuming, the Fenics environment as used in [START_REF] Tanné | Crack nucleation in variational phase-field models of brittle fracture[END_REF]] could be a good option.

• The quasi-static formulation limits our study to the cases of slow dense avalanches. To consider high-speed powder-snow avalanches, the introduction of the dynamics is mandatory.

Finally, we can state that our model meets the objectives that have been laid down, that is, to forecast accurately the onset of damage in a concrete structure. With a quite manageable and user-friendly code, the model is able to determine the main zones of damage due to an impact of a dense avalanche.
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 1 Figure 1: Sound and damaged domains, respectively Ω 0 and Ω 1 of the solid Ω.
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 2 Figure 2: Clamped beam and axes

  applied load Pc with respect to α i-1 (Eq. 26) of damage α * i with respect to the load (Eq. 28).
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 4 Figure 4: Evolution of the critical load, function of the previous state α i-1 (left) and evolution of the damage state, function of the load P 0,i (right).
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 5 Figure 5: Relative error for the critical pressure P min with respect to the mesh size.

Figure 6 :Figure 8 :

 68 Figure 6: Dissipated energy by damage
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 9 Figure 9: Load history, percentage of damaged beam and maximum bending

  general parameters for the validation of the model in 2Young coefficient for sound concrete E 0 = 2.10 10 Pa Young coefficient for damaged concrete E 1 = 2.10 9 Pa Damage parameter in traction κ t = 300 J/m 3 Damage parameter in compression κ c = 10000000 J/m 3
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 10 Figure 10: Tension-Compression model: configuration of the tension experiment (left), pressure load (center left), damage function in percentage (center right) and the displacement U at the F point (right).
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 11 Figure 11: Comparison between different sizes of mesh with constant ∆P = 10000 Pa: scenario of charge (left), displacement (U ) at the top point (center) and damage evolution in percentage (right).
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 12 Figure 12: Comparison between different load steps with constant size of grid: scenario of charge (left), U at the top point (center) and damage evolution (right).
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 13 Figure 13: P, χ t for the tension experiment with different values of E 1 parameters from 2.10 9 Pa to 2.10 3 Pa
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 14 Figure 14: χ t evolution from the first damage state
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 15 Figure 15: Corresponding VMS evolution during the tensile test without initial default
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 16 Figure 16: χ t evolution from the first damage state with an initial default
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 17 Figure 17: Corresponding VMS evolution during the tensile test with an initial default
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 18 Figure 18: Traction-compression Model: tension-compression cycle. Applied load P , evolution of damage χ t and χ c , displacement at the top of the beam U and the stress σ with respect to the strain ε (values of σ and are taken at the central point).
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 19 Figure 19: TC Model: tension-compression cycle. χ t at load 29 (left), χ c at load 31 (center) at the onset of the damage and corresponding VMS field (right, load 30).

Figure 20 :Figure 21 :

 2021 Figure 20: TC Model: tension-compression cycle. χ t (left), χ c (center) and VMS field (right) at load 32.
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 22 Figure 22: TC Model: tension-compression cycle. χ t (left), χ c (center) and VMS field (right) at load 99.

Figure 23 :

 23 Figure 23: TC Model: tension-compression cycle. P, χ, U et σ/ε (values of σ and are taken at the central point).

Figure 24 :

 24 Figure 24: TC Model: tension-compression cycle. P, χ, U and σ/ε, for E 1 = 2.10 9 Pa (values of σ and are taken at the central point)

Finally, we can

  see on the σ/ε diagram the consequence of the damage on the upper part of the figure (change of the elasticity slope) and the undamaged behaviour in compression in the lower part of the figure. We can observe that the slope during the compression part without damage is not equal to the slope of the tension part without damage;It is mainly due to the fact that the displacement ε 11 (transverse part) is not null during the compression phase as we can see in Figure25(that means that the transversal efforts are not null) and the damage function has been modified during the tension part of the experiment.

Figure 25 :

 25 Figure 25: TC Model: tension-compression cycle. Evolution of σ 11 , σ 22 (left), ε 11 and ε 22 during the loads (center), σ/ε for E 1 = 2.10 8 Pa (right) (values of σ and are taken at the central point).

Figure 26 :

 26 Figure 26: Comparison of different mesh size
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 2728 Figure 27: Damage in tension (left) and in compression (right) for different values of the threshold in compression.

Figure 29 :Figure 32 :

 2932 Figure 29: Load scenario and Damage fields
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 333537 Figure 33: Load schemes and damage zone of the beam
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For a scalar x = x + + x -, with x + = x if x ≥ 0 and 0 if x < 0 and, x -= x if x ≤ 0 and 0 if x > 0.11/06/2020