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Abstract
Access-control policies, often the mechanism of choice to
implement the security requirements of confidentiality and
integrity, can be found in a wide range of application sce-
narios. Although there are standard languages for access-
control and a plethora of works devoted to assure the well-
formedness of access-control policies, little attention has
been paid to the problem of providing robust and adapt-
able runtime evaluation engines for the integration of access-
control in new DSL’s and platforms. Indeed, the integration
of access-control requires the development of critical infras-
tructure facilities around it, so that the policies can be: 1)
analyzed and validated and 2) efficiently evaluated against
run-time access requests.

In order to solve this problem, this paper explores the use
of the already mature model transformation frameworks as
modern, application-independent infrastructures for access-
control languages i.e., following the Policy Enforcement
Point(PEP)-Policy Decision Point(PDP) architecture. More
specifically, we show how model-driven engineering and the
ATL model-transformation framework can be used to lift
the infrastructure development burden from developers by
providing a robust, flexible and re-usable runtime evaluation
engine for rule-based access-control policies.

Categories and Subject Descriptors D.2.2. [Software En-
gineering]: Design Tools and Techniques—Computer-aided
Software Engineering; K.6.m. [Management of Computing
and Information Systems ]: Miscellaneous —Security

Keywords Access-control, Model-driven Engineering, Model
Transformations, DSLs

1. Introduction
Access-control policies, used as a means of securing appli-
cations w.r.t. the confidentiality and integrity properties, are
a pervasive mechanism in current information systems, with
many different models and languages used for its specifi-
cation. However, while there exist standard access-control
languages following different well-defined paradigms (e.g.,
Role-based access-control [27], Mandatory access-control
[1]) and a plethora of academic works focused in assuring
the well-formedness and correctness of policies, little at-
tention has been paid to the runtime evaluation of such lan-
guages. While enterprise applications and frameworks with a
large base of users usually implement and provide their own
access-control facilities (e.g., the Java EE access-control,
well-know Content-management Systems, etc.), i.e., lan-
guage and runtime infrastructures, as a core component, this
is not the case for smaller frameworks and new DSLs. More-
over, frameworks providing ready-to-use generic access-
control with runtime evaluation engines are scarce, being
notable exceptions the XACML[21] and EPAL[3] frame-
work that are, however, model-specific and still not widely
adopted.

The integration of an access-control mechanism in a
given platform or technology requires however a critical
runtime infrastructure around it. Notably, facilities to allow
1) the analysis and validation of policies, so that errors and
anomalies can be detected without impacting the real, pro-
tected resources, 2) run-time evaluation of access-requests
to protected resources as, effectively, access-requests need
to be evaluated against the corresponding authorization poli-
cies before issuing access decisions.

Developing such an infrastructure is a costly, time con-
suming and error prone task requiring important testing and
validation efforts as effectively, any error or performance is-
sues in these infrastructure facilities may impact both the
correctness of the authorization decision and the usabil-
ity of the application. This situation is worsened when the
access-control infrastructure is tangled with the application
as it makes it very difficult to perform validation and testing
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tasks. For this reason, one recommended approach [33][21]
for the implementation of access-control frameworks is to
separate the infrastructure logic from the application logic
by using a reference monitor [33] architecture. It consists of
two basic components: a Policy Enforcement Point (PEP)
and a Policy Decision Point (PDP). Then, every request
made by a subject is intercepted by the PEP and then for-
warded to PDP for an access decision evaluation.

In this paper, we propose the use of model transforma-
tion frameworks as ready-to-use infrastructures able to lift
the development burden from security designers and devel-
opers. Concretely, we show how the ATL model transforma-
tion language and framework[15] can be used as a core com-
ponent to create application-independent infrastructure for
access-control languages that: 1) follow the Policy Enforce-
ment Point(PEP)-Policy Decision Point (PDP) architecture
and 2) are able to adapt to multiple access-control languages
and paradigms. Effectively, we claim that the problem of the
evaluation and validation of access-control policies can be
translated into a model transformation problem where the
model transformation execution is used to derive an autho-
rization decision. We believe that a decade of research and
development in the field of model transformations makes
current model transformation frameworks mature infrastruc-
tures able to take over the task. We demonstrate the feasibil-
ity of our approach by developing a prototype implementa-
tion for an attribute-based policy language.

Our approach first translates a given access-control pol-
icy to a model transformation by means of a Higher-Order
Transformation (HOT) that is automatically derived from
the policy metamodel and that includes the semantics of
the access-control language. Then, it uses the transformation
execution framework to launch the generated transforma-
tion on concrete access-requests to yield access-control deci-
sions. Finally, a refining transformation implementing com-
mon rule combination algorithms is used in order to solve
possible rule conflicts. Note that using our approach the de-
velopment of a PDP is greatly reduced as all the pattern-
matching, rule scheduling and conflict resolution is dele-
gated to the model transformation framework (the latter as
an extra refining transformation) reducing testing and vali-
dation efforts. Moreover, using model transformation frame-
works as infrastructure presents several advantages: 1) Flexi-
bility: policy, request and evaluation metamodels can be eas-
ily modified for adding special features like traceability or
support to obligations and recommendations 2) Efficiency:
advanced execution modes like incremental propagation and
lazy and parallel evaluation are readily available and can
be used transparently without modifying the transformation
specification 3) Verification and Validation: results on model
transformation correctness could be reused to verify that the
policy translation and execution are correct.

The rest of the paper is organized as follows. Prelimi-
nary concepts are introduced in Section 2 whereas motiva-

tion is provided in Section 3. Section 4 describes our generic
approach followed by a demonstration of its application to
concrete technologies in Section 5. In Section 6 an evalua-
tion of our prototype is provided. Related work is discussed
in Section7. Finally, we conclude the paper in Section 8 by
summarizing our contributions and discussing future work.

2. Preliminary Concepts
In order to ease the discussion, in the following we will
introduce in detail the concepts of access-control and model
transformation.

2.1 Access-control
Access-control [4, 28], often simply called Authorization or
Secrecy, is a mechanism aimed at assuring that the informa-
tion within a given Software System is available only to au-
thorized parties. Therefore, access-control is used in order to
assure two system properties: Confidentiality and Integrity,
by controlling that only trusted entities modify or write the
data.

Figure 1 shows the core concepts of access-control,
namely Object (or Resource), Subject, Action, and Permis-
sion (or Privilege). They are described as follows:

Objects are normally passive entities within systems.
They represent pieces of information such as files in oper-
ating system or tables in relational databases. Thus, objects
in the context of access-control are any resource that can be
accessed within a system. Subjects are the active entities in a
system (Subjects can be users of more sophisticated entities
like groups or roles). They represent the actors to which the
access to Objects is controlled. Actions are any kind of ac-
cess to the Objects that may be performed by the Subjects in
a given system. From the classical C.R.U.D. (Create Read,
Update, Delete) operations in database systems to sending
a HTTP package in a network. Permissions relate Actions
with Objects. A permission is thus the right to perform a
given Action (or set of actions) on a given Object (or set of
objects). These permission are, in turn, granted to Subjects.
Summarizing, access-control is about granting or denying to
Subjects in a system the Permissions to perform Actions on
Objects.

ObjectActionSubject
permission
assignment

Permission

Figure 1. Access-control Core Concepts

However, directly assigning permissions to Subjects be-
comes unpractical when the user-base of the applications is
large (as in the case of modern web applications) and thus,
in real applications, the definition of the permissions and its
assignation is often performed by using two concepts:
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• Rule: A rule is the assignation (or denial) of a permis-
sion to a given subject. Generally, access control rules
have the following form:

Ri : {conditions} → {decision},

where the subindex i specifies the ordering of the rule,
decision can be accept or deny and conditions is a set
of rule matching attributes like the source and destina-
tion addresses, holding roles, but also environment condi-
tions like time, etc (note that there exist alternative, less-
general models where attribute-based rules are used to
the assignment of roles instead of permissions [2]).

• Policy: An access-control security policy is the set of per-
mission assignations within a given information system,
which is composed of a set of Rules. This policy consti-
tutes a mere definition of the security requirements for
the system, while the process of implementing the mech-
anisms to make the system follow the rules it defines is
called enforcement.

Rule-based access-control simplifies the management of
security policies. However, this comes at the price of intro-
ducing anomalies. In more detail, rule-based access-control
policies may contain inconsistent rules, i.e., rules that for the
same request yield different evaluation result. This problem
is generally solved by using rule combination algorithms
telling, out of a set of conflicting rules, which one to choose.

Finally, the core concepts of access-control described
above can be organized in different ways and hold differ-
ent meanings. Concretely, access-control policies are de-
fined conforming to access-control models (or paradigms)
that define the necessary elements to construct their con-
tained rules along with their semantics. Due to the efforts
that both the research and industrial communities have com-
mitted to the subject, diverse models have been proposed
in the last decades where the most popular are Mandatory
Access-Control (MAC) [1], Discretionary Access-Control
(DAC) [1], Role-based Access-Control (RBAC) [27] and
Attribute-Based Access-Control [34]. Notice that although
we will focus here on attributed and rule based access con-
trol, the approach we propose can be applied to policies
following any of the aforementioned paradigms.

2.2 Model Transformations
Model transformations are at the core of model-driven engi-
neering by providing the means for automating the manipu-
lation of models. A model to model transformation (M2M)
transforms a model Ma conforming to a metamodel MMa

into a model Mb conforming to metamodel MMb where
MMa and MMb can be the same or different metamod-
els. While this kind of transformation can be implemented
by using general purpose languages, model-transformation

languages and frameworks exist in order to ease its specifi-
cation by providing facilities to efficiently query and manip-
ulate models.

In some model transformation languages, for example the
QVT-based languages [26], a model transformation is itself
a model, that is, it conforms to a metamodel which is part of
the model transformation language’s definition. This facili-
tates the definition of Higher Order Transformations (HOTs
i.e. transformations which have other transformations as in-
put and/or output).

There exist many different model transformation lan-
guages and paradigms with different features. Here we will
focus on rule-based, declarative and non recursive model
transformation languages such as QVT, ATL or ETL[18].

3. Runtime Evaluation Support:
Requirement of an Efficient and Flexible
PDP for DSLs

Let us consider the integration of access-control into a
given application scenario. While enterprise applications
and frameworks with a large base of users usually imple-
ment and provide their own access-control facilities, i.e.,
language and runtime infrastructures, as a core component,
this is not the case for smaller applications and DSLs. In the
same sense, there are no widely adopted access-control run-
time infrastructures ready to be re-used. As a consequence,
in order to integrate access-control, several different tasks
need to be performed by the security designer or developer.
Considering a PEP-PDP architecture and workflow as the
one depicted in Figure 2, the tasks to be performed are as
follows:

PDP

Policy 

read

PEP
Access to
resource

Access
request

can 
access? Decision

Write AC
Rules

security
pointcut

DESIGN TIME RUNTIME

Figure 2. PEP-PDP Architecture and Workflow

1. Definition of the abstract and concrete syntax of the
languages used to specify access-control policies and
access-requests.
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2. An infrastructure allowing the evaluation of access-
control requests against access-control rules written in a
given policy, i.e., a PDP. Developing and testing efficient
pattern-matching, rule scheduling and conflict resolution
facilities would be part of this task.

3. An interface mechanism between the host application
and the access-control infrastructure (i.e., the PEP), so
that access to protected resources is intercepted (i.e.,
access-control is enforced).

Since access-control languages are small, the first step
can be considered a relatively simple task. Abstract syn-
tax may be as simple as a database schema and concrete
syntax may be just a web form. When not done manually,
the third step usually deals with some sort of aspect weav-
ing [10, 23] where certain operations are marked as secured.
Therefore, the most complex and critical development ef-
fort lies in the second task. Building a PDP is a costly op-
eration that can easily become prohibitive. Being a critical
component by its very nature (unintended information dis-
closures may lead to important losses in terms of money and
reputation), the development of such infrastructures would
require an intense effort for assuring the current behaviour
of its core components. Thus, in an ideal situation, it would
be desirable to have re-usable and flexible access-control in-
frastructures ready to be used in new applications scenarios.
Unfortunately, that is not the case. The aforementioned facil-
ities of enterprise applications are rarely open nor re-usable,
and moreover, they are specially tailored to specific domains,
so that they are either not adaptable to a new environment,
or as costly as implementing the infrastructure from scratch.

Furthermore, for a real seamless integration into small
frameworks and DLSs a number of more specific require-
ments must be fulfilled:

• The access-control framework should provide ease-to-
use concrete syntax to improve usability. Moreover, con-
crete syntaxes should be easily pluggable and adaptable
without changing the rest of the components.

• New constraints, beyond those imposed by the access-
control paradigm of choice should be easy to add. More-
over, validation and verification of the policy but also of
its evaluation should be easy to perform by using readily
available tools and techniques.

• The policy representation used by the evaluation engine
must be explicit and flexible, so that extra features and
adaptations to new requirements can be performed.

• It should be possible to adapt the evaluation execution.
Examples of such adaptation includes: 1) the generation
of customized traceability information for the decision
process 2) the enhancement of the evaluation outcome,
so that recommendations and obligations are supported.
3) the addition of new rule combination algorithms.

• The evaluation framework must be efficient and adapt-
able to complex scenarios without requiring changes in
other components nor requiring the security designer or
developer to deal with this extra complexity. Indeed, sce-
narios where a policy requires live evaluation are not rare
(i.e., a scenario where the access-request and correspond-
ing access-decision need to be constantly synchronized)
and thus, must be transparently supported.

4. Approach
In order to solve the aforementioned problem, in this paper
we explore the use of explicit models and model transfor-
mation frameworks as core components to provide generic,
flexible and ready-to-use PDPs that 1) can be automatically
derived from the policy model in the general case 2) are eas-
ily customizable for different scenarios.

Indeed, similarly to model access-control policies, a
model transformation function Mt : {SourceModel} →
{TargetModel} taking as an input a source model and
producing a target model can be seen as composed by
rules of the form: Mtri : {Match × Conditions} →
{Output × BindingV alues} where a Match is a source
model element, Conditions are a set of guards that must
hold for the rule to fire, Output is a target model element and
BindingValues are initialization values.

When the element to match and the element to pro-
duce for a rule are always of the same type (in our case,
and as discussed in the next section, of type Request and
Result respectively), this function can be simplified to be
Mtri : {Conditions} → {BindingV alues}. If we make
BindingValues contain the values of an access decision (e.g.,
{accept, deny}), we have that the evaluation of access-
control rules can be seen as a specific case of model trans-
formation where input elements are always of the same type
and the output model element contains a decision value.

As model transformation frameworks are mature tools
with a large amount of research and development work com-
mitted to them (e.g., ATL or ETL [18]), they are ideally
placed to take over the task of evaluating access-control poli-
cies as a special case of their natural range of use.

Following our approach the security developer obtains
for his application a mature and efficient PDP infrastruc-
ture without the need of dealing with pattern-matching, rule
scheduling and conflict resolution. Moreover, she may trans-
parently benefit from a wide range of advanced features
studied over transformation languages as incremental prop-
agation [14], lazy [30] or parallel evaluations [31] or trans-
formation correctness verification [7], [9], [8]. The use of
model as an explicit representation of all involved artifacts
also present advantages, as the possibility of adding domain-
specific constraints to the policy [19], [12].

Note that we consider the problem of integrating PEPs
into host platforms (and the translation of external events and
calls to corresponding access-control requests) as already
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solved in the literature and thus, we will not deal with it here
and refer to the mentioned related work.

This section is devoted to describe our approach to ob-
tain a PDP infrastructure based on model-driven engineering
and the execution of model transformations. Our approach
can be considered as having two different workflows: the
basic workflow as seen by the developer that wants to in-
tegrate access-control into his platform without requiring a
particular access-control model or concrete syntax, and the
advanced workflow that is intended to provide a higher cus-
tomization degree for all involved components.

4.1 Basic Workflow
The basic workflow, depicted in Figure 3, implies a transpar-
ent integration of access-control facilities. To take advantage
of our framework, the platform or DSL developer only needs
to 1) specify the security policy for their resources by us-
ing a given access-control concrete syntax. 2) Issue access-
request, again using a given syntax, and finally 3) retrieve
the access decision and act accordingly.

PEP-PDP

Policy 
Write security 
policy rules
using policy 
language

Write access 
requests using
access 
language

read

Decision

Issue
Access 
decision

Figure 3. Basic Workflow

We will illustrate this integration with an example. Hav-
ing two roles on the system (Employee and Administrator)
and with the aim to protect a resource O1 w.r.t. a read ac-
tion, the security responsible will write the security policy
rules shown in Listing 1 (note that Listing 1 and Listing 2 use
a concrete textual syntax we provide for the metamodels we
describe in Section 5). Then, this security policy will be au-
tomatically and transparently translated into a model trans-
formation specification as the one showed in Listing 3 (the
listing shows an ATL transformation. Further details about it
will be given in the following sections).

Listing 1. Rule Example
Rule r1 (

Subject S1 {attributes <’role ’ = ’Manager ’>},
Object O1,
Action Read

) -> Accept

Rule r2 (
Subject S2 {attributes <’role ’ = ’Employee ’>},
Object O1,
Action Read

) -> Deny

Then, it will have to add interception of access to the pro-
tected object so that it can be passed to the PDP to obtain
a decision. Listing 2 shows the syntax used to pass access-
request to the PDP. Upon reception of this access-request,
our PDP will execute the model transformation in Listing 3
and issue and access-decision. Note that in the presence of
conflicts, the output of the transformation specification be-
comes input to rule conflict resolution algorithms (the choice
of conflict resolution algorithm is the same used for the orig-
inal access-control policy, and thus, can be established be-
forehand.) so that an unique decision is delivered.

Listing 2. Access Request Example

Access(
Subject S1 {attributes <’role ’ = ’Manager ’>},
Object O1,
Action Read

)

Finally, access decision would need to be managed by the
developer accordingly to its needs.

4.2 Advanced Workflow
We have seen how our framework can be integrated in a
given platform or DSL to obtain generic access-control sup-
port by translating access-control policies into model trans-
formation specifications. In the following we will explain the
internals of the basic workflow, i.e., how the artifacts it uses
are obtained and thus, how they can be customized for spe-
cific requirements. The workflow, summarized in Figure 4,
is composed of four steps.

The first two steps, namely, the injection of the origi-
nal policy into a model and the generation of an equivalent
model transformation specification are language-dependent.
The third step, namely the refinement of the evaluation re-
sults is independent from the language and thus, can be
reused for any access-control language.

4.2.1 Language-dependent Tasks
As mentioned above, the first two steps of our approach are
language dependent and thus, they need to be performed
for each new access-control language. Note however that,
as access-control paradigms do not differ greatly, it is possi-
ble to reuse previously developed artifacts as generic com-
ponents. We will show how that is achieved in section 5 by
providing a generic access-control language and correspond-
ing artifact generators.

1. As a first step, our approach requires to inject the original
policy specification into a model. For this purpose, a
metamodel of the policy specification language and a way
to populate instances from policy samples is required.
In many cases the metamodel may be readily available
and the injection step could be simplified by the use
of generative language frameworks, like XText [5], or
reduced to perform database queries. We will also need to
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Listing 3. Generated Transformation Policy
Module SecurityPolicy
c r e a t e OUT : Evaluation from IN : Request ;

nodefault r u l e rule1 {
from

s : Req ! Requests (
s . filter ( Sequence{Tuple{id=’S1’ , attributes = Sequence{Tuple{name = ’role’ , value = ’administrator’}}} ,

Tuple{id=’O1’ , attributes = Sequence{}} ,
Tuple{id=’read’ , attributes = Sequence{}}}) )

to
t : Evaluation ! Evaluation (

effect <− ’Permit’ ,
ruleId <− ’Rule1’ ,
ruleOrder <− 1

)
}
nodefault r u l e rule2 {

from
s : Req ! Requests (

s . filter ( Sequence{Tuple{id=’S2’ , attributes = Sequence{Tuple{name = ’role’ , value = ’employee’}}} ,
Tuple{id=’O1’ , attributes = Sequence{}} ,
Tuple{id=’read’ , attributes = Sequence{}}}) )

to
t : Evaluation ! Evaluation (

effect <− ’Deny’ ,
ruleId <− ’Rule2’ ,
ruleOrder <− 2

)
}

Figure 4. Approach

perform the injection step for the access-control request
if they are not directly specified as a model. However,
attribute-based access request are very generic and thus,
the requests metamodel we describe in Section 5 could

serve a large variety of access-control languages so that
we can consider it language independent.

2. Once the original policy specification is represented as a
model, we can proceed to the second step, namely, the
generation of the corresponding model transformation
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specification. This transformation specification is auto-
matically generated by a HOT (see Policy2TransfSpec in
Figure 4) that is, in turn, automatically derived from the
metamodel specification of the access-control language
at hand by the means of a Model-to-text transformation.
It is thus adaptable to metamodel variability. Moreover,
while the generated HOT may require some manual adap-
tation for some very domain specific access-control lan-
guages and models, most of it will remain re-usable.
Once the HOT is available and together with the previ-
ous injection step, policies written in the original access-
control language will be transparently translated to trans-
formation specifications for any application.

4.2.2 Language-independent Task
While the previously described steps need to be performed
for each new access-control language, the third step use
generic models and thus, 1) it is language-independent and
2) only need to be implemented once. Then, it is reused
for any access-control language. Concretely, when the in-
jection and HOT generation steps are ready, the refinement
of the evaluation result to eliminate possible conflicts is fully
reusable.

As introduced in Section 2, access-control policies may
contain inconsistent rules, i.e., rules that for the same request
yield different evaluation result. This problem is generally
solved by using rule combination algorithms telling, out of a
set of conflicting rules, which one to choose. Our approach
takes this situation into account and includes an extra refin-
ing step as an in-place model transformation. Dashed line
box of Figure 4 summarizes this step.

Finally, the elements created in the aforementioned steps
are then combined in order to provide support for the basic
workflow explained in 4.1.

5. Building a PDP Infrastructure with ATL
In the following we detail our generic approach for the spe-
cific case of implementing a PDP for a rule and attribute
based access-control language by using the ATL transforma-
tion language. The choice of ATL as a concrete technology
for our prototype derives from its popularity among the sci-
entific and industrial communities (ATL being the de-facto
standard and arguably one of the most used model transfor-
mations languages). We choose a generic rule and attribute
based access-control language because of its flexibility (at-
tributed access-control have been demonstrated to be able
to emulate other access-control models like MAC or DAC
[13]) and applicability to real world applications where rule-
based access control with mixed positive and negative logic
is often required. Notice that although we demonstrate our
approach over ATL and a generic rule and attribute based
access-control language, our approach is generic and both
ATL and the access-control language could be substituted

for other languages of similar features without requiring
modifications to the general process.

5.1 Language-dependent Tasks (Steps 1 and 2)
In the following, we describe the two language-dependent
steps that need to be performed when a new access-control
language is integrated in an application by using our ap-
proach. Note that when an existing language infrastructure
as the one we describe here (metamodel plus parsers) is read-
ily available to the software developers and designers, these
two steps are not required.

5.1.1 Step 1. Policy Metamodel and Injection:
The first step of our approach supposes a mere translation
between technical spaces. We intend to provide the means to
automatically pass from the technical space of the concrete
policy representation (in our case a textual syntax as showed
in Listing 1 and as it is common in real applications) to mod-
elware, so that we can use it as an input to the transformation
specification step. As mentioned above, we will work here
with a rule and attribute based access-control language that
follows the ABAC paradigm.

In Figure 5 we show the simplified conceptual model of
our policy language (note that for simplicity, we choose to
provide our own policy language, however, other generic
rule-based policy languages as the one described in [23]
could be used in its place). In this language a Policy con-
tains a number of access-control Rules. These rules are com-
posed of a left-hand side LHS and a right-hand side RHS.
The left-hand side is meant to be used to express a number
of conditions for a given access-control rule to be fired. This
conditions are represented as ConditionFields. Each Condi-
tionField may have Attributes that will further describe it.
Attributes have a type and a value. We provide our language
with three specific ConditionField elements, namely Sub-
ject, Object, and Action but other more-specific Condition-
Field elements can be easily added to the language if needed.
The right-hand side is used to express the effect the appli-
cation a Rule has by means of a number of DecisionField
elements. We provide our language with three kinds of De-
cisionField elements: AccessDecision, Obligation and Rec-
ommendation. We focus here in AccessDecisions that repre-
sents upon an access request, an answer with value equal to
permit, deny or not applicable. As in the case of Condition-
Field elements, the language can be easily extended to add
other more-specific DecisionFields.

We have used EMF[29] for the creation of our policy
metamodel. Then, we have created the grammar listed in
Listing 4 to provide the language with the concrete textual
syntax showed in listing 1 (other concrete syntax’s may be
provided). We have fed this grammar to the Xtext frame-
work together with the metamodel to automatically obtain
a language parser, an injector and the corresponding editors.
From this point, users can write access-control policies using
the concrete textual syntax while getting them transparently
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AccessDecision

decision : DecisionKind = 0
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Figure 5. Rule and Attribute Access-control Policy Metamodel

Listing 4. Policy Language Grammar
Policy:

rules+=Rule*;

Rule returns Rule:
’Rule ’ id=ID ’(’ lhs=LHS ’)’ ’->’ rhs=RHS;

LHS returns LHS:
conditionfields += ConditionField (","

conditionfields += ConditionField)*;

RHS returns RHS:
decisions += AccessDecision;

ConditionField:
(Subject | Object | Action)
(
’{’(’attributes ’ ’<’ attributes += Attribute ( ","

attributes += Attribute)* ’>’ )?
’}’)? ;

Attribute returns Attribute:
{Attribute} name=EString ’=’ value=EString;

Subject returns Subject:
{Subject} ’Subject ’ id=ID;

Object returns Object:
{Object} ’Object ’ id=ID;

Action returns Action:
{Action} ’Action ’ id=ID;

AccessDecision returns AccessDecision:
decision=DecisionKind;

enum DecisionKind returns DecisionKind:
Accept = ’Accept ’ | Deny = ’Deny ’ | Undetermined =

’Undetermined ’;

Action

Attribute

name : EString

value : EString

Object

RequestField

id : EString

Requests

id : EString

Subject

[0..*] attributes

[0..*] fields

Figure 6. Request Metamodel

translated to models so that they can be used in the following
steps.

We need to perform the same steps to provide support to
the specification of access-control requests. We provided a
metamodel for access-requests requests (see Figure 6) that
is inspired on the one provided in the XACML specifica-
tion. It consists basically in a Request element containing
the elements identifying the access request, namely, Subject,
Resource and Action. These elements can hold Attribute ele-
ments, that represent additional characteristics (e.g., the role
of the subject). We would like to remark that this metamodel
is generic and can be reused for other access-control lan-
guages.

For brevity we will not describe the grammar we provide
for this metamodel but it would allow us to write (and get
directly parsed as a model) requests as the one showed in
Listing 2.

5.1.2 Step 2. HOT
In our approach, access requests will be evaluated by exe-
cuting an ATL model transformation representing the origi-
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nal access-control policy. In order to do so, we need first to
obtain such a model transformation.

Let us consider a policy represented in Listing 1. From
that representation, we want to obtain an ATL transformation
module showed in Listing 3. The input element of this rule is
an access-request element (the requestFilter call in the guard
references a Helper used to encapsulate OCL expression and
make the rule more readable) and the output is an Evaluation
model element.

The access-request input model element conforms to the
Request metamodel excerpt in Figure 6. The Evaluation
model element corresponds to our Evaluation metamodel
that basically stores a decision for each fired rule and trace-
ability information (notably, rule ID and order) that will be
used later for the refining step.

As model transformations are also models and thus, can
be input and/or output of another model transformation, we
can automatically generate the model transformation by us-
ing a HOT. This HOT takes a policy conforming to our Pol-
icy metamodel as input and produces the desired ATL model
transformation specification as output.

Listing 5. Model-to-text HOT Generation
1

2 [module generate(’http ://www.eclipse.org/emf /2002/
Ecore ’)]

3 [template public generateElement(policy : EClass) ?
4 (name = ’Policy ’)]
5 [comment @main /]
6 [file (’hot.atl ’, false , ’UTF -8’)]
7 module Policy2ATL;
8 create OUT: ATL from IN: Policy;
9

10 rule Module {
11 ...
12 ...
13

14 [for (r : EStructuralFeature | policy.
eAllContents(EStructuralFeature))]

15 [if (r.eType.name = ’Rule ’)]
16 [policy.generateMatchedRule(r.eType

.oclAsType(EClass))/]
17 [/if]
18 [/for]
19

20 [policy.generateFilterHelper(self)/]
21 [/file]
22 [/ template]
23

24 [template public generateMatchedRule(rule : EClass)
]

25 rule Rule2MatchedRule {
26 from
27 s : Policy!Rule
28 to
29 mr : ATL!MatchedRule (
30 name <- s.ruleId
31 ...
32 ...
33 [/ template]
34

35 [template public generateFilterHelper(Policy :
EClass)]

36 ...
37 [/ template]

However, the metamodel of ATL is big and thus, writ-
ing a HOT transformation is a tedious and relatively com-
plex step (see Listing 6) where most of the effort will be

devoted to creating the right structure for the future model-
transformation and not with access-control issues. For that
reason, in our approach the HOT transformation is automat-
ically derived from the Policy metamodel by the means of a
model-to-text transformation.

This way we have a double generative process. First, a
model-to-text transformation automatically generates a HOT
from the Policy Metamodel, and then, the HOT automati-
cally generates transformation specifications out of concrete
access-control policies.

Listing 5 presents an excerpt of the Acceleo[24] template
used to generate the HOT. As can be seen, it uses the meta-
classes of the Policy Metamodel to generate ATL code (see
lines 3, 24, 35 where templates are defined on EClass and
lines 16 and 20 where templates are called on concrete el-
ements). Note that this reflexive way of working adds flex-
ibility to our approach. As an example, the concept of role
that until now has been considered just as another attribute
to the condition field Subject can be consolidated as a sepa-
rated condition. Thus, it would appear explicitly in the list of
conditions of the rule and hold attributes itself, what would
allow to express role hierarchies, etc. This can be achieved
transparently by only adding a metaclass Role to our meta-
model.

Finally, Listing 6 shows an excerpt of the generated HOT
in charge of producing an ATL policy transformation spec-
ification (due to space limitations we only show the rule in
charge of producing ATL matched rules from Policy rules).
Basically, the HOT works as follows:

1. It matches the policy root element of the source access-
control language and produces a new transformation
specification that takes an access-control request as in-
put and produces an evaluation model as target. In our
use case, it matches the Policy metaclass and produces an
ATL transformation module.

2. A requestFilter helper is created in order to factorize
the encoding of access-request’s conditions (Subject, Re-
source and Action) into OCL predicates (we choose to
use a helper instead of directly adding the OCL in the
ATL rule guards for the sake of readability). This helper
will be then called from the rule guards. For simplicity,
the current version of our prototype deals only with At-
tributes of type String as so does our Request Filter that
basically performs string comparison on attribute values.
It can be easily extended to support 1) other types, 2)
the use of a Policy Information Point (PIP) to retrieve
attributes not specified in the Request. We left those ex-
tensions as a future work.

3. Each access-control rule (Rule metaclass) is matched in
order to produce transformation rules as the ones showed
in Listing 3. The HOT rule Rule2MatchedRule matches
the Rule metaclass and produces an ATL rule with all
its required elements: input Pattern, guard, output pat-
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tern and initialization bindings. Notice that, by default,
an ATL transformation module cannot contain two rules
matching the same elements what clearly differs from the
natural behavior in access-control languages where hav-
ing rules matching the same set of request is common
(and where conflicts are solved afterwards by running
rule combination algorithms). To solve this issue, we
have implemented our HOT to produce nodefault ATL
rules. This is a special, not very well-know, feature of
ATL allowing for the creation of rules that may match
input elements matched by other rules. While this will
deactivate the standard tracing and resolution algorithms
of ATL it will not impact the usage of our transforma-
tion in any way as the first can be easily simulated by
creating explicit traces and the second is not needed as
our output model does not have a containment hierarchy.
General properties of termination and confluence are not
impacted either (in the absence of recursive helpers, ter-
mination is guaranteed as input models remain read-only.
Confluence is assured as generated ATL access-control
rules are not inter-dependent).

Listing 6. HOT Generating Rules of Listing 3
1 r u l e Rule2MatchedRule {
2 from
3 s : Policy ! Rule
4 to
5 mr : ATL ! MatchedRule (
6 name <− s . id ,
7 isNoDefault <− true ,
8 isAbstract <− false ,
9 isRefining <− false ,

10 inPattern <− ip ,
11 outPattern <− op
12 ) ,
13 -- start from part
14 ip : ATL ! InPattern (
15 elements <− Sequence{ipe} ,
16 filter <− filter
17 ) ,
18 ipe : ATL ! SimpleInPatternElement (
19 varName <− ’s’ ,
20 type <− ipet
21 ) ,
22 -- start filter
23 filter : ATL ! OperationCallExp (
24 operationName <− ’filter’
25 ) ,
26 fvar : ATL ! VariableExp (
27 referredVariable <− ipe ,
28 appliedProperty <− filter
29 ) ,
30 fseq : ATL ! SequenceExp (
31 parentOperation <− filter
32 ) ,
33 fsub : ATL ! TupleExp (
34 collection <− fseq
35 --retrieve subject attributes
36 ) ,
37 fobj : ATL ! TupleExp (
38 collection <− fseq
39 --retrieve objetc attributes
40 ) ,
41 fact : ATL ! TupleExp (
42 collection <− fseq
43 --retrieve action attributes
44 ) ,
45 --end filter
46 ipet : ATL ! OclModelElement (
47 name <− ’Request’ ,

48 model <− om
49 ) ,
50 om : ATL ! OclModel (
51 name <− ’Request’
52 ) ,
53 --end from part
54 --begin to part
55 op : ATL ! OutPattern (
56 elements <− Sequence{ope}
57 ) ,
58 ope : ATL ! SimpleOutPatternElement (
59 varName <− ’t’ ,
60 type <− opet ,
61 bindings <− Sequence{b1 , b2}
62 ) ,
63 opet : ATL ! OclModelElement (
64 name <− ’Evaluation’ ,
65 model <− om2
66 ) ,
67 om2 : ATL ! OclModel (
68 name <− ’Evaluation’
69 ) ,
70 --begin bindings
71 b1 : ATL ! Binding (
72 propertyName <− ’effect’ ,
73 value <− se1
74 ) ,
75 se1 : ATL ! StringExp (
76 stringSymbol <− s . rhs . decisions . first ( ) . decision

↪→ . toString ( )
77 ) ,
78 b2 : ATL ! Binding (
79 propertyName <− ’RuleId’ ,
80 value <− se2
81 ) ,
82 se2 : ATL ! StringExp (
83 stringSymbol <− s . id
84 )
85 --end bindings
86 --end to part
87 }

5.2 Language-independent Task (Step 3)
As introduced in Section 4, access-control policies may
contain contradictions which are typically resolved by the
means of rule combination algorithms. Examples of such
algorithms are: first-match, where the first triggered rule is
selected, permit-overrides where a rule granting access have
higher precedence that one precluding it, deny-overrides
with the opposite behaviour, or others meant to provide de-
fault behaviour as deny unless permit.

As our evaluation metamodel contains tracing informa-
tion such as rule identification and rule-ordering, the afore-
mentioned algorithms can be easily implemented as a refine-
ment transformation over an evaluation model that filters out
the evaluation elements for which the algorithm condition
does not hold. Moreover, as the algorithms will be defined
over our generic evaluation model, they can be used, once
implemented, for solving conflicts in any access-control lan-
guage. As an example, we have implemented the first-match
algorithm as a refining ATL transformation (see Listing 7). It
defines the first match condition as a helper and then uses it
in the rule application guard so than only the right evaluation
is kept.
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Listing 7. First-match Algorithm
1 c r e a t e OUT : Evaluation r e f i n i n g IN : Evaluation ;
2

3 he lp er c o n t e x t Evaluation ! Evaluation
4 def : isFirstMatch ( ) : Boolean =
5 l e t allEvaluations :
6 Sequence ( Evaluation ! Evaluation ) =
7 Evaluation ! Evaluation . allInstances ( )
8 −>asSequence ( ) in
9 allEvaluations−>iterate ( p ; y : Boolean = true |

10 i f p . request . toInteger ( ) <
11 self . request . toInteger ( ) then
12 false
13 e l s e
14 i f y = true then
15 true
16 e l s e
17 false
18 e n d i f
19 e n d i f ) ;
20

21 r u l e Evaluation {
22 from
23 s : Evaluation ! Evaluation ( s . isFirstMatch ( ) )
24 to
25 t : Evaluation ! Evaluation ( ) }

5.3 Runtime Evaluation (Step 4)
The previous steps had made available: 1) the means to inject
access-control policies (and requests) conforming to our rule
and attribute based language into models; 2) a (generated)
model transformation specification semantically equivalent
to the original access-control policy; and 3) a refining trans-
formation for the resolution of conflicts. We are ready to start
evaluating access-control request.

The Workflow that needs to be performed to achieve this
goal can be seen in Figure 7. It consists in 5 steps: 1) cre-
ate an access-request (by using the concrete syntax available
to the user); 2) inject the access-request into a model con-
forming to our Request metamodel; 3) Launch the ATL en-
gine with the policy transformation specification and the Re-
quest model as parameter. At this point, we obtain an Eval-
uation model; 4) as mentioned in Section 4, in the presence
of conflicts (more than one decision present in the Evalu-
ation model) an extra step is need. It consists in launching
the ATL engine with a refining transformation implementing
one conflict resolution algorithm with the Evaluation model
as input. This process yields an unique access decision; 5)
finally, an access decision is returned to the application.

Note however that most of the steps correspond to the in-
ternal workflow and that the use and chain of MDE technolo-
gies is hidden to the developer (e.g., there exists ant tasks
helping to launch and chain transformations). Therefore the
task of evaluation access-control request is simplified and
reduced to only issue the access-request and wait for the de-
cision.

6. Evaluation
In order to demonstrate the feasibility of our approach, a
prototype PDP for a rule and attribute based language have
been developed. In this section, we evaluate its performance.

Access-Control
Request XText Injection

ATL Policy
Transformation

Execution

Issue Access
Decision

Unique Output

Multiple OutputATL Refining
Transformation

Execution

INTERNAL WORKFLOW

Figure 7. Access Request Evaluation Workflow

We have conducted an experiment consisting in the eval-
uation of an access-control request against access-control
policies (in our case, the transformation specification) con-
taining an increasing number of rules. Concretely, we have
launched our transformation in order to obtain an evalua-
tion for a given request against policies containing 10, 50,
100, 250, 750 and 1000 rules1. We consider 1000 rules as
a realistic case for the applications our approach is meant
to be applied. It is also consistent with the size used in
other PDP evaluation works where one and four thousand
respectively where the limits tested (and that in an enterprise
environment[32] [20]. The rules used for our evaluation have
been uniformly generated so that the complexity of each rule
set is similar and thus, no distortion is added to the experi-
mentation results.
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Figure 8. Performance Evaluation Results

The results of this experiments can be seen in Table 6 and
Figure 8. We can conclude that the PDP performs reasonably
well as the obtained results are on par with those obtained for
the XACML PDP implementations evaluated in [32]. Con-
cretely, the obtained execution times are good with values
below one second for quite complex policies with up to 700

1 experimentation done in a Ubuntu 14.04 64 bits environment with the
following hardware configuration: Intel(R) Core(TM) i7-4600U CPU @
2.10GHz, 16 GB RAM DDR3, SSD.

67



Rules 10 50 100 250 500 750 1000
Time(s) 0.075251 0.08754 0.141308 0.335488 0.652573 1.045864 1.416372

Table 1. Times for the Evaluation of an Access-request Against Policies with Increasing Number of Rules

rules and only slightly over one second for a policy contain-
ing up to 1000 rules.

7. Related Work
Providing efficient PDPs as separated modules for the eval-
uation of access-control policies is an open challenge in the
security and software engineering research communities.

XACML[21] and EPAL[3] are access-control and privacy
frameworks providing a generic access-control language and
propose a PEP-PDP based architecture. However their focus
is in the policy language and not in the evaluation engine,
that mostly acts as a black-box (extensions and adaptations
can only be achieved through the policy language with the
corresponding limitations).

Approaches like UMLSec [16] and SecureUML[22] of-
fer the possibility of modeling (role-based) access-control
policies but they do not directly support their execution.
Close to our work by using MDE techniques for provid-
ing PDPs, in [25] the authors provide a PDP/PEP imple-
mentation for RBAC based in the PCIM standard whereas
in [11] the authors use Security@runtime to implement a
PDP (the PDP itself being implemented in Prolog) that sup-
ports runtime changes in the access-control policy. Milhau et
al. combine secureUML and B-method to obtain verifiable
access-control PDP. Contrary to us, those works are tight
to specific access-control languages and technologies and
their contributed PDPs not specially conceived to be generic
and adaptable. In [23] the authors present a generic rule-
based access-control metamodel and a framework to ’obtain’
domain specific PDPs. However, their approach translates
the security policies to the representations used by existing
PDPs (e.g., XACML evaluation engines) instead of provid-
ing their own execution facilities.

In [12] and [19] authors use OCL to formalize different
properties of access-control paradigms such as static and
dynamic Separation of Duty (SoD). Although some access-
control rules may be expressed in the form of properties and
thus evaluated as correctness verification their focus is not in
the evaluation of access-requests.

Graph transformations are used to specify and reason
about policies in [17]. Contrary to us, they do not hide the
complexities of working with transformation to the final
developer and propose the direct use of the formalism for
the specification of policies. Their focus is also more in the
theoretical capabilities of the formalisms than in providing
PDPs.

More similar to our approach, in [10], authors propose the
implementation of PEP-PDP by using aspect-oriented pro-
gramming and Drools, a business rule management system

for the representation of the policy and PDP reasoning. Our
approach is similar to theirs but we provide a generic ap-
proach that 1) does not impose any concrete access-control
language nor paradigm but that works on any existing one.
2) allows for the uniform (e.g., by using the same set of tool
and techniques) manipulation on both the models (policy)
and the execution specification itself (i.e., the transforma-
tion) to add advanced capabilities like traceability.

We took inspiration from [6], where the authors use ATL
for checking OCL constraints in models. We propose a sim-
ilar approach specially tailored to the case of access-control
policy evaluation. Concretely, we add a refining step for the
elimination of rule conflicts and the use of HOTs for the gen-
eration of the transformation performing the access-request
evaluation.

Finally, evaluation of existing PDPs for the XACML lan-
guage is provided in [32] while in [20] a more specific and
optimized PDP is provided by transforming policies to a
mathematical representation.

8. Conclusions and Future Work
In this paper we have explored the use of a model transfor-
mation framework as an efficient PDP module for access-
control languages. We have shown how the ATL language
can be used as a generic solution for both the generation of
a corresponding transformation specification policy from an
existing policy and the evaluation of the policy rules against
access-control request. We have also shown how the same
transformation framework can be used to implement combi-
nation algorithms to deal with rule conflicts.

As a future work, we intend to extend our approach by
exploring: 1) the use of modeling and transformation frame-
works to manage systems with multiple, possibly-related,
access-control policies. We consider that a method for de-
ciding the right transformation to be used for a given access-
request in a multi-policy environment will be a natural ex-
tension of our approach; 2) the possible benefits that experi-
mental transformation execution modes like lazy evaluation
and incremental propagation may provide to the problem of
evaluating access-control policies as model transformation
executions; 3) the application of model transformation vali-
dation and verification techniques to our HOT and generated
ATL transformations. We believe that this V&V step may
help to discover not only problems with the transformations,
but also problems in the original access-control policies.
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