
HAL Id: hal-02864658
https://hal.science/hal-02864658

Submitted on 25 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Data Processing in Software-Defined
UAV-Assisted Vehicular Networks: A Sequential Game

Approach
Ahmed Alioua, Sidi-Mohammed Senouci, Samira Moussaoui, Hichem

Sedjelmaci, Mohamed-Ayoub Messous

To cite this version:
Ahmed Alioua, Sidi-Mohammed Senouci, Samira Moussaoui, Hichem Sedjelmaci, Mohamed-Ayoub
Messous. Efficient Data Processing in Software-Defined UAV-Assisted Vehicular Networks: A
Sequential Game Approach. Wireless Personal Communications, 2018, 101 (4), pp.2255-2286.
�10.1007/s11277-018-5815-1�. �hal-02864658�

https://hal.science/hal-02864658
https://hal.archives-ouvertes.fr

Efficient Data Processing in Software-Defined UAV-Assisted
Vehicular Networks: A Sequential Game Approach

Ahmed Alioua1
• Sidi-Mohammed Senouci2

• Samira Moussaoui1

Hichem Sedjelmaci3
• Mohamed-Ayoub Messous2

Abstract In large scale networks like Vehicular Ad-hoc Networks (VANETs), the full

coverage of fixed infrastructure is hard to ensure, making network management difficult.

Whether in infrastructure-less environments where the network connectivity is poor or

where the infrastructure deployment is difficult, costly or not profitable. Recently, in the

one side, Unmanned Aerial Vehicles (UAVs) have been used as a new flexible solution to

assist infrastructure-less vehicular networks for the investigation of inaccessible areas. In

the other side, several works have shown interest in the use of the emerging network

paradigm of Software-Defined Networking (SDN) to facilitate the management and

improve the performances of vehicular networks. In this paper, we propose a novel dis-

tributed SDN-based architecture for UAV-assisted infrastructure-less vehicular networks.

The main goal is to fill the gap that no SDN-based architecture has been proposed for these

networks. We focus particularly on a road safety use-case that incorporates UAVs to assist

emergency vehicles in the exploration of affected zones in critical emergency situations.

Moreover, we investigate how to achieve efficient data processing policy through a

computation offloading/sharing decision-making problem. The main challenge is to reach

the best tradeoff between computation delay and energy consumption for computation-

& Ahmed Alioua

aalioua@usthb.dz

Sidi-Mohammed Senouci

Sidi-Mohammed.Senouci@u-bourgogne.fr

Samira Moussaoui

smoussaoui@usthb.dz

Hichem Sedjelmaci

hichem.sedjelmaci@irt-systemx.fr

Mohamed-Ayoub Messous

ayoub.messous@u-bourgogne.fr

1 Computer Science Department, RIIMA Laboratory, USTHB University, Algiers, Algeria

2 DRIVE EA1859, University of Bourgogne Franche-Comte, 58000 Nevers, France

3 Cyber Security, IRT System X, Paris, France

1

http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-018-5815-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-018-5815-1&domain=pdf

intensive tasks in a delay-sensitive context. We formulate this decision problem as a two-
player sequential game approach and design distributed computation algorithms to solve
the problem. Numerical results show that data processing policy of distributed offloading/
sharing algorithms achieves efficient computation performances in terms of delay and
energy whilst ensuring until 28% gain of system cost and 95% better response time,

compared to native computation scenarios and related data delivery UAV-assisted VANET
works, respectively.

Keywords Vehicular Ad-hoc Network � Infrastructure-less vehicular area � Unnamed

aerial vehicle � Software-Defined Networking � Data processing � Sequential
game

1 Introduction

Propelled by the long traffic congestions and high road accidents, Vehicular Ad-hoc
Networks (VANETs) have attracted a lot of interests in the last decade for the propose to
make the traveling experience more pleasant, the road more safe and transportation system
more efficient. Nowadays, VANET architectures suffer from scalability issues since it is
difficult to deploy services in a large-scale, dense and dynamic topology. These archi-
tectures are rigid, difficult to manage and suffer from a lack of flexibility and adaptability
in control. These constraints limit system functionalities, slow down creativity and often
lead to under-exploitation of network resources.

In the last few years, the emerging network architecture paradigm of Software-Defined
Networking (SDN) has become one of the most important technologies to manage large
scale networks. SDN is mainly based on a physical separation between control plane, i.e.,
network control features, and data plane, i.e., data forwarding features, and a logically
centralized control and intelligence in a software controller. Several works in [1–11] have
shown interest in the use of the promising SDN paradigm to address the undermentioned

challenges of VANETs. SDN can be used to bring flexibility, scalability, and pro-
grammability to VANETs as it can exploit the available network resources more efficiently
and, hence, introduces new services. However, the quasi-majority of the proposed SDN-
based architectures are infrastructure-based. Unfortunately, the total coverage of fixed
infrastructure is not yet reached in current VANET systems. Therefore, uncovered
vehicular areas (i.e., infrastructure-less zones) still exist and should be considered in the
design of SDN-based VANET solutions.

Recently, Unmanned Aerial Vehicles (UAVs) are used as a new flexible solution to
assist ground vehicular network in the zones with poor network connectivity or network
partitioning situations [12–15]. Initially, designed for military utilization, the use of UAVs
and especially mini-UAVs such as quadcopters, have been democratized. Nowadays UAVs
are equipped with high definition imaging sensors, embedded processors and communi-

cation modules [15].
Henceforth, UAVs through their fluidity and flexibility, can facilitate many vehicular

applications such as search rescue missions. Indeed, when a critical emergency problem
occurs in a vehicular environment, such as traffic accidents, it often results in a big traffic
jam, which may subsequently prevent emergency vehicles from accessing the affected
zone. UAVs can assist ground emergency vehicles to explore and investigate the inac-
cessible affected zone. Also, UAVs can collect diverse data types about the affected area,
such as aerial photography (pictures, videos, etc.). This information needs to be processed

2

as soon as possible to retrieve vital information about the number and status of victims, the

number of vehicles involved, etc. These types of information are critical to properly

evaluate the damages and assess the criticality of the situation in order to anticipate further

reinforcements and prepare logistics if needed. UAVs and the emergency vehicle should

collaborate to achieve efficient data processing policy while ensuring optimal balance

between short computation delay and low UAVs’ energy consumption.

In this paper, we propose in a first stage a novel distributed architecture to enable SDN

in infrastructure-less UAV-assisted vehicular environments. We project this architecture

into a road safety use-case, in which we propose to equip emergency vehicles with

deployable small UAVs capable of investigating and exploring the inaccessible affected

zone. We investigate in a second stage how to achieve efficient data processing policy for

the collected data by UAV, which includes computation offloading (from UAV to its

emergency vehicle) and sharing (between nearby ground vehicles) decision-making. The

main purpose is to reach the best balance between UAVs’ energy consumption and pro-

cessing response delay. We formulate the offloading/sharing computation decision as a

two-player sequential game. We study the existence of Nash equilibrium and design

algorithms to solve the problem. Further, we demonstrate the efficiency of our solution

compared to others native solutions via numerical results. To the best of our knowledge,

this is the first work that incorporates SDN in UAV-assisted infrastructure-less vehicular

environments and investigates data processing for road safety UAV-aided vehicular

scenarios.

The main contributions of this paper are summarized as follows:

• We propose a novel distributed SDN-based architecture for UAV-assisted infrastruc-

ture-less vehicular networks,

• We investigate data processing in UAV-assisted VANET road emergency scenarios as

an offloading/sharing computation decision-making problem to balance the computa-

tion delay and the consumption energy,

• We formulate the offloading/sharing computation problem as a two-player sequential

game and design distributed algorithms to solve the problem,

• We evaluate the performances of the proposed game-based data processing policy for

different system parameters. Numerical results demonstrate the effectiveness of the

proposed scheme, by ensuring the best tradeoff between the computation delay and the

consumed energy.

The reminder of this paper is organized as follows. We review the related works in Sect. 2.

In Sect. 3, we present the novel distributed SDN-based UAV-assisted infrastructure-less

VANET architecture, describe the UAV-aided road safety use-case and discuss the

motivation of the data processing offloading/sharing computation decision problem. We

bring in Sect. 4, the formulation of the problem and the related sequential game approach.

Section 5 presents the numerical results. Finally, the conclusion is drawn in Sect. 6.

2 Related Work

In this section, we first discuss some related SDN-based VANET architectures before

summarizing the relevant works on incorporating UAVs into ground vehicular network.

3

2.1 SDN-Based VANET Architectures

In the last few years, researchers investigated more how to take advantage of SDN benefits
to improve the performances of current vehicular networks. However, most of existing
SDN-based VANET works [1–6] propose fully centralized SDN-based architecture using
only one centralized controller to handle the overall network. Nonetheless, this assumption
seems clearly impracticable in such dynamic, dense and large networks as VANETs.
Hence, this presents a serious risk of reliability and security and can generate a high end-
to-end delay. There is also a high risk of controller bottleneck and message control
overhead. Given these limitations and to better deal with scalability and reliability, authors
in [7–11, 16, 17] propose to use multiple SDN controllers, and each controller handles a
part of the network. Much better, some of the previous works [4, 7–11, 16] propose to
situate the controllers in the edge of network to guarantee a reasonable end-to-end delay
and satisfy the delay-sensitive application requirements. Authors in [18] and [19], propose
intelligent data offloading strategy based on a fully centralized SDN control mode for
heterogeneous VANET scenarios and 5G-enabled vehicular networks, respectively. Zhang
et al. in [20] propose SOVCAN, an SDN-based method to elaborate a safety-oriented
vehicular controller area for the purpose of ensuring driving safety by monitoring the
driver’s physiological and psychological state.

Nevertheless, almost all proposed SDN-based VANET architectures are infrastructure-
based and host their controllers somewhere on the fixed infrastructure. Nowadays, the full
coverage of fixed infrastructure is not yet reached in vehicular networks even with the
integration of new emerging heterogeneous technologies as the cellular network. Uncov-
ered VANET areas still exist, such for example, in some places when the coverage is not
available and some areas where the fixed infrastructure is absent because the deployment is
very difficult, costly or not profitable. Therefore, uncovered infrastructure-less vehicular
areas must be considered in the design of SDN-based VANET architectures. In this
direction, we have proposed in our previous work in [21] dSDiVN, a fully distributed
SDN-based architecture for infrastructure-less vehicular scenarios with SDN controllers
deployed on mobile vehicles.

In this paper, we attend to take advantages of the flexibility and the capabilities of
UAVs to augment the coverage of the existing infrastructure-less vehicular network and
benefit from the centralized global view of SDN to enhance its performances such as the
end-to-end delay, data forwarding and processing.

2.2 UAV-Assisted VANET Works

Boosted by their high mobility, agility and fast deployment, UAVs are emerged as a
revolutionary technology to assist the next generation wireless communication systems,
especially 5G networks, for divers issues. For instance but not limited to, in [22–24] UAVs
have deployed as an aerial base station for extending the network coverage and capacity of
5G enabled-wireless communications. More concretely, Bell Labs of NOKIA demon-

strated in a recent test the world’s first deployment of F-Cell, a solar-powered self-con-
figured wireless small cell installed using a drone [25]. UAVs have also used in [26], as
edge-cache to offload data traffic and improve the delivery latency in ultra-dense 5G
networks.

Recently, incorporating UAVs to improve vehicular networks performance has attracted
more attention from the researchers and different UAV-assisted VANET works are

4

proposed. In [12], authors propose VDNet, an infrastructure-less sparse UAV-assisted

VANET system to improve data message transmission. Oubatti et al. in [13] and [27],

propose UVAR, a routing protocol for UAV-assisted VANET. Authors in [14] use UAV as

a relay to connect several isolated vehicle’s segments. In [15], multi-UAV-aided VANET

system is intended to improve the VANET performance in harsh environments. UAVs are

used in [28] and [29] as store-carry-forward enabled airborne nodes to assist ground

vehicles for reducing packet delivery delay and improving path connectivity in the pres-

ence of un-cooperative vehicles, respectively. In [30], Sliem et al. propose a routing

protocol for sparse VANET area and analyze the minimum UAV number able to satisfy the

vehicle-to-UAV packet delivery delay constraint. Sharma et al. propose in [31] an

infrastructure-less multi-UAV coordinated VANETs as an efficient solution for tracking

vehicles, analyzing the driver behavior and accurately detecting the faulty drivers for the

purpose of improving the road traffic-safety management. In [32], an SDN-based archi-

tecture is proposed for supporting heterogeneous services in a vehicular network that

integrate terrestrial vehicular infrastructure, aerial UAVs/Balloons and space satellite.

Furthermore, authors in [33], investigate the problem of UAV docking station placement in

a UAV-assisted Intelligent Transportation Systems (ITS) for enabling UAV to reach the

incident location in a reasonable time and eliminate the risk of UAV’s battery failure

during the mission. These works have shown that the use of UAV to assist ground vehicles

can enhance the packet delivery delay with a reasonable overhead. However, almost all

proposed UAV-assisted VANET works deal with information dissemination and data

forwarding problem. To the best of our knowledge, no UAV-assisted VANET work treats

data processing problem. Moreover, in [34], a computation-offloading problem in a UAV

network is investigated, where UAVs can offload intensive tasks to the nearby base station

or an edge server in order to achieve a balance between energy and delay. Recently, some

other works in [35–38] propose SDN-based UAV architectures to enhance the performance

of user/control plane between UAVs, where data collection/forwarding UAVs are managed

through a centralized remote ground controller.

Table 1 summarizes this section by comparing the related works cited above.

In what follow, we propose a distributed SDN-based infrastructure-less VANET

architecture with multiple distributed controllers. We incorporate UAVs to assist

Table 1 Summary comparison between related works

Works SDN-

based

Controller

number

UAV Data

processing

Infrastructure-less

VANET

[1–6, 18–20] Yes Single No – No

[7–11, 16, 17] Yes Multiple No – No

[12–15, 31] No – Yes No Yes

[13, 27–30, 33] No – Yes No No

[32] Yes Multiple Yes No No

[35–38] Yes Single Yes – No

[22–24, 26] No – Yes – No

[34] No – Yes Yes No

[7, 21] Yes Multiple No No Yes

Current work Yes Multiple Yes Yes Yes

5

emergency vehicles for the exploring of inaccessible affected zones in road safety sce-

narios. We investigate how achieving efficient data processing of the data collected by

UAVs. Likewise, several nearly similar works such as in [39] and [40], propose emergency

vehicle prioritization mechanisms to enhance the delay efficiency of emergency services

without considering efficient data processing of delay-sensitive safety tasks or using UAVs

to assist ground emergency vehicles.

3 Background and Motivation

In this section, we first present a novel distributed SDN-based architecture for UAV-

assisted infrastructure-less vehicular networks. Then, we introduce an UAV-aided road

safety emergency scenario as a use-case of this architecture, and we bring the SDN

architecture for the proposed system. Last, we discuss the motivation of data processing

optimization.

3.1 SDN-Based Infrastructure-Less VANET Architecture

In this sub-section, we present a distributed SDN-based architecture for infrastructure-less

vehicular environments, called distributed Software-Defined infrastructure-less Vehicular

Network (dSDiVN). dSDiVN is based on a logically centralized, but physically distributed

multi-hop control plane. By using SDN with distributed multi-controller, dSDiVN benefits

from scalability and reliability of the distributed architecture while preserving the sim-

plicity of centralized management. dSDiVN is based on our previous work in [21]. Here,

we just give an abstract of the SDN-based VANET architecture and for more details refer

to [21].

As illustrated in Fig. 1, to enable SDN in infrastructure-less vehicular environments,

dSDiVN proceeds by: (i) organizing and partitioning the network to make it more stable,

smaller and less dynamic for a vehicle, and to reduce the control overhead and the latency.

In dSDiVN, the uncovered road is divided into equal size virtual segments. Each segment

represents a virtual SDN domain (simplified domain) that regroups all mobile vehicles

within the same domain and with the same direction. The domain size is adjusted to half of

IEEE 802.11p coverage to ensure that all vehicles of adjacent domain still always be

reachable to each other, (ii) assigning a dedicated local controller to handle and control

Local Controller

Data Plane Link

Control Plane Link

Controller Vehicle

DSRC

SD-Domain

WIFI

Primary Controller
Critical emergency situation

Forwarding Vehicle

Forwarding UAV

Controller UAV

Secondary Controller

DSRC

WIFI

Fig. 1 UAV-assited dSDiVN system architecture for road safety use-case

6

each domain. Present on each vehicle, the local controller is initially in standby mode, and

it is activated only when its hosting vehicle is selected as domain controller vehicle. The

local controller handles and manages all the requests of forwarding vehicle members in its

domain. Forwarding vehicles ensure only the monitoring of vehicle parameters (position,

velocity, etc.) and the collection/forwarding of data information through a software local

monitoring and collection agent, and (iii) connecting adjacent local controllers through

V2V (vehicle to vehicle) links using IEEE 802.11p to build SDN-based control backhaul

and enforce global policies. For the management and maintenance of the network parti-

tioning, dSDiVN adapts the distributed clustering algorithm in [41].

3.2 SDN-Based UAV-Assisted VANET for Road Rescue Mission

Recently, UAVs have been proposed as a flexible solution to assist the vehicular network

in infrastructure-less environments [12–15, 31]. By their fluidity and flexibility, UAVs can

facilitate many vehicular applications such as search and rescue missions. Henceforth,

when a critical emergency problem occurs in a vehicular environment, such as traffic

accidents, it often results in a big traffic jam and sometimes in blocked road caused by

crash remains, which may subsequently prevent the emergency vehicles from accessing the

affected zone. We propose equipping the emergency vehicles with a deployable small

UAVs capable of investigating and exploring the inaccessible affected area, see Fig. 1.

UAVs can hover and collect different data information about the affected area through its

onboard sensors, such as aerial photography (pictures, videos, etc.). This information needs

to be processed as soon as possible to retrieve vital information about the number and state

of victims, the number of vehicles involved, etc. These types of information are critical to

properly evaluate the damages and assess the criticality of the situation in order to

anticipate further reinforcements and prepare logistics if needed.

To efficiently handle the aerial/ground control plane communication between UAVs

and emergency vehicle, we propose to take advantage of the centralized control of SDN as

in [35–38]. This will facilitate the remote ground management of UAVs where the

emergency vehicle will play the role of a centralized ground primary controller that deals

with the commands installation of aerial missions, and UAVs are considered as data

collection and forwarding devices. A powerful UAV will play the role of an aerial sec-

ondary controller for the swarm of forwarding UAVs, which ensure only the monitoring of

UAV parameters (battery, position, etc.) and the collection and forwarding of data infor-

mation, see Fig. 1. Using the aerial secondary controller allows to efficiently deal with

aerial requests and can optimize the transmission energy of UAVs, reduce control over-

head, and minimize response delay.

As illustrated in Fig. 2, the proposed architecture is based on the three layers SDN

architecture:

1. Data plane layer consists of all components that only perform the collection and

forwarding of data information. It includes ground data plane sub-layer composed of

ground forwarding vehicles, and aerial data plane sub-layer composed of aerial

forwarding UAVs.

2. Control plane layer consists of all components that centralize the domain/swarm

intelligence and control forwarding nodes. It includes ground control plane sub-layer

composed of the ground controller vehicles, and aerial control plane sub-layer

composed of all aerial controller UAVs. We distinguish three kinds of SDN

controllers:

7

(a) Local controller it is deployed on ground vehicles and communicates with

others vehicles through V2V links using IEEE 802.11p. The local ground

controller handles intra-domain vehicles requests and detains medium compu-

tation capabilities.

(b) Primary controller it is deployed on the ground emergency vehicle and

communicates with controller vehicles through V2V links using IEEE 802.11p

and with aerial controllers using WiFi. The primary controller handles the

ground/aerial control requests and detains powerful computation capabilities.

(c) Secondary controller it is deployed on aerial UAV and communicates with

ground controller vehicle and with forwarding UAVs using WiFi. The

secondary controller handles aerial requests of its swarm forwarding UAVs

and detains modest computation capabilities.

Fig. 2 3-tier SDN architecture of proposed system

3. Service and application layer it contains all the network services and applications.

3.3 Motivation for Data Processing Optimization

In emergency road rescue missions, UAVs are used to assist ground emergency vehicles
for exploring and investigating inaccessible affected road segments. UAVs can reach,
hover and collect diverse data information about the affected zone such as aerial pho-
tography and videos. These data need to be processed to extract relevant information (e.g.,
the number of crashed vehicles and its registration, the number of victims and identity,
etc.) that can help rescue team to enhance the intervention quality. The processing of such
kind of information is generally pattern recognition and video processing which is known
to be intensive computation tasks that require complex calculations and powerful com-

puting and energy resources. Furthermore, the size of the collected information can rapidly

8

increase as for high-quality long video sequences. The computation of such intensive tasks

and/or the transmission of such big data by limited resources device as UAV can result in

slow processing response time, long transmission delay and high energy consumption.

However, in emergency road rescue scenarios, data processing response time is delay-

sensitive and is of vital importance to the point of can save victims life in some situation.

Also, UAV battery lifetime is determinant to the success of exploration rescue mission.

Henceforth, UAVs could collaborate with the ground emergency vehicle that has

powerful computing resources and less energy constraint to achieve efficient data pro-

cessing while ensuring optimal balance between computation delay and energy con-

sumption. For example, in some scenario, it is more beneficial for an UAV in order to save

its energy to compute big data tasks locally and send only the resulted small information to

the emergency vehicle than sending and offloading all the data tasks to be processed on the

emergency vehicle. Moreover, the emergency vehicle can optimize the computation

response delay of high computation intensive tasks by sharing the computation tasks with it

nearby controller vehicles.

In the next section, we investigate how achieving efficient data processing policy which

includes computation offloading/sharing decision-making problem (which data offload /

share and for each computation task) while considering the best tradeoff between com-

putation delay and energy consumption.

4 Problem Formulation

In this section, we tackle the problem of achieving the best possible data processing

computation in a critical emergency scenario. The model presented herewith is based on

the previously presented UAV-assisted dSDiVN system. We start with presenting the

system model. Then, we introduce the details related to the communication model and the

computation model. Finally, we present the cost function that we use to evaluate our

approach.

4.1 System Model

The system model presented in this section is based on UAV-assisted dSDiVN road safety

use-case presented in the previous section. When a critical emergency situation occurs in a

vehicular environment, such as traffic accidents, it often results in a big traffic jam, making

the access to affected zone difficult for emergency vehicles. Facing such situation,

emergency vehicles can send one or a swarm of its on board-UAVs (depending on the

extent of the affected area) to explore and investigate the inaccessible affected zone. Being

able of assuming some of the functionalities of the emergency vehicles (primary con-

troller), as a secondary controller, a UAV can collect diverse types of data informa-

tion about the affected zone. This information needs to be processed as soon as possible to

aid rescue team to enhance the intervention quality.

In the modeling of our approach, we suppose that the emergency vehicle only needs to

deploy a single UAV for exploring and investigating the affected region. This latter would

always be reachable through a dedicated wireless interface. The problem can be easily

extended to support multi-UAVs. Therefore, throughout this section, we only consider a

simplified scenario for a UAV-assisted dSDiVN with an inaccessible affected zone as

shown in Fig. 3. The emergency vehicle (EV) is equipped with one UAV and is connected

9

to a set B of m nearby controller vehicles (CV), B ¼ 1; 2; . . .;mf g. The UAV communi-

cates with the emergency vehicle through WiFi. The emergency vehicle communicates

with the controller vehicles through V2V link using DSRC (IEEE 802.11p).

This part of manuscript focuses on how achieving efficient data processing of the

collected data by UAV. The main aim is to better balance the response computation time

and consumption energy. The processing of this data and the related computation-intensive

tasks can be, (i) performed locally on the UAV by the secondary controller, (ii) offloaded

through WiFi in one-hop if the emergency vehicle is in the coverage range of UAV or in

multi-hop using WiFi and after that using DSRC to be performed locally on the emergency

vehicle by the primary controller, or (iii) shared between the ground primary controller and

one of the local controller of it nearby controller vehicles using DSRC, as illustrated in

Fig. 4.

We present in the following the communication and the computation models.

4.2 Communication Model

Since we consider a UAV-assisted infrastructure-less vehicular environment, all the

communications are assumed to be device to device. We assume that the emergency

vehicle is equipped with two communication interfaces: a WiFi (IEEE 802.11a) interface

to communicate with the UAV and a DSRC (IEEE 802.11p) interface to communicate with

the nearby controller vehicles.

Initially, the UAV collects data information about the inaccessible affected area. After

that, the secondary controller when going to execute a task i, will take the offloading

decision (doi ¼ 0; 1f g) whether it chooses to process the data computation task locally

(doi ¼ 0) or it chooses to offload the task using WiFi to be computed by its primary

controller on the emergency vehicle (doi ¼ 1). If this is the case, the primary controller has

Fig. 3 UAV-assisted dSDiVN for road safety rescue scenario

to decide share it or not with nearby controllers after receiving the task. If it chooses to
execute the computation task locally then dis ¼ 0, and if it chooses to share it with one of
the nearby local controllers then dis ¼ 1.

10

4.3 Computation Model

For the computation model, we assume a time-slotted system to describe the different

network data processing, while at each time slot only one task is processed. T ¼

t1; t2; . . .; tjT j
� �

denotes the time slots under consideration. The length of each time slot is

normalized to unity [3]. Furthermore and as in [42–44], since we study a traffic jam

emergency situation and to enable tractable analysis, we consider a quasi-static scenario,

where the number of ground vehicles and the position of UAV rest unchanged during one-

time slot computation period. We also consider that each collected data to be processed can

be split into several atomic intensive tasks. Each task i can be represented by a 3-tuple

ðCi;Dsi;RsiÞ, i 2 N, where, Ci represents the total computation CPU cycles required to

accomplish the task i, Dsi represents the total size of computation data (i.e., the compu-

tation input parameters and the program code to be executed) to offload / share, and Rsi
represents the size of task computation results (i.e., the computation output) to send back to

the ground primary controller [43].

In our critical emergency situation with UAV-assisted vehicular for affected zone

exploration scenario, the processing of collected data is a delay-sensitive task because of

the emergency nature of the situation. Moreover, the UAV battery lifetime is determinant

to the success of the exploration mission. Thus, the computation response delay and the

consumed energy represent the principal metrics for the offloading/sharing decision-

Secondary Controller

Compute task

locally ?

Offload to Primary Controller

Compute task

locally ?

Share with Nearby Local Controller

Compute data tasks

Computation Results Information

 No

 No

Yes

Yes

Data Tasks

Fig. 4 Data processing policy flow chart

11

making. The following presents in detail the different formulas of these metrics: delay and

energy. Some similar formulas were proposed in [42–44].

We consider two level of decision-making with two possible computation decisions for

each one: on secondary controller and on the primary controller. The details are given

below.

4.3.1 UAV Computation Sub-Model

When UAV collects some data, the aerial secondary controller, based on the measured

delay and energy metrics, chooses either to process the data locally or offload it either

directly in one-hop to be processed by its ground primary controller using WiFi if the

emergency vehicle is in its coverage zone or offload it in multi-hop, initially using WiFi to

the nearest controller vehicle, after that point by point using DSRC until it arrives at the

emergency vehicle.

1. Local computation on Secondary Controller the total processing delay ðDSc
l;i Þ of local

computation of task i, is the time of local computation ðT ls
i Þ plus the time of results

sent back to primary controller ðTRs
i Þ, either in one-hop using WiFi or in multi-hop

using WiFi and DSRC. The delay of local computation of task i is given as:

DSc
l;i ¼ T ls

i þ TRs
i ð1Þ

where

T ls
i ¼

Ci

FUAV
CPU

ð2Þ

and

TRs
i ¼

Rsi

RUAV
WiFi

þ
X

h

s¼0

Rsi

RDSRC

ð3Þ

where FUAV
CPU denotes the computation frequency of the secondary controller in CPU

cycles per second, RUAV
WiFi denotes the data transmission rate of WiFi interface and RDSRC

denotes the data transmission rate of DSRC interface. h is the number of V2V hop

necessary to reach the emergency vehicle.

The total energy consumption of local computation ðESc
l;i Þ is the energy of local

computation ðEls
i Þ plus the energy of results sending ðERs

i Þ. We assume that vehicles

are less energy-constrained, therefore, we neglect the vehicle’s consumed energy for

local computation and data transmission. The total energy consumption of local

computation is given as:

ESc
l;i ¼ Els

i þ ERs
i ð4Þ

where

Els
i ¼ Ci � eUAVCPU ð5Þ

and

ERs
i ¼ Rsi � eUAVWiFi ð6Þ

12

here, eUAVCPU denotes the local computation energy consumed by the central processing

unit (CPU) of UAV for local computation and eUAVWiFi denotes the energy consumed by

the WiFi interface of UAV to send one data unit to primary controller.

2. Offload Computation on Primary Controller the delay of offloading ðDSc
o;iÞ is the time

of data sent to the ground emergency vehicle either in one-hop using WiFi or in multi-

hop using WiFi and DSRC. Offloading delay of task i is given as:

DSc
o;i ¼

Dsi

RUAV
WiFi

þ
X

h

s¼0

Dsi

RDSRC

ð7Þ

and, the total energy of offloading ðESc
o;iÞ is represented by the energy consumed by

UAV to offload (send) the data to emergency vehicle. The consumed energy is given

as:

ESc
o;i ¼ Dsi � eUAVWiFi ð8Þ

4.3.2 Emergency Vehicle Computation Sub-Model

When the emergency vehicle receives an offloaded data task from the UAV, its primary

controller chooses either to compute all the tasks locally or share the computation tasks

with one of the local controllers of it nearby controller vehicles. Before that, the primary

controller acts in two steps: selects the best sharing nearby controller vehicle (local con-

troller) and after that negotiate with it the sharing percentage. Based on this percentage, the

primary controller can take the sharing decision. We model the potential delay (waiting

time) needed to achieve this two steps by di:

1. Selection of the best sharing nearby controller to optimize the response computation

time, primary controller can share the computing task with one of the local controllers

of its nearby controller vehicles. We assume that all the nearby vehicles are

homogeneous in term of computing capability and it is unsuitable to use a link that has

reached its maximum capability. The primary controller selects the nearby sharing

vehicle that has the best quality of link (QoL), which is expressed by the probability of

a successful packet transmission in a small time interval [45]. Therefore, a link with

faster transmission rate and lower delay latency will have high quality of link and the

related controller vehicle obtains a large chance to be selected as best sharing

computation vehicle [45]. The primary controller assigns a choice probability to each

nearby vehicle based on its QoL. The quality of link that connects emergency vehicle e

to nearby controller vehicle j in the time slot i, denoted by /e;j, is modeled through the

softmax action selection method by using a Boltzmann distribution as proposed in

[45], here a link (e, j) is selected with probability xe;k as shown in Eq. (9) (see[45]).

/e;j ¼
r2

r1 þ xe;j
ð9Þ

where

13

xe;j ¼
e

qe;j

n

Pm
k¼1 e

qe;k

n

ð10Þ

Here, xe;j represents the probability that the nearby controller vehicle j can be chosen

to share the computation task among the k ðk ¼ ½1;m�Þ nearby controller vehicles, i.e.,

the probability that the controller vehicle j detains the best QoL. r1 and r2 denote the

parameters that determine the influence from xe;k. qe;j denotes the actual throughput of

link e,j. n denotes the Boltzman temperature parameter. We model by n the actual

transmission delay of link (e, j) . A high value of n results on an equal choice prob-

ability of all links and a small value results a high choice probability of links that have

the best QoL. The best link corresponds to the link with the shortest delay and highest

throughput. The link delay value is adjusted through the parameter n. A link with a

short delay is represented by low n values and a link with high delay is represented by

high n values. We assume that the primary controller manages and periodically

updates a neighbor table that contains the actual delay and throughput of each link of it

nearby controller vehicles.

2. Negotiation of the sharing percentage after the selection of best sharing vehicle that

has the best quality of the link, the primary controller will negotiate with the local

controller how much computation data it can accept. The primary controller starts by

sending to the local controller the number of necessary computation CPU cycles of

task i and this latter after evaluating it resources replies by sharing acceptance ratio.

We represent this ratio by the variable c, where c ¼ ½0; 1�: 0 if the local controller does
not accept to share any data computation tasks, 1 if it accepts to compute all the data

computation tasks and between 0 and 1 when it accepts to compute only a part of the

data computation tasks.

The different computation time formulas of local computation tasks and shared

computation tasks of the primary controller are detailed as follow:

(a) Local computation on primary controller the total delay of local computation

ðDPr
l;i Þ on primary controller is equal to the waiting time plus the processing time

of local computation of task i ðT lp
i Þ, is given as:

DPr
l;i ¼ di þ T

lp
i ð11Þ

and

T
lp
i ¼

Ci

FEV
CPU

ð12Þ

where FEV
CPU denotes the local computation frequency of the primary controller

in CPU cycles per second. di is assumed very small compared to T
lp
i .

(b) Shared computation with local controller the processing time of shared

computation is equal to the time of local computation of partial data tasks on

primary controller ðT ls
i Þ plus the time of partial data transfer to the chosen

nearby controller vehicle T t
i plus the time of local computation of partial data

tasks on local controller ðT lc
i Þ plus the time to send results back ðTRs

i Þ to the

primary controller. The time of local computation of partial data tasks ðT ls
i Þ on

the primary controller is given as:

14

T ls
i ¼ ð1� cÞ �

Ci

FEV
CPU

ð13Þ

The transfer time of partial shared data ðT t
i Þ is given as:

T t
i ¼ c�

Dsi

RDSRC

ð14Þ

The local computation time of shared data execution of local controller j ðT lc
i Þ is

given as:

T lc
i ¼ c�

Ci

F
CVj

CPU

ð15Þ

The time to send results back ðT rs
i Þ is given as:

Trs
i ¼ c�

Rsi

RDSRC

ð16Þ

From (13), (14), (15) and (16), we get:

T sh
i;j ¼ ð1� cÞ �

Ci

FEV
CPU

þ c� /e;j �
Dsi

RDSRC

þ
Rsi

RDSRC

þ
Ci

F
CVj

CPU

!

ð17Þ

The total time of shared computation ðDPr
sh;iÞ is equal to the waiting time plus the

processing time of shared computing is given as:

DPr
sh;i ¼ di þ T sh

i;j ð18Þ

where F
cvj
CPU denotes the local computation frequency of the nearby local con-

troller j in CPU cycles per second.

4.4 System Cost Function

Since we consider a critical emergency situation of a road safety scenario, the collected

information needs to be processed urgently. Thus, the computation response time is a

delay-sensitive computation task. Moreover, the UAV plays an important role in the

exploration of affected zone and its battery lifetime is a determinant factor to the success of

the rescue mission. Thus, the computation delay and the consumption energy represent the

principal factors for the offloading/sharing decision-making. Consequently, the system

payoff (cost) function is represented as a combination of the energy (the total consumed

energy by UAV) and the delay (the total computational time) and is given as:

Pi ¼ a�
Di � minD

maxD� minD
þ b�

Ei � minE

maxE � minE
ð19Þ

where: a and b ða; b 2 ½0; 1�; aþ b ¼ 1Þ, represent the weighting factors for computation

time and consumption energy, respectively. maxE (resp. minE) represent the maximum

(resp. minimum) energy and maxD (resp. minD) maximum (resp. minimum) delay nec-

essary to compute the maximum (resp. minimum) size of the task’s data, respectively.

In the next section, we present a sequential game approach for the previously presented

data processing policy of the offloading/sharing decision-making problem.

15

5 Data Processing Offloading/Sharing Policy for Emergency Scenario
in UAV-Assisted Infrastructure-Less VANETs

In this section, we descript a dynamic sequential game approach for data processing in a

UAV-assisted VANET rescue scenario, which includes offloading/sharing decisions

making. The main aim is to achieve the best balance between computation delay and

consumption energy. We study the existence of the Nash equilibrium (NE) and design

distributed offloading/sharing algorithms to solve the problem.

Game theory is considered as a powerful mathematical modeling tool to analyze the

strategic decision-making problems of the interactions among multiple rational players that

act toward achieving their own interests. Some recent works have used game theory as an

enabling tool for their design of computation offloading approaches such as in [42–44].

Game theory has also been used to model different problems in SDN-based VANET

scenarios such as resources sharing in [45] and control plane optimization in [3].

5.1 Offloading/Sharing Computation Sequential Game

We formulate the distributed data processing decision-making problem as a two-player

perfect information, finite, non-zero-sum sequential game where all the players know the

system parameters. In perfect information sequential game, the players act sequentially,

and each player can observe the moves of the other players that move before it and make

strategic choices accordingly. Because data are initially collected by the UAV, the sec-

ondary controller acts first, and the primary controller acts after observing the decision of

the secondary controller and only moves if the secondary controller chooses to offload the

data computation task. The number of data computation tasks is finite and equals to the

number of computation tasks of collected data, and the game finishes after a finite number

of time-slot when the equilibrium is achieved (all the parameters are optimized for each

collected data), or the critical UAV’s energy level is reached.

Definition 1 The sequential game is defined by the 3-tuple GðN;A; lÞ:

• N ¼ f1; 2g, represents the non-empty finite set of players: 1 represents the aerial

secondary controller on UAV and 2 represents the ground primary controller of the

emergency vehicle.

• A ¼ fa1; a2g, represents the non-empty finite set of players actions or strategies. Where

the strategy of player 1 is a1 ¼ fsj; 8j 2 ð0Local computation;
1Offload computationÞg and the strategy of player 2 is

a2 ¼ fsi; 8i 2 ð0 Local computation; 1 Shared computationÞg.
• l ¼ ðl1; l2Þ, represents the utility function or the payoff function of each player. l1 is

the payoff function of player 1 and l2 is the payoff function of player 2. l1 and l2 are

given as:

l1;iða1;iÞ ¼ hi � a�
DSc

l;i � minD

maxD� minD
þ b�

ESc
l;i � minE

maxE � minE

!

þ ð1� hiÞ

� a�
DSc

o;i � minD

maxD� minD
þ b�

ESc
o;i � minE

maxE � minE

!

ð20Þ

where

16

hi ¼
1; if s1;i ¼ 0

0; if s1;i ¼ 1

�

ð21Þ

and

l2;iða2;iÞ ¼ a� #i �
DPr

l;i � minD

maxD� minD
þ ð1� #iÞ �

DPr
sh;i � minD

maxD� minD

!

ð22Þ

where

#i ¼
1; if s2;i ¼ 0

0; if s2;i ¼ 1

�

ð23Þ

The global system payoff (system cost) of a data computation task i at a time slot t is

the sum of the payoff of each player, primary and secondary controller:

PiðtÞ ¼ liðtÞ ¼ l1;iða1;iÞ þ l2;iða2;iÞ ð24Þ

In this manuscript, we aim to minimize the total system cost by jointly optimizing the

task offloading and sharing decisions.

Figure 5 illustrates the extensive representation of our proposed sequential offloading/

sharing game and the correspondent strategic representation of two-player payoff

matrix.

5.2 Nash Equilibrium

In this subsection, we investigate the existence of the Nash Equilibrium (NE) and solve the

distributed two-player finite sequential offloading/sharing computation game by backward

induction.

Definition 2 A pure-strategy Nash equilibrium of the two-player offloading/sharing

computation game is a decision profile d� ¼ ðd�1;1; . . .; d
�
1;i; d

�
2;1; . . .; d

�
2;iÞ such that 8n 2 N

we have the following [43]:

Fig. 5 Strategic/extensive representation of one stage of sequential offloading/sharing game

17

Pn;iðd
�
n;iÞ � Pn;iðdn;iÞ; 8dn;i 2 A ð25Þ

At Nash equilibrium, the primary and secondary controller can achieve a mutually

satisfactory solution for that no controller has the incentive to unilaterally deviate [43].

This satisfactory solution is defined as an optimal strategy that should be selected by the

two-player to get optimal energy and delay while treating each computation task.

Theorem 1 (Kuhn) ‘‘Sequential games where the players have finite action sets and act

only a finite number of times are equivalent, and every finite extensive-form game with

perfect information has a pure-strategy Nash equilibrium’’ [43].

Proof The proof of Theorem 1 is given in [46]. h

Lemma 1 GðN;A; lÞ is a finite sequential game with perfect information.

Proof see the previous Sect. 5.1. h

Theorem 1 implies that for the distributed two-player sequential finite offloading/

sharing computation game with perfect information (see Sect. 5.1), at least a Nash equi-

librium exists and it can be converged in a finite number of decision slots [43].

Theorem 2 (Zermelo) ‘‘Every finite game of perfect information has a pure strategy

Nash equilibrium that can be derived by backward induction’’ [47].

Proof The proof of Theorem 2 is given in [47]. h

As illustrated in Fig. 5, a stage of our distributed sequential finite two-player offloading/

sharing computation game with perfect information in a decision time slot t contains two

sub-games: (i) the local/sharing primary controller sub-game and (ii) the global game of

local/offloading secondary controller sub-game. We solve the game by backward induc-

tion. First, we study the primary controller’s local/sharing computation best strategy and

then, we study the secondary controller’s local /offloading computation best strategy.

5.3 Best Local/Sharing Computation Decision of Primary Controller

Given the secondary controller decision. Primary controller can derive the optimal sharing

strategy Si by solving the problem:

/2;iðaiÞ ¼ argmin
DPr

l2;iða2;iÞ ¼ #i �
DPr

l;i � minD

maxD� minD
þ ð1� #iÞ �

DPr
sh;i � minD

maxD� minD
ð26Þ

where

#i ¼
1; if s2;i ¼ 0

0; if s2;i ¼ 1

�

ð27Þ

Here, DPr represents the computation delay response of the primary controller.

It is easy to check that the primary controller utility function (24) is convex.

18

o
2l2;iðD

Pr
l;i ;D

Pr
sh;iÞ

o
2DPr

l;i

¼ 0;
o
2l2;iðD

Pr
l;i ;D

Pr
sh;iÞ

o
2DPr

sh;i

¼ 0 ð28Þ

From the previous equations, we conclude that the payoff function of the primary con-

troller is a convex function. Hence, it has optimal solutions, and Nash equilibriums exist

for the primary controller sub-game. However, since the number of players is small (two

players), the payoff function is simple and easy to solve. Thus, the best decision in a single-

slot strategy of the primary controller (payoff) is given by solving (24).

The optimal solution of d�2;i for the single-slot strategy is given by:

d�2;i ¼ /2;iða�iÞ ¼

argmin
DPr

l;i

l2;i; if s2;i ¼ 0

argmin
DPr

sh;i

l2;i; if s2;i ¼ 1

8

>

>

<

>

>

:

ð29Þ

Distributed Computation Sharing Algorithm in Algorithm 1, we design a distributed

computation sharing policy algorithm to compute the best decision of primary controller.

At each decision time slot, the primary controller treats only one computation task and acts

in three steps (see Sect. 4.3.2) when it receives a computation data. First, it selects the best

sharing controller vehicle based on it QoL. In a second step, it negotiates the sharing

percentage with the local controller of selected controller vehicle, and in the third step, it

computes the local and sharing computation delay and makes the best response decision

based on the previously measured parameters. Since the problem is formulated as a perfect

information sequential game, the primary controller informs the secondary controller of its

decision. The Nash equilibrium strategies are reached when the delay and energy are

optimized for each task i and no player has incentive to deviate this equilibrium. When the

equilibrium is achieved or the game finish, the primary controller sends an end message to

the secondary controller. The proposed algorithm is inspired from [42, 43].

19

5.4 Best Local/Offload Computation Decision of the Secondary Controller

The secondary controller can derive the optimal offloading strategy by solving the fol-

lowing problem:

/1;iðaiÞ ¼ argmin
DSc;ESc

l1;iða1;iÞ ¼ hi � a�
DSc

l;i � minD

maxD� minD
þ b�

ESc
l;i � minE

maxE � minE

!

þð1� hiÞ � a�
DSc

o;i � minD

maxD� minD
þ b�

ESc
o;i � minE

maxE � minE

!

ð30Þ

where

hi ¼
1; if s1;i ¼ 0

0; if s1;i ¼ 1

�

ð31Þ

Here, DSc and ESc represent the computation response delay and energy of the secondary

controller, respectively.

It is easy to check that the secondary controller utility function (26) is convex.

20

o
2l1;iðD

Sc
l;i ;D

Sc
o;i;E

Sc
l;i ;E

Sc
o;iÞ

o
2DSc

l;i

¼ 0;
o
2l1;iðD

Sc
l;i ;D

Sc
o;i;E

Sc
l;i ;E

Sc
o;iÞ

o
2DSc

o;i

¼ 0;

o
2l1;iðD

Sc
l;i ;D

Sc
o;i;E

Sc
l;i ;E

Sc
o;iÞ

o
2ESc

l;i

¼ 0;
o
2l1;iðD

Sc
l;i ;D

Sc
o;i;E

Sc
l;i ;E

Sc
o;iÞ

o
2ESc

o;i

¼ 0

ð32Þ

From the previous equations, we conclude that the payoff function of the secondary

controller is a convex function. Hence, it has optimal solutions, and Nash equilibriums

exist for the secondary controller sub-game. However, when the number of players is small

(two players), the payoff function is simple and easy to solve. Thus, the best decision in a

single-slot strategy of the primary controller (payoff) is given by solving (26).

The optimal solution of d�1;i for the strategy is:

d�1;i ¼ /1;iða�iÞ ¼

argmin
DSc

l;i
;ESc

l;i

l1;i; if s1;i ¼ 0

argmin
DSc

o;i
;ESc

o;i

l1;i; if s1;i ¼ 1

8

>

>

<

>

>

:

ð33Þ

Distributed computation offloading algorithm in Algorithm 2, we design a distributed

computation offloading policy algorithm to compute the best decision of secondary con-

troller. The logic of Algorithm 2 is similar to Algorithm 1. The secondary controller

monitors the energy of its UAV continuously. If it observes that the critical energy level

(the energy needed by the UAV to return to the emergency vehicle) is reached, the

secondary controller send a low energy alert message to the primary controller. The

algorithm finishes when the end message is received (the equilibrium is reached). Since the

secondary controller acts first, Algorithm 2 is executed before Algorithm 1.

21

6 Numerical Results

In this section, we use Matlab to evaluate the performance of the proposed distributed

offload/sharing computation algorithms. The simulated scenario is based on the system

model described in Sect. 4.1. For the different experimentations, we consider that the CPU

computation capability of the emergency vehicle (primary controller) FEV
CPU is ten times

more powerful than that of UAV (secondary controller) FUAV
CPU and the CPU computation

capability of nearby controller vehicle (local controller) FCV
CPU is three times more powerful

of that of UAV (secondary controller). We also consider than the sending energy of one

data unit through the wireless WiFi interface of UAV eUAVWiFi consumes one thousand times

more than the local computation energy cycle eUAVCPU of the same data unit on the UAV [48].

The transmission rate of WiFi interface (RWiFi ¼ 12Mbps) is considered two times the

transmission rate of DSRC interface (RDSRC ¼ 6Mbps) [49]. Since we investigate a critical

emergency scenario where the result of data processing is delay-sensitive and we care

about the computation time, we set a high weight (a ¼ 0:7) to computation delay in the

decision making compared to the weight of computation energy consumption (b ¼ 0:3).

The main simulation parameters are summarized in Table 2.

In the rest of this section, we compare the performances of the proposed distributed

offload/sharing computation (DOSC) algorithm based on the two-player data processing

sequential game with three other scenarios: (i) local computation (LC), where the sec-

ondary controller on UAV decides to compute all the tasks locally, (ii) offload computation

(OC), where the secondary controller of UAV decides to offload all the tasks to the

emergency vehicle and the primary controller decides to compute all the tasks locally and,

(iii) shared computation (SC), where the secondary controller of UAV decides to offload

all the tasks to the emergency vehicle and the primary controller decides to share a

percentage of computation tasks with one of its nearby local controllers.

Table 2 Simulation parameters
Parameters Value

Ci ½100; . . .; 100000�ð�103Þ

Dsi ½10; . . .; 2000�ð�103Þ

Rsi ½5; . . .; 15�

FUAV
CPU

1 GHZ

FEV
CPU

10 GHZ

FCV
CPU

3 GHZ

RWiFi 12 Mbps

RDSRC 6 Mbps

eUAVCPU
1 u

eUAVWiFi
100 u

M [1, 4]

h [0, 4]

a 0.7

b 0.3

r1 0.5

r2 0.5

c 0.5

22

In the evaluation illustrated in Fig. 6, we study the average system cost for different

data processing scenarios. As we can clearly remark from the results in Fig. 6, our DOSC

algorithm is effective and outperforms all the other three scenarios whilst achieving 28, 25

and 17% gain in terms of the average system cost compared to SC, LC and OC scheme,

respectively. This is principally because at each decision time slot, the proposed DOSC

policy smartly balances between different system metrics (computation response time and

UAV’s energy) according to the actual available network resources (e.g., CPU, UAV

energy, QoL) in order to make better well-informed decisions that allow the emergency

vehicle to get the fastest as possible, relevant safety information result of the intensive-

tasks computation while better saving the UAV energy. This up-to-date view on network

resource state is guaranteed via the collaboration among the SDN controllers. Contrarily,

other computation decision-making scenarios make naive decisions without any consid-

eration of the network resource state.

In Fig. 7, we investigate the impact of the size of collected data by UAV on the system

cost. In this evaluation, we fix the data computation complexity in terms of CPU cycles and

we change each time the size of data tasks. From Fig. 7, we can see that the system cost for

OC/SC increases as the data size increases while this latter has a very slight impact on LC.

Moreover, SC is better than OC for relatively small data size but not for big data size. This

is because offloading /sharing big data via wireless interface resulting in a degradation of

system performance caused by a long transmission delay and high UAV’s energy con-

sumption, contrarily to LC where only small size computation results are sent. As result,

we conclude that LC is more suitable for big data size where OC and SC are more

appropriate for medium and small data sizes respectively. We can also clearly remark the

effectiveness of our DOSC policy that already chooses the best possible strategy corre-

sponding to the optimal system cost that allow the system to perform intensive-compu-

tation tasks within acceptable response time and reasonable UAV energy consumption

whatever the task’s data size, thanks to the decision profile achieved by the intelligent

SDN-based DOSC algorithm in NE.

In the evaluation illustrated in Fig. 8, we study the impact of the computation com-

plexity of the collected data by UAV in terms of CPU cycles on the system cost. In this

experimentation, we fix the data size of the computation tasks and we change at each time

the number of CPU cycles. As Fig. 8 shows, the system cost of LC/OC increases with the

increase of the number of CPU cycles while that of SC experiments a slight impact. This is

Fig. 6 Average system cost for different data processing scenario

23

Fig. 7 The Impact of data size on system cost

Fig. 8 The impact of CPU cycles on system cost

principally due to the fact that local computation by secondary controller or offload
computation by primary controller of complex tasks with high CPU cycles requires more
energy and/or delay resources depending on CPU rate which increases the system cost.
This is in contrast to SC where several distributed SDN controllers of nearby vehicles
collaborate by sharing the tasks computation. By consequence, we can conclude that the
SC is more suitable for high intensive tasks where LC is more appropriate to less intensive
tasks. Moreover, we remark that our proposed DOSC policy by balancing the system
metrics under different decision computation strategy using the SDN-based optimization
algorithms already adopts the most efficient strategy corresponding to the optimal system
cost that ensures the best possible tradeoff between fast computation response time and
less energy consumption.

In Fig. 9, we investigate the impact of the size of data computation tasks on the UAV’s
average energy consumption. We change the data size and we compute the average energy
consumption for different CPU cycles for each size of data computation task. The results
illustrated in Fig. 9, show that the OC and SC energy consumption increases linearly with
the increase of the size of computation data task inversely to LC that seems not much be

24

affected by the increase in data size. Also, because we consider that ground vehicles have

no energy constraint, OC and SC energy consumption are identical and equal to the energy

of data transmission by UAV. This can be justified by the fact that the wireless trans-

mission of a data size unit is largely more energy-gourmand than if locally computed [48].

Indeed, in OC/SC, the tasks computation goes through the transmission of overall big data

size of tasks through the wireless interface. This results in high consumption of the limited

energy resource of UAV before be computed on emergency or/and controller vehicles,

refer to Eq. (8). Whereas LC consumes only small energy of data computation by sec-

ondary controller on UAV plus the transmission energy of small size result, refer to

equation in (4). As a conclusion, we can say that OC is more suitable for tasks with small

data size while LC is more appropriate for tasks with big data size. Moreover, it’s clear that

our DOSC policy based on the achieved decision profile in NE and the collaboration

between the SDN controllers efficiently saves the UAV’s energy by already selecting the

most efficient optimal strategy that minimizes the energy consumption.

In the evaluation illustrated in Fig. 10, we study the impact of the data size of com-

putation tasks on the average computation delay. In this evaluation, we change the data

Fig. 9 The impact of data size on average energy consumption

Fig. 10 The impact of data size on average computation delay

25

size and we compute the average computation delay for different CPU cycles for each size

of data computation task. The results in Fig. 10 show that the computation delay of OC

and SC increases linearly with the increase of the size of the computation data task while

that of LC experiments a very slight effect and by consequence, it clearly seems that for

small data sizes OC/SC is more suitable while for big data LC is more appropriate. The

main justification of these results is principally related to computation logic of OC and SC

that consists in transmitting through UAV’s wireless interface of all the task’s big data to

be processed on ground vehicles resulting in supplementary high transmission time in

addition to the computation time, refer to Eqs. (7), (11) and (18), respectively. Whereas in

LC the collected data tasks are initially processed in relatively smaller time by secondary

controller on UAV before transmitting only relevant small size results, refer to Eq. (1).

Furthermore, it is clear that our proposed DOSC policy achieves the optimal computation

delay by balancing and selecting the best computation strategy that minimizes the task’s

computation response time.

The results illustrated in Figs. 9 and 10, demonstrate that our proposed DOSC achieves

a flexible tradeoff between the energy consumption and the computation delay.

In Fig. 11, we investigate the impact of sharing decision on average computation delay

of primary controller in function of task’s data size as illustrated in sub-figure (a) and task’s

complexity in terms of CPU cycles as illustrated in sub-figure (b). From sub-figures (a) and

(b), we remark that average computation delay increases when sharing computation of

tasks with big data and also when locally compute high intensive tasks. As result, we can

conclude that the shared computation is more suitable for small data size and high

intensive computation tasks thanks to the benefits of distributed collaborative computation

among nearby ground controllers. In the contrary, the local computation at the primary

controller is more appropriate for less intensive computation tasks and big data size

tasks fault of the costly wireless transmission of tasks with voluminous data.

In the evaluation illustrated in Fig. 12, we evaluate the system cost for different system

metrics (delay and energy) weight factors settings (a and b (b ¼ 1� a)). In this experi-

mentation, we fix the task’s data size and CPU cycles and we vary the system metrics

weight factors (a and b) settings. From the result in Fig. 12, we remark that the variation of

the system metric weight factors has a significant impact on the system cost value, also,

setting a higher value of one weight factor compared to the other, allow to enhance and

decrease the system cost. More particularly, by setting delay weight factor (a) higher than

the energy weight factor (b), our DOSC policy achieves until 50% improvement of the

system cost compared to equal value metric parameters. Results that confirm our initial

choice of the weight factors value, which can be justified by the fact that we attribute a

Fig. 11 The effect of sharing decision on primary controller (PC): average computation delay

26

more important weight to the computation response time by optimizing the delay at each

system computation point and considering only the UAV energy, given the critical delay-

sensitive nature of the under-study road safety rescue use-case. Likewise, our proposed

SDN-based game model, use these system weight factor parameters as a flexible way to

balance the system performance metrics according to the actual context and to efficiently

support the requirements of various application use-cases.

In the experimentation illustrated in Fig. 13, we simulate a simple multi-hop data

transmission scenario from an aerial source to a ground destination far in 4 hop vehicles.

We compare the performance of our SDN-based DOSC algorithm in terms of average

delay, i.e., the average response time until the destination get the data information, with

two UAV-assisted VANET data delivery protocols as reference works with a distributed

path selection and without SDN logic, for different data size: UVAR-S in [27] and VDNet

in [12]. The results illustrated in Fig. 13 show that the proposed SDN-based DOSC

algorithm is efficient and outperforms the related works whilst achieving from 35 to 95%

better average delay. This can be justified by the fact that our DOSC algorithm using the

achieved decision profile in NE is already able to smartly choose the most efficient sce-

nario with the smallest response time. Whereas, other related works focus mainly on the

path selection and availability and don’t care about what is better to reduce the delay: local

Fig. 12 The impact of system metrics weight factors variation on system cost

Fig. 13 Performance comparison of our SDN-based distributed offloading/sharing scheme with related data

delivery UAV-assisted works in terms of average delay

27

computation of tasks with big data by UAV and only sending small computation results or

the offload computation on the ground vehicle after the transmission of all task’s data

whatever it size. Moreover, both related works and specially VDNet, present a supple-

mentary delay in addition to the delivery delay caused by the distributed periodic phases of

destination location prediction and end-to-end path selection. Whereas, in our solution, all

this information are beforehand available at each virtual SDN domain, thanks to the well-

informed collaborative up-to-date network knowledge of the SDN controllers. Further-

more, UVAR-S by equipping both the UAVs and ground vehicles with low latency DSRC

interface, benefits from relatively small advantage compared to VDNet. Finally, it is

obvious that the delay increase with the increase of data size because the wireless trans-

mission of big data size results in high delays.

7 Conclusion

In this paper, we first present a novel distributed SDN-based architecture for UAV-assisted

infrastructure-less vehicular environments. We focus mainly on a road safety scenario as a

use-case of the proposed architecture. In such scenario, UAVs are incorporated in order to

assist emergency rescue vehicles to explore and investigate inaccessible affected zones.

We investigate how to achieve an efficient data processing policy of the data collected by

UAV which includes computation offloading and sharing decision-making problem. The

main propose is to find the best balance between computation delay and consumption

energy. We formulate the offloading/sharing decision problem via a theoretical game

approach as a two-player sequential game and then we study the existence of Nash

equilibrium. After that, we design distributed computation algorithms to solve the problem.

Numerical results show that the proposed SDN-based data processing policy achieves

efficient computation performance in terms of both computation delay and energy con-

sumption whilst achieving until 28% gain of average system cost and between 35% and

95% better response time compared to other related native data processing scenarios and

data delivery UAV-assisted VANET works without SDN, respectively.

The deployment complexity and cost rests open challenge in front of integrating SDN in

infrastructure-less VANET areas. As future work, we plan to extend the theoretical game

model to a general case with N players, multi UAVs-assisted VANET by using offloading

to adjacent UAVs and sharing with multiple nearby controllers.

References

1. Duan, X., & Wang, Y. (2017). SDN enabled 5G-VANET: Adaptive vehicle clustering and beamformed

transmission for aggregated traffic. IEEE Communications Magazine, 55(7), 120–127.

2. Secinti, G., Canberk, B., Duong, T. Q., & Shu, L. (2017). Software defined architecture for VANET: A

testbed implementation with wireless access management. IEEE Communications Magazine, 55(7),

135–141.

3. Li, H., Dong, M., & Ota, K. (2016). Control plane optimization in Software-Defined Vehicular Ad hoc

Networkss. IEEE Transactions on Vehicular Technology, 65(10), 7895–7904.

4. Wang, X., Wang, C., Zhang, J., Zhou, M., & Jiang, C. (2016). Improved rule installation for real-time

query service in Software-Defined internet of vehicles. IEEE Transactions on Intelligent Transportation

Systems, 99, 1–11.

5. Venkatramana, D. K. N., Srikantaiah, S, B., & Moodabidri, J. (2017). SCGRP: SDN-enabled con-

nectivity-aware geographical routing protocol of VANETs for urban environment. IET Networks, 6(5),

102–111.

28

6. He, Z., Cao, J., & Liu, X. (2016). SDVN: Enabling rapid network innovation for heterogeneous

vehicular communication. IEEE Network, 30(4), 10–15.

7. Alioua, A., Senouci, S. M., Moussaoui, S., Sedjelmaci, H., & Boualouache, A., (2017). Software-

Defined heterogeneous vehicular networks: Taxonomy and architecture. In The proceeding of the 2017

Global Information Infrastructure and Networking Symposium (GIIS) (pp. 50–55). St. Pierre, France.

8. Kazmi, A., Khan, M. A., & Akram, M. U. (2016). DeVANET: Decentralized Software-Defined VANET

architecture. In The proceeding of the IEEE international conference on cloud engineering workshop

(IC2EW).

9. Zheng, Q., Zheng, K., Zhang, H., & Leung, V. C. M. (2016). Delay-optimal virtualized radio resource

scheduling in Software-Defined vehicular networks via stochastic learning. IEEE Transactions on

Vehicular Technology, 65(10), 7857–7867.

10. Correia, S., Boukerche, A., & Meneguette, R, I. (2017). An architecture for hierarchical Software-

Defined vehicular networks. IEEE Communications Magazine, 55(7), 80–86.

11. Chen, J., Zhou, H., Zhang, N., Xu, W., Yu, Q., Gui, L., et al. (2017). Service-oriented dynamic

connection management for Software-Defined internet of vehicles. IEEE Transactions on Intelligent

Transportation Systems, 18(10), 2826–2837.

12. Wang, X., Fu, L., Zhang, Y., Gan, X., & Wang, X. (2016). VDNet: An infrastructure-less UAV-assisted

sparse VANET system with vehicle location prediction. Wireless Communications and Mobile Com-

puting, 16, 2991–3003.

13. Oubbati, O. S., Lakas, A., Lagraa, N., & Yagoubi, M. B. (2016). VConnectivity of VANET segments

using UAVs. In The proceeding of the internet of things, smart spaces, and next generation networks

and systems.

14. Shilin, P., Kirichek, R., Paramonov, A., & Koucheryavy, A. (2016). UVAR: An intersection UAV-

assisted VANET routing protocol. In Proceeding of the. (2016) IEEE wireless communications and

networking conference. Qatar: Doha.

15. Zhou, Y., Cheng, N., Lu, N., & Shen, X, S. (2015). Multi-UAV-aided networks: Aerial-ground

cooperative vehicular networking architecture. IEEE Vehicular Technology Magazine, 10(4), 36–44.

16. Zheng, k, Hou, L., Meng, H., Zheng Lu, N., & Lei, L. (2015). Soft-defined heterogeneous vehicular

network: Architecture and challenges. IEEE Network, 30(4), 72–80.

17. Ghafoor, H., & Koo, I. (2018). CR-SDVN: A cognitive routing protocol for Software-Defined vehicular

networks. IEEE Sensors Journal, 18(4), 1761–1772.

18. Huang, C. M., Chiang, M, S., Dao, D, T., Pai, H, M., Xu, S., & Zhou, H. (2017). Vehicle-to-infras-

tructure (V2I) offloading from cellular network to 802.11p Wi-Fi network based on the Software-

Defined Network (SDN) architecture. Vehicular Communications, 9, 288–300.

19. Aujla, G. S., Chaudhary, R., Kumar, N., Rodrigues, J, J, P, C., & Vinel, A. (2017). Data offloading in

5G-enabled Software-Defined vehicular networks: A stackelberg-game-based approach. IEEE Com-

munications Magazine, 55(8), 100–108.

20. Zhang, Y., Chen, M., Kumar, N., Guizani, N., Wu, D., & Leung, V. C. M. (2017). SOVCAN: Safety-

oriented vehicular controller area network. IEEE Communications Magazine, 55(8), 94–99.

21. Alioua, A., Senouci, S., M., & Moussaoui, S. (2017). dSDiVN: A distributed Software-Defined Net-

working architecture for infrastructure-less vehicular networks. The proceeding of I4CS (pp. 56–67).

Darmstadt, Germany.

22. Sharma, V., Srinivasan, K., Chao, H, C., Hua, K, L., & Cheng, W, H. (2017). Intelligent deployment of

UAVs in 5G heterogeneous communication environment for improved coverage. Journal of Network

and Computer Applications, 85, 94–105.

23. Kalantari, E., Shakir, M. Z., Yanikomeroglu, H., & Yongacoglu, A. (2017). Backhaul-aware robust 3D

drone placement in 5G? wireless networks. The proceeding of 2017 IEEE international conference on

communications workshops (ICC Workshops) (pp. 109–114). Paris, France.

24. Iellamo, S., Lehtomaki, J. J., & Khan, Z. (2017). Placement of 5G Drone Base Stations by Data Field

Clustering. The proceeding of IEEE 85th vehicular technology conference (VTC Spring) (pp. 1–5).

Sydney, NSW.

25. Bell labs future cell project by using massive MIMO for efficient small cell deployment. https://www.

nokia.com/en_int/news/releases/2016/10/03/f-cell-technology-from-nokia-bell-labs-revolutionizes-

small-cell-deployment-by-cutting-wires-costs-and-time.

26. Zhao, N., Cheng, F., Richard Yu., F., Tang, J., Chen, Y., Gui, G., & Sari, H. (2018). Caching UAV

assisted secure transmission in hyper-dense networks based on interference alignment. IEEE Trans-

actions on Communications, Early access. https://ieeexplore.ieee.org/document/8254370/.

27. Oubbati, O., Lakas, L., Zhou, F., Gunes, M., Lagraa, L., & Yagoubi, M. B. (2017). Intelligent UAV-

assisted routing protocol for urban VANETs. Computer Communications, 107, 93–111.

29

https://www.nokia.com/en_int/news/releases/2016/10/03/f-cell-technology-from-nokia-bell-labs-revolutionizes-small-cell-deployment-by-cutting-wires-costs-and-time
https://www.nokia.com/en_int/news/releases/2016/10/03/f-cell-technology-from-nokia-bell-labs-revolutionizes-small-cell-deployment-by-cutting-wires-costs-and-time
https://www.nokia.com/en_int/news/releases/2016/10/03/f-cell-technology-from-nokia-bell-labs-revolutionizes-small-cell-deployment-by-cutting-wires-costs-and-time
https://ieeexplore.ieee.org/document/8254370/

28. Fawaz, W., Atallah, R., Assi, C., & Khabbaz, M. (2017). Unmanned aerial vehicles as store-carry-

forward nodes for vehicular networks. IEEE Access, 5, 23710–23718.

29. Fawaz, W. (2018). Effect of non-cooperative vehicles on path connectivity in vehicular networks: A

theoretical analysis and UAV-based remedy. Vehicular Communications, 11, 12–19.

30. Seliem, H., Ahmed, M. H., Shahidi, R., & Shehata, M. S. (2017). Delay analysis for drone-based

Vehicular Ad-hoc Networks. In The proceeding of IEEE 28th annual international symposium on

personal, indoor, and mobile radio communications (PIMRC), Montreal, Canada.

31. Sharma, V., Chen, H., & Kumar, R. (2017). Driver behaviour detection and vehicle rating using multi-

UAV coordinated vehicular networks. Journal of Computer and System Sciences, 86, 3–32.

32. Zhang, N., Zhang, S., Yang, P., Alhussein, O., Zhuang, W., & Shen, X. S. (2017). Software defined

space-air-ground integrated vehicular networks: Challenges and solutions. IEEE Communications

Magazine, 55(7), 101–109.

33. Ghazzai, H., Menouar, H., & Kadri, A. (2017). On the placement of UAV docking stations for future

intelligent transportation systems. In The proceeding of IEEE 85th vehicular technology conference

(VTC Spring), Sydney, NSW.

34. Messous, M., A., Arfaoui, A., Alioua, A., & Senouci, S. M. (2017). A sequential game approach for

computation-offloading in an UAV network. In The proceeding of GLOBECOM 2017, Singapore.

35. Yuan, Z., Huang, X., Sun, L. & Jin, J. (2016). Software defined mobile sensor network for micro UAV

swarm. In The proceeding of the 2016 IEEE international conference on control and robotics engi-

neering (ICCRE), Singapore, Malysia.

36. Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of important issues in UAV communication net-

works. IEEE Communications Surveys and Tutorials, 18(2), 1123–1152.

37. Sara, M., Jawhar, I., & Nader, M. (2016). A softwarization architecture for UAVs and WSNs as part of

the cloud environment. In The proceeding of the 2016 IEEE international conference on cloud engi-

neering workshop (IC2EW), Berlin, Germany.

38. Ramaprasath, A., Srinivasan, A., Lung, C. H., & St-Hilaire, M. (2017). Intelligent wireless ad hoc routing

protocol and controller for UAV networks. In Y. Zhou & T. Kunz (Eds.), Ad Hoc Networks. Social

informatics and telecommunications engineering: Lecture notes of the institute for computer sciences.

39. Masoud, M., & Belkasim, S. (2018). WSN-EVP: A novel special purpose protocol for emergency

vehicle preemption system. IEEE Transactions on Vehicular Technology, 67(4), 3695–3700.

40. Nellore, K., & Hancke, G. P. (2016). Traffic management for emergency vehicle priority based on

visual sensing. Sensors, 16(11), 1892.

41. Remy, G., Cherif, M., Senouci, S., M., Jan, F. & Gourhant, Y. (2012) Lte4v2x-collection, dissemination

and multi-hop forwarding. In The proceeding of the IEEE ICC2012.

42. Chen, X., Jiao, L., Li, W., & Fu, X. (2016). Efficient multi-user computation offloading for mobile-edge

cloud computing. IEEE/ACM Transactions on Networking, 24(5), 2795–2808.

43. Deng, M., Deng, H., & Lyu, X. (2016). Adaptive sequential offloading game for multi-cell mobile edge

computing. In The proceeding of the 2016 23rd international conference on telecommunications (ICT),

Thessaloniki.

44. Chen, X. (2014). Decentralized computation ooading game for mobile cloud computing. IEEE

Transactions on Parallel and Distributed Systems, 26(54), 974–983.

45. Yu, R., Ding, J., Huang, X., Zhou, M. T., Gjessing, S., & Zhang, Y. (2016). Optimal resource sharing in

5G-enabled vehicular networks: A matrix game approach. IEEE Transactions on Vehicular Technology,

65(10), 7844–7856.

46. Kuhn, H. W. (1953). Extensive games and the problem of information. Annals of Mathematical Studies,

2(28), 193–216.

47. Schwalbe, U., & Walker, P. (2001). Zermelo and the early history of game theory. Games and Eco-

nomic Behavior, 34, 123–137.

48. Stetsko, A., Folkman, L., & Matay, V. (2010). Neighbor-based intrusion detection for wireless sensor

network. In The proceeding of the 6th international conference on wireless and mobile communications,

Valencia, Spain.

49. Li, Y. J., Deng, H., & Lyu, X. (2012). An overview of the DSRC/WAVE technology. In The proceeding

of the international conference of on heterogeneous networking for quality, reliability, security and

robustness.

30

	Efficient Data Processing in Software-Defined UAV-Assisted Vehicular Networks: A Sequential Game Approach
	Abstract
	Introduction
	Related Work
	SDN-Based VANET Architectures
	UAV-Assisted VANET Works

	Background and Motivation
	SDN-Based Infrastructure-Less VANET Architecture
	SDN-Based UAV-Assisted VANET for Road Rescue Mission
	Motivation for Data Processing Optimization

	Problem Formulation
	System Model
	Communication Model
	Computation Model
	UAV Computation Sub-Model
	Emergency Vehicle Computation Sub-Model

	System Cost Function

	Data Processing Offloading/Sharing Policy for Emergency Scenario in UAV-Assisted Infrastructure-Less VANETs
	Offloading/Sharing Computation Sequential Game
	Nash Equilibrium
	Best Local/Sharing Computation Decision of Primary Controller
	Best Local/Offload Computation Decision of the Secondary Controller

	Numerical Results
	Conclusion
	References

