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Abstract 

Learning a Bayesian network is a difficult and well known task that has been largely investigated. To 

reduce the number of candidate graphs to test, some authors proposed to incorporate a priori expert 

knowledge. Most of the time, this a priori information between variables influences the learning but 

never contradicts the data. In addition, the development of Bayesian networks integrating time such as 

dynamic Bayesian networks allows identifying causal graphs in the context of longitudinal data. 

Moreover, in the context where the number of strongly correlated variables is large (i.e. oncology) and 

the number of patients low; if a biomarker has a mediated effect on another, the learning algorithm 

would associate them wrongly and vice versa. In this article we propose a method to use the a priori 

expert knowledge as hard constraints in a structure learning method for Bayesian networks with a time 

dependant exposure. Based on a simulation study and an application, where we compared our method to 

the state of the art PC-algorithm, the results showed a better recovery of the true graphs when 

integrating hard constraints a priori expert knowledge even for small level of information.  
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1 Introduction 

 

Bayesian networks (BN) are a class of statistical models that allow an intuitive representation 

of the causal relationships using acyclic graphs. They are widely used in different fields such as 

medicine, meteorology or finance [1–3]. The learning of a BN, the process consists of two 

parts: a) to learn the structure of the graph and b) to learn the parameters but in this paper we 

will focus on structure learning. There are mostly two approaches of learning information and 

modelling it into a graph. The first way is to use expert's knowledge to learn the causal-effect 

dependencies of the field to draw a graph. It is efficient when dealing with small number of 

variables, but could be unfeasible for a larger number of variables. Thus, some learning 

methods have been proposed to learn the BN structure based from data [4,5]. These methods 

generally do not integrate expert’s knowledge for learning the structure of BN. In order to 

improve these learning algorithm, a priori information such as expert’s opinions has been added 

[6–9]. The use of a priori information has been mainly proposed in score-based methods in the 

case of time-fixed covariates in low-dimensional settings but  structural restrictions in 

constraint-based algorithms have been shown as useful [10]. Using expert’s opinions in score-

based methods is achieved through an a priori distribution that makes the constraints soft; 

meaning that the opinions will influence the learning process but never against the data. We 

distinguish here opinions given with a probability 0 < p <1 (soft constraint) and opinions with 

probability p=0 or p=1 (hard constraint).     

 In observational settings, where most of the markers are measured repeatedly, we have shown 

that PC-algorithm leads in general to some edges wrongly directed from future to past in the 

final Bayesian network. Therefore we extended the PC-algorithm for taking into account time-

varying covariates with the Chronologically order PC (COPC)-algorithm [11]. 

 When modelling repeated measurement of covariate, the effects (edges) can be considered as 

(A) constant over time or (B) varying over time. These two assumptions lead to model 
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Bayesian network in two different ways. To model the stronger assumption (A), a new class of 

Bayesian network is needed to model a constant pattern which is the dynamic Bayesian 

network (DBN)[12]; whereas the later assumption is modelled by a classical Bayesian network. 

The more flexible assumption (B) is modelled by a static BN because there are no patterns over 

time. The constant over time assumption (A) can be seen as nested in the varying over time 

assumption (B). Structure learning methods have been largely developed for DBN [13–19], but 

none have added a priori expert’s knowledge between different variables in this learning 

context. 

Since anticancer immunotherapies have been developed, a key question is to identify patients 

who benefit most of these treatments.  Biologic and immunologic values measured at treatment 

initiation and during the treatment could be biomarkers associated with patient’s outcome 

including predictive biomarkers and/or early biomarkers of treatment effect.  These biomarkers 

are collected through observational study since experimental designs in which the level of a 

biomarker could be set do not exist. In this context where the number of strongly correlated 

variables is large (i.e. such as cells of the immune system); if a biomarker has an effect on 

another, the learning algorithm could associate them wrongly. Therefore we choose to use a 

priori expert knowledge as hard constraints to reduce the searching space and the number of 

tests to perform. 

 The objective of the paper is to integrate expert’s opinion as a hard constraint in the setting of 

time-dependent exposures case in order to improve the learning process. To achieve this 

objective, the COPC-algorithm initially based on the static assumption (B) will be redeveloped 

under the dynamic assumption (A). The skeleton of the article is as follows: in Section 2 we 

review some related work, then we introduce our new method to integrate experts’ opinions in 

section 3. In section 4 we introduce the experimental settings while in section 5 we present our 

results from simulations and from the application to a longitudinal data set of tumour 

biomarkers in early breast cancer, and provide a discussion in section 6.  
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2 Related work 

2.1 Bayesian networks definitions and notations 

 

Bayesian networks are a class of graphical models that allows a straightforward representation 

of the probabilistic structure of data using graphs. Formally, based on [20] a BN is defined 

by � = (�, �, �), where � = (
, �) is a DAG (Directed Acyclic Graph) consisting of nodes 


 = {
�, … , 
�} and edges �. � represents the set of random variables � = {��, … , ��} with P 

being the joint distribution over �. Each variable of � corresponds to a single node in 
 and 

the edges represent the probabilistic dependencies between nodes. In a DAG, edges can only be 

directed as �� → �� or �� ← ��  (in the first case, �� is a parent of Xj and Xj is a descendant 

of ��).  When assuming this one to one correspondence and according to the chain rule, the 

joint distribution P can be written as follow:   

(1)                                                      �(��, … , ��) = ∏ �(�� |��(��, �))�� , 

where ��(��, �) represents the set of parents of �� in the DAG G (the set of variables pointing 

to ��), and ���� ���(��, �)� the conditional probability of �� giving its parents. The DAG can 

be seen as the map of dependencies described in the joint distributions.  In fact, the DAG 

encodes (conditional) independence relationships through the concept of d-separation [21].  

Somehow it may happen that several DAGs encode the same set of conditional independencies 

whereas the set of edges V is different. The three DAGs in (2) have the same set of conditional 
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independencies but are represented differently; we say that they are Markov equivalent or that 

they belong to the same Markov equivalence class. 

(2)                                                                    X� → �� → �" X� ← �� ← �"X� ← �� → �"
 

This class encodes DAGs that have the same skeleton and v-structures [22]; where the skeleton 

is the graph we obtained by removing all arrowheads from the DAG and the v-structures are a 

triple  (X�, ��, �") filling two conditions: 1)  ��  is a collider (when two arrowheads are directed 

to the same node) and 2) where �� and �"  are not adjacent.  Edges which are directed 

differently across the DAGs in the equivalence class are represented with undirected arrows (or 

simply edges). These graphs representing a Markov equivalence class with both undirected and 

directed edges are called Completed Partially DAGs (CPDAGs) [23] or Essential graphs [24]. 

In the rest of this article, we will note the probability of having an arrow between �� and �� 

nodes by  �(�� → ��), and the probability of not having an arrow such as �� and �� are 

independent �(�� ∅ ��) with ���� → ��� + �(�� ∅ ��) =1. 

2.2 Learning methods 

 

Different ways exist to learn a BN structure.  A priori knowledge is generally enough for 

learning small DAGs, but to learn the structure of high-dimensional data, the expert’s 

knowledge may not be sufficient. Thus, some structure learning algorithms have been 

developed, divided into three types: constraint-based, score-based and hybrid algorithms 

reviewed by Drton, Maathuis and Daly [25–27]. One of the main differences between these 

methods is that the constraint-based ones result in a PDAG while the score-based ones result in 

a DAG. Basically constraint-based algorithms such as PC-algorithm [4] use statistical tests to 

learn the skeleton of the underlying CPDAG and then use the conditional independencies found 

during the skeleton learning as constraint to find the v-structures and then to direct as many 

edges as possible according to some orientation rules. Score-based algorithms as described by 
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Heckerman [5] learn the DAG by maximizing a score for each candidate. It will select at each 

step the best BN candidate that maximizes the score (fitness) among all feasible edges 

additions, removals or reversals. The algorithm stops when the score cannot be maximized 

anymore. Finally the hybrid algorithms such as the algorithm MMHC (Max-Min Hill-

Climbing) developed by Tsamardinos et al [28] combine both type of methods to learn the 

estimated DAG. 

 

 

2.2.1 PC-algorithm 

 

The PC-algorithm and its extensions belongs to the group of constraint-based. The main steps 

of the algorithm are (1) identification of the skeleton, (2) identification of the v-structures and 

(3) orientation of as many of the remaining edges as possible.  

First, the skeleton of the underlying structure is estimated by checking all given conditional 

dependencies between each variable at a significance level α. Then, once the skeleton is 

estimated, edges are oriented in the v-structures to meet the conditional dependencies and 

finally the CPDAG is obtained by directing as many remaining edges as possible according to 

three rules [29]: 

R1:  When there is a triple �� →  �� − �" with �� and �" independent, orient �� − �" as 

�� → �"; 
R2: When there is a chain �� →  �" → ��, �� − �� is oriented into �� → �� ; 
R3: When there are two chains �� −  �6 → �� and �� −  �" → ��,   �� − �� is oriented into 

 �� → ��  if �" and �6 are not adjacent.  

 

 The PC-algorithm has been shown to be consistent in high-dimensional settings [30] , but 

poorly robust since results are impacted by the variable ordering. Two approaches have been 
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suggested to cope with the order dependence implemented in the step 1 of the PC-algorithm: 

the conservative PC-algorithm and the PC-stable [31,32].  The PC-stable is implemented in R 

software in the pcalg package [33]. 

 

 

 

2.2.2 The chronological order PC-algorithm 

 

Structure learning algorithms have been developed to learn the structure of time-fixed 

covariates. As we have shown previously [11], when applying PC-algorithm to time-dependent 

exposures, the estimated CPDAG could have wrongly directed edges in terms of temporality. 

Therefore we have proposed the Chronological Order PC-algorithm (COPC-algorithm) which 

is based on the PC-stable to cope with time-dependent exposures exploiting temporal constraint 

in discrete time setting. Using a detailed simulation study, we have shown in the context of 

repeated measurements that CPDAGs estimated with COPC-algorithm were closer to the “true” 

CPDAG than CPDAGs using PC-stable.   

We made the hypothesis that based on chronologically ordered data, the resulting CPDAG 

should not contain an arrow from a descendant to a parent such as ��,7 → ��,78 where t > t' 

since the future cannot influence a past value of the same variable. This means also that in the 

first step, when looking at conditional dependencies between two variables measured at time t 

and 9′ where 9 ≥  98, variables measured at a time 9∗where 9∗  ≥  9 and 9∗  ≥ 9 ′ should not be 

tested for the separation set S. We solved this issue by (1) chronologically ordering the 

variables in addition to the conditional independence information as input of the PC-stable 

algorithm as shown in figure 1 and by (2) restricting the testing of conditional independencies 

of ��,7, ��,7=|�",7∗ with 9∗ ≤ t and 9∗ ≤ 9′. In figure 1 (a) shows the initial graph without 

integrating repeated measures (only edges) and (b) the initial graph with a priori information on 

repeated measures. 
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Figure 1: Initial graphs used as input without (a) and with (b) chronological a priori information for 2 

variables ��, �� measured at 3 time points 9�, 9? and 9@.  

3 Material and methods  
 

In this section we will first explain how we restricted the COPC-algorithm to DBN and detailed 

how we incorporated the expert’s knowledge into the learning process of DBN. Then We will 

explain our simulations and application set-up. 

 

3.1 COPC-algorithm and vector autoregressive (VAR) model 

 

Our initial COPC-algorithm makes no assumptions about the “true” DAG as shown in figure 

2a, where no pattern is present across time. When dealing with repeated measures one could 

assume that there exists a pattern across time such as in Figure 2b. This assumption refers to the 

vector autoregressive model (VAR) used to model time series with DAGs [34].  
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The VAR model describes the evolution of p variables across time as a linear function of their 

present and past values. We denote l as the time lag of the model and the representation of a 

VAR (l) as: 

(3)                                                B7 = C + D�B7E� + D?B7E? + ⋯ + D6B7E6 + G7,   
where B7 = HI�,7, I?,7, … , IJ,7K is the vector of observation at time t, d is a vector of p constants, 

D6 is the L ∗ L matrix of coefficients of the lag l and G7 = {G�,7, G?,7, … , GJ,7} is the vector of 

error terms. Specifying a VAR (l) model means that only variables measured up to l are in the 

linear function. If we consider a model VAR(2), then the linear function can be described as  

(4)                                                    B7 = C + D�B7E� + D?B7E? + G7, 
with D�the coefficients of the inter-slice edges with a lag of 1 and  D? the coefficients of the 

inter-slice edges with a lag of 2. 

 

Figure 2: Illustration of two possible assumptions about the true DAG with repeated measures.  
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The class of DAGs modelling the vector autoregressive (VAR) assumption has been called 

Dynamic Bayesian Network (DBN). They are represented by two components which are the 

initial and transition model illustrated in Figure 3. The initial model (figure 3a) represents the 

DAG at 9 = 0 represented by the initial joint distribution O(�[9 = 0]). The transition model 

represents the DAG at time slices t to t+l (i.e. D� for the transition model between t to t+1). It 

can integrates either intra time-slice edges (figure 3b) or not (figure 3c). We will assume in the 

following paragraphs a VAR model with a time lag R = 1 with no intra time-slice edges. 

Before achieving the main objective of the paper namely including a priori expert knowledge 

into the learning process, we have to allow the COPC-algorithm to handle the discovery of such 

DBN. Therefore we added a final step after having oriented the last edges. This step consists on 

identifying a repeated pattern inside the output graph and generalizing it to the whole graph 

(sketch of the added step is given in algorithm 2). Given T the number of visits of the study 

(usually between 3 and 6), let S − 1 be the total number of possible edges between ��,7 

and ��,7T� and F the number of observed edges between ��,7 and ��,7T�. Basically, for each pair 

of variables(��, ��) in the resulting DAG, if there are more edges between F than the half of 

(S − 1), then the algorithm forces the presence of an arrow between  ��,7  →  ��,7T� at each 

time slice, otherwise it deletes all existing arrows between ��,7 and ��,7T� at each time slice. In 

other words for each pair (��, ��), if the pattern with a relation (��,7  → ��,7T�) is more present 

than the pattern without an arrow  (��,7 ∅ ��,7T�) than it will be extend on the whole graph and 

vice versa.  
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Algorithm 2: Sketch of the added final step of DynCOPC-algorithm for VAR models 

Input: DAG VW 

 1: For every pair (�X, �Y) in the dag VW do  

 2: let Z be the total number of arrows between �X,[ and �Y,[T\ 

 3: If Z  ≥   ((] − \)/_)  then for every time slice a directed edge is forced between �X,[ 
and �Y,[T\ such as   �X,[  →  �Y,[T\ else 

 4:   for every time slice an absence of an edge is forced between �X,[ and �Y,[T\ such as   �X,[  ∅ �Y,[T\  

Output: DBN VW 

 

When assuming the “true” DAG follows a VAR model with no intra time slice edges implies 

that the outputted graph is not a CPDAG but a DAG. Indeed, assuming no intra time slice 

edges means that the only possible edges are between two time slices (i.e. ��,7 → ��,7T� as in 

Figure 3c). Therefore, undirected edges from the learned skeleton will be oriented according to 

the temporal constraint, leading to a final graph without undirected edges. Due to this 

additional step the first objective is achieved and the result is a new algorithm that we referred 

as Dynamic COPC (DynCOPC). 

3.2 Integrating the expert’s knowledge 

3.2.1 Expert’s opinions notation  

 

In this study we assumed a VAR model with no edges between variables measured at the same 

time t. This led to have only directed edges in the transition model such as ��,7  → ��,7T�. A 

fixed ordering over the nodes has been also assumed; and so a fixed ordering over the pairs (i.e. 

for a pair (��, ��) the first pair is (��,7`�, ��,7`?), the second is (��,7`?, ��,7`@), etc).In a single 

time point graph with a nodes, the number of pairs is given by 
 = b(bE�)? . When considering 

two time points, having ��,7  → ��,7T� differs from  ��,7  → ��,7T�, the total number of pairs is 
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given by 
 = a(a − 1) and the set of total ordered pairs is noted P. In our framework we 

assumed we had several numbers of experts (noted R) that could give a priori information on 

all or a small part of pairs.  

Each expert k gives an opinion on the pair q that he knows as a probability of having a 

connection �→"c = �(��,7 → ��,7T�) or not �∅"c = �(��,7∅ ��,7T�). For each pair, if �(��,7 →
��,7T�) is given by the expert, then �(��,7∅ ��,7T�) = 1 − �(��,7 → ��,7T�). Afterwards the 

opinions of each pair for all experts are summarized in the set d of dimension e × 
 such as 

d = {g��, … , gc", … ghi}, where gc" represents the opinion for the qth pair for the kth expert with 

gc" = {�→"c , �∅"c} if an opinion is provided and gc" = ∅ if not, with �→"c + �∅"c = 1. 
Finally, opinions from all experts are merged into another set by computing the median of all 

experts’ opinions �→"c
 and �∅"c

 with �→"c
 and �∅"c not empty. The new created set is then defined 

as j = {k�, … , kh} where k6 = {�→c = lmCk�a��→"c�, �∅c = lmCk�a��∅"c�} and k" = ∅ if none 

opinions were provided for the pair k. 

3.2.2 Integrating expert’s opinion in the COPC-algorithm 

 

We propose to use the expert’s opinion as hard constraints in the transition model of the DBN. 

We will look at each element of j and create the set C of constraints using algorithm 3, that we 

will use to learn the skeleton. The set of opinions I includes the merged opinions from all 

experts for each pair. No probabilities are assigned to a pair if no expert provides a priori 

information. For each pair that has a priori information, we take for the pair’s maximum 

probability (either  �→ or �∅) the results of  a Bernoulli’s process [35] and then use this for the 

constraint. 
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Algorithm 3: Sketch of the conversion from the set of experts’ opinions j to the set of opinions’ 

constraints C  

Input: Set of experts’ opinions j 

 1: nop every pair q in j qr 
 2:   st Xu ≠ ∅ 

 3:           If wxy�Xu� =  z→ then 

 4:                  If  {|}~r���X (z→) = \ then  �� = {z→ = \, z∅ = �} 

 5:                 Else �� = {z→ = �, z∅ = \} 

 6:           Else If  {|}~r���X(z∅) = \ then  �� = {z→ = �, z∅ = \} 

 7:                  Else �� = {z→ = \, z∅ = �}  

 8:  �� = ∅ 

Output: C  

 

The set C represents the constraints derived from experts’ opinions that can be described as 

� = {��, … �h} where �6 = {�→ = 1, �∅ = 0}  if the opinions led to force the presence of the 

edge, �6 = {�→ = 0, �∅ = 1}  if the opinions led to remove the edge and �" = ∅ if any opinions 

were provided. 

Once we compute the set �, we can easily restrict the algorithm to learn the skeleton using  

algorithm 4 which is a modification of the step 1 of the COPC-stable itself derived from PC-

stable [32] . In other words, we have a set of probabilities that represent the median a priori 

expert knowledge for each pair. For each of these probabilities we will run Bernoulli’s process 

on the maximum probability of the pair kc (either �→ or �∅). Then depending of the result of 

Bernoulli’s’ process (1 or 0) we force the presence of the arrow or not. 

The algorithm 4 is the modified first step of the PC-algorithm. Originally, this step consists on 

creating a complete undirected graph and then testing the independence between each pair of 

variables according to a threshold �. At the end of the original step, the skeleton is estimated. 

We modified the first step as detailed in example 1 by removing from the undirected graph the 

edges based on the set of constraints C. This means that for every pairs with �6 = {�→ =
0, �∅ = 1} we remove it from the graph G and so this pair will not be tested all along the 

algorithm. The step 7 is modified in restricting the search over the pairs in C that did not have 
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any opinions (�" = ∅). Pairs in C that are independent are removed from the search at step 2 

and remaining pairs with �" = {�→ = 1, �∅ = 0}   will not be tested. This step leads that pairs 

with a probability of �→ = 1 to be in the final graph. We refer to these methods as COPC������ 
(COPC using algorithms 3 and 4) and dynamic COPC������  
�DynCOPC�������when using algorithms 2, 3 and 4 with COPC. 

 

Algorithm 4: Sketch of the first step of the COPC-algorithm to integrate a priori expert’s 

knowledge 

Input: The set of ordered pairs P, significance parameter α, the set of expert’s constraint C 

 

1: Form an undirected graph G that respects a time lag of 1 with no edges between variables of a same 

time t as in Figure 4b 

2: For every pair u in C do 

      If �� = {z→ = �, z∅ = \} then remove the edge in G for the u[� pair of C  such as �X,[ ∅ �Y,[T\ 

     at each time lag  

    end 

3:  � = −\ 

4: Repeat 

5:       � = � + \ 

    

6:       Repeat 

7:                 Using P, select a (new) pair q (�X,[, �Y,[T\) that is adjacent in G satisfying 

                   ��qY��X,[�\�Y,[T\� > � and  �� = ∅  

8:               Repeat 

9:              Choose a (new) set � ⊆  �qY��X,[�\ {�Y,[T\, ��,[8} with |�| = � and [8 > [ + \ > [ 

10:           If �X,[ and �Y,[T\ are conditionally independent given S then  

                     Remove edge �X,[ − �Y,[T\ from G 

                      Let ��|z be the separation set  ��|z (�X,[, �Y,[T\) = S 

11:     Until �X,[ x�� �Y,[T\ are no longer adjacent or all ⊆  �qY��X,[�\ {�Y,[T\, ��,[8}  with |�| = � and 

[8 > [ + \ > [ have been tested 

12:   Until all ordered pairs of adjacent nodes �X,[, �Y,[T\ with ��qY��X,[�\�Y,[T\� > � have been tested 

13: Until all pairs of adjacent nodes �X,[, �Y,[T\ satisfy ��qY��X,[�\�Y,[T\� ≤ � 

Output G, ��|z 
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Example 1: Let Figure 3a be the “true” DAG, Figure 3b the undirected graph formed at step 1 

of algorithm 4 and � = {��,7, ��,7T� = ∅; ��,7, ��,7T� = {1,0}; ��,7, �",7T� = ∅; ��,7, ��,7T� =
∅; ��,7, ��,7T� = {0,1}; ��,7, �",7T� = ∅; �",7, �",7T� = ∅; �",7, ��,7T� = {0,1}; �",7, ��,7T� = ∅} 

the expert’s opinion.  

 

In other words, the original step 1 of the PC-algorithm is to test every conditional 

independencies, but here in the step 2 we remove all hard constraints that we created using 

algorithm 3. Then from step 6 to 13, we test all the other pairs for conditional independencies.  

 

 

4 Experimental setting  

4.1 Simulations 

 

To measure the efficiency of our new method and attest the efficiency of a priori expert’s 

knowledge as hard constraint, we ran a bench of simulations. Based from a random “true” 

Figure 4: Illustration of the example 1 with the true DAG in (a), the undirected graph that fits a first 

order VAR model in (b) and the undirected graph obtained based on restrictions given by the experts. 



15 

 

DAG, we wanted to generate a dataset with different time-points (typically clinical visits in the 

context of clinical research) and to recover it using our algorithm with and without the use of a 

priori knowledge. We assumed that a group of experts with different levels will give their 

opinions about a percentage of the total information available. Then we compared COPC, 

COPC������, DynCOPC and DynCOPC������. The details are described in Appendix 1. 

 

 

4.2 Application  

 

To validate our method on real word data, we applied it to a longitudinal clinical study [39], i.e. 

a neoadjuvant phase II trial of letrozole in estrogen receptor-positive breast cancer patients with 

the expression of genes in the tumour as biomarkers. The gene expression data of this clinical 

study is publicly available in the gene expression omnibus (GEO). To evaluate the efficacy of 

our methods, we restricted the search over the cell cycle graph from KEGG [2], as this is the 

main biological pathway in estrogen-positive breast cancer, and used it as the “true” graph to 

compare the results.  This represents a total of 44 genes measured 3 times during the study on 

56 patients (baseline, 14 weeks after treatment and 3 months after treatment). We also used the 

original graph from KEGG to simulate expert knowledge. Due to a high number of possible 

pairs, we only used 5% of priory expert knowledge to be realistic (0.05x44x43=94). 

5 Results 

5.1 Simulations 

 

The results of the simulations are presented in table 1. Since the differences of the standardized 

Hamming distance did not vary for the significance parameter α, we only presented results for 

α= 0.05. The amount of experts’ opinions varies from 5% to 40% of the total percentage of 

possible pairs of variables; which corresponds to provide 20 to 160 pairs of variables by the 

experts. 
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The results of Hamming distance showed that DynCOPC obtained lower Hamming distance 

values compared to COPC and PC-stable with and without expert’s opinions despite all other 

scenarios. Also the Hamming distance among all algorithms increased with the number of time-

points.  

For perfect experts, adding 5% or 40% a priori knowledge resulted in reducing the Hamming 

distance in COPC and DynCOPC algorithms. The reduction of Hamming distance was more 

substantial when using 40% of a priori information. However we observed that incorporating 

5% of perfect opinions in the PC-stable resulted in an augmentation of the Hamming distance. 

For bad experts, it led to an increase of the Hamming distance. Nevertheless we noticed that 

even with bad opinions, the DynCOPC������ got better or similar results than COPC������ with 

perfect opinions when using 5% of a priori information (22, 16 versus 25 with T=4 and 34, 27 

versus 34 with T=8). The PC-stable on the other hand had the worst performance with the 

highest Hamming distance in all scenarios.  

More detailed results on different scenarios are available in appendix 1. 

Table 1: Average standardized Hamming distance according to the different algorithms over 500 

random DAGs with 20 nodes with α=0.05. Bold and underlined values report standardized Hamming 

distance smaller than COPC or DynCOPC respectively. 

] 
Expert’s 

opinion 
Level 

PC-

stableexp 

(sd) 

�� �¡y¢ 

Algo (sd) 

£¤��� �¡y¢ 

Algo (sd) 

 

PC-

stable 

(sd) 

COPC 

Algo (sd) 

DynCOPC 

Algo (sd) 

4 

5% 
bad 45 (2) 37 (4) 22 (4)  

 

32 (2) 
26 (4) 17 (3) 

perfect 34 (3) 25 (4) 16 (4) 

40% 
bad 110 (4) 107 (5) 56 (4) 

perfect 22 (4) 16 (3) 11 (2) 

8 
5% 

bad 52 (3 47 (4) 34 (3)  

 

38 (3) 

35 (4) 28 (3) perfect 40 (2) 34 (4) 27 (3) 

40% bad 127 (5) 127 (6) 71 (5) 



17 

 

perfect 26 (3) 22 (3) 19 (3) 

 

 

 

 

 

5.2 Application 

 

The results of the application are given in table 2. Globally all algorithms with expert’s 

knowledge had a better recovery than without.  As expected, the DynCOPC��� outperformed all 

the other algorithms with the lowest SHD (122). We observed that PCexp  had a lower SHD than 

PC but had a similar SHD with DynCOPC (¥ 130). Surprisingly COPC had a higher SHD than 

PC.  

Table 2: Average standardized Hamming distance according to the different algorithms over 

500 random datasets and set of constraints (5%). The significance level was set at α=0.05.  

 

 

PC (sd) 

COPC 

Algo (sd) 

DynCOPC 

Algo (sd) 

PCexp (sd) �� �¡y¢ 

Algo (sd) 

£¤��� �¡y¢ 

Algo (sd) 

136 (3) 140 (4) 130 (3) 131 (3) 126 (3) 122 (3) 

 

6 Discussion 

 

In this article we proposed a method to integrate expert’s opinion in causal learning methods 

such as constraint-based algorithms in the case of repeated and multi-dimensional settings 

which has not been done until now, to our knowledge. The framework is built by translating 
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expert’s opinion in constraints used in the algorithm. Giving multiple experts’ opinions and 

their uncertainties, it will return a set of constraints that will be used in the algorithm. These 

constraints could either force the presence of an edge or force the removal of it. In fact we 

proposed here two algorithms in the case of repeated and multi-dimensional settings, one that 

follows the VAR assumption with a single pattern across time (DynCOPC) and one that does 

not (COPC). Since the VAR assumption corresponds to a specific case for repeated measures 

(where the structure is constant over time), we have based our simulations on this. The COPC 

can then recover a more general pattern (i.e, where the structure cannot be constant over time) 

in repeated measures while DynCOPC is defined only for VAR assumption.  

A priori experts’ information in structure learning methods has mainly be used but in low-

dimensional setting [6,36,37]. In the case of large number of variables, it is difficult to assume 

that all a priori information is known and that only a certain percentage of opinions can be 

given. Therefore we explored the incorporation of a priori information from 5% to 40%. We 

also ran sensitivity analysis where we tested the effect of modifying the set of constraints over 

several datasets and the results of one set of constraints over several datasets. These 

modifications did not impact the main results and DynCOPC had still a better recovery than 

COPC and PC. 

We have shown that when using only 5% of total information as a priori constraints, it was 

possible to reduce the Hamming distance for perfect experts compared to both versions of 

algorithms without a priori information. The reduction of the Hamming distance was more 

important with the percentage of a priori information. However in real situations, we expect 

that it is more realistic to assume that expert will give a small percentage of opinions, close to 

5% of total a priori information rather than 40% or more. In fact we tested our method on a real 

dataset from a nonrandomized neoadjuvant phase II trial of letrozole in estrogen 

receptorpositive (ERþ) breast cancer patients with genes as biomarkers. The results showed that 

the SHD is reduced by the integrating of expert’s opinions as constraints leading to improved 
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graph learning. Contrary to COPC and PC, the DynCOPC is specially designed to learn 

Dynamic DAG and thus performed better. 

 

The ways of integrating expert’s knowledge in structure learning methods has been intensively 

studied [29,38–43]. Meek proposed to integrate the expert knowledge after the learning process 

to complete it and helping to orient undirected edges. In the case where the expert knowledge 

would contradict the results obtained from the data, the results obtained with data prevail over 

the expert knowledge. So in this implementation, the expert knowledge is not used a priori but 

a posteriori. Tan proposed a method to integrate expert knowledge as a modification of the 

significance parameter α in the PC-algorithm [40]. However the calculation was based on a 

“trust” parameter of the given information that is difficult to estimate in a real situation. 

Richardson focused on how to merge properly opinions from different experts in the case of 

score-based methods [41]. Of note, several opinions on a same pair of variables can be 

contradictory. In our work we calculated the median of all probabilities but it is possible in a 

further work for example to weight experts’ opinions according to expert confidence in their 

opinion.  

Recently Amirkhani added some errors in the given opinions in score-based method by 

simulating the bad, mediocre and good experts [6]. Each expert regardless of his level had the 

same probability to give wrong or correct information about a pair of variables; while in our 

method we simulated different experts that give information about a pair of variables according 

to a range of probabilities..  

The assumptions of our methods are well defined. We supposed to have Gaussian covariates 

measured at a discrete time interval. Also to simplify the incorporation of expert’s opinions, we 

made the assumption that the true DAG had a unique pattern across time (first order VAR 

model) and that expert’s beliefs are also constant across time. This may be true in economics 

where the VAR model is widely used but medicine and biology are known to be much more 
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complex. For example [44] showed that the T cell activation was determined by the number of 

T cell receptor (TCR). They observed that T cells responded only when the number of triggered 

TCR reached a number of 8000, meaning that when the number of TCR was below this 

threshold, the T cells were inactive. This illustrates clearly that the T cells activations and 

responses are varying within time and that a dynamic Bayesian network may not be suitable to 

model this kind of pathway. 

We also considered that there were no edges between variables measured at the same time 9. 

The interpretation of such an edge differs from an edge between time 9 and 98 (with 9 > 9′) . If 
we refer to Allen’s theory [45], edges between variables measured at a same time 9 can only 

equal, overlap or meet each other; so the establishment of the dependence between ��,7 and ��,7  

is much more complex than just a test. Therefore in this study we focused on relations where 

�� occurs strictly before ��.  

Our method to convert experts’ opinions as constraints is given in algorithm 3. Using the 

Bernoulli’s process makes it nondeterministic and thus, repeating it on a same set I will give 

different sets of constraints C. We choose to focus on this kind of approaches rather than 

deterministic ones because restricting the opinions probabilities to a single threshold reduces 

the variability of a given opinion. In such approaches, where different models can be obtained 

from the changes of the set C; further work can be done by developing methods that combine 

them and get a better graph. In parallel, learning Bayesian network was not only for learning 

the dependencies between variables but also for estimating causal effects.  

Most of the methods integrating a priori information check whether the opinions fit the data, 

and reject them if not. Our method does not check whether the expert opinion is substantiated 

by the data or contradicts the data. In a domain where the biomarkers are strongly correlated, if 

a biomarker has an effect on another, the algorithm could often associate them wrongly and 

vice versa. Using hard constraints is the only way to avoid false positive relations under the 

assumption that the information is correct. This implies that we collaborate with high level 
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experts. Being a bad expert does not mean that the expert does not know, but it is rather an 

expert that will put a strong probability on a false relation. In the context of immuno-oncology, 

having bad experts or wrong a priori information is unlikely since the experts are generally 

highly renowned in their fields and their knowledge is derived from in-vitro experiments, 

fundamental knowledge about immunology where the level of evidence is strong. 

 In addition, one could note that the hard constraints are inherent to the field of immunology. 

Only known immunological biomarkers are measured and biomarkers which have a potential 

causal effect according to previous knowledge are much more susceptible to be analysed. Since 

this selection of immunological biomarkers of interest is inherent to the field and can be seen as 

hard constraint, it is somewhat logical to integrate a priori knowledge as hard constraints. 

In this study we choose to use expert’s opinions as a priori information but it exists other 

sources than can be used as a priori information. In immunology, experimental studies such as 

in vitro studies are available, or machine learning methods allow to learn relations by searching 

into the bibliography. Integrate such information in our method can be done by considering it 

directly in the set of constraints C.      

Non-experimental studies are of interest for identifying candidate biomarkers from large 

number of measured variables. Of note, these variables could be highly correlated as are the 

immunological markers of the immune system cells.  In previous work, biomarkers have been 

identified in the context of observational studies with a large number of variables using causal 

inference [46]. The principle is to learn a CPDAG (Completed partially DAG) and then 

estimated causal effects based on the estimated graph using do-calculus [47]. In the context of 

immuno-oncology, a priori information is available based on renowned experts or experimental 

results to improve the learning of the CPDAG, and so the estimated causal effects. But when 

data follows VAR assumption, the classical definition of causality does not apply and the 

Granger causality has to be applied [48,49]. 
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Conclusions  

 

We presented in this paper an original and efficient method to integrate a priori expert 

knowledge in constraint-based structure learning algorithms on repeated measures. In fact, it 

allows taking into account opinions from several experts in the context of repeated measures 

and then converting them into hard constraints that modified the output of the final graph. It led 

to a reduced searching space and a better recovery of the true structure in terms of Hamming 

distance with all versions of algorithms PC, COPC and DynCOPC when using at least 5% of 

total information as a priori. Our method is new since the constraints are not checked with the 

data for letting opinions contradict the data. This is pertinent when the data are strongly 

correlated: only the hard constraints can be used to recover the true structure since false 

positive association can arise from the data in lack of these hard constraints. 

In a further work we want to apply this method to immunological data after having integrated a 

range of highly renowned experts and a priori information based on experimental studies as 

input and implementing the Granger causality to estimate causal effects in the context of 

longitudinal data and identify biomarkers that are associated with treatment response or toxicity 

of immunotherapies. Other future works that can be done such as the improvement of merging 

expert’s opinions, the merging of different graphs obtained by varying C. 
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