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Abstract. We propose a method that allows to detect the subset
of the sparse nodes in a complex network, providing supplementary
informations about its structure and features. The aim is to produce
a complementary approach to the classical ones dealing with dense com-
munities, and in the end to develop mixed models of community classi-
fication which are articulated around the network’s sparse skeleton. We
will present in this article different metrics that measure sparsity in a
network, and introduce a method that uses these metrics to extract the
sparse part from it, which we tested on a toy network and on data coming
from the real world.

1 Introduction

Networks are nowadays taking an important place in the everyday life, whether 
by means of the social media that are used by nearly everyone or our dependence 
on the world wide web, and more specifically in the scientific domain thanks to 
the evolution of the calculation means. Now we use networks as a representation 
for a lot of problematics, making their modeling easier. As examples we can cite 
the biological systems [15] through the study of proteins and the relation between 
their structure and function, ecological systems [10], and other examples in eco-
nomics [14] or even history [7] and geography [2]. Therefore researches concerning 
the structure and the fundamental properties of networks have been achieved to 
allow their better comprehension, since the understanding of the network struc-
ture is generally the first step before a detailed study. Among multiple structural 
characteristics, some turned out to be common to a large class of networks, even 
if these networks model completely different systems, such as high a transitivity 
coupled to the small world effect, and the scale free property identified in most 
social networks [12]. An other specificity of the real wold networks is the self-
organization of their nodes in communities, and by community we mean a group 
of nodes which are much more connected between themselves than they are to 
the rest of the network [11]. Thus the community detection problem became 
very important these last years leading to the emergence of many approaches
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[5]. However, few studies have focused on understanding the links between com-
munities. One can only cite several works on hierarchical organization in complex
networks [13]. The aim of our study is to go further in the modeling of arrange-
ment of communities in a network by detecting the nodes that do not belong
to any community, or at least whose belonging can be discussed. These nodes
are the basis to reveal the structuration of the inter-part communities. Classical
approaches are focusing on the partitioning of nodes into communities but Burt
[3] for instance shows the importance of the sparsely connected individuals in
a social context. We want to develop mixed models of community classification
articulated around the network’s sparse skeleton: a unique subset of nodes which
share the same properties rather than a partition with several components as
it is done in community detection methods, all with the purpose to apply it to
dynamical networks and thus highlight both the dynamics (possibly different)
of the dense and the sparse parts. The paper is structured in three parts: the
first one presents methods of density evaluation and the extraction of the sparse
parts, the second one describes the datasets and the models on which we tested
our method, and the last part is dedicated to the presentation and the discussion
of their results.

2 From Sparsity Measurement to the Extraction

of the Sparse Parts

Before we discuss the details of the calculation it is better to start by telling
which are the characteristics that make a node belong to the sparse part (SP
in the following), and it is worth noticing that it depends on our viewpoints
and that other are of course possible. So we do not give a strict definition of
SP but only a qualitative description of what we expect it to be based on our
observations, it is therefore a similar scheme to those adopted in any community
detection approach: the results we find are directly related to the descriptions
that we make of the entities we look for. As for the criteria that should share
the nodes of SP, we rely on what is traditionally used for density estimation
in networks and we’ll enrich it with a few characteristics that seem adapted.
We stipulate that it is possible for certain types of networks (typically the real
world networks) to split their nodes into two separate categories: on one hand
we have the dense part which is the subset of nodes belonging to communities
or more generally to clusters, and on the other hand the nodes which do not.
Figure 1 is an illustration of a small network made of two clusters/communities
and five nodes between them. This is one of the advantages that may provide
the separation proposed here, instead of facing a situation in which it is hard
to tell to which community belongs each of these five nodes, we classify them in
the SP. After that it becomes easier to separate the two remaining communities
by (for example) a modularity based algorithm. One criterion that is frequently
used for estimating the node’s density is the ratio between this node’s degree
and the size of the network (number of nodes). But this is far from describing
precisely the notion of density, the best counter example we can provide is the



comparison between a high degree star node and a smaller degree node that lays
inside a cluster. In fact a node may have a large number of neighbors but if
these neighbors are not well connected to each other, then it is not likely that it
belongs to the dense part. On the other hand we can have a lesser degree node
strongly connected to a community making it an element of the dense part.

Fig. 1. Here we can easily identify two clusters and 5 nodes weakly linked to them,
but we cannot clearly establish which of these 5 nodes is in which cluster.

Such considerations have led us to the elaboration of our own metrics, which
report the quality of each node in terms of density so that we can rank them
before we extract the SP. Three metrics are presented and detailed in the fol-
lowing subsections, each of them relies on a different considerations.

2.1 The Clustering Coefficient Based Metric

The upcoming approaches are simply driven by the impossibility to capture a
non-local property such as the belonging (or not) of a node to a dense zone,
and by zone we mean a more or less close neighborhood, only on the basis of
local properties (specific to that node). So we developed approaches in which the
scores attributed to nodes depend on the state of their neighborhoods, and thus
we evaluate each node by having a more global vision, contrarily to what we
would have obtained if we only measured (for example) their degree. To clarify
this we propose a first method that is based on the clustering coefficient, and
we’ll explain the model that allows its extension to the neighborhood evaluated.
We remind that the clustering coefficient associated to a node i is given by the
ratio between the number of links that exist between this node’s neighbors and
the number of pairs they form.

Ci =
2(|E(Egoi)| − di)

di(di − 1)
(1)



Here we note Egoi the subnetwork formed by the node i and its neighbors, ki the
degree of i and E(G) the set of edges in a network G. This coefficient is equal to
0 for a star node and 1 if i’s neighborhood is a clique (a subset of nodes in which
every pair is linked by an edge). However as said in the previous paragraph, we
do not only restrain to the node’s coefficient to evaluate its density, we rather
extend this measure to its neighbors and their neighbors etc. We also modulate
the contribution of each group of nodes with an inversely proportional function
to the distance to the evaluated node So the coefficient averaged over the first
neighbors has a greater contribution to the node’s score than that of the seconds
neighbors which at their turn contribute more than the group of nodes whose
distance to our node is 3 and so on. Indeed for a node to be in a dense zone
does not only mean to have a high clustering coefficient, its (more or less) close
neighbors must also share the property. This provides us with a larger vision
centered around the node whose density is evaluated, as large as we want it to
be just by modifying the modulating function, but still making sure it decreases
with the distance. Let C(i) be the clustering coefficient of node i to obtain the
metric we just described, we do a breadth first search on the network starting
from node i, which provides us a set

K = {k1, k2, ..., kL}

in which an element kl is the subset of nodes reachable from i through a path
of length l. Then we average the clustering coefficient over each of the subsets,
let’s call ρi the average over ki:

ρi =
1

card(ki)

∑

j∈ki

C(j) (2)

The last step is to sum these averages and give them a weight that corresponds
to their importance in the final score, like:

Q(i) =

(

l
∑

i=1

ρi · f(i)

)

(3)

where f is the decreasing function that we determine empirically.

2.2 The Modified Betweenness Metric

The second metric is based on a slight modification of the betweenness central-
ity, so that it reflects the sparsity in a network. Remind that the betweenness
centrality assigns scores to the network’s nodes according to their implication in
geodesics, and by geodesic we mean the shortest path between a pair of nodes.

Cb(i) =
∑

(u,v)|i/∈{u,v}

σ(u, v|i)

σ(u, v)
(4)

where σ(u, v|i) is the number of shortest paths between nodes u and v that
cross the node i, and σ(u, v) the number of shortest paths that exist between



u and v. This centrality is inadequate to measure density in a network, and
we would like to improve it in order to obtain a measure that favors the SP
nodes, that is those who typically lay between communities. The disadvantage of
betweenness centrality is that when a node is inside a community, it is involved in
a great number of geodesics which link the pairs of this same community, leading
to the attribution of large scores to their nodes (sometimes dominant, according
to the community size) which is not what we want. To overcome this difficulty
one could use the following consideration: the geodesics of the same community
nodes are short, whereas a SP node should be implied in longer ones. So, one
solution consists in modifying the upper formula by discriminating geodesics,
which is easy if we give to each one a weight proportional to its length:

Cb(i) =
∑

(u,v)|i/∈{u,v}

f(luv)
σ(u, v|i)

σ(u, v)
(5)

where this time f is an increasing function whose variable luv is the length of
the shortest path separating u and v. The results obtained from testing these
two metrics on an artificial “toy” network (that we detail later in this paper)
are shown in the Fig. 4.

(a) Scores from the clustering based (b) Scores from the modified betweenness

metricmetric

Fig. 2. In (a) the node sizes are inversely proportional to the score they get from the
clustering metric, and we can see that nodes inside the clusters have the highest scores.
In 4(b) the size of each node is proportional to the score they get from the betweenness
metric. If we inverse the scores of the classification by the clustering metric, we notice a
similarity in the results of (a) and (b), with the difference that the betweenness metric
gives a null score to the leafs (1-degree nodes) since there is no geodesic that passes
by any of them. We can overcome this issue since it is easy to identify the leafs in a
network and then adopting a convention to consider them as nodes of the sparse part.



2.3 A Metric Based on the Force-Directed Layout Algorithm

2.3.1 The Principle of Nodes Positioning by Optimizing the Energy

Function

The problem of the “nice” positioning of nodes when it comes to draw a network
has been proposed in the 80’s [4] and aims to add the visualization process to
the study and exploration of large networks. The idea is to model a network as
a physical system in which nodes correspond to steel rings and edges to springs
following the original structure of the network. Algorithms calculate the total
energy of the system and consider the best layout as the one that minimizes this
energy. There are several models of this type but we only cite two popular ones,
starting by Fruchterman and Reingold’s [6] layout model. It considers a spring
between each pair of nodes, but with a free length that is proportional to the
length of the geodesic between pairs (the longer the distance the greater the free
length). For a network of N nodes represented by Fruchterman and Reingold’s
model we obtain a total energy that can be written as:

∑

1≤i<j≤N

kij(| xi − xj | −lij)
2 (6)

Here we call xi the position of node i, lij the length of the shortest path between
i and j, and kij the spring constant which depends on parameters that we do
not discuss here. So in this model the smaller the distance between nodes the
more they are susceptible to be spatially close according to the layout. An other
model is proposed in [9] considers that the springs are only between the pairs
which are actually linked by an edge, and adds a repulsive term to the energy
functional between the pairs which are not. The energy to minimize in this model
is written:

N
∑

i=1

(
∑

j<i

Aij | xi − xj |2 +Dxi
) (7)

with Aij the (i, j)’th term in the network’s adjacency matrix, and Dxi
the repul-

sive term related to each node i. In this model we have two terms, the first brings
closer the linked nodes and the other one drives away from each other the pairs
which are not. Therefore the nodes we aim to detect have a small spatial density.
In both models presented we need to minimize a function of N variables, which
is in fact impossible to achieve analytically, except in extremely rare cases. We
then need to resort to an optimization algorithm. These functions contain a great
number of local minima and the result returned by the algorithm are generally
not the one that corresponds to the global minimum, but rather a local one and
so an approximation of the exact solution. However the layout provided by these
approximations is good enough to be suited for our metric.

2.3.2 The Metric

We can exploit these layouts to measure density, simply by connecting the net-
work density to its spatial density (the number of nodes per unit surface) pro-
vided by a layout. This method has the advantage to be much quicker than the



two we previously introduced. We evaluate each node by calculating the num-
ber of nodes (neighbors or not) which lay inside a circle of diameter r centered
around the evaluated node, and divide this number by the surface of the disk to
obtain a normalized surface density. We can chose (empirically) the value of the
parameter r, or get rid of this constraint by following a similar scheme to that in
Sect. 2.1: sum the score of different diameters until a certain rmax at which the
density becomes the same for all nodes, and in the same time modulate these
contributions by a decreasing function.

The motivation behind this method is that the communities tend to form
spatial clusters in the geometric space, which results in the creation of a strong
repulsive potential to push away all nodes that do not belong to it (for the case
of the model in [9]). Now let ρi(r) be the number of nodes contained inside a
circle, centered around the position of node i and of diameter r and normalized
by the surface of the disk. We attribute to node i the following score:

Q(i) =

∫ rmax

0

ρi(r) · f(r) · dr (8)

where f is a decreasing function and rmax is defined whatever the node i by

max(ρi(rmax)) − min(ρi(rmax)) ≤ ǫ

The results of this metric on a 4092 nodes real world network [8].

Fig. 3. Here we chose a color map that assigns a bright yellowish color to the highly
rated (dense) nodes and the dark purple color to the nodes with small scores (sparse),
the layout algorithm is the one in [6]



2.4 Interruption Criterion and SP Extraction

So far we did not talk yet about the way to use the metrics we introduced to
determine the sparse parts, this is what we do in the following subsection. We
emphasize that we could just use a thresholding method on the metric values, if
there are points at which a threshold is adapted, like an important gap in their
ordered values. Otherwise, in general case we give our interruption criterion for
the extraction of sparse parts: SP are the maximal subnetwork whose nodes are
the most unfavorably evaluated ones (by the metric) and with a density that is
clearly smaller than the density of the whole network, in comparison with its
configurational model. Remaind that a network’s configurational model is the
network in which each node keeps its degree but is randomly rewired to the other
nodes of the network.

2.4.1 SP Extraction

We visit the network’s nodes in the order provided by the metric and at each
step i we add the ith node to the subnetwork Ui−1constituted by the i − 1
previous ones, measure the density of the subnetwork Ui and repeat until
i = N (UN=G the studied network). We do the same for the configurational
model of the network (rewire, classify and visit its nodes in the provided order).
Finally we draw both the corresponding outputs. From this outputs we can be
in one of the two following situations: the first and preferable one is when we
have a deep minimum (smaller than one if we divide it by the density of the
whole network) in the density function at a certain point i which means that we
clearly have a subnetwork whose density is way smaller than that of the whole
network. If no such minimum exists (second case) which happens frequently, we
can compare the density function obtained from the study of the original net-
work to that obtained from its randomized version, and look for the point at
which the difference (random minus original) between the two is maximal. The
resulting subnetwork is considered to be the SP.

3 Datasets

3.1 The TreeCom Model

To ensure that our model works correctly on simple cases, this network was
meant to present a clear separation between the dense parts and the sparse part.
Its construction is simple and contains a sparse skeleton, some of its extremities
attached to dense clusters of different sizes. First we construct the “skeleton” as
a tree, which is a sparse network obtained by calculating the spanning tree over
a Barabasi-Albert model [1]. The reason we chose this specific tree is to have
the maximum heterogeneity in the degree distribution of the nodes, to show
that large degree nodes in the tree are still classified as nodes of the SP by our
model. The next step consists in a random choice of nodes to which the clusters
are going to be attached, with a constraint on the number of edges that link
them to the tree nodes. This model has already been used to show the results
of two metrics in Fig. 2(a) and (b).



3.2 The Real World Network

This one is a small sample of the Facebook network, contains 4100 nodes but
has the interesting features of real world networks, like a high average cluster-
ing coefficient, a community structure, and a rather small average diameter. It
consists in “circles” (or “friends lists”) from Facebook. Facebook data was col-
lected from survey participants using the application. The dataset includes node
features (profiles), circles, and ego networks [8], anonyomized for ethical reasons.

4 Results and Discussion

In the examples that are shown below, the two first concern a TreeCom model,
which parameters are a tree of a 100 nodes, 4 clusters of averagely 50 nodes each,
and a maximum of 4 links between each cluster and the tree nodes. The results
of the classification have already been shown in Fig. 2(a) and (b) so we directly
give the graphics corresponding to the interruption criteria following these 2 first
metrics (clustering and modified betweenness). We can see in Fig. 4(a) that the
minimum is very close to 100 nodes (the few tree nodes attached to the clusters
are considered denser) which corresponds to the number of nodes in SP. It is not
the case in Fig. 4(b) (which is the result of the same analysis applied to the same
network but using a different metric), and the reason is just that the betweenness
based metric attributes a null score to the 1-degree nodes. On the contrary the
clustering based metric classifies them as SP nodes. Indeed the minimum around
50 nodes in Fig. 4(b) corresponds to the subnetwork constituted by all the nodes
in the tree which are not leaves (1-degree nodes). The number of these leaves
has been measured and happens to be approximately 50, the whole sums up to
one hundred and if we adopt the convention to consider leaves in the SP we find
a very similar result to the one obtained form the use of the clustering based
metric. This is in the following figures.

The Facebook network has been studied by the application of the three met-
rics presented in Sect. 2 but only the results obtained from the use of the layout
based metric (Cf Fig. 3) are presented here, the ensuing interruption criterion is
shown in Fig. 6. We evaluate the density of each subnetwork (in the interruption
criterion) by the measure of the spatial density of the nodes, since the metric
which classifies them uses it. We can see in Fig. 6(a) that the blue curve has no
minimum, but it seems to increase at different rates while the orange curve grows
more smoothly after a quick increase in the beginning. In such a situation we
can threshold the blue curve at the most convenient point which we chose as the
maximal distance to the randomized case. That corresponds in Fig. 6(b) to the
second maximum of the curve, without taking into account the first one which is
a consequence of the perturbed behavior in the randomized case (orange curve)
due the fact that leaves in the original network remain leaves in its configura-
tional model, the rest of the nodes are homogeneously mixed (Fig. 7).

Finally we compare the results of the different metrics on our datasets, but
for several reasons (given our datasets) it is not relevant enough to compare
the structure of the sparse parts obtained from each of these metrics, for the



(a) (b)

Fig. 4. (a) The evolution of density of the subnetwork versus its size according to the
clustering based metric. (b) The evolution of density of the subnetwork versus its size
according to the modified betweenness metric

Fig. 5. The blue nodes are those selected by our method as the SP. The results of the
clustering metric is the one in (a) and that of the modified betweenness metric is in
(b). We adopted the convention to consider the leaves among the SP in the (b) case.

toy network the structure of the sparse part is trivial, and represented by a
tree which is easily recovered using each metric (cf Fig. 5), and on the other
hand we have a sample of a real world network whose calculated sparse parts
are composed of multiple small non connected components. We rather compare
the structure of the dense parts in each network, obtained from depriving the
original network of its sparse parts obtained using each of our metrics, this
does not give us informations about the structure of the sparse parts but it
highlights the density gain in each case. Since the resulting dense subgraphs



(a) (b)

Fig. 6. (a) The evolution of the spatial density of the subnetwork versus its size in both
the original and the configurational model. (b) The difference between the graphical
density of the Facebook network and its configurationalmodel versus the size of the
subnetworks

Fig. 7. The blue nodes are those who have been selected by the (most realistic) max-
imum which is around 500 nodes, the rest of them are not drawn but their edges are,
to show the general positioning of the SP nodes in the network

are not connected, the density is averaged over all the connected components
of significant size (more than 3 nodes). These results are shown in Table 1. The
density of the clusters in the studied treeCom network are all equal to 0.5 which
results in an average density of the same value in its dense subnetwork (once we
take away its sparse part). In the other hand we cannot compare the real world
dense subnetwork to any ground truth reality, but the fact that the results in
Table 1 are of similar magnitude is encouraging.



Table 1. Density gain in a network without its sparse parts

Original density Clustering metric Betweenness metric Layout metric

Facebook sample 0.011 0.223 0.168 0.193

TreeCom model 0.039 0.499 0.468 0.431

5 Conclusion and Perspectives

We exposed a new method that aims for a better understanding of the networks
structure, and although it is the beginning of a study that has to be extended,
it has a few interesting results. Moreover there are a lot of points that can be
deepened like the empirical definition of the SP, the choice of the layout algorithm
(in this paper we used the simplest but not necessarily the best suited) and the
parameters for each metric, which we took from visual considerations here. We
can also think of the questions that can arise from the transposition of this
method to the dynamical case, like the existence or not of a sparse core that
evolves in time, at which case how would be its evolution? One more issue is the
calculation time estimated to O(N3 · log(N)). A few applications in the static
case are possible though, and are the central subject of the upcoming studies
such as the contribution our analysis can bring to the study of communities or
the identification of the important spreaders in epidemics models. Finally the
study of a network’s sparse part provides informations about the structure of
the nodes laying between its communities which is useful for the modeling of
real world networks.
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2. Barthélemy, M.: Spatial networks. Phys. Rep. 499(1–3), 1–101. http://linkinghub.
elsevier.com/retrieve/pii/S037015731000308X (2011). https://doi.org/10.1016/j.
physrep.2010.11.002

3. Burt, R.: Structural Holes: The Social Structure of Competition. Harvard Univer-
sity Press. https://books.google.fr/books?id=FAhiz9FWDzMC (2009)

4. Eades, P., Foulds, L., Giffin, J.: An efficient heuristic for identifying a maximum
weight planar subgraph. In: Billington, E.J., Oates-Williams, S., Street, A.P. (eds.)
Combinatorial Mathematics IX: Proceedings of the Ninth Australian Conference
on Combinatorial Mathematics Held at the University of Queensland, Brisbane,
Australia, August 24–28, 1981, pp. 239–251. Springer, Berlin Heidelberg (1982).
https://doi.org/10.1007/BFb0061982

5. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174.
http://linkinghub.elsevier.com/retrieve/pii/S0370157309002841 (2010). https://
doi.org/10.1016/j.physrep.2009.11.002

6. Fruchterman, T.M., Reingold, E.M.: Graph drawing by force-directed place-
ment. Softw. Pract. Exp. 21(11), 1129–1164 (1991). https://doi.org/10.1002/spe.
4380211102



7. Le Couédic, M., Leturcq, S., Rodier, X., Hautefeuille, F., Fieux, E., Jouve, B.:
Du cadastre ancien au graphe. Les dynamiques spatiales dans les sources fiscales
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