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ABSTRACT. In order to measure the medical activity, hospitals are required to manually encode 
diagnoses concerning an inpatient episode using the International Classification of Disease 
(ICD-10). This task is time consuming and requires substantial training for the staff. In this 
paper, we are proposing an approach able to speed up and facilitate the tedious manual task 
of coding patient information, especially while coding some secondary diagnoses that are not 
well described in the medical resources such as discharge letters and medical records. Our 
approach leverages data mining techniques, and specifically decision trees, in order to explore 
medical databases that encode such diagnoses knowledge. It uses the stored structured infor-
mation (age, gender, diagnoses count, medical procedures, etc.) to build a decision tree which 
assigns the appropriate secondary diagnosis code into the corresponding inpatient episode. We 
have evaluated our approach on the PMSI database using fine and coarse levels of diagnoses 
granularity. Three types of experimentations have been performed using different techniques to 
balance datasets. The results show a significant variation in the evaluation scores between the 
different techniques for the same studied diagnoses. We highlight the efficiency of the random 
sampling techniques regardless of the type of diagnoses and the type of measure (F1-measure, 
recall and precision).

RÉSUMÉ. Afin de mesurer l’activité médicale, les hôpitaux sont tenus de coder manuellement des 
informations concernant les séjours des patients hospitalisés en utilisant la Classification Inter-
nationale des Maladies (CIM-10). Cette tâche est chronophage et nécessite une formation im-
portante pour le personnel en particulier pour le codage des diagnostics associés (secondaires). 
Afin d’assister les personnels hospitaliers dans leur tâche, nous proposons une approche basée 
sur les techniques de fouille de données et plus précisément les arbres de décision qui permet de



prédire le codage des diagnostics associés. Les arbres de décision sont construits à partir des 
données structurées de la base PMSI (âge, sexe, nombre de diagnostics et actes médicaux ...). 
Ces arbres de décision sont facilement exploitables par un non spécialiste en informatique tel 
qu’un médecin. Deux niveaux de granularité de diagnostic ont été exploités selon que l’on 
choisisse de représenter le diagnostic de façon très précise (fin niveau de granularité) ou en se 
contentant de garder une information plus générale (niveau de granularité plus grossier) cor-
respondant aux catégories de diagnostics. Trois types d’expérimentations ont été réalisés selon 
différentes techniques d’équilibrage de dataset. Les résultats obtenus indiquent qu’il existe une 
variation significative des scores d’évaluation entre les différentes techniques pour les mêmes 
diagnostics étudiés. Nous mettons en évidence l’efficacité des techniques "random sampling" 
quels que soient le type de diagnostic et le type de mesure (F1-mesure, le rappel et la précision). 
Nos résultats montrent également l’efficacité d’utiliser le niveau fin de granularité de diagnos-
tic quel que soit le diagnostic étudié.

KEYWORDS: data mining, machine learning, decision tree, PMSI, secondary Diagnoses, coding 
ICD-10.

MOTS-CLÉS : fouille de données, apprentissage automatique, arbre de décision, PMSI, diagnos-
tiques secondaires, CIM-10.
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1. Introduction

In France, since 1991, by recommendation of the ministry of Health, all pub-
lic healthcare facilities are mandated to record patient diagnosis and medical proce-
dures in a national database called PMSI (Programme de Médicalisation des Systèmes
d’Information) equivalent to the PPS (Prospective Payment System) used in the USA
(Fetter, 1991). The system was initially used for the purpose of reporting hospital
activity and comparing the productivity between different facilities. In 1998, PMSI
was used by all public and private hospitals for the purpose of fair funding. Since its
creation, millions of records have been stored in the PMSI database, which makes it
an attractive target for data analysis and prediction.

Each inpatient episode in France consists of one or several standard patient dis-
charge reports called RUM (Résumé Unité Médicale). The RUM contains adminis-
trative information such as gender, age and length of stay. The RUM also contains
medical information such as diagnoses and medical procedures performed during the
stay in the medical unit. At the end of the inpatient episode, all the reports are com-
bined into one report called RSS (Résumé de Sortie Standardisé). Then, an anonymi-
sation process is applied in order to produce a so-called anonymised episode summary
RSA (Résumé de Sortie Anonymisé). Finally, the RSA reports are sent to the Regional
Health Agencies ARS (Agences Régionales de Santé) where they are stored in the na-
tional PMSI database. Each hospital is eventually refunded according to the activity
described in the RSA reports.



Medical data is collected from different healthcare sources such as laboratory re-
ports, radiology images, patient’s consultations, observations and interpretations of
the physician. Hospitals try to document their activities as accurately as possible to
get fair payment. Inaccurate encodings of inpatient episode information could cause
inaccurate refundings. Consequently, a lot of effort is made by hospitals to increase
encoding accuracy of the diagnoses and medical procedures. Within each hospital the
Medical Information Unit (Département d’Information Médicale, DIM) is responsible
for the encoding process which is very sensible as explained by (Busse et al., 2011)
"If up-coding or incorrect coding is detected, hospitals must reimburse payments re-
ceived. In addition, hospitals may have to pay high financial penalties of up to 5 per
cent of their annual budgets".

Unlike primary diagnosis, which are not too difficult to encode, some secondary
diagnoses require extra identification efforts. In fact, secondary diagnoses are of-
ten not clearly mentioned in the medical reports and cannot be directly deduced. In
France, one hospital reported that more than one-third of patients having malnutrition
and obesity as secondary diagnoses were not coded in the database (Potignon et al.,
2010). In order to identify all the secondary diagnoses, coders need to consider many
sources and need to interpret information to find out the right code. Some form of
support for semi-automatic code assignment can be a suitable solutions to speed up
what coders have to do manually.

In this paper we are addressing the challenge of helping to automatically support
the encoding of secondary diagnoses. In order to tackle this issue, we are proposing a
new methodology based on data mining techniques, which are the best candidates to
solve such prediction problems. Among the available methods in data mining, we fo-
cus on decision trees, which are extremely relevant since their results can be exploited
by non-expert users in data mining field. Our methodology is applied on the PMSI na-
tional database. It is the richest and the most valuable source of documented standard
diagnoses and medical procedures in France. In particular since it contains millions
of records collected over the years and recently accessible for research purposes.

The rest of the paper is organized as follows: section 2 reviews some existing work
within the diagnoses prediction domain; section 3 presents preliminary materials; sec-
tion 4 details the proposed approach, while section 5 reports the experiments. Section
6 discusses the obtained results. The paper concludes in section 7 with some future
perspectives.

2. Related work

In this section, we are surveying different research categories that have been pro-
posed to predict diagnoses. Researchers address this prediction problem in a variety
of applications such as marketing, e-business and other industrial sectors. Secondary
diagnoses prediction and more generally data prediction in the healthcare domain have
specific constraints since it is dealing with medical data, which is considered as unique
in terms of heterogeneity, privacy-sensitive, ethical, legal, and social issues (J.Cios,



Moore, 2002). Therefore, various methods are used to overcome these constraints and 
to solve the diagnosis encoding problem.

In the literature, encoding secondary diagnoses was performed through different 
techniques according to the different types of sources used. We can clearly distinguish 
two types of data sources used to predict diagnoses:

1. Conventional data where the main sources are clinical reports, physician’s 
interpretations, discharge letters and other medical documents that are usually written 
in free text and that are frequently used by coders to determine the medical code.

2. Structured data where the main sources are the information stored in PMSI 
database, which contains well formated data concerning inpatient episodes.

(1) Conventional data

Natural Language Processing (NLP) methods are often used as a first step of data
analysis. NLP consists of translating free text into formal representation or features
so that machines can understand the text and manipulate it. Mining techniques can
then be applied in order to extract coding knowledge. Machine Learning techniques
manipulates features to produce an intelligent model (Collobert, Weston, 2008), con-
sequently the problem is to determine which features could be extracted from the data
to perform efficient learning. In the medical area, researchers extract feature matrices
from medical reports and other conventional medical sources from patient episodes.
Next, machine learning methods are applied on these matrices in order to generate
models that can predict a diagnosis code. Different algorithms tackle this predic-
tion problem: Decision Trees (Farkas, Szarvas, 2008), K-Nearest Neighbors (KNN)
(Aronson et al., 2007; Ruch et al., 2007; Erraguntla et al., 2012), Naïve Bayes Clas-
sifiers (Pakhomov et al., 2006; Okamoto et al., 2012), Regression (Xu et al., 2007;
Lita et al., 2008), Support Vector Machine (SVM) (Yan et al., 2010). Some mapping
techniques are proposing to encode the disease through linking Medical dictionaries
with international disease codes such as (Pereira et al., 2006).

Some techniques use expert rules to achieve a high quality encoding. Researchers
are transforming experts’ coding knowledge into rules directly applied on the medi-
cal reports. An example is proposed by (Goldstein et al., 2007), using hand crafted
rules applied on radiology reports. The rules aim to extract lexical elements from ra-
diology reports written in free text, lexical elements can be generated using semantic
features to include negations, synonyms and uncertainty. The results of such tech-
niques can reach interesting quality measures (for instance 88% F1 measure score)
(Farkas, Szarvas, 2008). The limit of the methods applied on conventional data is that
they are difficult to generalize in most of the cases.

(2) Structured data

Few works in the literature used structured patient data for diagnosis prediction.
In such cases, data are mostly extracted from medical records, such as patient infor-
mation (age, sex, length of stay), clinical information (prescription, medications) and
other related medical data such as medical procedures and diagnoses. The interesting



study of (Lecornu et al., 2009) is based on statistical methods and probabilities. The
authors focus on three types of medical data in order to estimate the probability of
a diagnosis code. The first type is patient information (age, sex, length of stay), the
second type is medical unit information and the third type is medical procedures. Ac-
cording to their study, diagnosis prediction is considered valid if it falls within the first
10 diagnoses ordered by probability score. The results of (Lecornu et al., 2009) show
that medical procedures were the most informative input, whereas the patient infor-
mation was the least informative input. The authors report that better results could be
achieved using all the inputs together by defining the right coefficient for each input.
The limit of probabilistic and statistical approaches is the sensibility of these meth-
ods with respect to the quality of the used data. In particular, these methods generate
imperfect results when they are applied on imperfect data, missing data or erroneous
codes. Data mining approaches are good alternative, since data preprocessing tech-
niques can help reducing the impact of imperfect data (Han et al., 2012).

The authors of (Ferrao et al., 2013) propose to use well structured data extracted
from electronic medical records and convert them to around 5000 features. They
use different data mining algorithms in several steps: naïve bayes and decision trees
algorithms in (Ferrao et al., 2012), SVM in (Ferrao et al., 2013) and finally regression
algorithms in (Ferrao et al., 2015), trying to assign codes during different periods of
the inpatient episode. All the proposed algorithms gave about similar evaluation of F1-
measure but the results are still less effective than the F1-measure results reached by
NLP techniques on radiology reports (Farkas, Szarvas, 2008; Goldstein et al., 2007).

In France, two studies used data mining techniques to tackle the problem of assign-
ing medical codes to inpatient episodes (Djennaoui et al., 2015; Pinaire et al., 2015).
These approaches used other diagnoses occurred in previous inpatient episodes and
constructed sequential patterns rules to predict a diagnosis code in the current patient
episode. Two out of three diagnoses were successfully predicted using sequential pat-
terns in (Djennaoui et al., 2015).

For the data mining algorithm, we use decision trees, the main reason behind this
choice is the interpretability of the model. The extracted model can be easily veri-
fied by domain experts such as physicians (Tuffery, 2007). In terms of performance,
decision trees can produce a good prediction model using a similar data structure
described in (Soni et al., 2011). Although, other data mining algorithms might pro-
duce better models, we chose interpretability over performance. Moreover, decision
trees are less sensitive to imbalanced datasets i.e. when the dataset contains unequally
distributed classes (Cieslak, Chawla, 2008). Furthermore, the scalability of some ver-
sions of decision trees (Chrysos et al., 2013) is an additional argument since we plan
to experiment our methodology on the national dataset.

To tackle the problem of assigning secondary diagnoses codes to patient episodes,
we aim to propose a general method that uses structured input and that avoids the
ambiguities raised by conventional data. We are going to use the PMSI database.
All the available structured variables in this medical database split into the cate-
gories mentioned by (Lecornu et al., 2009; Ferrao et al., 2012). In a previous work



Figure 1. PMSI information type

(Chahbandarian et al., 2016), we used these data to highlight relevant information for
the secondary diagnoses task, using decision trees and using goodness split metric
to calculate the best features. In this work, we explore different representations of
the medical data and different organisations of the subset of dataset used in learning
process to increase the efficiency of the decision tree.

3. Preliminary

3.1. Materials

Data were obtained from a structured database: the PMSI. The PMSI database is
described according to a common structure used at the regional scale as well as the
national one. Our research is made in collaboration with the physicians in charge of
the PMSI database of the "Centre Hospitalier Intercommunal de Castres Mazamet",
a regional hospital in France. The first step of our research aims at processing data
mining on this local database, the second step consists in a global validation on a
regional PMSI database.

The PMSI contains anonymous discharge summaries (Résumé de Sortie Anonymisé
(RSA)). Each summary characterises an inpatient episode through two types of infor-
mation shown in Figure 1:

– Administrative information such as admission date, Discharge date, Admission
mode, Discharge mode (transfer, death), Length of stay, Gender, Age. This category
aggregates the patient information and medical unit information types described in
(Lecornu et al., 2009).

– Clinical information such as the primary diagnosis (DP) that motivates the in-
patient episode, secondary diagnoses (DS) on which we want to focus and related
diagnoses (DR). It also contains all the medical procedures performed during the in-
patient episode.



To encode diagnoses, the medical staff usually uses the International Classification
of Disease1 (ICD-10). In France, the medical staff uses the French version of ICD-10
named CIM-102. This is a hierarchical classification: the first levels of organisation
consist in chapters gathering same characteristic diseases (such as chapter II dedicated
to tumoral diseases), categories help refining this classification. Currently, about 2,049
categories are commonly used for coding. The last level precisely describes each
disease and the CIM-10 contains 33,816 codes in which the first three characters stand
for code categories. To encode the medical procedures, the Common Classification of
Medical Procedures CCAM (Classification Commune des Actes Médicaux)3 is used.
It is also a hierarchical classification: the first levels are made of the chapters which
organise the medical procedures according to the medical system impacted (such as
nervous system). There are around 1,700 standard medical procedure codes classified
under 19 chapters.

Three kinds of information will be clearly distinguished in this paper:

– Primary diagnoses (DP) are the main diagnoses and are supposed to be rather
easily encoded (through ICD-10) by healthcare professionals.

– Secondary diagnoses (DS) are sometimes difficult to detect but they are impor-
tant to notice in order to get an exhaustive information on the performed care. They
are also encoded in ICD-10.

– Other features such as administrative or clinical information are contained in
PMSI database including the medical procedures encoded in CCAM.

3.2. Objectives

Medical databases are rich in data but poor in knowledge. Data mining is a way to
extract previously unknown hidden data that could be useful. Machine Learning (ML)
approaches provide tools and techniques that enable discovering knowledge from raw
data. The idea is to identify relevant patterns in a database and to generate a model
that can predict similar cases (Witten, Frank, 2005).

Our goal is to assess the suitability of data mining techniques for detecting a sec-
ondary diagnosis (DS), knowing the primary diagnosis (DP) and the other features
encoded in PMSI (age, entry mode, medical procedures performed, etc.).

To alleviate the risk of encountering noisy data in the whole PMSI database, we
chose to work on a subset of data where the DP is fixed. It is realistic since the DP
is supposed to be easily known in our medical situation. Hence, the problem can be
defined as follows:

In the subset of data, are we able to predict DS, knowing the other features?

1. http://www.who.int/classifications/icd/
2. http://www.atih.sante.fr/mco/presentation
3. http://www.atih.sante.fr/version-39-de-la-ccam



The different databases were selected in three steps:

1. Selection of interesting DS: the physician in charge of the Medical Information
Department (DIM) in the "Centre Hospitalier Intercommunal de Castres Mazamet"
hospital proposed to focus on interesting and frequent secondary diagnoses which are
difficult to detect as they are usually not well described across the medical sources.
Seven DS were retained as listed in Table 1.

2. Selection of frequent associated DP: for each selected DS, the idea is to retain
some frequent DP, where the DS is found as associated with the DP.

3. Building the dataset: the sub dataset, containing all the cases with the selected
DP (associated or not with the DS) will constitute our learning database to predict DS,
based on other features, once DP is encoded.

Table 1. The studied secondary diagnoses

ICD-10 codes Labels

J96 Respiratory failure

B96
Bacterial agents such as Mycoplasma and pneu-
moniae

T81 Complications of procedures

R29
Nervous and musculoskeletal systems such as
(Neonatal tetany)

R26 Abnormalities of gait and mobility

E66 Overweight and obesity

E44 Malnutrition

4. Methodology

The choice of ML technique and the selection of data used play a fundamental
role in the quality of the results of the proposed application. ML techniques build the
model based on some input data called features. This model makes prediction outputs
called labels. In order to produce better prediction outputs, the features should be
chosen carefully. This means that when preparing feature data, we should handle
missing data, discretize the continuous numeric values and represent features.

The first step of our work consists of a feature selection step where the important
features are identified regardless of the studied diagnoses, the second step queries the
sub-dataset that corresponds to the studied DP-DS and provides personalised data pre-
processing to this sub-dataset, namely discretizing continuous features and sampling
the imbalanced datasets. The next step uses the prepared sub-dataset to build a predic-
tion model, in our case a decision tree. The final step evaluates the prediction model.
In the following sections more details are provided for each step.



4.1. Feature representation

For our problem, all the features are extracted from PMSI database. ML techniques
needs to choose the appropriate feature representation for the ML model. We can
categorise the features into three sets:

– The first set of features is composed of personal information which includes
the patient’s gender and his/her age at admission. We discarded the zip code, as all
the patients come from the same area where the hospital is located, but this informa-
tion would be interesting to investigate in case of using the national version of PMSI
database.

– The second set of features concerned inpatient episode including the length
of stay, the patient admission type, the patient discharge status, the time interval be-
tween the admission date and the date of the first medical procedure, the transfer count
between medical units during the inpatient stay, the medical procedures count, the sea-
son of the admission and the previous inpatient episode count calculated thanks to a
process of anonymous chaining available in the PMSI databases which permits to link
information from a single patient.

– The third set of features is derived from medical information, more particu-
larly from inpatient diagnoses and medical procedures. Each feature in this set repre-
sents the presence or absence of medical information in the inpatient episodes. Diag-
noses and medical procedures can be classified using different levels of granularity or
hierarchy and using different levels of classification can limit the number of derived
features. As (Sebban et al., 2000) says that extra large number of features does not
yield necessarily to good results for ML learning algorithms especially for decision
trees case, we want to explore the quality and the speed of the ML algorithm when
using different number of features. Therefore, we can use the hierarchical representa-
tion of medical information to focus on different granularity level of representation in
order to control the number of features used in the model.

- Concerning medical procedure features, we have derived 19 features, each
feature indicating whether one or many medical procedures in the corresponding chap-
ter have occurred during the inpatient episode.

- Concerning diagnoses features, we have derived 145 features according to
two levels of granularity. (1) Coarse level granularity which contains 19 chapters
of diagnoses classification and (2) Fine level granularity which contains 126 specific
chapters of diagnoses classification.

– Finally, the output label of the ML model is a boolean output, positive if the
ICD-10 code exists in the inpatient episode and negative otherwise.

In total, we have used 181 features to build our ML model. A detailed description
can be found in Table 2.



Variables 

Name Description Valid values

Personnal

Gender Patient’s gender F=Female, M=Male

Age
Patient’s age at

admision
Below; Mean; Overs

Inpatient 

variables

Length of 

stay

Time interval between 

admission date and 

discharge date

Below; Mean; Over 

Admission 

type

Patient’s 

admission

type

1=Emergency 

2=Urgent

3=Elective

4=Newborn

5=Trauma

9=Information not available

Disposition
Patient’s discharge 

status

1= Discharge to home

2=Transferred to short-term 

facility

3=Transferred to skilled 

nursing facility

4=Transferred to intermediate

5=Transferred to other 

health care facility

6=Transferred to home health 

care

7= Left AMA (Against 

Medical Advice)

20= Expired/Mortality

Season
The season at 

the admission

Summer

Winter

Fall

Spring

Frequency

The count of the 

inpatient episodes of the 

patient during his life

Below; Mean; Over

Delay

Time interval between 

admission date and first 

medical procedure

Below; Mean; Over

Inpatient 

transfer count

The count of the 

transfers between 

medical units in the 

inpatient episode

Below; Mean; Over



Variables 

Name Description Valid values

Medical 

procedures

count

The count of the 

medical procedure 

during the inpatient 

episode

Below; Mean; Over

Derived 

flags

Classified

A flag indicating 

whether the inpatient 

stay has a classified/

important medical 

procedure or not.

0=No

1=Yes

Emergency

A flag indicating 

whether the inpatient 

stay has an emergency

case or not.

0=No

1=Yes

Medical 

procedure

groupings

19 flags, each flag 

indicates whether the 

inpatient stay has a

diagnosis within the 

corresponding medical 

procedure category.

0=No

1=Yes

Urgent 

medical 

procedure 

grouping

5 flags, each flag 

indicates whether the 

inpatient stay has a

medical procedure 

within the

corresponding urgent 

medical procedure 

category.

0=No

1=Yes

Coarse level 

diagnoses 

granularity

19 flags, each flag 

indicates whether the 

inpatient stay has a

diagnosis within the 

corresponding diagnosis 

granularity.

0=No

1=Yes

Fine level 

diagnoses 

granularity

126 flags, each flag 

indicates whether the 

inpatient stay has a

diagnosis within the 

corresponding diagnosis 

granularity. 

0=No

1=Yes

Output Label

A flag indicating whether 

the inpatient stay has the 

studied secondary 

diagnosis or not.  

0=Negative 

1=Positive



4.2. Data preprocessing

Data preprocessing is an important step in the data mining process. It is particu-
larly important because low quality data could lead to low quality mining results (Han 
et al., 2012).

In this work, data preprocessing should address two issues:

– The first issue is dealing with the continuous numerical data in the PMSI
database.

– The second one is dealing with the imbalanced repartition of the positive and
negative examples.

Missing data is not addressed in this work: all the features we used are required
for every inpatient stay in PMSI furthermore we have verified that there are not any
missing data in our dataset.

Continuous numerical data: In PMSI database, there are two kinds of data: nu-
merical (continuous or discrete) and categorical. Decision trees are efficient with cat-
egorical values. Consequently, if the values are numeric then they are discretized prior
to build the model (Tuffery, 2007). In the literature several methods are proposed to
discretize numeric values into categorical. For instance, "binning" is an unsupervised
method which discretizes the numerical values either into equal-interval binnings or
into equal-frequency binnings. Supervised discretization methods, such as "entropy-
based", measure the information gain to the class and split the intervals recursively
(Witten, Frank, 2005). Although these methods could generate a model with good
performance, the intervals used to build it lack clarity in terms of interpretability in
a first test we performed without treating this problem, ages for example were split-
ted into the following intervals (>6),([7-12]),([13-30]),([31-40]),(<40) such intervals
could not really make sense for medical interpretation. It is important in the medical
domain to help the physicians to interpret the results. Assuming that all the continuous
features are normally distributed, we have chosen to discretise the continuous features
into three intervals ("Below", "Mean", "Over"), these intervals change according to
each couple (DS-DP) of secondary and primary diagnoses studied.

– "Below" refers to values smaller than the mean minus one standard deviation.

– "Mean" refers to data between the mean plus minus one standard deviation.

– "Over" refers to data above mean plus one standard deviation.

The features, which have been discretized, are: frequency, transfer count, medical
procedure count, diagnoses count, age, length of stay and delay.

Imbalanced dataset: "A dataset is imbalanced if the classification categories are
not approximately equally represented" (Chawla, 2005). Real life datasets are often
imbalanced, this is particularly true in the medical databases, where certain studied di-
agnosis tend to be the minority class (Rahman, Davis, 2013). "A well balanced dataset
is very important for creating a good prediction model" (Rahman, Davis, 2013). For
instance, in case of respiratory failure secondary diagnosis study, our dataset contains



4166 records with this diagnosis (positive outputs) out of 90,000 inpatient stays, the
ratio of positive outputs is then 5%.

There are three main sampling methods in the literature to tackle the problem of
imbalanced dataset:

– Undersampling: it removes samples from the majority class using an under-
sampling algorithm, such as Tomek Links (Tomek, 1976), Condensed Nearest Neigh-
bor Rule (Angiulli, 2005) or the baseline method Random under-sampling.

– Oversampling: it generates new samples from the minority class using an over-
sampling algorithm, such as SMOTE (Chawla et al., 2002) or the baseline method
Random over-sampling.

– Cost-Sensitive: it takes the misclassification cost into consideration, such as
MetaCost (Domingos, 1999), Costing (Zadrozny et al., 2003) or the baseline method
weighting (Ting, 1998) where the minority and majority are given classes different
weights in order to optimise the misclassification cost (Elkan, 2001).

In our work we chose the baseline methods of undersampling and cost-sensitive,
namely Random under-sampling and weighting methods, since they are effective and
they don’t cost much calculation power compared to oversampling methods since they
tend to add more data that need to be processed. Moreover, oversampling methods
could add bias in the medical data and tend to perform worse than undersampling
methods (Drummond, Holte, 2003).

4.3. Decision tree

Among the machine learning methods, we have chosen to use decision tree. This
method belongs to the class-labeled training tuples. We chose the decision tree method
because it generates simple models, it is easy to interpret and it can be validated by
physicians who are not necessarily experts in computer science. Furthermore, decision
tree method is scalable and can produce efficient models even when large amounts of
data are used. Finally, decision trees are less sensitive to imbalanced datasets (Cieslak,
Chawla, 2008). Decision trees use an attribute selection rule at each node of the tree
to split the data (split criterion), this rule is important to classify the records correctly.
The main split criteria in the literature are Information Gain and Gini Index (Han et al.,
2012). The difference in the performance between those two criteria is not huge. The
best criterion is debatable and it depends on the used dataset (Raileanu, Stoffel, 2004).
Since Gini Index tends to perform a bit faster than Information Gain (Raileanu, Stoffel,
2004), we retained Gini Index. For the decision tree, we have chosen the Classification
and Regression Tree (CART) algorithms (Breiman et al., 1984) that uses Gini Index.
CART is a binary decision tree, which is built by recursively splitting each node into
two child nodes, until there is no significant decrease in the Gini Index criterion.

Overfitting problem occurs when the model is more accurate on the training set
than on the testing data. Pruning can be used to avoid the overfitting problem (Han
et al., 2012). The minimal cost-complexity pruning is implemented in the CART



decision tree as described in (Breiman et al., 1984). Default parameters for pruning 
were used in our case because such overfitting problem could occur.

CART decision tree was then used to perform our objective: to know if we could 
help to detect a secondary diagnosis (DS), knowing the primary diagnosis (DP) and 
the other features encoded in PMSI (age, entry mode, medical procedures performed, 
...). In order to evaluate which decision tree could be the best, we compared the 
performances of different decision trees, each one being built using different choices 
according to following points:

– Granularity level: as the codification of the diagnoses belongs to a hierarchical 
classification, it is possible to use different levels of description: either coarse level 
with 19 features (which correspond to general chapters) or fine level of diagnoses 
with 126 features (more specific chapters).

– imbalanced dataset: as the PMSI database contains by nature more negative 
examples than positive ones, we have made the hypothesis that the we can build a 
better performance decision tree by balancing the number of positive and negative 
examples. To verify the hypothesis we consider three sampling methods.

- The first method uses the original dataset without any sampling method.

- The second method gives the positive examples in the dataset double weight
compared to the negative ones.

- The third method uses randomly undersampling technique with 1:1 ratio.

Few preliminary test helped us to choose the weightings and the ratio of random un-
dersampling presented in this work we still have to improve these choices: after deter-
mining the best sampling method we plan to try different tunings and to do excessive
empirical study in order to determine the best choices.

This choices of granularity level and of sampling methods were tested through
different situations, as presented in Table 3 which classifies the tested use cases.

Table 3. The tested use cases - Each situation was named as test x and will be
described in experiments section

Dataset
Original Cost sensitive Random sampling

Fine level of granularity Test1 Test3 Test5
Coarse level of granularity Test2 Test4 Test6

4.4. Algorithm

The general algorithm followed to build and to evaluate the decision tree used to
predict secondary diagnoses is described in Algorithm 1.

The first step (1->3) allows to choose the right configuration by fixing 3 variables:

– The weight of positive and negative examples (for instance, we decide to weight
a positive example twice in order to highlight its importance).



– The random undersampling option.

– The granularity level of diagnosis (for instance, we choose a decision tree based
on the 19 features issued from general chapters).

The second step (4) queries the most 10 frequent Primary Diagnoses DPs occurred
with the studied secondary diagnosis. (for example, in case of "B96" bacterial agents
infection as DS, the most frequent primary diagnoses found in the database are "Acute

tubulointerstitial nephritis" with the code "N10", "Malaise and fatigue" with the
code "R53", "Fever" with the code "R50", etc...) Afterwards, (6) for each DP we
query the corresponding dataset that contains the positive and negative examples.
Then, we do all the preprocessing (7->9), next (10) we split the data into K train-
ing and testing sets and for each set (12) we use the training set to build a decision
tree. Afterwards (13), the tree is pruned in case the subtree produces better perfor-
mance. We evaluate (15) the tree using the testing set. Next (16), we average the
evaluations produced by each fold. Finally (18), we average the evaluations of all the
performances of the decision trees of the Primary Diagnoses DPs.

Algorithm 1 The steps followed to build secondary diagnoses decision tree

1: Set(The weight of positive and negative examples)
2: Set (Undersampling option)
3: Set (Granularity level of diagnoses)
4: Query the most 10 frequent DPs occurred with the DS
5: for each primary diagnosis DP do

6: Query the dataset using the chosen granularity level
7: Discretize the continuous features (age-length of stay - frequency - medical

procedures count...)
8: If undersampling selected randomly undersample the majority class
9: Give the positive and negative classes their weights

10: Split the data into k folds
11: for Each fold do

12: Build the decision tree with the training set using CART algorithm
13: Prune the tree (if possible)
14: Evaluate the model by Measuring (Precision -Recall- F1) on the testing set
15: end for

16: Calculate the average evaluations of the folds
17: end for

18: Calculate the average of the evaluations of DPs

4.5. Evaluation

The results were evaluated using 5-fold cross validation as the dataset does not
contain sufficient positive records to dedicate independent testing set. In each fold,
we divided the dataset into 80% training set and 20% testing set. We used the
standard metrics used to evaluate classification Precision, Recall and F1-measure.



The measurements are defined based on the following sets according to (Tuffery, 
2007):

– TP is the number of True Positive instances, which represent instances that are 
correctly assigned to positive examples.

– TN is the number of True Negative instances, which represent instances that are 
correctly assigned to negative examples,

– FP is the number of False Positive instances, which represent instances that are 
incorrectly assigned to positive examples,

– FN is the number of False Negative instances, which represent instances that 
are incorrectly assigned to negative examples.

Precision is the ratio of correctly assigned examples to the total number of examples 
produced by the classifier.

P =
TP

(TP + FP )
(1)

Recall is the ratio of correctly assigned examples to the number of target examples in
the test set.

R =
TP

(TP + FN)
(2)

F1-measure represents the harmonic mean of precision and recall according to the
formula in (3):

F1 =
2P ∗R

(P +R)
(3)

Using these measurements we aimed to evaluate three aspects:

– The credibility of the automatic prediction, using decision tree method, of the
DSs assignment codes in the inpatient episode.

– The impact of balancing datasets to answer question of limiting the effect of the
large number of negative examples compared to the positive ones.

– The impact of the diagnoses granularity: does one of the levels produce a better
performing decision tree (fine level when specific diagnoses groupings are considered,
coarse level when general diagnoses groupings are considered).

5. Experiments

This section provides a detailed description of the dataset used and describes the
implementation of the proposed approach, in addition to different scenarios to try
different combination of the parameters to choose the best use case of the methodology
described in the Table 3.



5.1. Dataset

In order to evaluate our method, we have used an anonymized sample data ex-
tracted from the PMSI database of "Centre Hospitalier Intercommunal de Castres
Mazamet" hospital. It contains around 90,000 inpatient episodes between 2011 and
2014. In Table 4, we have detailed the number of cases for each studied diagnosis and
we have presented the most 10 frequent Primary Diagnoses DP found as associated
with this DS.

Table 4. The studied Secondary Diagnoses DSs and the most 10 frequent Primary
Diagnoses DPs associated with the DS

ICD-

10

codes

Labels

Count

in

PMSI

DB

Most Frequent DP ordered by frequency

J96
Respiratory fail-
ure

4166

I50(Heart failure)-R06(Abnormalities of breathing)-
J96(Respiratory failure)-J44(obstructive pulmonary disease)-
J18(Pneumonia)-R53(Malaise and fatigue)-J20(Acute
bronchitis)-J15(Bacterial pneumonia)-Z51(Encounter of
medical care)-J69(Pneumonitis)

B96

Bacterial agents
infection such as
Mycoplasma and
pneumoniae

6514

N10(Acute pyelonephritis)-R53(Malaise and fatigue)-
I50(Heart failure)-R50(Fever)-R10(Abdominal and pelvic
pain)-R06(Abnormalities of breathing)-J44(obstructive pul-
monary disease)-J96(Respiratory failure)-N41(Inflammatory
diseases of prostate)-J18(Pneumonia)

T81
Complications of
procedures

1150

Z48(Encounter for attention to dressings, sutures and
drains) -L02(Cutaneous abscess)-C18(Malignant neoplasm
of colon) -S72(Fracture of femur) -K56(Paralytic ileus)
-K65(Peritonitis) -K80(Cholelithiasis)-R10(Abdominal and
pelvic pain)-K63(intestine disease) -Z43(Encounter for atten-
tion to tracheostomy)

R29
Nervous and
musculoskeletal
systems

1596

R53(Malaise and fatigue)-S06(Intracranial injury) -
F05(Delirium) -R29(Nervous and musculoskeletal systems)
-R41(Disorientation) -I50(Heart failure) -I95(Hypotension)
-R52(acute) -S72(Fracture of femur) -I63(Cerebral infarction)

R26
Abnormalities of
gait and mobility

2378

R53(Malaise and fatigue)-I50(Heart failure)-
R06(Abnormalities of breathing)-J20(Acute bronchitis)-
J69(Pneumonitis)-R50(Fever)-J15(Bacterial pneumonia)-
F05(Delirium)-Z51(Encounter of medical care)-
J18(Pneumonia)

E66
Overweight and
obesity

5453

I50(Heart failure) -R07(Chest pain)-E11(Type 2 diabetes mel-
litus) -R06(Abnormalities of breathing) -J96(Respiratory fail-
ure) -R53(Malaise and fatigue) -R10(Abdominal and pelvic
pain) -I48(Atrial fibrillation and flutter)-Z48(Encounter for at-
tention to dressings, sutures and drains)-K80(Cholelithiasis)

E44 Malnutrition 2144

R53(Malaise and fatigue)-F05(Delirium)-I50(Heart
failure)-R29(Nervous and musculoskeletal systems)-
R06(Abnormalities of breathing)-J18(Pneumonia)-
R41(Disorientation)-R10(Abdominal and pelvic pain)-
J44(obstructive pulmonary disease)-J15(Bacterial pneumonia)



5.2. Implementation

The proposed algorithm is implemented using R-Studio4 and weka5. R-Studio 
is used to query the subsets from MySql6 database where the PMSI is stored, then 
the preprocessing of the dataset is performed using R-Studio, next a dataset with the 
ARFF7 format is produced, An ARFF (Attribute-Relation File Format) file is a text 
file that contains features description in addition to the dataset instances in a special 
format mostly used with weka. Finally, weka platform is used to build the CART 
decision tree, as shown in Figure 2.

Figure 2. Implementation of the Algorithm

We have experimented our approach according to the use cases described in the
Table 3 in three scenarios. In each scenario we represent features as described in the
section 4.1 which consists of coarse and fine level of diagnoses granularity. Moreover,
we have changed the methods for sampling imbalanced data set. Hence, the three
scenarios can be described as following:

– Scenario 1 corresponds to using the original dataset without any sampling. Test
1 & 2 in the Table 3.

– Scenario 2 corresponds to cost-sensitive learning method for sampling imbal-
anced dataset. Test 3 & 4 in the Table 3.

– Scenario 3 corresponds to random undersampling of negative examples to a
ratio of (1:1). Test 5 & 6 in the Table 3.

Scenario 1. Figure 3 summarizes the results of the different measures on the original
dataset. First, we can observe that even for fine and coarse granularity, using all the
dataset is not an interesting strategy as recall and F1-measures results are very low.
Except for B96 (bacterial agents) and J96 (Respiratory failure), our results approxi-

4. https://www.rstudio.com/products/rstudio/
5. http://www.cs.waikato.ac.nz/ml/weka/
6. https://www.mysql.fr/
7. https://weka.wikispaces.com/ARFF



mate 2%. For B96 and J96, we can observe that the results of fine granularity are more
interesting than the results of coarse level granularity.

Figure 3. Summary of the average measurements of the decision tree’s performance
in the scenario 1 - based on original dataset - using fine and coarse levels of

granularity for all the studied diagnoses, F: Fine Level; C: Coarse Level

Scenario 2. In the lights of the results of the evaluations shown in Figure 4, we can
observe that the measurement varied between different diagnoses. On one hand, B96
scored the best F1, precision and recall measurements around 75%. On the other
hand, other diagnoses scored lower percentages using the same measurements. As
reported by Stanfill (Stanfill et al., 2010), a same ML applied on different diagnoses,
produces different results. Our results confirm such a variation of measurements, and
the complexity of the problem. Concerning the highlighted issues about the effect of
the granularity level, we notice that using fine level granularity gives better measure-
ments compared to using coarse level granularity. We can observe that the differences
between fine and coarse level of granularity range between 1% and 27% in the results
Figure 4. In particular, for B96 we notice an important enhancement of results quality
using the fine level granularity.

Figure 4. Summary of the average measurements of the decision tree’s performance
in the scenario 2 - based on cost sensitive learning - using fine and coarse levels of

granularity for all the studied diagnoses, F: Fine Level; C: Coarse Level



Scenario 3. Figure 5 shows the results of the third scenario. Clear improvement can 
be observed in the quality of detection of all secondary diagnoses. Compared to the 
results presented in Figures 3 and 4 in which the used sampling methods privileged 
B96 and J96 diagnoses, this evaluation substantiates that sampling negative examples 
according to 1:1 ratio is the best method to predict a right quality over all type of 
secondary diagnoses. In fact, the results show that the values of the quality measures 
range between 55% and 84%, which are very trustworthy to satisfy our main objective. 
The difference of each sampling methods can be observed clearly in Figures 6, 7 and 8, 
each figure shows the performance and the differences between the sampling methods 
using the metrics F1, Precision and recall in order.

Figure 5. Summary of the average measurements of the decision tree’s performance
in the scenario 3 - based on undersampled dataset - using fine and coarse levels of

granularity for all the studied diagnoses, F: Fine Level; C: Coarse Level

To sum up the differences between the performed experimentations, we overlap
the results of the three scenarios on the three metrics F1-measure, recall and precision
respectively in Figures 6, 7 and 8. The most important remarks are:

– Fine level granularity features give better results than coarse level granularity
features regardless the type of secondary diagnoses and the type of metric, this seems
coherent with the fact that detailed level provide more information and can give better
prediction power.

– The method of sampling impacts the quality of results. We can observe that the
under sampling method improves the results significantly compared to the cost sensi-
tive and the original unsampled dataset regardless the type of secondary diagnoses and
the type of metric. Intuitively, sampling methods are improving the quality because
they make the number of positive examples more representative compared to negative
examples.



Figure 6. F1 measurement based on all the three sampling methods

Figure 7. Precision measurement based on all the three sampling methods

Figure 8. Recall measurement based on all the three sampling methods

6. Discussion

The main objective is to know if data mining techniques could help to detect a
secondary diagnosis (DS), knowing the primary diagnosis (DP) and the other features
encoded in PMSI (age, entry mode, medical procedures performed ...). Therefore, we
selected an approach using decision trees that has promising result and can satisfy our



main objective to help the coders and notify them whenever a secondary diagnosis 
is missing by counting on structured data only. Our hypothesis of fixing the primary 
diagnosis has helped to enhance the prediction performance.

We raised secondary issues to verify their impact on the decision tree. Concerning 
the granularity level, as the codification of the diagnoses belongs to a hierarchical 
classification, it is possible to use different levels of description: either coarse level 
with 19 features (which correspond to general chapters) or fine level of diagnoses 
with 126 features (more specific chapters). We compared the performances of two 
decision trees, each one is built using different level of diagnoses granularity. The 
results showed that by using the fine level of granularity we can enhance on average 
5% to 10% all the quality measures regardless of the predicted diagnosis code. The 
prediction power seems to be related to the preciseness of the medical information.

Some diagnoses had better performance decision tree compared to others such 
as B96 "bacterial agents". B96 is the most frequent secondary diagnosis. The perfor-
mance could be explained either by the fact that the ratio between positive and negative 
examples is the best one in our database, or by medical specificity of bacterial agents. 
A better understanding of predictive power of each feature could be established with 
the help of the medical staff in the hospital. The understanding of the feature could 
explain the behavior and the performances of each model.

Concerning the imbalanced dataset, as the PMSI database contains by nature more 
negative examples than positive ones, the improvement of results in the third scenario 
when the balanced dataset is used confirms that balancing techniques are useful to 
produce better performance decision trees. In the second scenario cost sensitive learn-
ing is used by giving the positive examples in the dataset double weight compared 
to the negative ones, this technique produced 25% better performance model com-
pared to the model based on original dataset. Finally, we used random undersampling 
technique to reduce the number of negative examples to be equal with the positive 
ones, this technique generated the best performance model regardless to the predicted 
diagnosis which can be a good step towards better application.

The strength of the approach is to provide a generic structured dataset that can be 
populated with any PMSI database, while allowing personalized data preprocessing 
for each studied (DP-DS). Such approach includes customized discretization ranges 
for the continuous features adapted to each subset of data, to provide better inter-
pretability and to improve the prediction quality. The weakness of the approach is that 
in some cases the queried subset is insufficient to build a model. This could be solved 
by using larger databases, such as the national version of PMSI. Another weakness 
is that our approach is not optimised in terms of memory consumption and training 
time, due to the large number of features. We hope to solve that in the future work by 
including automatic features selection methods, such as correlation feature selection 
method CFS (Hall, 1998), which helps to choose only the relevant set of features.



7. Conclusion

The paper outlined preliminary results of our methodology to develop an automatic
model able to assign secondary medical codes. The proposed approach consists of a
model based on decision tree, which is built on structured data extracted from the
PMSI database. The performance of the model ranged from 61% to 77% F1 measure.
Therefore, the proposed methodology holds great promise for improving the tedious
task of coding secondary diagnoses.

We experimented our approach according to three scenarios to address the imbal-
anced dataset problem. In the first scenario the original dataset was used without any
sampling, in the second scenario cost sensitive learning was applied, and in the third
scenario random undersampling of negative examples was applied. In each scenario
we used different diagnoses representation coarse and fine level of diagnoses granu-
larity. The best performance model was achieved by using the third scenario choosing
the fine level granularity of diagnoses representation.

For future perspectives, we plan to test the effect of using different level of medical
procedures representations. Thanks to the common structure of PMSI database at the
regional and national scales, we plan to extend our methodology and evaluate it on
different scales of PMSI database. Moreover, we plan to explore new methods in order
to balance the positive and negative examples in the training set as well as automatic
methods for feature selection. Furthermore, new evaluation methods will be tested,
taking into consideration imbalanced databases such as (Weng, Poon, 2008). Finally,
we plan to evaluate our work in real world application and have a feedback from the
users of our proposition.
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