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Optimization can apply in almost every branch of science and technology. In particular, an iterative method is a mathematical optimization procedure that uses an initial guess to approximate the solution. The advantage of the iterative method is that can be applicable to nonlinear problems which are common and important to any reservoir geomechanics problems. The ambition of this article is to calibrate physic-based elastoplastic models using iterative optimization methods from experimental test data. Then, the validity of proposed material parameters is indicated using a home-made finite element simulator.

Introduction

Geomechanical properties play important roles in the drilling, completion and reservoir performance. Reliable determination of the parameters Email address: Corresponding author: manouchehr.sanei@gmail.com (Manouchehr Sanei) are beneficial to theses practices [START_REF] Han | Determination of in-situ stress and geomechanical properties from borehole deformation[END_REF]. Geomechanical properties are often measured from rock core samples in laboratory tests. To describe the behavior of reservoir rock, the elastoplastic constitutive models are applied. Such models are extremely complex due to a large number of material parameters [START_REF] Cekerevac | Calibration of an elasto-plastic constitutive model by a constrained optimisation procedure[END_REF]. For geomechanical problems, estimation of parameters is usually difficult because of the several sources of uncertainty [START_REF] Graham | The 2003 r.m. hardy lecture: Soil parameters for numerical analysis in clay[END_REF].

To dominate the uncertainties while adjusting the model parameters, optimization procedure has been proposed. The optimization method is included of two steps, the formulation of an objective function and the chosen of an optimization strategy [START_REF] Hans Mattsson | Optimization routine for identification of model parameters in soil plasticity[END_REF]. The optimization methods that have been used to geotechnical and geomechanical problems are: Iterative optimization method: that needs the search for the minimum value of an objective function over the whole domain according to whether it evaluates Hessians, gradient, or only function values [START_REF] Hans Mattsson | Optimization routine for identification of model parameters in soil plasticity[END_REF][START_REF] Cekerevac | Calibration of an elasto-plastic constitutive model by a constrained optimisation procedure[END_REF][START_REF] Navarro | Optimisation procedure for choosing cam clay parameters[END_REF]. Inverse analysis: that can calibrate the models by sequentially changing input values until the simulated output values match with the observed data [START_REF] Karakus | Back analysis for tunnelling induced ground movements and stress redistribution[END_REF][START_REF] Rechea | Inverse analysis techniques for parameter identification in simulation of excavation support systems[END_REF][START_REF] Shuku | Parameter identification for cam-clay model in partial loading model tests using the particle filter[END_REF]. Genetic algorithm: that is a probabilistic method to find the optimum value of fitness function based on inheritance mechanisms [START_REF] Emir | Selection and calibration of soil constitutive model paramaters using genetic algorithms[END_REF][START_REF] Akbar | Evaluation of liquefaction induced lateral displacements using genetic programming[END_REF][START_REF] Kowalska | Calibration of modified cam clay model with use of loading path method and genetic algorithms[END_REF]. Artificial neural network: that is a series of methods that derived from human brain and is well-suited to modeling, control, and analysis of nonlinear problem [START_REF] Ghaboussi | Knowledge-based modeling of material behavior with neural networks[END_REF][START_REF] Sidarta | Constitutive modeling of geomaterials from non-uniform material tests[END_REF][START_REF] Obrzud | Optimization framework for calibration of constitutive models enhanced by neural networks[END_REF].

Previous studies in geotechnical practice emphasize the importance of iterative optimization methods to calibrate the model parameters accurately [START_REF] Hans Mattsson | Optimization routine for identification of model parameters in soil plasticity[END_REF][START_REF] Cekerevac | Calibration of an elasto-plastic constitutive model by a constrained optimisation procedure[END_REF][START_REF] Doherty | Evaluating modified cam clay parameters from undrained triaxial compression data using targeted optimization[END_REF]. In geomechanical practice, we have calibrated properly the elastoplastic material parameters by using the iterative optimization method for porous rock. The elastoplastic constitutive models were linear elasticity, Mohr-Coulomb, and DiMaggio-Sandler that we have submitted to the same journal as this article (Sanei et al., 2020a).

In this paper, first, the concept of iterative optimization methods is presented. Then, the iterative optimization method is used to calibrate elastoplastic material parameters that are included Drucker-Prager and modify Cam-Clay model. The laboratory data are measured from three types of loading conditions, e.g., triaxial, oedometric, and hydrostatic for the reservoir rock. Finally, the accuracy of calibrated physic-based elastoplastic models are evaluated using the home-made finite element simulator. The implementation of the present article is done in the NeoPZ library, which is an object-oriented scientific computational environment, providing a framework for developing finite element schemes [START_REF] Remy | PZ: An object oriented environment for scientific programming[END_REF][START_REF] Devloo | Object oriented tools for scientific computing[END_REF].

Optimization procedure

Optimization is generally used for any problem consisting of decision making, whether in engineering, mathematics, computer science, etc. The goal of decision-making is to choose the "best" decision among available alternatives. The measure of goodness is defined using an objective function F : R n → R that is a real-valued function [START_REF] Hans Mattsson | Optimization routine for identification of model parameters in soil plasticity[END_REF][START_REF] Edwin | An Introduction to Optimization[END_REF]. The iterative optimization methods can solve the nonlinear problems properly and there are two types of them, such as: Derivative-free optimization that finds solutions only by using the objective function [START_REF] Luis | Derivative-free optimization: a review of algorithms and comparison of software implementations[END_REF] and Gradient-based optimization that finds solutions by using the objective function and derivatives.

Objective function

The objective function for a given set of parameters, evaluates the discrepancy between model prediction and experimental data as displayed in Figure 1. The objective function must be positive definite and should be constructed based on the independent state variables [START_REF] Cekerevac | Calibration of an elasto-plastic constitutive model by a constrained optimisation procedure[END_REF]. The objective function is:

F (x) = 1 t -t • Y n -Y m dt (1)
where (t -t • ) is the duration of observation and Y n -Y m is the norm of the difference between measurement data Y m , and numerical results Y n , for a given set of parameters.

Gradient-based optimization methods

The gradient based optimization methods such as, Newton and Gradient descent method are used in this study to calibrate the elastoplastic physicsbased models.

• Newton method. It is a root-finding algorithm that uses first and second derivatives and can provide a better approximation if the initial point is close to the minimizer [START_REF] Edwin | An Introduction to Optimization[END_REF]. It is:

x n+1 = x n -[HF (x n )] -1 ∇F (x n ) , n ≥ 0 (2)
where ∇F (x) is the derivative and HF (x) is the Hessian matrix.

• Gradient descent method. It is a first-order iterative optimization algorithm for finding the minimum of the objective function F (x) [START_REF] Bazaraa | Nonlinear Programming: Theory and Algorithms[END_REF]. It is:

x n+1 = x n -γ n ∇F (x n ) , n ≥ 0 (3)
where x n is the solution at n step and γ n ∇F (x n ) is the search direction.

In this study, Newton's method is preferable because of its higher convergence rate. However, Newton method needs inversion of Hessian matrix that may contain negative eigenvalues or be singular. In these circumstances, the gradient descent method is applied.

Remark 1: To provide an accurate estimation using gradient based methods, we suggest an analytical equation to compute a good initial guess x 0 for each parameter. The initial guess is immediately determined once measurement data are filtered.

Figure 1: A schematic plot of the optimization procedure.

Methodology of calibration

The methodology of calibration is done using the following steps:

• Selection of a model that requires a minimum number of data;

• Filtering data by engineering experience to choose the most relevant;

• Specifying the priority of parameters for the calibration of a model;

• Definition of the appropriate objective function;

• Developing an analytical equation to compute a good initial guess;

• Finding a local minimum of the objective function which depends on the tolerance, number of iterations, and a validity of the solution;

• Evaluating the validity of material parameter using a comparison between numerical and experimental results.

The detailed of the optimization procedures to calibrate material elastoplastic parameters can be found in the article (Sanei et al., 2020a).

Elastoplastic constitutive model

The elastoplastic constitutive models that are used in this study, are Drucker-Prager and modified Cam-Clay that define using the following stress invariants [START_REF] Krabbenhoft | Computational cam clay plasticity using second-order cone programming[END_REF]:

P = - 1 3 (σ 1 + σ 2 + σ 3 ) (4) Q = 1 2 (σ 1 -σ 2 ) 2 + 1 2 (σ 2 -σ 3 ) 2 + 1 2 (σ 3 -σ 1 ) 2 1 2
(5)

J 2 = 1 3 σ 2 1 + σ 2 2 -σ 2 σ 3 + σ 2 3 -σ 1 (σ 2 + σ 3 ) ( 6 
)
where P is the effective mean stress [MPa], Q is the von Mises stress [MPa], J 2 is the second invariant of the deviatoric tensor MPa 2 , and σ 1 , σ 2 , and σ 3 are the principal of effective stresses [MPa].

Drucker-Prager plasticity model

The Drucker-Prager model was proposed as a smooth approximation to the Mohr-Coulomb law that consists of a modification of the von Mises plasticity model [START_REF] Drucker | Soil mechanics and plastic analysis or limit design[END_REF]. The plastic yielding begins when the J 2 invariant of the deviatoric stress and the hydrostatic stress P reach a critical combination [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]. The yield function Φ is:

Φ = J 2 + η P -ξ c ( 7 
)
where c is the cohesion [MPa] and the parameters η and ξ are chosen according to the required approximation of the Mohr-Coulomb plasticity model. The values of the parameters η and ξ at the compression cone are:

η = 6 sin φ √ 3 (3 -sin φ) ξ = 6 cos φ √ 3 (3 -sin φ) (8)
where φ is the friction angle [°]. The Drucker-Prager plasticity model has been implemented using the plastic return-mapping scheme provided in the book [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]. The Drucker-Prager implementation is verified by comparing the numerical results with the experimental triaxial test data provided by [START_REF] Zhang | The stress-strain-permeability behaviour of clay rock during damage and recompaction[END_REF]. Figure 2 presents a comparison between the Drucker-Prager implementation and the measurement data, displaying the verification of the implementation.

Modified Cam-Clay plasticity model

The modified Cam-Clay model is generally based on the nonlinear elasticity law that can be linearized whenever the change of mean effective stress is sufficiently small [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]. The linear elastic law for the modified Cam-Clay is [START_REF] Rudnicki | Fluid mass sources and point forces in linear elastic diffusive solids[END_REF]:

σ = 2G e + 2G ν 1 -2ν tr ( e ) I (9) 
where G [MPa] is the shear modulus and ν is the Poisson's ratio. In this study, in the absence of pore pressure p [MPa] the effective stresses equal the total stresses σ t [MPa], where σ t = σ -α p I. The nonlinear elastic law for the modified Cam-Clay can be presented in two ways (Systémes, 2012): first, given the constant shear modulus G [MPa], and second, given the constant Poisson's ratio ν as a parameter.

For constant shear modulus:

σ -σ • = 2G ( ed -• ed ) -(P cc -P o ) I (10) 
For constant Poisson's ratio:

σ -σ • = 2 3K (1 -2ν) 2 (1 + ν) ( ed -• ed ) -(P cc -P o ) I (11) 
where • ed and ed are the initial and current elastic deviatoric strain, respectively. σ • and σ are the initial and current effective stress, respectively [MPa]. The Cam-Clay effective mean stress P cc [MPa] in equations 10 and 11 is expressed as (Ferreira, 2019):

P cc = -p t + (P • + p t ) exp - 1 + e • C e ( ev -• ev ) (12)
where e • is the initial void ratio, C e is the recompression index, p t is the tensile strength [MPa], and P • is the initial mean effective stress [MPa].

• ev and ev are the initial and current elastic volumetric strain, respectively.

The yield function of the modified Cam-Clay model (Figure 3) is defined as [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]:

Φ = P -p t + a b a 2 + Q M a 2 -1 ( 13 
)
where a is the radius of the ellipse [MPa], b is the material parameter, and M is the ratio between the two radii of the modified Cam-Clay ellipse. The parameter M is defined as: The hardening law can be defined using a linear or an exponential form (Systémes, 2012). The linear form is defined in terms of preconsolidation pressure p c [MPa], as [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]:

Q = M P (14)
p c ≡ (1 + b) a -p t (15)
The exponential form is written by replacing a in equation ( 15), as (Ferreira, 2019):

a = a • exp - (1 + e • ) C p -C e pv -• pv (16)
where a • is the initial value of the hardening, C p is the compression index.

• pv and pv are the initial and current plastic volumetric strain, respectively.

In the modified Cam-Clay model, the sample is slowly compressed under isotopic stress conditions and the relationship between specific volume and mean effective stress includes a normal compression line and a set of straight swelling lines. The normal compression line in the elastoplastic range as shown in Figure 4, is defined as [START_REF] Callari | A finite-strain cam-clay model in the framework of multiplicative elasto-plasticity[END_REF][START_REF] Rocscience | Rocscience users manual[END_REF]:

v c = v • c -C p ln p c p • c ( 17 
)
where v • c and v c are specific volume with respect to mean effective stress p • c and p c [MPa], respectively (see Figure 4). The swelling line is [START_REF] Callari | A finite-strain cam-clay model in the framework of multiplicative elasto-plasticity[END_REF]:

v s = v • s -C e ln P s P • (18)
where v • s and v s are the specific volume with respect to mean effective stress P • and P s [MPa], respectively (as shown in Figure 4). [START_REF] Callari | A finite-strain cam-clay model in the framework of multiplicative elasto-plasticity[END_REF].

The implementation of modified Cam-Clay model has been done using the plastic return-mapping in the rotated principal stresses. The numerical integration scheme for modified Cam-Clay is verified by comparing the numerical results with the analytical solution provided by [START_REF] Perić | Analytical solutions for a three-invariant cam clay model subjected to drained loading histories[END_REF]. The material parameters reported by [START_REF] Rocscience | Rocscience users manual[END_REF] are used and given in Table 1.

Parameter

Value

G 20 M P a ν 0.3 M 1.2 C e 0.0077 C p 0.066 e • 0.438 ψ 1 P • 0.2 M P a p • c 0.2 M P a Q • 0.0 M P a
Table 1: Material parameters for clay [START_REF] Rocscience | Rocscience users manual[END_REF].

Figure 5 presents a comparison between the modified Cam-Clay implementation and the analytical solution provided by [START_REF] Perić | Analytical solutions for a three-invariant cam clay model subjected to drained loading histories[END_REF], displaying the verification of the implementation. The detailed of implementation and verification of the modified Cam-Clay can be found in the article (Sanei et al., 2020b).

Laboratory tests

The laboratory tests are conducted on a collection of samples of carbonate reservoir rocks. The database was obtained using three types of loading conditions, e.g., triaxial, oedometer, and hydrostatic, as summarized in Table 2. The data obtained are used as input for calibration of physics-based elastoplastic models.

Name

Control • Triaxial compression loading: It is performed using a standard machine where a fixed confining pressure is maintained while the differential stress is axially applied.

• Oedometer consolidation loading: It is performed using a standard machine where prevents lateral displacement of a sample, but allows the sample to compress axially in response to the changes of applied load.

• Hydrostatic compression loading: It is performed using a standard machine where the confining pressure is applied equally in all directions.

Calibration of physics-based Drucker-Prager model

The objective function to calibrate the physics-based Drucker-Prager plasticity from failure points of triaxial test data by considering ξ c = ξ c is defined as follows:

f DP = npts i=1 ∆.∆ ( 19 
)
where npts is the number of experimental data and ∆ is:

∆ = J 2 + η P -ξ c ( 20 
)
The Drucker-Prager material parameters are c and φ that are computed from η and ξ c . The both material parameters η and ξ c can be estimated using optimization methods in equations ( 2) and (3). The Hessian matrix [Hf DP ] -1 and the gradient of objective function ∇f DP are presented as follows:

[Hf DP ] = J (∇f DP ) T (21) ∇f DP = ∂f DP ∂η , ∂f DP ∂ξ c (22)

Estimation of initial guess for η and ξ c

The initial guess for parameters η and ξ c are determined by analytical equations. The proposed equations are developed using experimental data that are at least two points. The points can be the extreme points, namely pt 1 and pt 2 . The procedure to develop analytical equations is described in Appendix 8. The analytical equations are:

η est = J 2 1 -J 2 2 P 1 -P 2 (23) ξ cest = 2 z=1 J 2z + η P z ( 24 
)
where the numbers 1, 2 are index of two failure points. The initial guesses for η and ξ c are considered as:

η 0 , ξ 0 c T = (η est , ξ cest ) T (25)

Calibration of c and φ by using the failure points

The Drucker-Prager material parameters are calibrated using the failure points of four triaxial tests and the quantities of η and ξ c . The parameters c and φ are computed and presented in Table 3. Moreover, a comparison between experimental and numerical results ( J 2 versus P ) is shown graphically in Figure 6. The results demonstrate clearly the capability of the optimization procedure. 

A comparison of numerical and experimental for Drucker-Prager

The stress-strain relationship of the porous rock sample is simulated by the home-made simulator with Drucker-Prager, for which the elastoplastic material parameters are identified in Table 3 by using the iterative optimization methods. The validity of the proposed material identification is investigated by comparing the numerical results with experimental test data, as illustrated in Figure 7.

The results from Figure 7 almost verify the effectiveness of the optimization procedure for physics-based identification of the Mohr-Coulomb elastoplastic model. However, the differences between numerical and experimental are principally because the experimental data are real data subjected to noise, systematic and spurious influences, but Drucker-Prager was developed based on simplifications and assumptions that not entirely aligned with the real behavior of materials. 

Calibration of physics-based modified Cam-Clay model

The calibration of physics-based modified Cam-Clay elastoplastic model is separately done for linear elasticity, nonlinear elasticity and cap surface function using the laboratory test data.

Laboratory test data to calibrate modified Cam-Clay

The type of load cycles which is used to calibrate Cam-Clay model's parameters are given in Table 4. The material parameters P • and p t can be also calibrated from oedometer test data. Moreover, the parameter b that represents the curvature of the hardening part of yield surface can be adjusted from triaxial tests at high confining pressures (Systémes, 2012).

Parameter Triaxial Oedometer Hydrostatic

G MPa ν P • MPa p t MPa C e p • c MPa C p M b

Calibration of linear elasticity parameters, G, ν

The calibration of physics-based linear elasticity such as, shear modulus G and Poisson's ratio ν are performed by using the unloading and reloading part of triaxial or oedometer test data.

Calibration of G

The objective function to calibrate G parameter is defined as follows:

f triG = npts i=1 ∆.∆ (26) 
where

∆ = (Q -Q • ) -3G( ed -• ed ) ( 27 
)
where Q • and Q are the initial and current von Mises stress [MPa], respectively.

• ed and ed are the initial and current shear strain, respectively. The initial shear strain • ed can adopt with the first point of data, i.e.,

• ed = i ed ; i = 1. It is also possible to define • ed , as the same as Q • . In order to compute, the parameters G and Q • using optimization methods in equations ( 2) and (3), the Hessian matrix [Hf triG ] -1 and the gradient of objective function ∇f triG are expressed as follows:

[Hf triG ] = J (∇f triG ) T (28)

∇f triG = ∂f triG ∂G , ∂f triG ∂Q • (29)
The initial guess is:

G 0 , Q 0 T = (0, 0) T (30)
The calibration of G using triaxial and oedometer test data are done and the results are given in Table 5. In addition, a comparison between experimental and numerical results ( ed vs Q) is shown graphically in Figure 8. Table 5: Calibration of G by using triaxial and oedometer test data.

Calibration of ν

The objective function to calibrate Poisson's ratio ν parameter is defined as follows:

f triN u = npts i=1 ∆.∆ (31) 
where

∆ = ( l -• l ) + ν( a -• a ) (32) 
In order to compute, the parameters ν, • l , and • a using optimization methods in equations ( 2) and (3), the Hessian matrix [Hf triN u ] -1 and the gradient of objective function ∇f triN u are presented as follows:

[Hf triN u ] = J (∇f triN u ) T (33) ∇f triN u = ∂f triN u ∂ν , ∂f triN u ∂ • l , ∂f triN u ∂ • a (34)
The initial guess is:

ν 0 , 0 l , 0 a T = (0, 0, 0) T (35)
The calibration of ν using triaxial and oedometer test data are done and the result are reported in Table 6. In addition, a comparison between experimental and numerical results ( a vs l ) is displayed graphically in Figure 9.

Parameter Type test Numeric value

Poisson's ratio ν Triaxial 0.237 Oedometer 0.2512 Plot of axial strain versus lateral strain from: (left) triaxial, and (right) oedometer test data.

Calibration of nonlinear elasticity parameters, P • , p t

To calibrate P • and p t from nonlinear stress-strain relationship in equation (12), it is hypothesized that the measured strain at the beginning of hydrostatic test is elastic strain and with considering eC = (1 + e • ) /C e . It is represented as:

P cc = P = -p t + (P • + p t ) exp [-eC ev )] (36) 
The objective function to calibrate the physics-based of nonlinear elasticity parameters from hydrostatic test data is expressed as follows:

f N LEP = npts i=1 ∆.∆ (37) 
where

∆ = P + p t -(P • + p t ) exp [-eC ev )] (38) 
The material parameters P • and p t are computed using optimization methods in equations ( 2) and (3). The Hessian matrix [Hf N LEP ] -1 and the gradient of objective function ∇f N LEP are defined as follows:

[Hf N LEP ] = J (∇f N LEP ) T (39) ∇f N LEP = ∂f N LEP ∂P • , ∂f N LEP ∂p t , ∂f N LEP ∂eC (40)

Estimation of initial guess for P • , p t , and eC

The initial guess for parameters P • , p t , and eC are estimated by analytical equations. The proposed equations are developed using hydrostatic test data that are at least three points. The points can be extremes and an intermediate point. The procedure to develop analytical equations is described in Appendix 8. The analytical equations are developed by considering p zt = P • + p t , as:

Estimation of eC

It is developed as:

eC est = - ln P z /P w evz -evw (41)
where

                         P z ∼ = P 1 -P 2 ev 1 -ev 2 evz = ev 1 + ev 2 2 P w ∼ = P 3 -P 2 ev 3 -ev 2 evw = ev 3 + ev 2 2 (42)
where the numbers 1, 2, 3 are index of three hydrostatic points.

Estimation p zt

The parameter p zt is computed from two extreme points, as:

p ztest = P 1 -P 3 exp (-eC ev 1 ) -exp (-eC ev 3 ) (43) Estimation p t
The parameter p t is estimated using the below expression:

p test = 3 z=1 (p zt exp (-eC evz ) -P z ) (44)
The initial guess for p zt , p t , and eC is:

eC 0 , p 0 zt , p 0 t T = (eC est , p ztest , p test ) T (45)

Calibration of P • and p t

The material parameters P • and p t are computed using the optimization methods in equations ( 2), ( 3) and given in Table 7. In addition, a comparison between experimental and numerical results (P versus ev ) is presented graphically in Figure 10. The results show clearly the capability of the optimization procedure. c is calibrated using the oedometer test data, as follows:

Calibration of physics-based C e

The objective function to calibrate the physics-based C e of modified Cam-Clay is expressed as follows:

f mccCe = npts i=1 ∆.∆ ( 46 
)
where

∆ = v s -v • s + C e ln P s P • or ∆ = v -v • s + C e ln P P • (47)
The quantity of P s and v s can be selected as a unit point, but it is dependent on the engineering point of view. Then, the calibration of C e is done using the unloading and reloading part of data. In order to compute, the parameter C e using optimization methods in equations ( 2) and ( 3), the Hessian matrix [Hf mccCe ] -1 and the gradient of objective function ∇f mccCe are expressed as follows:

[Hf mccCe ] = J (∇f mccCe ) T (48) ∇f mccCe = ∂f mccCe ∂C e (49)

Estimation of initial guess for C e

The initial guess for parameter C e is determined by analytical equation. The proposed equation is developed using experimental data that are two points. The points are pt 1 = {P • , v • s } that is known from last subsection and pt 2 = {P s , v s } that is extreme point. The parameter C e is computed by:

C e est = v s -v • s ln Ps P • (50) 
The initial guesses for C e is considered as:

C e 0 = C e est (51)

Calibration of C e

The material parameter C e is calculated using the optimization methods in equations ( 2), (3) and given in Table 8. In addition, a comparison between experimental and numerical results (ln (-P ) versus v) is shown graphically in 

Calibration of hardening parameter p • c

To calibrate the material parameter p • c , the oedometer test data are used. In this study, it assumes that the initial preconsolidation pressure of modified Cam-Clay p • c , is equal to the quantity of the first effective mean stress P that touches the hardening surface which is the point 2, as shown in Figure 12 (left), namely p • c = 20.3046. 

Calibration of physics-based C p

The objective function to calibrate the physics-based C p of modified Cam-Clay is defined as follows:

f mccCp = npts i=1 ∆.∆ (52) 
where

∆ = v c -v • c + C p ln p c p • c or ∆ = v -v • c + C p ln P p • c ( 53 
)
The quantity of p c and v c can be selected as a unit point, but it is dependent on the engineering point of view. Then, the calibration of C p is done using the normal compression line of data. In order to compute, the parameter C p by optimization methods in equations ( 2) and (3), the Hessian matrix [Hf mccCp ] -1 and the gradient of objective function ∇f mccCp are presented as follows:

[Hf mccCp ] = J (∇f mccCp ) T (54) ∇f mccCp = ∂f mccCp ∂C p (55)

Estimation of initial guess for C p

The initial guess for parameter C p is determined by analytical equation. The proposed equation is developed using experimental data that are two points. The points are pt 1 = {p • c , v • c } that is known from the last subsection and pt 2 = {p c , v c } that is extreme point. The parameter C p is computed by:

C p est = v c -v • c ln pc p • c ( 56 
)
The initial guesses for C p is considered as:

C p 0 = C p est (57)

Calibration of C p

The material parameter C p is calculated using the optimization methods in equations ( 2), (3) and given in Table 9. In addition, a comparison between experimental and numerical results (ln (-P ) versus v) is shown graphically in Figure 13. The result shows clearly the capability of the optimization procedure. 

Calibration of hardening surface parameter, M

The objective function to calibrate the physics-based M from failure points of triaxial test data, is defined as follows:

f M CCM = npts i=1 ∆.∆ (58) 
where

∆ = Q -M P (59)
The material parameter M is computed using optimization methods in equations ( 2) and (3). The Hessian matrix [Hf M CCM ] -1 and the gradient of objective function ∇f M CCM are presented as follows:

[Hf M CCM ] = J (∇f M CCM ) T (60) ∇f M CCM = ∂f M CCM ∂M (61)

Estimation of initial guess for M

The initial guess for parameter M are calculated by analytical equation. The proposed equation is developed using experimental data that are at least two points. The points can be the extreme points, namely pt 1 = {P 1 , Q 1 } and pt 2 = {P 2 , Q 2 }, where P 2 > P 1 . The analytical equation is written as:

M est = Q 2 -Q 1 P 2 -P 1 (62) 
The initial guesses for M is:

M 0 = M est (63)

Calibration of M by using the failure points

The material parameter M is calibrated using the failure point of triaxial tests. It is done separately based on two, three, and four failure points. The parameters M is computed and presented in Table 10. Moreover, a comparison between experimental and numerical results (P versus Q) is displayed graphically in Figure 14. The results demonstrate clearly the capability of the optimization procedure. 

Calibration of cap surface parameter, b

To calibrate the material parameter b, the oedometer test is applied. The parameter b can be obtained by selecting at least two stress points where they touch the hardening surface. The hydrostatic and the oedometer loading parts that can touch the hardening surface. In this test, (as presented in Figure 12 (left)), a specimen is firstly loaded under hydrostatic condition from point 1 to point 2. At point 2, it is hypothesized that the specimen touch the hardening surface. Second, the specimen is unloaded under hydrostatic condition from point 2 to point 3. Third, the specimen undergoes a triaxial loading from point 3 to point 4. Then, the specimen is loaded under oedometer loading to reach the point 5.

The definition of the first point is obvious because it is the last point of hydrostatic loading (point 2). The choice of the second point that should touch the hardening surface, allows to compute the ellipse. The second point belongs to the part of oedometer loading, namely, from point 3 to point 4, where it touches the hardening surface. In this part, finding the first point of touching the hardening surface (from oedometer part), is difficult and requires an engineering point of view. In this section, we propose a methodology to calibrate the parameter b, as follows:

Calibration of b using trial stress

In order to find the second point, the trial stress is computed using the elasticity parameters (G, ν) T = (884.339, 0.251) T and the measured strain tensor t , as follows:

σ t trail = σ • t + G ( t -• t ) + 2G ν (1 -2ν) tr ( t -• t ) I (64)
The trail stress is compared with the measured stress to choose the second point. Figure 12 (right) presents a comparison between numerical (trial) and experimental data of P versus Q in which the second point is displayed by point 2.

From the two selected points, parameter b can be calculated. The objective function to calibrate parameters b and p c is defined as follows:

f M CCb = npts i=1 ∆.∆ (65) 
where

∆ =   P -p t + pc+pt 1+b b pc+pt 1+b   2 +   Q M pc+pt 1+b   2 -1 (66) 
The parameters p c and b of hardening function are computed using optimization methods in equations ( 2) and (3). The Hessian matrix [Hf M CCb ] -1 and the gradient of objective function ∇f M CCb are expressed as follows:

[Hf M CCb ] = J (∇f M CCb ) T (67) ∇f M CCb = ∂f M CCb ∂p c , ∂f M CCb ∂b (68)
The initial guess for p 0 c is a minimum quantity of experimental preconsolidation pressure p c min and for b is 1.0:

p 0 c , b 0 T = (p c min , 1.0) T (69)
The calibration of b is done using the two point data, namely (P, Q) 1 = (20.3046, 0.8875) and (P, Q) 2 = (18.3348, 10.5234). The quantity of parameter b is computed and given in Table 11.

Name

b Numeric value 0.87479 

A comparison of numerical and experimental for modified Cam-Clay

The stress-strain relationship of the reservoir rock sample is simulated by the home-made simulator with modified Cam-Clay, for which the elastoplastic material parameters are identified in Table 12 by using the iterative optimization methods. The validity of the proposed material identification is investigated by comparing the numerical results with experimental test data, as shown in Figure 15. The results from Figure 15 verify the effectiveness of the optimization procedure for physics-based identification of the modified Cam-Clay elastoplastic model. However, the differences between numerical and experimental are because the experimental data are real data subjected to noise and systematic influence, but modified Cam-Clay was developed based on simplifi-cations and assumptions that not entirely aligned with the real behavior of materials.

Comparison between elastoplastic models

In order to distinguish the most appropriate elastoplastic models for porous rock, the physics-based DiMaggio-Sandler elastoplastic that we have calibrated in (Sanei et al., 2020a) and emphasized the necessity to implement it, is represented. The original DiMaggio-Sandler plasticity model was presented by [START_REF] Dimaggio | Material model for granular soils[END_REF]. The yield function Φ of DiMaggio-Sandler is defined by a failure function F f , and a cap function F c , as follows:

Φ =        F f = J 2 -F s (I 1 ), F c = ( I 1 -L RF s (L) ) 2 + ( √ J 2 F s (L) ) 2 -1, I 1 > L L I 1 X (70) with, F s (ι) = A -C exp (B ι) X = L -RF s (L) (71) 
and

pv = W (exp[D (X -X • )] -1) (72) 
where A [MPa], B MPa -1 , C [MPa], D MPa -1 , and W are the material property constants. R is the ratio of principal ellipse radii of the cap surface, and X • is the initial cap position [MPa]. The material parameters of DiMaggio-Sandler plasticity model that we have proposed in (Sanei et al., 2020a), are given in Table 13.

Parameter Numeric value

A MPa 15.091 B MPa -1 0.0284035 C MPa 15.9158 D MPa -1 0.0010227 W 0.153118 R 2.65119 X • MPa -60.91374
Table 13: Material parameters calibrated for DiMaggio-Sandler (Sanei et al., 2020a).

In order to compare the results of Drucker-Prager DP, modified Cam-Clay MCC, and DiMaggio-Sandler DS, it is required to represent the Drucker-Prager and the modified Cam-Clay in (I 1 , J 2 ) space by applying P = -I 1 /3 and Q = 3 J 2 .

In this section, the results of all experimental tests are compared with the yield surface of Drucker-Prager, modified Cam-Clay, and DiMaggio-Sandler plasticity model by using the proposed plasticity material parameters, as illustrate in Figure 16. The experimental data are included the failure point of triaxial tests and the final point of both oedometer and hydrostatic test. 

Conclusions

This paper has presented the effectiveness of the iterative optimization method for calibration of physics-based elastoplastic constitutive models for porous rock. First, we have outlined the concepts optimization procedure and the iterative optimization method. Then, we have calibrated the physicsbased elastoplastic models that are Drucker-Prager and modified Cam-Clay model by using the iterative optimization methods from experimental database. Next, the home-made finite element simulator has been used to evaluate the robustness of the proposed material identification. The results have confirmed the accuracy of the proposed approaches to compute the physics-based elastoplastic models. Finally, the results of experimental data have been compared with the yield surface of Drucker-Prager, modified Cam-Clay and DiMaggio-Sandler plasticity model by using the proposed plasticity material parameters to indicate the necessity to implement the complex plasticity model.

The following remarks can be outcomed from this paper:

• The laboratory test data cannot appropriately describe by the elastoplastic constitutive models. To calibrate the physics-based elastoplastic models, certain sections of the laboratory experiment should be used. • The proper choice of data allows to establish a strategy for identifying the material parameters of elastoplastic models. The proposed strategy was finding an appropriate objective function to minimize the difference between measurement and numerical results in order to calibrate the model parameters accurately. • The gradient based optimization methods such as, Newton and Gradient descent method can only find a local minimum of the objective function if the algorithm starts with the appropriate initial data. 
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 2 Figure 2: Comparison of the numerical and triaxial test data provided by Zhang (2016).
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 3 Figure 3: Modified Cam-Clay model, yield surface (de Souza Neto et al., 2008).
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 4 Figure 4: Typical behavior of consolidation for modified Cam-Clay[START_REF] Callari | A finite-strain cam-clay model in the framework of multiplicative elasto-plasticity[END_REF].

Figure 5 :

 5 Figure 5: Comparison between the numerical results of modified Cam-Clay (MCC ) with the analytical solution provided by Perić (2006). (left) relation between axial strain and von Mises stress, and (right) relation between volumetric strain and effective mean stress.

Figure 6 :

 6 Figure 6: The calibration of Drucker-Prager material parameters.

Figure 7 :

 7 Figure 7: A comparison between numerical and experimental results. (left) volumetric strain vs. hydrostatic pressure, (right) and shear strain vs. J 2 .

Figure 8 :

 8 Figure 8: Plot of shear strain versus von Mises stress from: (left) triaxial, and (right) oedometer test data.
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 10 Figure 10: Calibration of the material parameters P • and p t .

  Figure 11. The result shows clearly the capability of the optimization procedure.

Figure 11 :

 11 Figure 11: Calibration of the material parameter C e from: (left) unloading part of hydrostatic test, (middle) reloading part of hydrostatic test, and (right) unloading part of oedometer test.

Figure 12 :

 12 Figure 12: (left) The oedometer test process to compute p • c , and (right) selection of two points (Point 1 and Point 2) for computing b from oedometer test data.

Figure 13 :

 13 Figure 13: Calibration of the material parameter C p from: (left) hydrostatic test, and (right) oedometer test.

Figure 14 :

 14 Figure 14: The Material parameter M . Calibration based on the failure points data: (top-left) two points, (top-right) three points, (bottom-left) four points, and (bottomright) proposed calibration with all triaxial test data.

Figure 15 :

 15 Figure 15: A comparison between numerical and experimental results: (left) axial strain versus von Mises stress, and (right) axial strain versus volumetric strain.

Figure 16 :

 16 Figure 16: A comparison between all experimental data and plastic surface of Drucker-Prager, modified Cam-Clay model, and DiMaggio-Sandler.

•

  The analytical equations developed in this study can provide a proper initial data for each parameter in order to calibrate correctly and fast the physics-based elastoplastic models. • The results have emphasized the necessity to implement DiMaggio-Sandler constitutive model which is included failure and cap function. The failure points of triaxial tests have been accurately modeled by DiMaggio-Sandler model comparing with Drucker-Prager. Moreover, the results indicated the necessity of modified Cam-Clay and DiMaggio-Sandler to present appropriately the compaction and collapse of porous rock.
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 12 Material parameters calibrated for modified Cam-Clay.
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Appendix

Development of the analytical equations for η and ξ c

The analytical equations are developed to compute the initial guess for parameters η and ξ c . The proposed equations are obtained using experimental data that are at least two points. The points can be the extreme points, namely pt 1 = P 1 , J 2 1 and pt 2 = P 2 , J 2 2 , where P 2 > P 1 (Figure 17 (left)). The analytical equations are derived, as:

Then, the parameter η is estimated by:

The parameter ξ c is computed by: 

Development of the analytical equations for P • , p t , and eC

The analytical equations are developed to compute the initial guess for parameters P • , p t , and eC. The proposed equations are obtained using hydrostatic test data that are at least three points. The points can be extremes and an intermediate point. The analytical equations are developed by considering p zt = P • + p t , and taking the derivative of P cc = P with respect to ev , as:

(76) The three selected points are called pt 1 = { ev 1 , P 1 }, pt 2 = { ev 2 , P 2 }, and pt 3 = { ev 3 , P 3 }, where ev 3 < ev 2 < ev 1 (Figure 17 (right)).

Estimation of eC:

By taking two points pt z and pt w , the derivative P for each point is obtained as:

The parameter eC is computed by dividing P z by P w :

where

where the numbers 1, 2, 3 are index of three hydrostatic points.

Estimation p zt

By taking two points pt z and pt w , the P for each point is obtained as:

The parameter p zt is gotten by subtracting P w from P z , as:

)

By selecting any pairs of three points pt 1 , pt 2 , and pt 3 , the parameter p zt can be computed using equation ( 82). Here, the parameter p zt is obtained from two extreme points, as: