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Optimization is a branch of applied mathematics which is used extensively in almost all areas of decision-making, such as engineering, mathematics, and computer science. In particular, iterative methods as a one kind of the optimization methods can be applied to nonlinear problems like reservoir geomechanics. The main propose of this study is two folds. First, the physic-based (material parameter) elastoplastic models are calibrated via the iterative optimization procedures with experimental database. Then, a home-made finite element simulator is used to evaluate the robustness of the proposed material identification framework. The results of three sort of loading drained tests, triaxial, oedometric, and hydrostatic are compared between our numerical approach and the experimental data. It shows the capability of the proposed physic-based optimisation framework to determine the model parameters properly.

Introduction

The prediction of geomechanical properties has always played a very important role during the exploitation of fossil resources. Decision making based on model predictions is a responsibility of geomechanical engineers in order to maximize economy and safety. Geomechanical properties are normally calculated based on laboratory tests on cores. Mechanical properties of reservoir rock may behave quite differently under loading and unloading conditions. To describe the behavior of rock, the elastoplastic constitutive models are used. Such constitutive models may tend to become extremely complicated, comprising a considerable number of parameters [START_REF] Cekerevac | Calibration of an elasto-plastic constitutive model by a constrained optimisation procedure[END_REF]. In practice, obtaining accurate parameters for constitutive models is a difficult task because of the many sources of uncertainty in geomechanical analyses and quite often depends on the engineering's experience [START_REF] Cekerevac | Calibration of an elasto-plastic constitutive model by a constrained optimisation procedure[END_REF][START_REF] Graham | The 2003 r.m. hardy lecture: Soil parameters for numerical analysis in clay[END_REF].

The evolution of the computer provides the opportunity to analyze the complex problems using numerical simulations. Despite the many improvements, discrepancies between observed data and predictions from numerical modeling exist [START_REF] Brand | Comparison of the predicted and observed performance of the muar test embankment[END_REF]. In addition, porous rock displays a very complex behavior, consequently, high-quality solutions of numerical modeling require the realistic parameters for the constitutive models [START_REF] Fossum | Experimental determination of probability distributions for parameters of a salem limestone cap plasticity model[END_REF].

Generally, to overcome the uncertainties while calibrating the model parameters, mathematical optimization can be used. The optimization method consists of two parts, the formulation of an objective function and the selection of an optimization strategy [START_REF] Hans Mattsson | Optimization routine for identification of model parameters in soil plasticity[END_REF]. The optimization procedures that have been applied to many geotechnical and geomechanical problems are:

• Iterative optimization method: It requires the search for the minimum value of an objective function (cost function) over the search domain according to whether it evaluates Hessians, gradient, or only function values. There are several types of research regarding iterative optimization for computing the model parameters in soil plasticity [START_REF] Hans Mattsson | Optimization routine for identification of model parameters in soil plasticity[END_REF][START_REF] Cekerevac | Calibration of an elasto-plastic constitutive model by a constrained optimisation procedure[END_REF][START_REF] Navarro | Optimisation procedure for choosing cam clay parameters[END_REF][START_REF] Doherty | Evaluating modified cam clay parameters from undrained triaxial compression data using targeted optimization[END_REF];

• Inverse analysis: the models are calibrated iteratively by changing the input values until the simulated output values match with the observed data [START_REF] Calvello | Selecting parameters to optimize in model calibration by inverse analysis[END_REF]. It has been used in geotechnical practice, e.g., tunnel excavations in rock [START_REF] Karakus | Back analysis tunnelling induced ground movements and stress redistribution[END_REF], groundwater modeling [START_REF] Poeter | Inverse models: A necessary next step in ground-water modeling[END_REF], determination of soil parameter for numerical analysis of deep excavation [START_REF] Ou | Soil parameter determination for deep excavation analysis by optimization[END_REF], excavations with support systems [START_REF] Finno | Supported excavations: Observational method and inverse modeling[END_REF][START_REF] Rechea | Inverse analysis techniques for parameter identification in simulation of excavation support systems[END_REF], and parameter identification for Cam-Clay model [START_REF] Shuku | Parameter identification for cam-clay model in partial loading model tests using the particle filter[END_REF];

• Genetic algorithm: It is a probabilistic approach to find the optimum value of fitness function based on inheritance mechanisms. Genetic algorithm has been applied in geotechnics, such as, evaluation of liquefaction [START_REF] Akbar | Evaluation of liquefaction induced lateral displacements using genetic programming[END_REF], calibration of soil models [START_REF] Emir | Selection and calibration of soil constitutive model paramaters using genetic algorithms[END_REF] and calibration of modified Cam-Clay model parameters [START_REF] Kowalska | Calibration of modified cam clay model with use of loading path method and genetic algorithms[END_REF];

• Artificial neural network: It is a series of algorithms that inspired by the human brain and it is particularly well-suited to modeling, control, and analysis of nonlinear problems. Artificial neural network has been widely used by researchers for modeling of material behavior [START_REF] Ghaboussi | Knowledge-based modeling of material behavior with neural networks[END_REF], drained and undrained behavior of sands [START_REF] Ghaboussi | New nested adaptive neural networks (NANN) for constitutive modeling[END_REF], extracting the material constitutive behavior from non-uniform tests [START_REF] Sidarta | Constitutive modeling of geomaterials from non-uniform material tests[END_REF], and calibration of constitutive models [START_REF] Obrzud | Optimization framework for calibration of constitutive models enhanced by neural networks[END_REF].

Previous studies expose the capability of the iterative optimization in the calibration of model parameters [START_REF] Hans Mattsson | Optimization routine for identification of model parameters in soil plasticity[END_REF][START_REF] Cekerevac | Calibration of an elasto-plastic constitutive model by a constrained optimisation procedure[END_REF][START_REF] Doherty | Evaluating modified cam clay parameters from undrained triaxial compression data using targeted optimization[END_REF]. They employed iterative optimization methods to calibrate soil elastoplastic constitutive models for geotechnical problems. However, its performance is highly problem dependent. There is a lack of research in physics-based calibration. In particular in the direction of elastoplastic constitutive models. In this paper, firstly, the mathematical aspects of iterative optimization methods are presented. The iterative optimization method is applied to calibrate elastoplastic material parameters. The models involved in the optimization method are linear elasticity, Mohr-Coulomb, and DiMaggio-Sandler plasticity. The laboratory database is provided from three types of loading drained tests triaxial, oedometric, and hydrostatic. The calibration of the plasticity model is also performed by the optimization methods available in the NLopt library. Finally, after the calibration of the physic-based elastoplastic models, the home-made finite element simulator is used to evaluate the approximation quality while considering the adjusted material parameters. The stress-strain relationships of the porous rock sample are simulated by means of continuous finite elements with Mohr-Coulomb, and DiMaggio-Sandler plasticity models. The implementation of the present study is incorporated in the NeoPZ library, which is an objectoriented scientific environment, that allows the development of finite element schemes [START_REF] Remy | PZ: An object oriented environment for scientific programming[END_REF][START_REF] Devloo | Object oriented tools for scientific computing[END_REF].

Optimization procedure

Mathematical optimization is a principle that is applied for any problem consisting of decision making, whether in engineering, mathematics, computer science, among others. The purpose of decision-making is to select the "best" set of data among available alternatives. The quality of the adjustment is measured quantitatively with an objective function F : R n → R. In the scope of this research, it is a real-valued function [START_REF] Hans Mattsson | Optimization routine for identification of model parameters in soil plasticity[END_REF][START_REF] Edwin | An Introduction to Optimization[END_REF]. The iterative methods can solve nonlinear problems. Generally, there are two types of iterative optimization algorithms for solving the problems, such as:

• Derivative-free optimization: It finds solutions with a series of objective function evaluations and it does not require the construction of a derivative (Rios and Sahinidis, 2012).

• Gradient-based optimization:. It finds solutions by using the objective function and the construction of a derivative [START_REF] Chen | Gradient based optimization methods for metamaterial design[END_REF].

Objective function

The objective function for a given set of parameters provides a measurement of the discrepancy between the model prediction and the experimental data. Following the ideas in [START_REF] Cekerevac | Calibration of an elasto-plastic constitutive model by a constrained optimisation procedure[END_REF], for a given set of parameters the objective function is:

F (x) = 1 t -t • Y n -Y m dt (1)
where (t -t • ) is the duration of observation, Y n -Y m is the norm of the difference between measurement data Y m , and Y n the numerical approximation. The objective function must be positive definite and it should be constructed on the basis of independent state variables such as: principal stresses σ i (i = 1, 2, 3), principal strains i (i = 1, 2, 3) and others [START_REF] Cekerevac | Calibration of an elasto-plastic constitutive model by a constrained optimisation procedure[END_REF]. The equation ( 1) can be defined in several manners, for instance by a combination of individual norms associated to each state variable at some specific point. For the case of an experimental test based on the principal stresses, the objective function f t (x) could be defined as:

f t (x) = 1 n i=1 3 j=1 w ji n i=1 1 σ 2 • (σ n i -σ m i ) 2 (2)
where σ m i and σ n i are the measured and numerical stress, respectively. the number of measurement points is n, the weighting matrix is w j , the scaling factor is σ

• subject to σ • = max {σ m i } , i = 1, n.
Tee last one is required to transform the measurement variable into a dimensionless quantity.

When more than one experimental test is considered. The number of total experiments is defined as n t . Next, a global objective function is defined as a composition of single experiment objective functions, as follows:

F (x) = 1 nt t=1 w t nt t=1 f t (x) (3) 
where w t is the weighting factor.

From the mathematical point of view, our optimization problem reads as a minimization of the global objective function, as F (x) → min [START_REF] Hans Mattsson | Optimization routine for identification of model parameters in soil plasticity[END_REF].

Gradient-based optimization methods

In this study, the gradient based optimization methods such as, Newton and Gradient descent method are used and implemented in NeoPZ to calibrate the elastoplastic physics-based models.

• Newton method: Newton's method is a root-finding algorithm which uses first and second derivatives and produces a better approximation if the initial point is close to the minimizer [START_REF] Edwin | An Introduction to Optimization[END_REF]. The Newton method is defined using the gradient ∇F (x), and the inverse of the Hessian matrix, HF (x), as:

x n+1 = x n -[HF (x n )] -1 ∇F (x n ) , n ≥ 0 (4)
• Gradient descent method. Gradient descent is a first-order iterative optimization algorithm for finding the minimum of the objective function F (x). It seeks to minimize the function in the gradient direction.

The method is [START_REF] Bazaraa | Nonlinear Programming: Theory and Algorithms[END_REF]:

x n+1 = x n -γ n ∇F (x n ) , n ≥ 0 (5)
where x n is the solution at n step and γ n ∇F (x n ) is the search direction.

Generally, Newton's method is preferable to calibrate the model parameters because of its higher order of convergence. However, Newton method requires inversion of Hessian matrix which may contain negative eigenvalues or be even singular. In these circumstances, the gradient descent method is used.

Remark 1: To produce accurate estimates by using gradient based optimization, we propose an analytical equation associated to each model parameter. Such expressions are based on the test results to compute a good initial guess x 0 . From an implementation point of view, this initial guess is immediately determined once measurement data are filtered.

Methodology to calibrate model parameters

The calibration of model parameters is carried out considering the following steps:

• Gather all a minimum number of test data for the selected of a constitutive model;

• Filtering test data using engineering experience in order to choose the most relevant datum;

• Establish the logic sequence to calibrate the parameters. For instance, the elastic parameters are normally the first being adjusted;

• For a set parameters, the construction of an objective function is preformed;

• For each parameter, the construction of a physic-based equation to evaluate the initial guess is performed;

• Solve the minimization problem. Relevant quantities during this step are the tolerance values x n+1x n ≤ ε t , the number of iterations n it , and a validity of solution x n+1 ;

• Quality evaluation for the calibration by a comparing the numerical and experimental datum.

The optimization procedure is summarized in the algorithm 1. In this paper, the calibration of plasticity models are done by the optimization methods provided in NLopt library. In the following, the calibration is compared with experimental data, in order to evaluate the capability of the proposed framework.

NLopt optimization algorithms

NLopt is a free/open-source library for nonlinear optimization. It provides a collection of different optimization algorithms [START_REF] Steven | The nlopt nonlinear-optimization package[END_REF]. The NLopt iterative optimization algorithms are applied in this study to calibrate plasticity models. Such algorithms are listed in Table 1.

Num.

NLopt optimization algorithms Code

Derivative-free based 

Elastoplastic constitutive model

In short, a nonlinear deformation is described by the theory of elastoplasticity, when a material undergoes an irreversible deformations after some specific loading conditions. The total strain tensor can be decomposed into two components as follows [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF]:

= e + p ( 6 
)
where e is the elastic component and p is the plastic component.

Linear elastic law

The linear elastic is described by a linear stress-strain relationship as follows [START_REF] Rudnicki | Fluid mass sources and point forces in linear elastic diffusive solids[END_REF]:

σ = 2µ e + λtr ( e ) I (7) 
where the parameters µ and λ are the Lamé constants [MPa] and σ [MPa] is the effective stress. In this study, in the absence of pore pressure p [MPa] the effective stresses equal the total stresses σ t [MPa], where σ t = σ -α p I.

Mohr-Coulomb plasticity model

The Mohr-Coulomb plasticity model is presented as a pressure-sensitive model in [START_REF] Coulomb | Essai sur une application des régles de Maximis et Minimis á quelques problémes de statique relatifs á lárchitecture[END_REF][START_REF] Mohr | Welche Umst a nde bedingen die Elastizitaatsgrenze und den Bruch eines Materials[END_REF]. This model is appropriate for materials such as soils, rock, and concrete, which behavior is generally dependent on the hydrostatic pressure. The plastic yield of Mohr-Coulomb begins when the shear strength τ m [MPa] and the normal stress σ n [MPa], reach a critical combination, as [START_REF] Coulomb | Essai sur une application des régles de Maximis et Minimis á quelques problémes de statique relatifs á lárchitecture[END_REF]: The Mohr-Coulomb plasticity model has been implemented using the plastic return-mapping scheme provided in the book [START_REF] De Souza Neto | Computational Methods for Plasticity[END_REF] and it is presented in Figure 1 (right). The Mohr-Coulomb implementation is verified by comparing with Abaqus (Systémes, 2012). The material parameters are presented in 

τ m = c -σ n tan(f r ) (8)

DiMaggio-Sandler cap plasticity model

The original DiMaggio-Sandler plasticity model is presented in (DiMaggio and [START_REF] Dimaggio | Material model for granular soils[END_REF]. It was initially applied for granular soils, and currently is used in the oil industry to present the behavior of rocks at depth. The yield function Φ of DiMaggio-Sandler model is defined by a failure function F f (I 1 , J 2 ), and a cap function F c (I 1 , J 2 , L), as follows:

Φ =    F f (I 1 , J 2 ), F c (I 1 , J 2 , L), I 1 > L L I 1 X (9)
where L is the cap position parameter [MPa], X is the current cap surface position [MPa], I 1 is the first invariant of the stress tensor [MPa], and J 2 is the second deviatoric stress tensor MPa 2 . A typical 2D profile of DiMaggio-Sandler yield surface is plotted in Figure 3 (left).

F f (I 1 , J 2 ) = J 2 -F s (I 1 ) (10) F c (I 1 , J 2 , L) = ( I 1 -L RF s (L) ) 2 + ( √ J 2 F s (L) ) 2 -1 (11) with, F s (ι) = A -C exp (B ι) (12) X = L -RF s (L) ( 13 
)
where

A [MPa], B MPa -1 , C [MPa]
are material property constants and R is the ratio of principal ellipse radii of the cap surface. The hardening of DiMaggio-Sandler cap model is defined through a function X and volumetric plastic strain pv , [START_REF] Fossum | Experimental determination of probability distributions for parameters of a salem limestone cap plasticity model[END_REF] as:

pv = W (exp[D (X -X • )] -1) (14)
where X • is the initial cap position [MPa], D MPa -1 and W are the material properties constants which obtained from laboratory tests. A typical 3D profile of the DiMaggio-Sandler model is shown in Figure 3 (right).

The implementation of DiMaggio-Sandler elastoplasticity model has been done using the plastic return-mapping in the rotated principal stresses and it is presented in Figure 3 (right). The numerical integration scheme for DiMaggio-Sandler is verified by comparing the numerical results with two different experimental test data. The experimental data are included a uniaxial compressive loading on the McCormic sand sample provided by [START_REF] Sandler | An algorithm and a modular subroutine for the CAP model[END_REF] and a triaxial loading on a salem limestone sample provided by [START_REF] Fossum | Experimental determination of probability distributions for parameters of a salem limestone cap plasticity model[END_REF]. The material parameters of these two tests are presented in Table 3. 

Test data E ν A B C D W X•

MPa MPa

-1

MPa

Table 3: Parameters employed for verification of DiMaggio-Sandler plasticity model [START_REF] Sandler | An algorithm and a modular subroutine for the CAP model[END_REF][START_REF] Fossum | Experimental determination of probability distributions for parameters of a salem limestone cap plasticity model[END_REF].

Figure 4 presents a comparison between the DiMaggio-Sandler implementation and the experimental results from articles [START_REF] Sandler | An algorithm and a modular subroutine for the CAP model[END_REF] and [START_REF] Fossum | Experimental determination of probability distributions for parameters of a salem limestone cap plasticity model[END_REF] displaying the verification of the implementation. [START_REF] Sandler | An algorithm and a modular subroutine for the CAP model[END_REF]; the arrow with a blue color in the Figure 3(right) shows the evolution of elastoplastic model which is represented here by a point with a red color, and (right) a comparison between numerical model of DiMaggio-Sandler with the experimental data provided by [START_REF] Fossum | Experimental determination of probability distributions for parameters of a salem limestone cap plasticity model[END_REF] for the specimen SL1255.

Laboratory tests

The laboratory tests are conducted on a collection of samples of carbonate reservoir rocks. The database was obtained using three types of loading conditions, e.g., triaxial, oedometer, and hydrostatic, as summarized in Table 4. The data obtained are used as input for calibration of physics-based elastoplastic models.

Name

Control • Triaxial compression loading: It is performed using a standard machine where a fixed confining pressure is maintained while the differential stress is axially applied.

• Oedometer consolidation loading: It is performed using a standard machine where prevents lateral displacement of a sample, but allows the sample to compress axially in response to the changes of applied load.

• Hydrostatic compression loading: It is performed using a standard machine where the confining pressure is applied equally in all directions.

Calibration of physics-based linear elasticity

The constitutive law of a material in linear elastic regime in the equation ( 7) is rewritten as:

σ t -σ • t = 2µ ( e -• e ) + λtr ( e -• e ) I ( 15 
)
where σ • t [MPa] is the initial total stress tensor and • e is the initial elastic strain tensor. The material parameters of linear elasticity (µ , λ) are computed using both the unloading and reloading parts of laboratory test results. The calibration of linear elasticity is carried out separately for each loading condition e.g., triaxial, oedometer, and hydrostatic.

Calibration of linear elasticity using triaxial test

The objective function to calibrate the linear elasticity parameters from triaxial test data is defined as follows:

f tri = npts i=1 ∆ : ∆ ( 16 
)
where npts is the number of experimental data and ∆ is:

∆ = σ t -σ • t - E (1 + ν) ( e -• e ) - Eν (1 + ν) (1 -2ν) tr ( e -• e ) I ( 17 
)
where E [MPa] is the Young's modulus and ν is the Poisson's ratio. The initial stress tensor is defined as follows:

σ • t =    σ • a 0 0 0 σ • c 0 0 0 σ • c    (18)
The initial elastic strain tensor • e can adopt with the first point of data, i.e., • e = i e ; i = 1. It is also possible to define • e , as the same as σ • t . However, the purpose is to compute accurately the parameters E, ν, and σ • t with optimization method. The Hessian matrix [Hf tri ] -1 and the gradient of objective function ∇f tri are defined as follows:

[Hf tri ] = J (∇f tri ) T (19) ∇f tri = ∂f tri ∂E , ∂f tri ∂ν , ∂f tri ∂σ • a , ∂f tri ∂σ • c ( 20 
)
where J is the Jacobian matrix. In order to apply optimization methods in the equations ( 4) and ( 5), the initial guess is considered as:

E 0 , ν 0 , σ 0 a , σ 0 c T = (0, 0, 0, 0) T (21)

Calibration of E and ν using triaxial test

The calibration of E and ν are accomplished by using triaxial test data and the results are given in Table 5. In addition, a comparison between experimental and numerical results ( a versus σ a ) is shown graphically in Figure 5. 

Calibration of linear elasticity using oedometer test

The calibration of linear elasticity using oedometer test results is completed similar to the triaxial test. The objective function is written as follows:

f oed = npts i=1 ∆ : ∆ (22) 
where

∆ = σ t -σ • t - M (1 -2ν) (1 -ν) ( e -• e ) - M ν (1 -ν) tr ( e -• e ) I ( 23 
)
where M is the elastic uniaxial strain modulus (or oedometric moduli) [MPa].

In order to calculate the parameters M , ν, and σ • t using optimization methods in the equations ( 4) and ( 5), the Hessian matrix [Hf oed ] -1 and the gradient of objective function ∇f oed are expressed as follows:

[Hf oed ] = J (∇f oed ) T (24) ∇f oed = ∂f oed ∂M , ∂f oed ∂ν , ∂f oed ∂σ • a , ∂f oed ∂σ • c (25)
The initial guess is given as:

M 0 , ν 0 , σ 0 a , σ 0 c T = (0, 0, 0, 0) T (26)

Calibration of M and ν using oedometer test

The calibration of M and ν are done using oedometer test data and the results are reported in Table 6. In addition, a comparison between experimental and numerical results ( a versus σ a ) is displayed graphically in Figure 6.

Parameter

Numeric value Oedometric moduli, M [MPa] 6225.68 Poisson's ratio, ν 0.235807

Table 6: Calibration of M and ν by using oedometer test data.

Figure 6: Plot of axial strain vs. axial stress from oedometer test.

Calibration of linear elasticity using hydrostatic test

To calibrate the linear elasticity using hydrostatic test data, the constitutive law in equation ( 15) is modified by applying the trace formula, as:

tr (σ t ) -tr (σ • t ) = 2µ tr ( e -• e ) + 3λtr ( e -• e ) (27) 
by considering tr

(σ t ) = σ v , tr (σ • t ) = σ • v , tr ( • e ) = • v , tr ( e ) = v
, and Bulk modulus is K = λ + 2 3 µ, the objective function is represented as:

f hyd = npts i=1 ∆.∆ (28) 
where

∆ = 1 3 (σ v -σ • v ) -K ( v -• v ) (29)
where the initial volumetric stress is σ

• v = 3σ • c .
In order to estimate, the parameters K and σ • c using optimization methods in equations ( 4) and ( 5), the Hessian matrix [Hf hyd ] -1 and the gradient of objective function ∇f hyd are written as follows:

[Hf hyd ] = J (∇f hyd ) T (30) ∇f hyd = ∂f hyd ∂K , ∂f hyd ∂σ • c (31)
The initial guess is:

K 0 , σ 0 c T = (0, 0) T (32)

Calibration of K using hydrostatic tests

The calibration of K is performed using hydrostatic test data and the results are given in Table 7. In addition, a comparison between experimental and numerical results ( v vs σ c ) is illustrated graphically in Figure 7. 

Parameter

Calibration of physics-based Mohr-Coulomb model

The objective function to calibrate the physics-based Mohr-Coulomb plasticity from failure points of triaxial test data is defined as follows:

f M C = npts i=1 ∆.∆ (33) 
where

∆ = τ m -σ n tan (f r ) -c (34) τ m = σ a -σ r 2 and σ n = σ a + σ r 2 (35)
where τ m and σ n are the shear strength and the normal stress at failure points, respectively. The Mohr-Coulomb material parameters, including c [MPa] is the cohesion and f r [°] is the friction angle. The both material parameters are computed using optimization methods in equations ( 4) and (5). The Hessian matrix [Hf M C ] -1 and the gradient of objective function ∇f M C are presented as follows:

[Hf M C ] = J (∇f M C ) T (36) ∇f M C = ∂f M C ∂f r , ∂f M C ∂c (37)

Estimation of initial guess for c and f r

The initial guess for parameters c and f r are determined by analytical equations. The proposed equations are developed using experimental data that are at least two points. The points can be the extreme points, namely pt 1 and pt 2 . The procedure to develop analytical equations is described in Appendix 9. The analytical equations are:

f rest = arctan τ m 2 -τ m 1 σ n 2 -σ n 1 (38) c est = 2 z=1 (τ mz -σ nz tan (f r )) (39) 
where the numbers 1, 2 are index of two failure points.

The initial guesses for c and f r are considered as:

f 0 r , c 0 T = (f rest , c est ) T (40)

Calibration of c and f r by using the failure points

The Mohr-Coulomb material parameters are calibrated using the failure points of four triaxial tests. The parameters c and f r are computed and presented in Table 8 

A comparison of numerical and experimental for Mohr-Coulomb

The stress-strain relationship of the porous rock sample is simulated by a home-made simulator with Mohr-Coulomb, for which the elastoplastic material parameters are identified in Table 8 by using the iterative optimization methods. The validity of the proposed material identification is investigated by comparing the numerical results with experimental test data, as illustrated in Figure 9. The results form Figure 9 almost verify the effectiveness of the optimization procedure for physics-based identification of the Mohr-Coulomb elastoplastic model. However, the differences between numerical and experimental are principally because the experimental data are real data subjected to noise, systematic and spurious influences, but Mohr-Coulomb was developed based on simplifications and assumptions that not entirely aligned with the real behavior of materials.

Calibration of physics-based DiMaggio-Sandler model

The calibration of physics-based DiMaggio-Sandler elastoplastic model is carried out separately for failure and cap functions using the laboratory test data.

Laboratory test data to calibrate DiMaggio-Sandler

The DiMaggio-Sandler material parameters are calculated using three types of loading conditions as presented in Table 9. 

Parameter Triaxial Oedometer Hydrostatic

A MPa B MPa -1 C MPa D MPa -1 W R X • MPa

Calibration of failure function parameters

The objective function to calibrate the physics-based of failure function of DiMaggio-Sandler model from failure points of triaxial test is expressed as follows:

f F DS = npts i=1 ∆.∆ ( 41 
)
where

∆ = J 2 -A + C exp (B I 1 ) (42)
The material parameters of failure function are A, B, and C, which are computed using optimization methods in equations ( 4) and ( 5). The Hessian matrix [Hf F DS ] -1 and the gradient of objective function ∇f F DS are defined as follows:

[Hf F DS ] = J (∇f F DS ) T (43) ∇f F DS = ∂f F DS ∂A , ∂f F DS ∂B , ∂f F DS ∂C (44)

Estimation of initial guess for A, B, and C

The initial guess for parameters A, B, and C are estimated by analytical equations. The proposed equations are developed using triaxial test data that are at least three points. The points can be extremes and an intermediate point. The procedure to develop analytical equations is described in Appendix 9. The analytical equations are developed by considering ζ = J 2 and I = I 1 , as:

B est = ln ζ z /ζ w I z -I w ( 45 
)
where

                         ζ z ∼ = ζ 1 -ζ 2 I 1 -I 2 I z = I 1 + I 2 2 ζ w ∼ = ζ 3 -ζ 2 I 3 -I 2 I w = I 3 + I 2 2 (46)
where the numbers 1, 2, 3 are index of three failure points.

C est = - ζ 1 -ζ 3 exp (B I 1 ) -exp (B I 3 ) ( 47 
)
A est = 3 z=1 (ζ z + C exp (B I z )) (48) 
The initial guess for A, B, and C is:

B 0 , C 0 , A 0 T = (B est , C est , A est ) T (49)

Calibration of A, B, and C using the failure points

The material parameters of failure function are calibrated using the failure points of four triaxial tests. The parameters A, B, and C are computed using the optimization methods in equations ( 4), ( 5) and given in Table 10. In addition, a comparison between experimental and numerical results (I 1 versus J 2 ) is presented graphically in Figure 10. The results show clearly the capability of the optimization procedure. 

Calibration of cap function parameters

The cap function of DiMaggio-Sandler model F c (I 1 , J 2 , L) in equation ( 11) is rewritten as:

F c I 1 , J 2 , L = I 1 -L R (A -C exp (B L)) 2 + √ J 2 A -C exp (B L) 2 -1 (50)
The parameters A [MPa], B MPa -1 , and C [MPa] are already computed when the calibration of failure function was done (as given in Table 10).

The transition from elastic to elastoplastic behavior in unconsolidated porous rock is smooth and possibly not easily pick-able. Therefore, it is treated in the relative terms, comparing one state to another. We propose the relation between X and pv in equation ( 14), is defined as:

pv -pv• = W (exp [D (X)] -1) -W (exp [D (X • )] -1) (51) 
or

pv = W (exp [DX] -exp [DX • ]) + pv• (52)
where X • and pv• are the first point of the selected data. In this study, the calibration of material properties of cap function is carried out separately for D and W using hydrostatic test data and for R and X • using oedometer test data.

Calibration of D and W of DiMaggio-Sandler cap function

To calibrate the hardening parameters D and W of DiMaggio-Sandler cap function, the hydrostatic test data are used because the first invariant I 1 and the current cap position parameter X are the same. Moreover, the hydrostatic test is a cyclic test where the specimen is subjected to loading and unloading cycles. Then, after each loading and unloading cycle, the plastic volumetric strain increment ( pvpv• ) can be easily determined.

The plastic volumetric strain pv is obtained by subtracting the quantity of elastic volumetric strain ev from total volumetric strain tv (experimental strain). Whereas, the elastic volumetric strain is computed easily from hydrostatic test because it is only dependent on the Bulk modulus parameter K, as:

ev = σ c K ( 53 
)
where σ c [MPa] is the confining stress. Hence, the objective function to calibrate the parameters D and W is defined as follows:

f CDS = npts i=1 ∆.∆ (54) 
where

∆ = ln p v -w c -D I 1 (55)        p v ∼ = ( pv ) i -( pv ) i+1 (I 1 ) i -(I 1 ) i+1 i = 1, ...(npts -1) w c = ln (W D) (56) 
The material parameters D and W of cap function are computed using optimization methods in equations ( 4) and ( 5). The Hessian matrix [Hf CDS ] -1 and the gradient of objective function ∇f CDS are expressed as follows:

[Hf CDS ] = J (∇f CDS ) T (57) ∇f CDS = ∂f CDS ∂D , ∂f CDS ∂w c (58)

Estimation of initial guess for D and W

The initial guess for parameters D and W are estimated by analytical equations. The proposed equations are developed using hydrostatic test data that are at least three points. The points can be extremes and an intermediate point. The procedure to develop analytical equations is described in Appendix 9. The analytical equations are described by considering I = I 1 , as:

D est = ln p vz p vw (I z -I w ) (59) 
where

                       p vz ∼ = pv 1 -pv 2 I 1 -I 2 I z = I 1 + I 2 2 p vw ∼ = pv 3 -pv 2 I 3 -I 2 I w = I 3 + I 2 2 (60)
where the numbers 1, 2, 3 are index of three experimental points.

W est = 3 z=1 p vz D exp [D I z ] (61) 
The initial guess for D and W is:

D 0 , W 0 T = (D est , W est ) T (62)

Calibration of D, W using hydrostatic test data

The material parameters D and W are calibrated using the data of hydrostatic test CP12 at the end of the cyclic loading. The Bulk modulus of CP12 test is K = 3191.68 [MPa]. The parameters D and W are computed using the optimization methods in equations ( 4), ( 5) and given in Table 11. Furthermore, a comparison between experimental and numerical results (I 1 versus pv ) is displayed graphically in Figure 11. The results illustrate clearly the capability of the optimization procedure. 

Calibration of parameters R and X • of DiMaggio-Sandler cap function

To calibrate the material parameter R, the oedometer test is used. This test includes three types of loading conditions, e.g., hydrostatic, triaxial, and oedometer. The parameter R can be obtained by choosing at least two stress points where they touch the cap surface. In this test, the hydrostatic and the oedometer loading parts are touched the cap.

In the oedometer test process, as shown in Figure 12(left), a specimen is firstly loaded under hydrostatic condition from point 1 to point 2. At point 2, it is hypothesized that the specimen touch the cap. Second, the specimen is unloaded under hydrostatic condition from point 2 to point 3. Third, the specimen undergoes a triaxial loading from point 3 to point 4. Then, the specimen is loaded under oedometer loading to reach the point 5.

The definition of the first point is obvious because it is the last point of hydrostatic loading (point 2). The choice of the second point which should touch the cap, allows to determine the ellipse. The second point belongs to the part of oedometer loading, namely, from point 3 to point 4, where it touches the cap. In this part, finding the first point of touching the cap, is difficult and requires an engineering point of view.

In this study, it assumes that the initial current cap position X • is equal to the quantity of the first invariant stress I 1 of the point 2, as displayed in Figure 12(left), namely X • = -60.91374. Moreover, we propose a methodology to calibrate the R parameter, as follows: 7.3.4.1 Calibration of R using trial stress In order to find the second point, the trial stress is computed using the elasticity parameters (M, ν) T = (2664.77, 0.25141) T and the measured strain tensor t , as follows:

σ t trail = σ • t + M (1 -2ν) (1 -ν) ( t -• t ) + M ν (1 -ν) tr ( t -• t ) I (63)
Then, the trail stress is compared with the measured stress to choose the second point. Figure 12(right) shows a comparison between numerical (trial) and experimental data of I 1 versus J 2 in which the second point is indicated by point 2. From the two selected points, parameter R can be computed. The objective function to calibrate parameters L and R is defined as follows:

f RLDS = npts i=1 ∆.∆ (64) 
where

∆ = I 1 -L R (A -C exp (B L)) 2 + √ J 2 A -C exp (B L) 2 -1 (65) 
The parameters L and R of cap function are computed using optimization methods in equations ( 4) and ( 5). The Hessian matrix [Hf RLDS ] -1 and the gradient of objective function ∇f RLDS are expressed as follows:

[Hf RLDS ] = J (∇f RLDS ) T (66) ∇f RLDS = ∂f RLDS ∂L , ∂f RLDS ∂R ( 67 
)
The initial guess for L 0 is a minimum quantity of experimental first invariant stress I 1 min and for R is 1.0:

L 0 , R 0 T = (I 1 min , 1.0) T (68) 29 
The calibration of R and X • are done using these two point data, namely 

I 1 , J 2 1 = (-

A comparison of numerical and experimental for DiMaggio-Sandler

The stress-strain relationship of the porous rock sample is simulated by a home-made simulator with DiMaggio-Sandler, for which the elastoplastic material parameters are identified in Table 13 by using the iterative optimization methods. The validity of the proposed material identification is investigated by comparing the numerical results with experimental test data, as illustrated in Figure 13. The results form Figure 13 verify the effectiveness of the optimization procedure for physics-based identification of the DiMaggio-Sandler elastoplastic model. However, the differences between numerical and experimental are principally because the experimental data are real data subjected to noise and systematic influence, but DiMaggio-Sandler was developed based on simplifications and assumptions that not entirely aligned with the real behavior of materials.

Parameter

Comparison between Mohr-Coulomb and DiMaggio-Sandler

In order to compare the results of Mohr-Coulomb and DiMaggio-Sandler, it is required to represent the Mohr-Coulomb in I 1 , J 2 space. It is expressed by [START_REF] Owen | Finite Elements in Plasticity[END_REF]; [START_REF] Crisfield | Non-Linear Finite Element Analysis of Solids and Structures[END_REF] as:

Φ = cos (β) - 1 √ 3 sin (β) sin (f r ) J 2 + P sin (f r ) -c cos (f r ) ( 69 
)
where P is the hydrostatic pressure [MPa], where P = -I 1 /3. Here, the Lode's angle β is equal to 0. In this section, the results of all experimental tests are compared with the yield surface of Mohr-Coulomb and DiMaggio-Sandler plasticity model by using the proposed plasticity material parameters, as illustrate in Figure 14. The experimental data are included the failure point of triaxial tests and the final point of both oedometer and hydrostatic test. 

Conclusions

This study has indicated the effectiveness of the iterative optimization method for calibration of physics-based elastoplastic constitutive models for porous rock. First, we have outlined the concepts and methods of optimization procedure, and the iterative optimization method which has the greatest potential for reservoirs geomechanics problems. Then, we have calibrated the physics-based elastoplastic models that are linear elasticity, Mohr-Coulomb, and DiMaggio-Sandler model by using the iterative optimization methods from experimental database. Finally, the home-made finite element simulator has been used to evaluate the robustness of the proposed material identi- where

                         ζ z ∼ = ζ 1 -ζ 2 I 1 -I 2 I z = I 1 + I 2 2 ζ w ∼ = ζ 3 -ζ 2 I 3 -I 2 I w = I 3 + I 2 2 (76)
where the numbers 1, 2, 3 are index of three failure points. By selecting any pairs of three points pt 1 , pt 2 , and pt 3 , the parameter C can be computed using equation ( 78). Here, the parameter C is obtained from two extreme points, as: The analytical equations for D and W are derived using three selected points which are called pt 1 = I 1 , p v 1 , pt 2 = I 2 , p v 2 , and pt 3 = I 3 , p v 3 , where I 3 < I 2 < I 1 (Figure 15(right)).

C est = -

Estimation of D

The equation ( 84) is represented by taking two points pt z and pt w , as: where the numbers 1, 2, 3 are index of three experimental points.

Estimation of W

The parameter W is obtained by the below expression: 

  where c is the cohesion [MPa], and f r is the friction angle [°]. The Mohr-Coulomb yield locus can be conveniently visualized in the Mohr plane, as shown in Figure 1(left).

  Figure 1: (left) Mohr plane representation of Mohr-Coulomb yield criterion (de Souza Neto et al., 2008), and (right) Mohr-Coulomb yield criterion, in which the points represent an arbitrary stress path. The red points are the trial stresses, and the green points are the projected stress. The arrows represent the return mapping.

Figure 2

 2 Figure 2 presents a comparison between the Mohr-Coulomb implementation and the results calculated with Abaqus (Systémes, 2012), displaying the verification of the implementation.

Figure 2 :

 2 Figure 2: A comparison between the numerical results and the results from Abaqus (Systémes, 2012): (left) axial strain vs. axial stress, and (right) volumetric strain vs. volumetric stress.

Figure 3 :

 3 Figure3: (left) DiMaggio-Sandler plastic yield profile in the (I 1 , J 2 ) plane[START_REF] Sandler | An algorithm and a modular subroutine for the CAP model[END_REF], and (right) DiMaggio-Sandler plasticity yield criterion in which failure function part is with a green color and cap function is with a red color.

Figure 4 :

 4 Figure 4: (left) A comparison between numerical model of DiMaggio-Sandler with the experimental data reported by[START_REF] Sandler | An algorithm and a modular subroutine for the CAP model[END_REF]; the arrow with a blue color in the Figure3(right) shows the evolution of elastoplastic model which is represented here by a point with a red color, and (right) a comparison between numerical model of DiMaggio-Sandler with the experimental data provided by[START_REF] Fossum | Experimental determination of probability distributions for parameters of a salem limestone cap plasticity model[END_REF] for the specimen SL1255.

Figure 5 :

 5 Figure 5: Plot of axial strain vs. axial stress from triaxial test.

Figure 7 :

 7 Figure 7: Plot of volumetric strain vs. confining stress from hydrostatic test.

Figure 8 :

 8 Figure 8: The Mohr-Coulomb material parameters. (left) Calibration based on the four failure points data, and (right) proposed calibration with all triaxial test data.

Figure 9 :

 9 Figure 9: A comparison between numerical (NLopt, current study) and experimental results. (left) Axial strain vs. axial stress, (right) and shear strain vs. shear stress.

Figure 10 :

 10 Figure 10: The DiMaggio-Sandler material parameters of failure function. (left) Calibration based on the four failure points data, and (right) plot of proposed calibration with all triaxial test data.

Figure 11 :

 11 Figure 11: The material parameters of cap function. (left) Hydrostatic test data with three selected point data, and (right) calibration based on the three selected point data.

Figure 12 :

 12 Figure 12: (left) The oedometer test process, and (right) selection of two points (Point 1 and Point 2) for computing R from oedometer test data.

Figure 13 :

 13 Figure 13: A comparison between numerical (NLopt, current study) and experimental results. (left) Axial strain versus axial stress, (middle) volumetric strain versus volumetric stress, and (right) shear strain versus von Mises stress.

  Figure 14: A comparison between all experimental data and both surface of Mohr-Coulomb and DiMaggio-Sandler plasticity model.

  The parameter B is computed by dividing ζ z by ζ w :ζ z ζ w = exp (B I z ) exp (B I w ) = exp (B (I z -I w )) ln ζ z ζ w = B (I z -I w ) B est = ln ζ z /ζ w I z -I w (75)

  Estimation CBy taking two points pt z and pt w , the ζ for each point is obtained as:ζ z = A -C exp (B I z ) ζ w = A -C exp (B I w ) (77)The parameter C is gotten by subtracting ζ w from ζ z , as:(ζ z -ζ w ) = -C (exp (B I z ) -exp (B I w )) C = -ζ z -ζ w exp (B I z ) -exp (B I w ) (78)

  ζ 1 -ζ 3 exp (B I 1 ) -exp (B I 3 ) (79)Estimation A The parameter A is estimated using the below expression:ζ = A -C exp (B I) ⇒ A = ζ + C exp (B I) + C exp (B I z )) (81)Development of the analytical equations for D and WThe analytical equations are developed to compute the initial guess for parameters D and W . The proposed equations are obtained using hydrostatic test data that are at least three points. The points can be extremes and an intermediate point. The analytical equations are described by considering I = I 1 , and taking the derivative of pv with respect to I, as:pv = W (exp [D I] -exp [D I • ]) + pv• ⇒ p v = W D exp [D I] W D = w c), the equation (83) is rewritten as: ln p v -ln (w c ) -D I = 0 (84)

  ln p vz -ln (w c ) -D I z = 0 ln p vw -ln (w c ) -D I w = 0 (85) by subtracting the above equations, as: ln p vz -ln p vw -D (I z -I w )

  

end if if x * is validated using engineering criteria then Return x * as the correct value end if end while return x *

  

	Algorithm 1 The iterative optimization procedure
	Filtering experimental data
	Defining objective function
	Initializing model parameters using analytical equations
	while x * -x < ε t and number of iterations < max n it do
	F (x * ) → t
	if F (x * ) ≤ F (x) then
	Stop optimization procedure
	Return x *

Table 1 :

 1 NLopt iterative algorithms (1):[START_REF] Kraft | Algorithm 733: Tomp-fortran modules for optimal control calculations[END_REF], (2): (Powell, 2008), (3): (Powell, 2009), (4): (Udit Kumar, 2016).

Table 2 .

 2 

	Parameter	Variable [unit]	Value
	Young's modulus	E MPa	43365.4
	Poisson's ratio	ν	0.358489
	Mohr-Coulomb cohesion	c MPa	30.0
	Mohr-Coulomb friction	f r °10.0

Table 2 :

 2 Parameters employed for verification of Mohr-Coulomb plasticity model.

  R

	Sandler	100.0	0.25	0.25	0.67		0.18	0.67		0.066	0.0	2.5
	Unit [unit]	ksi		ksi	ksi	-1		ksi	ksi -1			ksi
	Fossum	23456.9	0.2667	209.61	1.787 × 10	-3	198.49	3.909 × 10	-4	0.189	-442.56	5.63
	Unit [unit]	MPa		MPa	MPa -1						

Table 4 :

 4 The types of loading conditions.

	Triaxial Oedometer Hydrostatic

Table 5 :

 5 Calibration of E and ν by using triaxial test data.

Table 7 :

 7 Calibration of K by using hydrostatic test data.

		Bulk modulus, K [MPa]
	Time period	Numeric value
	First	2828.62
	Second	2794.91
	Third	2803.25
	Fourth	2725.65
	Fifth	2571.55

Table 8 :

 8 . Moreover, a comparison between experimental and numerical results (τ m versus σ n ) is shown graphically in Figure8. The results demonstrate clearly the capability of the optimization procedure. Material parameters calibrated for Mohr-Coulomb with NLopt and current study.

	Parameter	Numeric value NLopt value
	Young's modulus, E [MPa]	2693.74	2693.74
	Poisson's ratio, ν	0.105264	0.105264
	c [MPa]	3.47113	3.47114
	f r [°]	19.1662	19.1662

Table 9 :

 9 Type of load conditions to calibrate DiMaggio-Sandler model's parameters

Table 10 :

 10 The material parameters calibrated for failure function of DiMaggio-Sandler model with NLopt and current study.

Table 11 :

 11 The material parameters calibrated for cap function, D, W with NLopt and current study.

Table 12 :

 12 The parameter R of cap function of DiMaggio-Sandler model.

Table 13 :

 13 Material parameters calibrated for DiMaggio-Sandler with NLopt and current study
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fication. The results have confirmed the accuracy of the proposed approaches to compute the physics-based elastoplastic models.

The following remarks can be drawn from this study:

• The laboratory test data cannot appropriately describe by the elastoplastic constitutive models. To calibrate the physics-based elastoplastic models, certain sections of the laboratory experiment should be used. 

Appendix

Development of the analytical equations for c and f r

The analytical equations are developed to compute the initial guess for parameters c and f r . The proposed equations are obtained using experimental data that are at least two points. The points can be the extreme points, namely pt 1 = {σ n 1 , τ m 1 } and pt 2 = {σ n 2 , τ m 2 }, where σ n 2 > σ n 1 (Figure 15(left)). The analytical equations are derived by taking the derivative of τ m with respect to σ n , as:

The parameter f r is estimated by:

The parameter c is computed by: 

Estimation of B:

By taking two points pt z and pt w , the derivative ζ for each point is obtained as: