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1 Introduction

”Prediction is very difficult, especially if it’s about the future” is a quote one might expect from

Groucho Marx or Yogi Berra. Yet, it is attributed to the 20th century Nobel prize-winning Danish

physicist Nils Bohr. The quote may be apocryphal but makes a valid point, particularly when it

comes to epidemiological predictions.

Fast forward to April 2020 in the midst of the Covid-19 pandemic. Dr. Anthony Fauci, director

of the National Institute of Allergy and Infectious Diseases, and a lead member of the White House

Coronavirus Task Force, is quoted on April 2 as saying “I’ve looked at all the models. I’ve spent a

lot of time on the models. They don’t tell you anything. You can’t really rely upon models” (Wan

et al, 2020). This quote is too recent to be called apocryphal, but it is surprising and possibly out

of context. Indeed, to end with a final aphorism, Dr Fauci surely knows that ”all models are wrong,

but some are useful” - a pronouncement attributed to the statistician George Box. This is another

principle that is particularly true in the case of epidemiological models.

The first goal of this paper is to introduce mathematically inclined readers to a few simple epi-

demic projection models. We will start with the basic notion of an epidemic growing exponentially.

We will then move on to a brief review of “compartmental” models which capture the demographic

dynamics of an infected population whose growth is limited endogenously by the size of the under-

lying population. We next introduce a simple yet novel variant of these models which is driven by

an exogenously determined growth rate of the infected population. We call it the “Exo-r” model

and fit it to data on infections in China and deaths in the United States.

Informed by these projections we will close by reflecting on the questions raised above: why

are epidemiological predictions so difficult, and how do we reconcile an understandable dose of

skepticism with the fact that projection models may be useful despite being wrong?

2 Basic epidemic projection models

2.1 The exponential model

Epidemic models require an initial pool of infected individuals. A single person, known as “Patient

0”, is enough to trigger an outbreak. We assume that every day an infected person is in contact
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with c randomly chosen uninfected individuals (the “susceptibles”). A contact in itself does not

guarantee transmission. There is a probability p, which depends on the virulence of the disease,

that a contact leads to the susceptible becoming infected. If we define r = cp then during a time

interval dt each infected person generates on average rdt new infections1. The total (cumulative)

number of infected individuals I(t) up to day t then satisfies the differential equation

dI/dt

I
=
İ

I
= r (1)

where we use a physicist’s dot notation over a variable to indicate its derivative with respect to

time. Equation (1) is the world’s simplest differential equation and has the exponential solution

I(t) = I(0) exp (rt). (2)

The derivative İ(t) is the daily number of new infections on day t, also known as the incidence, the

density of new infections, or the “epidemic curve”. Because the numerical value of r does not have

an intuitive interpretation we can reparameterize the model by defining the doubling time DT of

the total number infected; DT is defined through the equation I(0) exp (rDT ) = 2I(0) with root

DT = ln(2)/r.

Most epidemics, including the current Covid-19 pandemic, initially grow exponentially in the

same way each dollar invested at a constant savings rate generates every year the same number of

new dollars. Barring an economic downturn, nothing prevents your bank account from increasing

without bound. The size of an epidemic however, has an upper bound K equal to the size of the

whole population - or of a sub-population susceptible to the disease, e.g. with no natural immunity.

In population biology K is called the“carrying capacity” of the system.

The next step is therefore a model that accounts for a simple biological reality: at some point

those infected run out of susceptibles to infect and the total number infected cannot exceed the

1A perceptive non-specialist may wonder how one generates infinitesimal numbers of infected individuals - particu-
larly if we start off with a single “Patient 0”. We focus here on deterministic models which assume that large numbers
of infected individuals generate expected, average numbers of new infections. For example if each one of 100 infected
individuals generates a new case with probability 0.123 we say there will be 12.3 new infections - which combines the
law of large numbers with a disregard for the fact that humans do not come in decimal numbers. Another way of
dealing with a single “Patient 0” is with a stochastic model which hinges on a discrete probability distribution for the
number of new infections generated by said “Patient 0”.
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carrying capacity K.

2.2 The logistic model: two compartments

A simple way of incorporating the upper limit K into the model is by transforming the growth rate

r on the right-hand side of Eq. (1) into a quantity that decreases as the susceptible population

is depleted while preventing the infected population from exceeding K. This can be achieved by

transforming r into a cleverly defined decreasing function of I, for example

İ

I
= r

(
1− I

K

)
. (3)

The decrease of the growth rate İ/I has been “endogenized”, i.e. it is driven by the number I(t) of

infectives. The fact that I(t) is a cumulative number of infected individuals means that its growth

rate on the right-hand side of Eq. (3) must remain positive - which happens if and only if I(t) is

less than K for all t. This suggests that we are on the right track. (We assume that the initial

number infected I(0) is much smaller than K).

Before giving the solution to this differential equation we examine its “mechanistic” interpreta-

tion, i.e. the biological process and human behavior described by Eq. (3). New infections result

from contacts between the I(t) infected (a first compartment/variable) and the S(t) = K − I(t)

susceptibles (second compartment/variable). To determine how many new infections arise each

day from these contacts we make two simple assumptions: 1) as with the exponential model every

person (infected or not) each day comes into contact with the same number c of randomly chosen

individuals, and 2) these contacts are “homogeneous”, i.e. do not discriminate between susceptible

and infected status. This means that if John is infected then only a fraction S(t)/K of his c contacts

are susceptible - a fraction that decreases as the susceptible population gets depleted. John, who is

infected, is therefore in contact with cS(t)/K susceptible individuals per day. If the probability of

transmission is p then John generates pcS(t)/K “secondary cases” (new infections) per day. Since

there are I(t) Johns at time t, they generate a total of

I(t+ dt)− I(t) = I(t)pc
S(t)

K
dt = I(t)pc

(
1− I(t)

K

)
dt (4)
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new infections during the time interval (t, t + dt) (think of dt as being equal to 1). When dt → 0

this is Eq. (3) with r = pc.

A daily number İ(t) of new infections that is proportional to I(t)(K − I(t)) provides an epi-

demiological example of the “mass action principle” familiar to chemists and physicists: loosely

speaking a product of components feeds back into the process that generates these components.

Equation (3) is a rare case of a differential equation with a closed form solution:

I(t) =
K

1 +A exp(−rt)
(5)

with

A =
K − I(0)

I(0)
. (6)

Equation (5) is known as the logistic function. It has had a long and illustrious career - including with

recent applications, extensions, and generalizations used to fit and project the Covid-19 epidemic

in China and elsewhere (Wu et al., 2020). As one might expect this function is S-shaped and tends

to K when t→∞. Differentiating (5) one finds that the daily number of new infections is

İ(t) =
AKr exp(−rt)

(1 +A exp(−rt))2
. (7)

This is a symmetric bell-shaped curve - the one politicians desperately want to “flatten” during the

Covid-19 pandemic of 2020. To see how this can be done we differentiate Eq. (7) and find that İ(t)

reaches its maximum at the critical value tc = ln(A)/r. The corresponding maximum incidence,

denoted İmax, is İ(tc) = Kr/4.

These results show that there are two way of flattening the İ(t) curve. We can reduce İmax by

decreasing r which delays the peak time tc without changing the ultimate size of the epidemic. We

can also lower the eventually infected population K (quarantine, vaccination, etc) which flattens

the curve without delaying the peak tc.

A first drawback of the logistic function is the symmetry of the curve, which does not allow for

an epidemic with a rapid rise to its peak followed by a slower decline. (This was the case for the

Covid-19 epidemics in China and South Korea in early 2020). Another more serious conceptual
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drawback is that the model has only two “compartments” (variables) with individuals flowing

from the susceptible compartment to the infected one. This means that once infected, a person

can immediately and indefinitely spread the disease. In particular, no one ever recovers, becomes

immune, or dies from the disease. We continue with a quick review of models with three and four

compartments, which correct the aforementioned shortcomings.

2.3 SIR and SEIR models: three and fours compartments

An “SIR” model will add to the susceptible and infected compartments one that has R(t) recovered

individuals. An “SEIR” model will add another compartment of E(t) “exposed” individuals who

have been infected but cannot yet transmit the disease. These models result in systems of three or

four differential equations, which are based on the mass action principle and have variants of Eq.

(3) at their core.

These models are particularly useful when a large fraction of the population becomes infected

and runs out of susceptibles to infect. This can lead to “herd immunity”, which occurs when

roughly 60 or 70 percent of the entire population is immune either because they have recovered and

have developed an immunity, or have been vaccinated. This effect saturates the population with

“uninfectables” and acts as a rate-limiting factor that can “snuff out” the epidemic.

3 The phenomenological Exo-r model

Think now of the Covid-19 epidemic in China. The first wave started in January 2020 and had run

its course by the end of March. Even if the official total count around 84,000 cases is under-reported

by a factor of 10, this means less than a million people were infected out of a population of 1.4

billion. In other words well under one in a thousand Chinese became infected. There was no mass

action principle to slow down the spread of the disease - and even less herd immunity. Rather, the

spread was brought under control through exogenously imposed control measures which reduced

the rate of infection (social distancing, lockdowns, quarantines, etc).

We will capture this effect with a growth rate İ/I that is no longer an endogenously decreasing
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function of time (right-hand side of (3)) but simply a function r(t) of time:

İ

I
= r(t). (8)

This type of model is called ”phenomenological”. This is a fancy word to describe mathematical

formulations of real-life problems that are consistent with the data, without attempting to describe

the underlying mechanism.2 The only constraint is that r(t) be positive since I(t) is a cumulative

number of infections and is therefore necessarily increasing. The solution I(t) of (8) is

I(t) = I(0)e
∫ t
0 r(s)ds (9)

which has a closed form if r(t) can be integrated. The derivative of I(t) is

İ(t) = I(0)r(t)e
∫ t
0 r(s)ds. (10)

Because this model is driven by an exogenously determined growth rate r(t) we will call it for

brevity the “Exo-r” model.

3.1 Specification of growth rate r(t)

Before specifying a functional form for the growth rate we turn our attention to the doubling time

DT (t) = ln(2)/r(t). This metric is popular because it is easy to interpret, even in the case of a

time-varying rate r(t): DT (t) is the time it would take for the infected population to double if the

growth rate after time t were frozen at the value r(t).

Figure 1 depicts on a logarithmic scale the doubling times of total confirmed Covid-19 cases

for three typical countries3. They all show a similar pattern. There is an early period of erratic

logarithms of the doubling time (log(DT )) due to small numbers and reporting problems/delays.

We will consider that log(DT ) is constant during this early stage of the epidemic. This means an

2Such models can justifiably be criticized for ignoring demographic mechanisms which are fully exploited in SIR
and SEIR models. Still, phenomenological models expand our methodological toolbox and can be useful. They are
sometimes called “statistical” because they can be fitted to data with statistical methods.

3These Creative Commons data and visualizations are freely available and usable at https://ourworldindata.

org/grapher/doubling-time-of-covid-cases?yScale=log - accessed on May 9, 2020.
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exponential increase, which is common when a disease initially spreads unhindered. Figure 1 shows

that at some point log(DT ) increases roughly in a linear fashion, i.e. log(DT ) ≈ qt+u, with q > 0.

Therefore the growth rate r(t) = ln(2)/DT (t) ≈ ln(2)e−qt−u decreases exponentially. This reflects

a diminishing pool of susceptibles and/or the onset of intervention.

Given these observations we propose a stylization of the growth rate r(t) as a constant r0 between

time 0 and some t∗ ≥ 0 followed by an exponential decrease with a negative decay rate s (= −q):

r(t) =

{
r0 if t ≤ t∗ (11a)

r0 exp(s(t− t∗)) if t > t∗. (11b)

As before we define the doubling time DT0 = ln(2)/r0 during the early exponential phase. We

can reparameterize s through the half-life HL of the growth rate r(t) after time t∗; HL is the time

it takes for r(t) to drop by a half after t∗: HL = − ln(2)/s. Equation (11) can be paraphrased by

noting that the doubling time DT (t) = ln(2)/r(t) is then

DT (t) =


DT0 if t ≤ t∗ (12a)

DT0 exp

(
ln(2)

HL
(t− t∗)

)
if t > t∗. (12b)

This equation shows that the half-life HL of the growth rate is also the doubling time of the doubling

time DT (t). The logarithm of the doubling time is then

log(DT )(t) =


ln(DT0) if t ≤ t∗ (13a)

ln(DT0) +
ln(2)

HL
(t− t∗) if t > t∗ (13b)

which increases linearly with the positive slope ln(2)/HL = −s.
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𝒕∗ ≈ March 21 𝒕 = 𝟎 

𝐷𝑇(𝑡) 
(Eq. 12) 

Figure 1: Doubling time of total confirmed Covid-19 cases for three countries - up to May 9,
2020 (logarithmic scale). The superimposed modeled DT (t) (black line) captures for the U.S. the
pattern of a constant value DT0 roughly from March 1 (t = 0) to March 21 (t∗ = 21). For t > t∗

the logarithm of DT (t) increases roughly linearly with slope ln(2)/HL. (In Spain and Italy, where
there appears to be little or no initial exponential stage, we might take a duration t∗ = 0 for that
stage).

3.2 Results

Routine integrations left as an exercise show that with r(t) of Eq. (11) the infections I(t) of (9) are

I(t) =


I(0) exp(r0t) if t < t∗ (14a)

I(0) exp

(
r0

exp(s(t− t∗))− 1 + st∗

s

)
if t ≥ t∗. (14b)

Because s < 0 the ultimate number infected is equal to

I∞
def.
= lim

t→∞
I(t) = I(0) exp

(
r0
st∗ − 1

s

)
. (15)

Bearing in mind Eq. (11b) we note that for t > t∗ we have

I(t)/I∞ = exp

(
r(t)

s

)
= exp

(
−HL
DT (t)

)
. (16)
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This equation means that the fractional number of total infections at time t > t∗ depends only on

the current growth rate r(t) and the rate s < 0 at which r(t) decays.

The derivative of I(t) in (14) is

İ(t) =

{
I(0)r0 exp(r0t) if t < t∗ (17a)

I(t)r0 exp(s(t− t∗)) if t ≥ t∗ . (17b)

This expression tells us that İ(t) ∼ exp(st) for large t. Therefore the number of daily cases İ(t)

decays asymptotically at the rate s, i.e. with the same half-life HL = − ln(2)/s as r(t). We can

therefore have an asymmetric epidemic curve İ(t) which grows at the positive exponential rate r0

early in epidemic and at the negative exponential rate s for t→∞.

With an exponential growth until t∗ the density of new cases İ(t) can only peak after t∗. If we

differentiate (17b) we find that there are two scenarios depending on the values of the growth and

decay rates r0 and s.

1. Scenario A: s < −r0, i.e. r(t) decays faster than the initial infected population increases.

Then İ(t) reaches its maximum İmax at time t∗, the end of the exponential stage:

İmax
def.
= İ(t∗) = I(0)r0 exp(r0t

∗). (18)

At t∗ the second derivative Ï(t) goes discontinuously from 0 to a negative value causing an

unconventional Alpine peak of a maximum. Still, this is of interest: if the growth rate starts

decreasing fast enough then the number of new cases İ(t) immediately starts decreasing.

2. Scenario B: −r0 ≤ s < 0, i.e. r(t) decays slower than the initial infected population increases.

Then new infections İ(t) keep growing after the intervention and reach a maximum at the

critical value

tc
def.
=

ln

(
−s
r0

)
s

+ t∗ > t∗. (19)

In this case a growth rate that decreases more slowly creates an inertia in the infections which

continue to increase until a time tc before turning around. Not surprisingly the closer s is to

0, the more protracted the epidemic, and the larger tc is. The corresponding maximum daily
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incidence is

İmax
def.
= İ(tc) = −I(0)

s

e
exp

(
r0
st∗ − 1

s

)
=
−s
e
I∞. (20)

3.3 Insights

3.3.1 Ultimate infected population

If we recall that −s = ln(2)/HL where HL is the half-life of the growth rate r(t) then we can

rewrite Eq. (20) as

I∞ =
e

ln 2/HL
İmax =

Penetration P︷ ︸︸ ︷
3.922HL ×İmax. (21)

This result highlights the role of HL and provides a simple relationship between I∞ and İmax.

Indeed, multiplying the half-life by 3.922 yields the dimensionless disease penetration (or “protrac-

tion”) factor P = 3.922HL equal to the ratio of ultimate to maximum infected populations.

We illustrate the use of Eq. (21) with an attempted back-of-the-envelope estimate of the ultimate

number of cases I∞ in the United States. Indeed, if we can estimateHL and are sufficiently advanced

in an epidemic to observe İmax, then Eq. (21) is a window into the future. During March and April

the slope ln(2)/HL for the logarithm of the doubling time (Figure 1) yields a half-life HL around

12 days, i.e. a penetration factor P = 3.922HL ≈ 47.

In May the daily incidence İ(t) had plateaued in the 25,000 to 30,000 range with a slight

downward trend4. Simple epidemic curves usually peak and go back down fairly quickly. A long

plateau means something more complicated is going on. In the case of Covid-19 in the U.S. this

could mean reporting or testing problems. This plateau could also reflect a complex and spatially

heterogeneous epidemic that is rippling through the country over several months. It would therefore

be a miracle if its dynamics could be described accurately with our simple three-parameter model.

Still, going on the high side with 30,000 for İmax we find that Eq. (21) yields İmax = P × 30, 000 =

1.4M . By May 10 the number of confirmed cases had reached 1.3 M. Our 1.4 M is the right order

of magnitude but obviously falls short.

The reason for the low estimate of 1.4 M can be found in the U.S. data of Figure 1. As a first

4In an abuse that would horrify statisticians we use throughout the same notations İ(t), DT (t) etc. for observed
and modeled values. We do this to avoid cumbersome notations. Observed daily incidences should really be noted
something like İo(t) to distinguish them from modeled values İ(t).
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approximation the trend for log(DT ) appears to be roughly linear beyond time t∗ ≈ March 21.

However, a closer look at Figure 1 suggests that beyond April 15 log(DT ) continues as a straight

line but with a smaller slope. This means a larger HL and implies a growth rate r(t) that decreases

more slowly. This change in regime can be captured simply by “restarting”/updating the model on

April 15.

3.3.2 Exo-r model update

In the present case we can reset time t = 0 to April 15. For the initial number infected I(0) and

corresponding growth rate r0 we take the values reported on April 15. In order to reflect an epidemic

that becomes more protracted we can assume no exponential stage (t∗ = 0) and a growth rate that

decreases from r0 with a half-life HL′ larger than the early HL (HL′ could be smaller than HL if

intervention measures are increased or a vaccine removes large numbers of potential susceptibles).

Those are just a few examples of how the model can adapt to changing circumstances with updated

initial conditions and half-lives.

3.3.3 Sensitivity analysis

Returning to the original formulation, the time t∗ can be thought of as the timing of an intervention

and the half-lifeHL as its intensity. With closed form expressions for epidemiological parameters one

can then explore analytically the effect of t∗ and HL on three measures of “outcome severity”: the

time of maximum daily infections tc, the maximum number of infections İmax, and the cumulative

total I∞. We illustrate such a sensitivity analysis with baseline values t∗ = 10, and HL = 3.3

obtained for China in Section 4.1. (with DT0 = 2.2). Table 1 shows the sensitivities of the three

severity outcomes to variations of ±1 day for t∗ and HL.

In view of Eq. (19) it is not surprising that the sensitivity ∆tc is equal to 1 regardless of HL. Of

greater interest is the impact of a one-day decrease of t∗ or HL on I∞ and İmax. Table 1 shows that

the peak number of infections İmax = 4, 889 drops to 3,568 and 4,023 for ∆t∗ = −1 and ∆HL = −1

respectively. This means that interventions starting one day earlier have a greater impact on the

relatively short-term İmax metric than a one-day drop in HL.

The total number of infections I∞ = 82, 440 drops to 60,160 and 52,237 for ∆t∗ = −1 and
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t∗

HL 9 10 11

3.3
tc : 10.9 11.9 12.9

İmax : 2,951 4,043 5,541
I∞ : 38,185 52,237 71,707

4.3
tc : 13.2 14.2 15.2

İmax : 3,568 4,889 6,699
I∞ : 60,160 82,440 112,971

5.3
tc : 15.7 16.7 17.7

İmax : 4,560 6,249 8,563
I∞ : 94,779 129,880 177,982

Table 1: Sensitivity analysis of three outcome severities (the time of maximum daily infections tc,
the maximum number of infections İmax, and the cumulative total I∞) to changes in HL and t∗.
Results in central shaded area are the (baseline) severeties for the estimated values HL = 4.3 and
t∗ = 10 obtained for China in Section 4.1 (DT0 of 2.2). The sensitivity analysis is for ±1 day
variations for both HL and t∗.

∆HL = −1, respectively. This time a one-day reduction in HL has the greatest impact on the

total number - no doubt because the shorter HL impacts total numbers over a long time. This

simple example shows that the best intervention may depend on the goal. If we need to choose

between a one-day reduction of t∗ and HL, then we choose t∗ if the main goal is to protect the

health care system by “flattening the curve”. If the goal is to minimize the total number infected

then a shorter HL has the greater impact. Many other types of sensitivity analyses can shed light

on optimal intervention strategies. For example one can investigate what combinations of (t∗, HL)

values bring about a given reduction in either İmax or I∞.

We next apply the model to (mainland) China, where the epidemic originated but was rapidly

brought under control through strictly enforced lockdowns and social distancing measures.

4 Applications

4.1 China: a completed epidemic with stringent “Non-pharmaceutical inter-

ventions” (NPIs)

We plotted in Panel A of Fig. 2 the doubling times of numbers infected from January 22 to May

11, for mainland China (black dots). This panel is analogous to the one in Fig. 1. Black and red

dots in Panel B represent reported total and daily numbers of infections.
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Our primary goal is to fit as well as possible the modeled total numbers I(t) to observed counts.

This is because total numbers carry with them the entire history of the epidemic. Our secondary

goal was to keep modeled doubling times DT (t) and daily numbers İ(t) as close as possible to

observed values. Fitting the data by hand yielded parameter values t∗, DT0, I(0) and HL = ln(2)/r0

satisfying these conditions (they are given in Fig. 2). In particular the coefficient of penetration

P = 3.922HL is 3.922× 4.3 ≈ 17.

A (semi) logarithmic scale is often used to describe the spread of Covid-19 because it captures

well a range of infected numbers from very small to very large. It also highlights the exponential

stages of the epidemic. Indeed, the straight upward (red) line for İ(t) between 0 and t∗ = 10 reflects

the initially exponential growth. The downward straight line in the latter part of the projection

reflects the asymptotically exponential decay at rate s < 0.

Panel A shows that a good fit for total numbers I(t) comes at the cost of a modeled DT that

is in agreement with observed doubling times only between the 10th and approximately 55th day.

Panel B shows that this was a month and half during which much of the spread took place. After

the 55th day observed doubling times drift downwards, remain around 1000 for a few weeks, and

then climb into the thousands. This reflects a late “endemic” stage with a very low growth rate

that makes little difference to an epidemic that had essentially ended - as can be seen from the low

daily numbers in Panel B at that time.
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𝑫𝑻𝟎 = 𝟐. 𝟐;𝑯𝑳 = 𝟒. 𝟑 

𝑰 𝒕 , Eq. (14) 

𝑫𝑻(𝒕), Eq. (12) 

𝑨 

𝑩 
𝑰 = 𝟖𝟐𝑲 

 𝒕𝒄 = 𝟏𝟒. 𝟐   𝑰 𝒎𝒂𝒙 = 𝟒𝟖𝟖𝟗 

 𝒕∗ = 𝟏𝟎 

𝑰 𝟎 = 
𝟓𝟎𝟎  

𝑰 𝒕 , Eq. (16) 

Figure 2: Panel A: Reported and modeled doubling times DT (t) in mainland China, from January
22 to May 11, 2020 (110 days). Panel B: Total reported and modeled numbers I(t) in black; daily
reported and modeled numbers İ(t) in red (semi-logarithmic scales).
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4.2 Exo-r modeling of deaths

4.2.1 From infections to deaths

In the case of Covid-19 true numbers of infections are several times the reported ones. Given these

uncertainties and the keen interest health authorities have in the number of deaths, we ask whether

a lagged relationship between infections and deaths could justify using th Exo-r approach to model

deaths as well as infections.

To explore this possibility we let D(t) and Ḋ(t) be the total and daily numbers of deaths on

day t. We assume i) the true numbers of infections is a1 times the reported one modeled as I(t)

and İ(t) in Section 4); ii) the probability of death due to Covid-19 is a2; and iii) the time between

infection and death (when it occurs) is a constant a3. Then the number of deaths Ḋ(t) on day t is

the “real” number a1İ(t−a3) of infections a3 days earlier multiplied by the probability of death a2:

Ḋ(t) = a1a2İ(t− a3). (22)

This is a highly simplified relationship which captures the essence of a more complex reality5.

Still, Eq. (22) shows that if infections and deaths can be considered at least roughly as expan-

sions/translations of one another, and if reported infections follow an Exo-r model (as in China),

then it may be possible to also fit the Exo-r model to deaths.

We begin by replacing all I’s of Section 3.2 with D’s. The expressions are recalled here for

convenience. Total deaths are modeled as

D(t) =


D(0) exp(r0t) if t < t∗ (23a)

D(0) exp

(
r0

exp(s(t− t∗))− 1 + st∗

s

)
if t ≥ t∗ (23b)

where t∗ and r0 are now the duration of the exponential stage and the corresponding (initial) growth

rate of the number of deaths; s is the rate of decay of r(t) after t∗. The derivative is

Ḋ(t) =


D(0)r0 exp(r0t) if t < t∗ (24a)

D(0)r0 exp

(
r0

exp(s(t− t∗))− 1 + st∗

s
+ s(t− t∗)

)
if t ≥ t∗ . (24b)

5The main problem is that the lag a3 differs for each person, i.e. is random. This means a3 has a probability
distribution which makes expected deaths Ḋ(t) really a moving average of past infections.
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We will apply this approach to Covid-19 deaths in the United States - a country where the

epidemic consists of a myriad superimposed outbreaks with different sizes, timings, intervention

strategies and death rates (which depend on age, race, and occupation among other things). Will

such a patchwork be amenable to a simple model that assumes a reasonable degree of homogeneity?

4.2.2 United States: an ongoing epidemic with some NPIs

We examined the doubling times of the total number of deaths and total and daily numbers of

deaths between March 4 and May 11 in the U.S. Panel A of Fig. 3 shows that doubling times were

initially erratic but started to climb around day t∗ = 28. To assess precisely the exponential growth

of the numbers of deaths during the first 28 days (i.e. r0 or equivalently DT0 = ln(2)/r0) we used

an ordinary least square approach to obtain the linear trend for ln(D(t)) during these first 28 days.

The resulting intercept D(0) and doubling time DT0 are given in Fig. 3.

We chose values of HL equal to 11 and 14, which provide plausible high and low trajectories

of deaths beyond the 28th day. The goal is to assess however crudely the level of uncertainty

concerning the final number of deaths when the daily incidence has just passed its peak (Panel B of

Fig. 3). The final numbers are reported in Panel A. With a relatively short half-life of 11 days, the

final death toll is 97,000. With a half-life of 14 days (a 27% increase) the toll jumps to 259,000, i.e.

a 367% increase. This example shows that considerable uncertainties remain even when projecting

a mature epidemic that has peaked. This is because small changes to growth rates applied over

several months make a big difference to the ultimate outcome - in the same way a retirement fund

at the end of a working life will be extremely sensitivity to the (average) savings rate.
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Figure 3: Panel A: Reported and low/high projected doubling times DT (t) for U.S. deaths from
March 4 to May 11, 2020 (68 days). Panel B: Total reported and low/high projected total deaths
D(t) in black; daily reported and low/high projected daily deaths Ḋ(t) in red (semi-logarithmic
scales).
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5 Discussion

5.1 The usefulness of epidemiological projections

The Exo-r model was fitted to a completed Chinese epidemic with infections conforming well to an

early exponential stage followed by an exponentially decreasing growth rate. This approach needs to

be tested with more countries or states - and rigorous statistical techniques will need to be applied

in order to estimate the model’s parameters.

Applying the model to the U.S. left us with projected ultimate numbers of deaths between

97,000 and 259,000. This broad range is dismaying but reflects the many unknowns concerning

the growth rate r(t) beyond May 11. We do not know how long it will take for potential contacts

to either i) make themselves scarce through depletion/social distancing, or ii) become immunized

following infection and recovery. Not knowing if/when intervention measures will kick in, how long

they will last, and what effect they will have, further complicates the modeler’s task.

The only consolation to our broad ranges is that with a simple model that folds both the depletion

of susceptibles and the inception of intervention measures into a plausible pattern of decrease for

the growth rate, we obtain a range of outcomes with peak times in the latter part of April that is in

general agreement with other projections made at the time. The Institute for Health Metrics and

Evaluation (IHME, University of Washington) projected in March a range from 38,000 to 162,000

U.S. deaths6. Our figures are even consistent with the White House’s massaged range of 100,000 to

240,000 deaths - perhaps based on the IHME modelling (Wu et al., 2020; Wan et al, 2020).

These models assume various mitigation efforts such as quarantines, social distancing, and lock-

downs, which keep entire nations at home. Earlier in March Imperial College London projected up

to 2.2 million U.S. deaths in the absence of mitigation. (see Ferguson et al (2020) for Imperial’s

early modeling efforts; Wu et al. (2020) and Wan et al (2020) provide news coverage of these events,

which were unfolding too rapidly and recently to be covered in real time by the academic literature).

These projections of Covid-19 deaths in the United States have weaknesses and strengths. Their

6Just a few weeks later in the second half of April the number of deaths had already surpassed 40,000. IHME’s low
estimate may have assumed unrealistically stringent social distancing/quarantine measures similar to those applied
in China. Regardless, the speed at which their low estimate was overtaken by reality reflects the speed at which the
epidemic is unfolding in the United States. HIV/AIDS modelers in the 80s and 90s had the opposite problem: they
had to wait years, if not decades, to see if their projections panned out.
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weakness is the wide range of values for the numbers of deaths, which result from the many un-

certainties concerning the transmission dynamics. One must then honestly ask “At what point is a

projected range so broad as to be useless?7 This question alone deserves an entire article.

The strength and usefulness of these models lie in the big picture that emerges from projections

with and without mitigation: a maximum “do-nothing” 2.2 million deaths in the U.S. can be

reduced by an order of magnitude (to low hundreds of thousands) with aggressive mitigation efforts.

Crucially, we must hope that this a fairly “robust” conclusion - i.e. one that is not too sensitive to

departures from the underlying assumptions and data. In fairness, the better efforts address this

question, e.g. Imperial College provides reassurances on this issue. Still, it does not bear thinking of

the disastrous implications of policies that rely on mathematical models but may overestimate the

public health benefits of social distancing measures and lockdowns - interventions that are wreaking

havoc on the world economy and the mental health of millions.

5.2 Complex vs simple models

Complex models (notably by IHME, Imperial College London and others) are ambitious and go be-

yond mere demographic projections by forecasting numbers of required hospital beds, of ventilators

etc. They are admirably detailed but have many moving parts and can be structurally flawed.

In contrast, our Exo-r model has limited ambitions but captures the dynamics of an infectious

disease fairly accurately and in closed form using elementary mathematics and a spreadsheet. We

can now answer the question raised before fitting U.S. deaths to our Exo-r model: yes, a very simple

model can plausibly capture in the aggregate a patchwork of complex local epidemics unfolding

heterogeneously in time and space. Obviously it can also be used at the local and state levels.

In its extreme simplicity the Exo-r approach has several advantages. First it has few moving parts

that can go wrong. Indeed, it is incontrovertible that the growth rate of infections İ/I is a (positive)

quantity r(t) that changes with time. The only moving part is the nature of this change. Second,

the model provides closed-form expressions for important epidemiological parameters. Sensitivity

analyses can then shed light on the timing and effects of different intervention strategies (Section

7The U.S. Centers for Disease Control and Prevention tracks several short-term academic projections of U.S
deaths - with a range of ranges that is truly dispiriting. https://www.cdc.gov/coronavirus/2019-ncov/covid-data/
forecasting-us.html.
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3.3.3). Thirdly, the model can be updated to explore in a simple and transparent manner the

consequences of changing epidemiological conditions, such as an early reopening of the economy

or the “second wave” feared by many (as discussed in Section 3.3.2). Being able to easily update

projections is particularly useful at the local level, e.g. if one wishes to capture the dynamics of the

50 different epidemics across 50 U.S. states, each one with its own timing, social distancing rules

and “exit strategy”.

6 Conclusion

We come full circle by first recalling Dr Fauci’s April 2 downbeat assessment about models not

telling you anything. This skepticism (not to say frustration) was understandable in view of an

initial onslaught of extremely diverse projections. Six days later Dr. Fauci is quoted as saying that

“Models are good, they help us to make projections. But as you get data in, you modify your

model” (Wan and Johnson, 2020). These words of wisdom were in sharp contrast with his earlier

skeptical remarks. The apparent contradiction a few days apart could result from out-of-context

quotes, inaccurate reporting, or perhaps a renewed faith in the virtues of modeling.

It is rewarding to hear from top authorities that models are “good” and help make projections.

Today, the big challenge for modelers is to quantify the impact of unpredictable and at times

politically motivated decisions concerning stay-at-home policies and the reopening of the economy.

This dynamic creates an unstable feedback loop that causes models to “gyrate fairly significantly

from week to week”(Aizenman and McMinn, 2020). In an ideal world public health authorities

and modelers would work together to produce useful projections based on reliable data on testing,

prevalence rates, etc. These efforts would inspire governments to adopt wise and sensible policies

that strike the right balance between saving lives and preventing an economic meltdown.

A Data source and Supplementary Material

Data on infections and deaths come from https://ourworldindata.org. The Supplementary

Material (https://bit.ly/3bAYFZr) has a link to an interactive Google spreadsheet that can be

used to explore and update projections of U.S. deaths. The user can enter his/her own daily data
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on infections or deaths, and seek parameter values that provide the best fit.
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