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Figure 1: DRLViz displays a trained agent memory, which is a large temporal vector, as a horizontal heat-map À. Analysts can browse this
memory following its temporal construction; filter according to movements of the agent and derived metrics we calculated Á (e.g., when an
item is in the field of view Â); and select the memory to filter elements and compare them Ã.

Abstract
We present DRLViz, a visual analytics interface to interpret the internal memory of an agent (e.g. a robot) trained using deep
reinforcement learning. This memory is composed of large temporal vectors updated when the agent moves in an environment
and is not trivial to understand due to the number of dimensions, dependencies to past vectors, spatial/temporal correlations,
and co-correlation between dimensions. It is often referred to as a black box as only inputs (images) and outputs (actions) are
intelligible for humans. Using DRLViz, experts are assisted to interpret decisions using memory reduction interactions, and to
investigate the role of parts of the memory when errors have been made (e.g. wrong direction). We report on DRLViz applied in
the context of video games simulators (ViZDoom) for a navigation scenario with item gathering tasks. We also report on experts
evaluation using DRLViz, and applicability of DRLViz to other scenarios and navigation problems beyond simulation games, as
well as its contribution to black box models interpretability and explain-ability in the field of visual analytics.

CCS Concepts
• Human-centered computing → Visual analytics; • Theory of computation → Reinforcement learning;
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1. Introduction

Introduction

Automatic navigation is among the most challenging problems in
Computer Science with a wide range of applications, from find-
ing shortest paths between pairs of points, to efficiently explor-
ing and covering unknown environments, up to complex semantic
visual problems (“Where are my keys?”). Addressing such prob-
lems is important for modern applications such as autonomous ve-
hicles to improve urban mobility, social robots and assisting elderly
people. Historically, navigation was often solved with discrete op-
timization algorithms such as Dijkstra [Dij59], A-Star [HNR68],
Front-propagation [Yam97] etc., applied in settings where spa-
tial maps are constructed simultaneously with solving the nav-
igation problem. These algorithms are well understood, but are
restricted to simple waypoint navigation. Recently, techniques
from Machine/Deep Learning have shown spectacular progress on
more complex tasks involving visual recognition, and in particu-
lar in settings where the agent is required to discover the prob-
lem statement itself from data. In particular, Reinforcement Learn-
ing (RL) and the underlying Markov Decision Processes (MDP)
provide a mathematically founded framework for a class of prob-
lems focusing on interactions between an agent and its environ-
ment [SB18]. In combination with deep networks as function ap-
proximators, this kind of models was very successful in problems
like game playing [MKS∗15, SSS∗17], navigation in simulated
environments [DDG∗18, GKR∗18, PS18], and work in human-
computer interaction (HCI) emerging [DDCW19].

The goal of Deep Reinforcement Learning (DRL) is to train
agents which interact with an environment. The agent sequentially
takes decisions at , where t is a time instant, and receives a scalar
reward Rt , as well as a new observation ot . The reward encodes the
success of the agent’s behavior, but a reward Rt at time t does not
necessarily reflect the quality of the agent’s action at time t. As an
example, if an agent is to steer an autonomous vehicle, receiving
a (very) negative reward at some instant because the car is crashed
into a wall, this reflects a sequence of actions taking earlier then
the last action right before the crash, which is known as the credit
assignment problem. The reinforcement learning process aims at
learning an optimal policy of actions which optimizes the expected
accumulated future reward Vt = ∑

t+τ

t′=t Rt over a horizon τ.

If agents trained with DRL were deployed to real life scenarios,
failures and unexpected behaviors [LCM∗18] could lead to severe
consequences. This raises new concerns in understanding on what
ground models’ decisions (e.g., brake) are based [RSG16]. To as-
sess the decision of a trained model, developers [HKPC19] must
explore its context (e.g., a pedestrian on the road, speed, previous
decisions) and associate it with millions of deep networks param-
eters which is not feasible manually. Analysing a decision after-
the-fact, referred to as post-hoc interpretability [Lip16], has been
a common approach in visualization. It consists in collecting any
relevant information such as inputs and inner-representations pro-
duced while the model outputs decision. With such an approach,
DRL experts explore their models without having to modify them
and face the trade-off between interpretability and performances.
Visual analytics for post-hoc interpretability [HKPC19] yields
promising results on tasks such as image classification [OSJ∗18],

or text prediction [SGPR17]; however, it remains an under-explored
challenge for DRL with memory.

We built DRLViz, a novel Visual Analytics interface aimed at
making Deep Reinforcement Learning models with memory more
interpretable for experts. DRLViz exposes a trained agent’s mem-
ory using a set of interactive visualizations the user can overview
and filter, to identify sub-sets of the memory involved in the agent’s
decision. DRLViz targets expert users in DRL, who are used to
work with such models (referred to as developers in [HKPC19]).
Typically, those experts have already trained agents and want to in-
vestigate their decision-making process. We validated DRLViz us-
ability with three experts and report on their findings that informed
us on future improvement such as applicability to other scenarios,
and novel interactions to reduce the memory of an agent and better
find patterns within it.

2. Context and Background

Context and Background

The context of our work is related to building deep neural network
models to train robots achieving human assistance tasks in real-
world environments. As the sample efficiency of current RL algo-
rithms is limited, training requires a massive amount of interactions
of the agent with the environment — typically in the order of a
billion. Simulators can provide this amount of interactions in a rea-
sonable time frame, and enable to work with a constantly controlled
world, that will generate less noise (e.g., a shade) in the agent’s la-
tent representation. We will discuss in the perspectives section the
extension of our work beyond simulators and the knowledge trans-
fer from simulation to real-world scenarios, where variability (e.g.,
lighting, clouds, shades, etc.) and non-deterministic behaviors (e.g.,
robots may turn more or less depending on its battery charge) occur.

2.1. Navigation Problem Definitions

Navigation Problem Definitions

Our focus is on navigation problems, where an agent (e.g., robot,
human) moves within a 2D space we call environment (Fig. 2). An
environment contains obstacles (e.g., walls), items the agent may
want to gather or avoid, and is usually bounded (e.g., a room). The
goal of the agent can vary according to the problem variation, but
typically is to reach a particular location (e.g., gather items, find a
particular spot). Importantly, the goal itself needs to be discovered
by the agent through feedback in the form of a scalar reward signal
the environment provides: for instance, hitting a wall may provide
negative reward, finding a certain item may result in positive re-
ward. To discover and achieve the goal, the agent must explore its
environment using actions. In our case, those actions are discrete
and elements of the following alphabet: a∈A, with A ={forward,
forward+right, right, left, forward+left}. The navigation task ends
when the agent reaches its goal, or when it fails (e.g., dies, timeout).

As the agent explores its environment, it produces a trajectory.
A trajectory is a series of positions p (x,y) in a space S bounded by
the environment. Those positions are ordered by time-step t ∈ T ,
where t0 < t1 < tn, and the interval between tn and tn+1 is the time
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the agent takes to act. In addition to positions, trajectories con-
tain complementary attributes b, which may vary depending on the
agent goal (e.g., number of gathered items, velocity, etc.). We call
stept the combination of both the agent position p and its attributes
b, at a given time-step t. Thus stept can be represented as follows
<pt ,bt>. The transition between steps occurs as the agent makes
a decision. An episode groups all iterations from the first step at t0,
until the agent wins or looses at tn.

t

t t

Obstacles ItemsEnvironment

Trajectory

Field 
of viewAgent

Perception

Memory

Decision

Action

Update

-2

-1

t-3
-4t

4

3

2

1

Controller

Input
(Image)

Output
(Action)

 

Perception

Update

Memory

Decision

Action

 

RewardRewardReward

Figure 2: Our navigation problem consists in solving a visual task
(e.g., fetch, interact, or recognize items) while avoiding obstacles in
an environment. Deep Reinforcement Learning can be used to solve
this problem by using an image as input ¬ at time t. Features are
then extracted from this image , and combined with the previous
memory vector t−1 ®. Using this memory vector, the agent decides
to move forward or turn left, for instance ¯.

2.2. Navigation using the ViZDoom Simulation

Navigation using the ViZDoom Simulation

The simulation environment we use to train agents to navigate is
ViZDoom [KWR∗16] which provides instances of the navigation
problem based on Doom, a very popular video game in the 90’s.
ViZDoom is a 3D world and as such is a proxy problem to mobile
service robotics. It supplies different scenarios focusing on various
goals (e.g., survive, reach a location, gather items, avoid enemies,
etc.). For expert evaluation, and Fig. 2 we used the k-items scenario
from [BWDS19] with k = 4. In this scenario, the agent, walls and
items are randomly placed in an environment at the beginning of
each episode. Then the agent needs to explore the environment until
it succeed, fail or reach a timeout of 525 steps. To succeed the agent
must first gather a green armor, then a red armor, followed by a
health pack, and finally a soul-sphere (blue circle). Gathering the
items in another order instantly kills the agent and ends the episode
(fail). Gathering an item in the right order grants a +0.5 reward
r, while failing grants a reward of −0.25. Additionally, the agent
receives a reward of−0.0001 at each step. Despite ViZDoom being
a 3D world, the agent positions p are within a bounded continuous

2D plane corresponding to the bird’s eye view of the environment.
We summarize a time-step t as follows: <pt ,(rt)>.

This task is challenging as the agent is required to take a decision
on the next action based on partial information of the environment,
i.e., the task is partial observable. The observed image represents
the agent’s field of view (i.e., what is in front of it), in a 90 degree
range and unlimited depth. The agent is required to recall previ-
ously seen observations in some way as it doesn’t have access to a
global view of the map. These views are stored in its latent mem-
ory, the representation studied in this work. The agent should also
use its memory to encode information on the items it gathered, and
the positions of items or walls encountered in order to quickly com-
plete this task.

2.3. Deep Reinforcement Learning and Memory

Deep Reinforcement Learning and Memory

As expressed in the taxonomy [ADBB17], DRL reached state of
the art performance in tasks such as robot control [LFDA16] and
board games [SSS∗17,JBTR19] where it even surpasses humans in
some cases. Recent Deep Reinforcement learning (DRL) models,
such as Deep Q-networks (DQN) [MKS∗13, MKS∗15], and Asyn-
chronous Advantage Actor-Critic (A3C) [MPBM∗16], learned to
play video games with human level control using only images as in-
put. As a result, they achieved human-level performances on Atari
2600 games [BNVB13] such as breakout. Those models rely on the
hypothesis that the optimal action can be decided based on a single
frame.

However, these approaches operate on environments that can
be totally observed (like a chess or GO board game), and not
partially with a field of view which is smaller than the environ-
ment. To address this, an internal latent memory can be intro-
duced [HS15] to provide a space the model can use to store an
approximation of the history of previous inputs and solve navi-
gation problems [MPV∗16, ZMK∗17, OCSL16], allowing learning
in simulated environments such as Matterport3D [CDF∗17], ViZ-
Doom [KWR∗16, BWDS19].

2.4. Visual Analytics and Deep Learning

Visual Analytics and Deep Learning

Visual Analytics have been proven to be significantly helpful
to deep learning (DL) experts to better understand their mod-
els [HKPC19], by providing insights on their decisions and in-
ner representations. Such tools can be applied to Recurrent Neu-
ral Networks used as memory. In LSTMVis [SGPR17] users can
formulate hypothesis on how the memory behaves with respect to
the current input sentence. It displays memory elements in a par-
allel plot, and by selecting time intervals highlights the most ac-
tive ones. The re-ordering of memory elements using a 1D t-SNE
projection applied to handwriting trajectory prediction [CHJO16]
provides an overview of the representation and highlight patterns
on how different feature dimensions reacts to different path e.g.,
curvatures. Memory dimensions displayed over the input text of
a character level prediction model [KJFF15] highlights characters
that trigger specific memory activations, and thus provide insights
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on how certain parts of the memory react to characters (e.g., to
quotes). RNN evaluator [MCZ∗17], uses clustering of memory el-
ements into grids and associate them to word clusters for each in-
put. This tool, also provides additional information on a chosen
input in a detail on demand view. RetainVis [KCK∗18], a tool ap-
plied to the medical domain, studies how a modified model out-
puts its prediction based on data. With RetainVis, a user can probe
an interesting data-point and alter it in a what-if approach to see
how it affects predictions. To reach this level of interpretability, the
model they used is altered, in a way that reduces its performances,
which is different than our approach as visualize the model post-
hoc. RNNbow [CPMC], is a tool able to handle different type of
input domains, and can be adapted to DRL. However, RNNbow
visualize the training of RNNs rather than their decisions. Such a
tool, displays the gradients extracted from the model’s training, and
contextualize it with the input sequence and its corresponding out-
put and label. In DRL with memory, the model does not receive
a feedback at each decisions, but rather at the end of the game.
This makes RNNbow more difficult implement as it produces large
batches on which this tool have issues scaling to. As the authors
mentioned, RNNbow targets non-experts user, and a domain spe-
cific tool may be required for experts.

As demonstrated by those tools, a decision at a time-step t can
be affected by an input seen at t−n. In our case, such inputs are
images and experts must first asses what the model did grasp from
them before exploring what is stored in the memory. In addition
the rewards from navigation tasks, are often sparse which results
in a lack of supervision over actions, known as the credit assign-
ment problem inherent to RL problems (the reward provided at a
given time step can correspond to decisions taken at arbitrary time
steps in the past). The model interacts with an environment it only
sees partially, therefore, its performances can be altered by factors
outside its inputs. This forces experts to visualize multiple time-
steps in order to analyse a single decision which makes them more
difficult to analyse with existing tools.

To our knowledge, DRL visualizations are under-represented in
the literature compared to other methods on visualizing deep learn-
ing. LSTM activations from an A3C agent [MPV∗16] have been
displayed using a t-SNE [VDMH08] projection. Despite being ef-
fective for an overview of the agent’s memory, it offers limited in-
formation on the role of the memory. T-SNE projections have also
been applied to memory-less DRL agents on 2D Atari 2600 games,
in the seminal DQN paper [MKS∗15], and in [ZBZM16]. DQN-
Viz [WGSY18] displays the training of memory-less models under
4 perspectives. First an overview of the complete training, action
distribution of one epoch, a trajectory replay combined with metrics
such as rewards and whether an action was random. DQNViz also
includes a details view to explore CNN parameters. Such a tool,
demonstrates the effectiveness of visual analytics solutions applied
to DRL. However, DQNViz focuses on the training of the model,
and how random decisions through training can affect it. In addi-
tion, the model of DQNViz is limited to fully observable 2D envi-
ronments in which the only movements available are left or right
and thus cannot be applied to navigation tasks. Finally, DQNViz is
not designed to display or analyze any memory.

In this paper, we address the under-explored challenge of vi-

sualizing a trained DRL model’s memory in a 3D partially ob-
served environment. We contextualize this memory with output de-
cisions, inputs, and derived metrics. We also provide interaction to
overview, filter, and select parts of such memory based on this con-
text to provide clues on agents decision reasoning and potentially
identify how the model uses its memory elements.

3. Model and Design Goals

Model and Design Goals

This section presents the model we used to design and implement
DRLViz. We describe the inner workings of those models and data
characteristics. One key aspect being how the memory of DRL is
created and updated by the agent, over space and time. Note that
those data will be generated and then visualized with DRLViz after
the training phase.

3.1. DRL Model

DRL Model

The DRL model we relied on only receives pixels from an RGB
image as input, from which it decides the action the agent should
perform with the Advantage Actor-Critic (A2C) [MPBM∗16] algo-
rithm. The model is composed of 3 convolutional layers followed
by a layer of Gated Recurrent Unit (GRU) [CGCB14], and Fully
Connected (FC) layers to match the actions set A. This model is in-
spired by LSTM A3C as presented in [MPV∗16] with A3C instead
of A2C, and a LSTM [GSK∗17] instead of GRU. Those changes re-
duce the agent’s training time, while preserving its performances.
The underlying structure that allows our model to associate raw
pixels to an action is illustrated on Fig. 2 and described as follows:

Stage 1: Environment→ Image. First, the agent’s field of view
is captured as image xt , i.e. a matrix with dimensions of 112× 64
with 3 RGB color channels.
Stage 2: Image→ Feature vector. The image xt is then analyzed
by 3 convolutional layers designed to extract features ft , result-
ing in a tensor of 32 features shaped as a 10× 4 matrices. These
features are then flattened and further processed with a Fully Con-
nected (FC) layer. Formally, the full stack of convolutional and FC
layers is denoted as function ft = Φ(xt ,θΦ) with trainable parame-
ters θΦ taking xt as input and given features ft as output.
Stage 3: (Features + previous memory)→ New memory. The
model maintains and updates a latent representation of its inputs
using a Gated Recurrent Unit (GRU) [CGCB14], a variant of
recurrent neural networks. This representation, called hidden state
ht , is a time varying vector of 128 dimensions, which is updated
at each time-step t with a trainable function Ψ taking as input
the current observation, encoded in features ft , and the previous
hidden state ht−1, as follows: ht = Ψ(ht−1, ft ,θΨ).
Stage 4: Memory vector→ Action. The model maps the current
hidden state ht to a probability distribution over actions A using
a fully connected layer followed by a softmax activation function,
denoted as the following trainable function:
at = ξ(ht ,θξ) with trainable parameters θξ. The highest probability
corresponds to the action at which the agent estimated as optimal
for the current step t.
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Figure 3: Memory construction process: at a current time-step t,
the agent updates its memory by producing a new memory vec-
tor. Each dimension of this vector (represented as a column) is ap-
pended to the previous ones chronologically (from left to right). As
a result, each row of the appended vectors represent the actions of
a single memory element.

The full set of parameters θ = {θΦ,θΨ,θξ} is trained end-to-
end. We used 16 parallel agents and updated the model every 128
steps in the environments. The gamma factor was 0.99, and we used
the RMSProp [TH12] optimizer with a learning rate of 7e−4. We
trained the agent over 5M frames, with a frame skip of 4. During
training, the agent does not necessary pick the action with the high-
est probability, as it needs to explore its environment, and even-
tually find better solutions. However, once the agent is trained, it
always chooses the action with the highest probability.

3.2. Constructing the Memory of DRL

Constructing the Memory of DRL

In the partially observed navigation problem we focus on, the agent
only sees the current observation, i.e., what is in its field of view at
the time-step t. However, past observations are also relevant for
decision making (e.g., to gather previously seen items). Therefore
the agent needs to build a representation of relevant information
extracted from the history of observations. This information is en-
coded in ht , a high dimensional (128 in our case) time varying vec-
tor.

Fig. 3 represents the construction process of the hidden states
matrix, which consists of the hidden states ht over the time of an
episode — the central visualization in DRLViz (Fig. 1). Each hid-
den state is vertically aligned per time-step t at which they are pro-
duced. Therefore, the accumulation of hidden states forms a large
2D matrix, where the horizontal axis is time (ht−1 < ht < ht+1)
and the rows are elements. A row of this 2D matrix represents the
evolution and activity of a hidden state element through time and
space as the agent moves. The activity of a hidden state element
is characterized by its value. In our case, each element of the hid-
den states is a quantity within the range [−1,1]. A value close to 0
represents low activity, whereas a value close to any extremity rep-
resents high activity. As it can be seen in Fig. 3, hidden states can
drastically change their values between two time-steps. Such value
changes can be widely observed across hidden states elements dur-

ing episodes. However, it remains unclear which elements, corre-
spond to which representations, and thus, responsible for decisions.

Norms of latent activations are an informative way of visualiz-
ing influences [CBYCT19, ZKL∗16]. With modern training meth-
ods such as weight decay, dropout and batch normalization, it
is highly improbable that a high activation can occur for unused
features. An alternative to hidden state activations would be to
analyze gradients of action probabilities with respect to hidden
states [SCD∗17, CPMC]. Such an approach can provide informa-
tion on how a chosen action is directly tied to the current state of
the memory, and which dimension influences the more this deci-
sion. However, in DRLViz we focus on actions through the episode
as a sequence rather than small sub-sequences. When visualizing
activations of an LSTM on text, Karpathy et al. [KJFF15] discov-
ered a pattern occurring outside back-propagation limitations of the
gradient signal. A solution would be to display both activations and
gradients, however preserving the usability and interpratbility of a
tool conveying such information is challenge yet to be tackled.

4. Design of DRLViz

Design of DRLViz

We built DRLViz as a visual analytics interface to understand
the connections between the latent memory representation (as de-
picted in Fig. 3) and decisions of an agent trained using Deep
Reinforcement Learning. DRLViz primarily exposes the internal
memory (Fig. 1) which is interactive and provides overviewing,
filtering and reduction both for exploration and knowledge gen-
eration [KAF∗08]. DRLViz is designed towards experts in DRL
to identify elements responsible for both low-level decisions (e.g.,
move towards a spotted HP) and eventually higher-level strategies
(e.g., optimizing a path).

4.1. Design Motivation and Goals

Design Motivation and Goals

We iteratively built DRLViz with frequent meetings from col-
leagues experts in DL and DRL (a total of 12 meetings with three
experts over 7 months). We first identified their current process to
analyze trained agents, e.g., recording videos to playback agents
episodes (from its point of view) and decisions (actions probabil-
ity) to get a sense of the strategy. We also observed experts do a
system print of the models’ inner values, sometimes add conditions
to those prints (e.g., when an item is in the field of view of the
agent), and manually look for unusual values. Our approach was to
re-build a similar interface in DRLViz with input/output views and
facilitate playback, but 1) in an interactive way, and 2) by adding
advanced, coordinated views to support advanced models visual-
ization aimed at models developers [HKPC19] (e.g., view on the
agent’s memory).

Based on a review of the current practices of researchers from
our focus group, and related work, we identified the following de-
sign goals (G) to be addressed to understand the behavior of a
trained agent using a learning model for navigation problems:

G1 Show an agent’s decisions over (a) space and (b) time, es-
pecially input and outputs of the model.
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G2 Expose the memory’s internal structure, i.e., the temporal
vector built over time (Fig. 3).

G3 Link memory over (a) time and (b) decisions with multiple
endpoints, e.g., starting from any time, location, memory or tra-
jectory point.

G4 Filter a sub-set of the memory (a sub-space) tied to a specific
agent behavior or strategy.

4.2. Overview and Workflow of DRLViz

Overview and Workflow of DRLViz

Fig. 1 shows an overview of DRLViz where the most prominent
visualization is the memory timeline of a trained agent (G2). The
primary interaction is browsing the timeline and playback the input
video feed and action probabilities (G1). Beyond re-playing sce-
narios, DRLViz implements multiple interactions to:

1. Overview the memory and check what the agent sees and its de-
cisions; visual cues for selection are dark, consecutive patterns
(Fig. 3).

2. Filter the timeline when something is of interest, e.g., related to
the activation, but also with additional timelines (actions, etc.).

3. Select elements whose activation behavior is linked to decisions.
Those elements are only a subset of the whole memory and are
visible on Fig. 1 Ã.

Those interactions are carried out using a vertical thumb similar
to a slider to explore time-steps t and select intervals. Such a selec-
tion is propagated to allwq the views on the interface, whose main
ones are image (perception) and probabilities (of actions) which
provide context on the agent’s decisions (G1 (b)). The input im-
age can be animated as a video feed with the playback controls,
and a saliency map overlay can be activated [SDBR14, GKDF17]
representing the segmentation of the image by the agent. The tra-
jectories view (Fig. 1) displays the sequence of agent positions
pt−1 > pt > pt+1 on a 2D map (G1 (a)). This view also displays
the items in the agent’s field of view as colored circles matching
the ones on the timeline. The position pt , and orientation of the
agent are represented as an animated triangle. The user can brush
the 2D map to select time-steps, which filters the memory view
with corresponding time-steps for further analysis (G3 (a)). DR-
LViz, also includes a t-SNE [VDMH08] view of time-steps t using a
two-dimensional projection (Fig. 1 bottom left). T-SNE is a dimen-
sionality reduction technique, which shows similar items nearby,
and in this view, each dot represents a hidden state h occurring in
a time-step t. The dot corresponding to the current time-step t is
filled in red, while the others are blue. The user can select using a
lasso interaction clusters of hidden states to filter the memory with
the corresponding time steps. Dimensions among the selected hid-
den states can then be re-ordered with any criteria listed in Table 1,
and brushed vertically (Fig. 1 ¯).

The result of such an exploratory process is the subset of ele-
ments of the memory (rows) that are linked to an agent’s decision
(Fig. 1 ¯). This addresses the design goal G4. Such subset can be
seen as a memory reduction which can be used as a substitute to the
whole memory (we will discuss it in the perspective sections). This
subset can also be used in other episodes listed as clickable squares
at the bottom left corner of DRLViz.

Criteria Formula Description

ACTIVATION
n
∑

t=1
|hti| Elements most involved

in decisions.

CHANGE
n−1
∑

t=1
|hti−ht+1i| Maximal change.

STABLE CHANGE−1 Minimal change.

SIMILAR | 1n
n−1
∑

t=1
hti− 1

k

k−1
∑

t=1
ht j| Elements in average

different during an
interval of k time-steps
than outside it.

Table 1: List of re-ordering criteria as they appear in DRLViz. t is
the current time-step, n the number of steps (525 at most), and i the
element.

Metric Data Type Values
Health of the agent Quantitative death [0,100] full
Event (item gathered) Flag (1) gathered
Item in FoV Binary no item (0, 1) item
Orientation to items Degree left [-45,45] right
Variation of orientation Quantitative stable [0,30] change
Decision ambiguity Ratio sure [0,1] unsure

Table 2: List of derived metrics (from top to bottom on Fig. 1 ®)

4.3. Memory Timeline View

Memory Timeline View

The memory timeline exposes the memory’s internal structure (G2),
which is vector (vertical column) of 128 dimensions over 525 time-
steps as a heat-map (Fig. 1 ) from which an interval can be
brushed for further analysis. Each cell (square) encodes a quan-
titative value, whose construction is illustrated in Fig. 3, using a
bi-variate color scale from [LB04] with blue for negative values
and orange for positive values. Preserving the values as they were
initially produced by the model is pertinent as some memory el-
ements (rows) can have both positive and negative values, which
may not have the same signification for the model and thus cause
different decisions. This will be further explored in Sec. 6.4.

By default DRLViz displays the vector as it is produced by the
model, hence the order of elements has no particular semantic. The
memory can be re-ordered using a drop-down menu according to
comparison criteria listed in table 1. With the ACTIVATION criteria,
a user can observe elements that may be most involved in deci-
sions, while with CHANGE, elements that may be the most used by
the model are emphasized, with SIMILAR, a user can see elements
with constant activations during selected intervals. In addition of
those criteria, we provided the possibility to re-order the memory
as presented in [CHJO16] i.e., a one dimensional t-SNE projection
of the absolute values. The re-ordering can either be applied to the
whole memory or a selected interval. An order is preserved across
memory filters and episodes until the user changes it.

4.4. Derived Metrics View
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Derived Metrics View

The derived metrics timeline addresses the design goals G3 and G4.
It represents metrics calculated from ground truth information pro-
vided by the simulator. Those metrics aim at supporting the user
in finding interesting agent behaviors such as What does a trained
agent do when it has no health pack in its field of view?. The view
encodes measures of both the inputs (e.g., health pack is spotted)
simulator (e.g., reward) and outputs (e.g., actions). Finally DRLViz
features a stacked area chart of actions probabilities encoding prob-
abilities per action represented by colors corresponding to the ones
on the action distribution graph in 1. With this visualization, users
can observe similar sequences of decisions.

The derived metrics and stacked area chart are below the
memory timeline and share the vertical thumb from the memory
slider (G3 (a)) to facilitate comparisons between the memory and
the behavior of the agent (G3 (b)) as depicted in Fig. 4. The de-
rived metrics can be dragged vertically by the user as an overlay of
the memory to compare metrics with activation values, and identify
memory elements related to them (G4). A constant activation of an
element during the same intervals of a metric such as HP in FoV,
while being different otherwise; may hint that they are related. We
provide a full list of metrics in table 2. Two metrics are particularly
complex and described as follows:

Variation describes how the the agent’s orientation (i.e., its FoV)
changes over three consecutive time-steps. High variations indi-
cate hesitation in directions and intervals during which the agent
turns around, whereas low variations indicate an agent aligned with
where it wants to go. However, in some cases (e.g., the agent stuck
into a wall), actions may have no effect on the agent’s orientation
which lead the variation to remain low.
Ambiguity of a decision is computed using the variance V of action
probabilities. The variance describes how uniform actions proba-
bilities are with respect to the mean. A variance V = 0 indicates
that there is no difference between actions probabilities, and hence
that the agent is uncertain of its decision. In the other way, a high
variance represents strong differences in the actions probabilities
and the agent’s high confidence on its decision. Since the sum of
all actions probabilities equals to 1, the variance is bounded within
the range [0,1]. To ease the readability, the variance is inverted as
it follows: ambiguity = 1−V . An ambiguity close to 1 represents
an incertitude in the agent’s decision.

5. Implementation

Implementation

To explore the memory of a trained agent, one needs to create in-
stances of exploration scenarios. For experts evaluations (Sec. 6)
we used a trained agent to explore 20 times the environment with
different configuration (i.e., positions of items, start position of the
agent, its orientation). During those episodes, we collected at each
time-step information from the agent such as its FoV image, action
probabilities, memory vector, and information from the environ-
ment such as the items in the agent’s FoV, the position of the agent,
the agent’s orientation and its health. The collected data is format-
ted as a JSON file which groups data elements per episodes and
then per steps with an average of 30Mo per episode. Those data are

2

4

3
1

Figure 4: DRLViz allows to compare selected time intervals ¬.
For instance to compare when agents face dead-ends  and when
they face health-packs ®. One can observe that more elements are
active while the agent is facing HPs than while facing a dead-end.
Perhaps those elements are encoding information concerning HPs.
When facing a dead-end, both the orientation variation and de-
cision ambiguity are high which can be interpreted as the agent
hesitating on which action to choose.

generated using DRL models implemented in Pytorch [PGC∗17],
and formatted in Python 3. More technical details are provided as
supplemental material.

The user interface of DRLViz loads data using JavaScript
and D3 [BOH11]. The interactions between the model and the
front-end are handled by a Flask Python server. The data, sep-
arated per episode is generated in a plug-in fashion i.e., with-
out altering the model nor the simulator. Both the interface
code source (https://github.com/sical/drlviz) and
an limited interactive prototype (https://sical.github.
io/drlviz) are available online.

6. Experts Evaluation

Experts Evaluation

We conducted a user study with three DRL experts who are experi-
enced researchers building DRL models and match the target pro-
file for DRLViz [HKPC19]. We report on their use of DRLViz, as
well as insights they gathered. Those results may not be confirmed
or denied using DRLViz, but provide hints to formulate hypothe-
sis that can then be studied outside DRLViz e.g., through statistical
evidence.

6.1. Protocol and Navigation Problem

Protocol and Navigation Problem

We recruited three DRL experts (Expert #1, Expert #2, Expert #3)
from two different academic laboratories to evaluate DRLViz. They
were shown a 10 minutes demonstration of DRLViz on a sim-
ple ViZDoom scenario: health gathering supreme. The evaluation
started with DRLViz loaded with data extracted from a model de-
veloped by Expert #1, and ended after 35 minutes, during which

https://github.com/sical/drlviz)
https://sical.github.io/drlviz)
https://sical.github.io/drlviz)
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Figure 5: Summary of the insights gained by the experts. Expert #1 noticed two intervals during which the agent only turned right, by using
both trajectory ¬ and stacked area chart of actions  views. Once he replayed those sequences, he stated that the agent came twice in the
same dead-end ®. Expert #3 observed a hidden state dimension which is blue when the agent sees the red armor before the green armor, and
then remained orange until when he saw the green armor ¯. Expert #2 probed a dimension that is active as the agent first saw the HP, and
remained active until it gathered it. Expert #1 also identified two hidden state elements that changes as the agent gathered the health pack and
then kept their values until the end of the episode ±. Using saliency maps ², Expert #2 observed that the agent ignored the soul-sphere until
it gathered the first three items ³. Finally, Expert #3 identified clusters in the t-SNE projection which corresponds to the agent’s objectives
e.g., gathering the green armor ´.

experts could explore the displayed data. While using DRLViz ex-
perts were told to explain their thoughts and what they wanted to
see. Then, experts were asked to fill a post-study questionnaire to
collect their first impressions with open questions such as "Which
part of DRLViz was the least useful?". The evaluation ended with
a discussion guided by the post-study questionnaire on their expe-
rience using DRLViz and how it can be improved. The complete
evaluation lasted in average 1 hour depending on the length of the
discussion. The model used was an A2C [MPBM∗16] with 3 con-
volutional layers and GRU layer with 128 dimensions as memory.

6.2. Feedback from Expert #1

Feedback from Expert #1

Expert #1 is the most experienced expert for this evaluation as he
designed both the model and the navigation task [BWDS19] and
created animations of agents behaviors. Expert #1 was our primary
collaborator to design and build DRLViz.

Fig. 5 shows DRLViz loaded with the k-item scenario. Expert #1
first selected an interval corresponding to the agent searching and
gathering the last item. This interval started one step after the agent
gathered the HP (third item), and ended as the agent gathered the
soul-sphere (last item). Expert #1, then used the CHANGE criteria

to re-order the interval. While replaying it, he noticed two elements
with similar activations (Fig. 5 ±). Those elements remained blue
during the interval, however they were inactivated (gray) during the
rest of the episode. With further investigation, Expert #1 noticed
that those elements were active 4 steps before the agent gathered
the HP. Expert #1 described those elements as flags i.e., elements
that encodes binary information. Expert #1’s intuition was that the
agent learned to complete the navigation problem by focusing on
one item at the time. And only used its memory to encode informa-
tion on items it already gathered, and hence which item it should
currently gather. Expert #1 concluded that the two elements may
be the agent’s representation that it gathered the HP, and hence
that it should now focus on gathering the soul-sphere.

Then using the action probabilities temporal stacked area
chart (Fig. 5 ), Expert #1 noticed a specific time interval dur-
ing which the agent repeated the same action for almost 15 steps.
Intrigued by such behavior, Expert #1 replayed this interval and no-
ticed that the agent was within a dead-end (Fig. 5 ®) and repeated
the action right until it changed its orientation up to 180 degrees.
Expert #1 commented that observing such interval is interesting be-
cause as the agent converges towards an optimal policy, it may have
less chances to encounter dead-ends, and thus forgot how to escape
them. Expert #1 also observed a similar interval with only right ac-
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tions in which the agent escaped the same dead-end. Expert #1
concluded that the dead-end was not encoded in the agent’s
memory, and hence the agent returned to it while searching for
items.

6.3. Feedback from Expert #2

Feedback from Expert #2

Our second expert, Expert #2, started by re-ordering the memory
using the STABLE criteria. He noticed a hidden state element, and
zoomed (vertical brush) on it. This element had continuous acti-
vations starting as the agent first saw the HP and remained active
until the agent gathered both the red armor and the HP. Because
such element is active regardless of the items the agent gath-
ered yet, Expert #2 interpreted this element as a flag encoding
if the agent has seen the health pack or not.

Then Expert #2 focused on the saliency maps combined with
episode playback. He noticed that in one episode, the agent en-
countered the soul-sphere (last item) before it gathered the red
armor (second item). During those time-steps, the saliency maps
are not activated towards the soul-sphere despite being the agent’s
FoV (Fig. 5 ²), and the memory had no visible changes. Expert #2
intuition was that the agent did not perceived the item. In the final
steps of the episode, once the agent gathered the firsts 3 items and
then re-encountered the soul-sphere, the saliency maps were acti-
vated towards it (Fig. 5 ³) and the memory activations changed.
Expert #2 expressed that "It is interesting because as soon as it
sees it [the soul-sphere] its behavior changes". Expert #2 con-
cluded that the agent intentionally ignored the soul-sphere be-
fore it gathered previous items, and as Expert #1 mentioned,
the agent learned to solve this navigation problem by focusing
on one item at a time.

6.4. Feedback from Expert #3

Feedback from Expert #3

Expert #3 began his exploration with the t-SNE 2D projection
as entry point to identify clusters of hidden states. Expert #3 se-
lected groups of states using the lasso selection (Fig. 5 ´) to filter
the memory timeline. The selected cluster represented consecutive
steps, forming a continuous time interval. After replaying this in-
terval, Expert #3 observed that it started at the beginning of the
episode and ended when the green armor (first item) entered the
agent’s FoV. Expert #3 interpreted this cluster as correspond-
ing to an agent objective, in this case gathering the first item.

Following up on the previously identified cluster, Expert #3 re-
ordered it with the STABLE criteria. Expert #3 noticed one particu-
lar hidden state dimension that was activated in blue until the green
armor entered the agent’s FoV, and then was activated in orange
for the rest of the episode. Expert #3 interpreted such element ac-
tivation as a flag encoding if the agent has seen the green armor.
However, after observing this element activations across episodes,
Expert #3 noted that it was inactivated (grayish) at the start of an
episode. After re-playing this episode he observed that the agent
had no armor in its FoV, as opposed to the first episode analyzed
where the agent started with the red armor in its FoV. In another

episode, where the agent has the green armor in its FoV since the
start, the element was constantly activated in orange. Expert #3
concluded that this element encoded if the agent saw an ar-
mor rather than just the green armor. However, once the agent
gathered the green armor, the element remained orange despite still
having the red armor in the agent’s FoV. Expert #3 added that this
element also encodes if the agent gathered the green armor.

7. Discussion

Discussion

In this section, we discuss the collected feedback from experts, as
well as the limits of the current version of DRLViz.

7.1. Summary of Experts Feedback

Summary of Experts Feedback

Experts filled a post-study questionnaire relative to DRLViz use-
fulness and usability. Overall DRLViz was positively received by
all them: both Expert #1 and Expert #2 stated that DRLViz is "in-
teresting to explain the behavior of the agent" and "easy to use".
However, Expert #3 stated that he felt "overwhelmed at first, but
soon got used to navigation". All 3 experts evaluated the 2D t-SNE
projection as the most useful view because it can provide insights
on the agent’s memory and strategies. They used this view as entry
point on at least one episode. They commented that the re-ordering
was effective to observe desired hidden states dimensions. Both Ex-
pert #2 and Expert #3 used the STABLE criteria because it high-
lights elements that are different from the rest and should corre-
spond the selected interval. In the other hand, Expert #1 preferred
the CHANGE re-ordering criteria because those elements have in-
formation concerning the interval. Expert #3 also noted that "its
handy being able to drag it up [derived metrics timeline] and over-
lay it on the hidden states" (G3). The experts concluded that the
agent learned to solve this task sequentially, i.e., by focusing on
gathering one item at the time. And thus that the agent only stored
information corresponding to which items its has gathered rather
than the positions of every seen items at any time-steps.

All three experts evaluated the memory reduction interaction that
filters the memory view (zoom) not intuitive and hard to use with-
out loosing visual contact with the hidden state dimensions they
wanted to focus on. This partially validates our memory reduction
goal (G4). On this matter, Expert #1 commented that since this
agent’s memory has 128 dimensions the zoom is not as useful as it
could on larger memories. Expert #2 also commented on the use of
the different re-ordering criteria, and that their specific functioning
was hard to understand, especially the projection. Expert #3 also
mentioned that he "doesn’t fully understand how the projections
re-ordering methods are helpful". To tackle those issues, Expert #3
suggested to use the derived timeline to re-order the memory, i.e.,
observe hidden states activations when a feature enters the FoV.
Expert #3 also commented that a horizontal zoom could be useful
to focus on one particular time interval, and reduce the number of
steps to observe. Expert #1 mentioned that brushing the memory
while keeping activation areas as squares, i.e., both horizontally
and vertically could be a better way to implement a more consis-
tent zooming interaction.
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7.2. Limits

Limits

Generalization and scalability are the main limits of the current
version of DRLViz. Regarding generalization, specific calculations
need to be made such as for the derived metrics timeline that is
generated from the simulator i.e., the items in the agent’s FoV.
So the current metrics are tied to ViZDoom but minor adapta-
tion of the tool to specific environments will be needed, but re-
quiring technical knowledge. In the next section we will explain
how the interaction techniques in DRLViz can be used beyond the
tool for better timeline comparisons. Scalability is always a con-
cern with visualization techniques. DRLViz supports long episodes
and variable memory size. However, if those are larger than the
screen real estate (e.g., beyond on average 1200 steps and more
than 1000 memory dimensions) each memory cell would be smaller
than one pixels, and thus difficult to investigate. To tackle such an
issue, LSTMVis [SGPR17] introduced a parallel coordinate plot
with each line encoding a memory element. However, with DRLViz
we sought to support trend detection and thus encode the memory
overview using colored stripes [FFM∗13] which complies with our
data density challenge and requirement to align the memory with
the derived metrics below. We then rely on zoom interactions for
details for both time and elements.

We plan in the future to support aggregation strate-
gies [WGGP∗11] to provide more compact representation of
the timelines. Alignment by event of interest [DWPQ∗08] (e.g.,
gathering an item) may also provide more compact representations
of metrics, and also better support comparison of behavior before
and after this event. A concern raised by experts was the com-
munication of insights gained during the exploration process. We
plan to explore summarizing techniques for those insights, such as
state charts [STST18] in which each state corresponds to a local
strategy e.g., reach an item.

8. Perspectives

Perspectives

We present and discuss three works in progress that may be po-
tential improvements of DRLViz, based on experts feedback, that
primarily expand its exploration power and generalization.

8.1. Memory Reduction

Memory Reduction

As experts noticed during interviews, agents memory can often be
sparse (e.g., Fig.1) or hold redundancy (e.g., Fig. 5 ±). Thus we

Type of reduction Steps HP Poison Health
survived gathered gathered

Full-memory 503.98 37.56 4.28 81.47
Half-memory 493.92 37.88 4.66 81.61

Table 3: Performances of agents with different memory reduction
strategies (each averaged over 100 episodes).

hypothesize that some elements may either never be activated or
there might be multiple, redundant activation at the same time. We
conducted an experiment to assess that some sub-set of the mem-
ory is sufficient to solve a navigation problem, and the rest may
be discarded. We used the health gathering supreme scenario in
which the agent must collect HPs to survive, hence it is easier to
solve than k-item. With a larger memory of 512 dimensions, we
"removed" hidden state elements by multiplying them by 0 during
the experiment.

Table 3 shows similar performances between agents with full
and top half memory re-ordered with ACTIVATION on the health
gathering supreme scenario and a large 512 memory of 512 dimen-
sions. One hypothesis to draw is that the agent has at least 256 non-
essential elements. Efficient selection of those elements remains
a challenge, as it must account complex temporal dependencies.
We built an explorable visualization [JVW19] to support this pro-
cess manually and implemented several strategies, to compare with
agents behavior (e.g., being hesitant and producing mistakes such
as running in circles or bumping into walls which could have been
avoided using its full memory). This paves the way for direct fil-
tering by elements of the memory heat-map in a future version of
DRLViz, as the current version only selects temporal intervals.

8.2. Guiding Exploration with Extended Timelines

Guiding Exploration with Extended Timelines

During our interviews, experts suggested to better support the
memory analysis process, as the current version of DRLViz relies
on visual exploration by the user, with no specific guidance. We
identified two areas of improvement for a future version of DR-
LViz: adding more metrics, and advanced filtering. Regarding the
metrics, table 2 introduced derived indicators from the agent de-
cision. Fig.6 illustrate that more metrics can be added using vari-
ations of their parameters (e.g., changing variability thresholds or
the distance to consider an enemy is in the FoV or not) which sup-
port more questions a user may want to investigate. Such metrics
are represented in a compact way, and easy to activate by scrolling
down, while remaining focused on the memory. Regarding the
comparison, the current version only implements juxtaposition and
overlay; while explicit encoding [GAW∗11] is a third way to com-
pare timelines and memory. We applied this third way by adding a
boolean queries builder [LGS∗14] using AND or OR to filter time-
lines. Those boolean operators are also applicable to all views of
DRLViz, such as 2D-map, t-sne or a brush on the memory. This
helps users to combine multiple views and answer question such as
Where are the areas of memory with the agent has high health, in
this part of the environment, with an enemy and an explosive barrel
in FoV?. This results into intervals in which the agent is susceptible
to shoot on barrels to kill enemies.

In order to summarize the input images and ease their com-
parison with derived metrics, we developed slit square interaction
based on slit tears [TGF09]. With slit square, a user can brush a
square on the inputs. Those squares are then compacted to with the
width shared by all time-aligned elements in DRLViz.

8.3. Generalization to other Scenarios and Simulations
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Figure 6: Extended version of DRLViz loaded on with death-match data. From a slit square selection ¬ outputs a timeline that summarizes
the agent’s point of view . And the additional metrics and operators ®.

Generalization to other Scenarios and Simulations

Finally, we started investigating using DRLViz as a general-purpose
tool for any trained agents with a memory and spatio-temporal
informations. Fig. 6 illustrates DRLViz loaded with a different
scenario where the agent shoots towards enemies on the death-
match [LC17] with the Arnold model. In general, DRLViz can
be used beyond ViZDoom (e.g., referred in [BWDS19]), such as
Atari games [WGSY18] without any major change. Using pixel-
based representations [Kei00] and zooming [KAL∗18] would as-
sure scalability of the timeline representations with scenarios re-
quiring more time steps. We plan to conduct further research
to identify other metrics and extend DRLViz to other simulators
mentioned by our experts, such as Matterport3D [CDF∗17] and
Habitat-AI [SKM∗19] for real-world scenarios, and competitions
such as Animal-AI [CBH19].

9. Conclusion

Conclusion

In this work, we introduced DRLViz, a visual analytics inter-
face which allows users to overview, filter and select the memory
of Deep Reinforcement Learning (DRL). Analysts using DRLViz
were able to explain parts of the memory of agents trained to solve
navigation problems of the ViZDoom game simulator, in particular
local decisions and higher level strategies. DRLViz received posi-
tive feedback from experts familiar with DRL models, who man-
aged to browse an agent memory and form hypothesis on it. DR-
LViz paves the way for tools to better support memory reductions
of such models that tend to be large and mostly inactive.
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