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Abstract
The “best-estimate plus uncertainty” (BEPU) methodology is the term used
in the nuclear engineering community when dealing with uncertainty quan-
tification issues in realistic numerical simulation models. One of the most
critical hypothesis in these studies is the choice of the probability distribu-
tions of uncertain input variables which are propagated through the model.
Bringing stringent justifications to the BEPU approach, especially in a safety
study, requires quantifying the impact of potential uncertainty on the input
variable distribution. To solve this problem, this paper deepens the robust-
ness analysis based on the “Perturbed Law-based sensitivity Indices” (PLI).
The PLI quantifies the impact of a perturbation of an input distribution on
the quantity of interest (as a quantile of a model output or a safety margin)
in the BEPU study. The mathematical formalism of the PLI is applied to
two particular quantities of interest: the quantile and the superquantile. For
both quantities, the PLI can be easily computed using a unique Monte-Carlo
sample containing model inputs and output. Numerical tests are developed
in order to define validity criteria of a PLI-based robustness analysis. The
practical use of the method is illustrated on thermal-hydraulic computer
experiments, simulating a cold leg Intermediate Break Loss Of Coolant Ac-
cident (IBLOCA) in a pressurized water nuclear reactor.

Keywords: Computer experiments, Density perturbation, Importance
sampling, Nuclear safety, Sensitivity Analysis, Uncertainty

1. Introduction

Uncertainty quantification from numerical simulation models [1, 2, 3] is gain-
ing more and more attention in the engineering fields (e.g., nuclear and
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aerospace). It not only allows to assess the reliability and safety of com-
plex systems (e.g., by estimating statistical risk measures as variance, quan-
tile, probability of threshold exceedance, . . . ), but also to provide robust
methodological tools which can complete the deterministic (and sometimes
over-conservative) analyzes already performed, in order to better identify
the safety margins. As an example, safety analyzes of nuclear power plants
involving thermal-hydraulic issues, such as a cold leg Intermediate-Break
Loss-Of-Coolant Accident (IBLOCA) in a pressurized water reactor, can be
treated using probabilistic and statistical approaches [4, 5]. In the nuclear
engineering community, when the computer code, that is used to simulate the
involved physical phenomena, lies on realistic assumptions, the uncertainty
quantification framework is known as the “best-estimate plus uncertainty”
(BEPU) methodology [6].

It is widely recognized that global sensitivity analysis plays a key role in
the BEPU methodology [7, 8] and, more widely, in systems modeling and
policy support [9, 10, 11]. When the quantity of interest is related to a
rare event simulated by the numerical model, reliability-oriented sensitivity
analysis methods can be put in action in order to quantify the sources of
uncertainty (the model inputs) that drive the rare event [12, 13, 14, 15, 16].
However, one of the most critical hypothesis in classical BEPU studies is
the choice of the probability distributions of the uncertain inputs which are
propagated through the numerical model [17, 18].

When experimental data are available, the methodology called inverse
uncertainty quantification allows to obtain the probabilistic distributions of
some physical model inputs [17]. The inverse uncertainty quantification re-
lies on a statistical inference process, involving a frequentist (via maximum
likelihood inference) or a Bayesian approach [19, 20, 21]. Alternative ap-
proaches exist, as combining the use of design of experiments and forward
uncertainty propagation (see [22, 23] for examples in the nuclear field). For
inputs without associated experimental data allowing to model their uncer-
tainties, expert judgment is most often used. Whatever the method used for
the choice of the probability density functions (pdf) for the model inputs,
these pdf are established with various levels of confidence. In this paper, we
focus on this particular issue associated to the residual uncertainty about
each input pdf (whatever it was obtained). Indeed, facing to regulatory au-
thorities, bringing stringent justifications to the BEPU approach requires
quantifying the impact of this second-level uncertainty (i.e. the uncertainty
on the input pdf) on the specific quantity of interest (QoI), most often a
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high-order quantile, related to the BEPU study.
To address such issues, several strategies exist in the literature as a proba-

bilistic modeling of uncertainty in the parameters of the inputs’ distributions
(see [24] for the uncertainty propagation issues and [25, 26] for global sensi-
tivity analysis tools in this context) or getting out of the probabilistic frame-
work by dealing with imprecise probabilities theories (see [27] for a review
and [28] for global sensitivity analysis in the context of the p-box theory).
Recently, the new branch of robustness analysis in uncertainty quantification
has emerged in the field of sensitivity analysis of model outputs [29, 30, 31].
It consists of evaluating the impact of the choice of the inputs’ distributions
and, more precisely, by analyzing the QoI variations with respect to this
choice. Two practical interests of this approach are to stay within the proba-
bilistic framework and to avoid the difficult step of probabilistically modeling
the input distributions parameters. These two aspects are clearly advanta-
geous for the industrial issues related to our IBLOCA application of interest
[32].

One particularly interesting solution for the robustness analysis has been
proposed in the context of reliability-oriented sensitivity analysis by [33] with
the Perturbed Law-based sensitivity Indices (PLI). This measure only needs a
Monte Carlo sample of model inputs and output, and presents the important
advantage to be not limited by the number of model inputs that can be
considered. Another advantage of the PLI is that it explicitly focuses on a
particular QoI, that has to be specified by the user. The QoI of most BEPU
studies is a high-order (e.g. 95%) quantile of the model output variable
[4, 34, 32]. However, in simulation-based risk analysis, several works [35, 36]
have shown the interest of also considering the superquantile (i.e. the mean
of the pdf tail exceeding the quantile) as a QoI. This risk measure gives
interesting information about what is happening in the distribution-tail above
the quantile. Its estimation also presents more regularities than those of the
quantile estimation.

In this paper, the PLI-quantile concept [37, 38, 39] is extended to the PLI-
superquantile one. Via intensive simulation studies, our work also addresses
a fundamental question that arises in practice: which level of perturbations
can be applied on an input pdf so that the method remains valid? The
following section develops the mathematical formalism of the PLI applied
to the quantile and superquantile. It shows how, for both the QoI, the
PLI can be easily computed using a unique Monte-Carlo sample (ensemble
of code runs) containing model inputs and output. Section 3 describes the
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numerical tests that allow to define validity criteria of a PLI-based robustness
analysis. Section 4 illustrates the PLI approach to assess the robustness of
the IBLOCA thermal-hydraulic simulation scenario that uses the calculation
code CATHARE2. A conclusion section ends this paper.

2. Principles of PLI-quantiles and PLI-superquantiles

2.1 Introduction to PLI

Given the random vector X = (X1, . . . , Xd) ∈ X ⊆ Rd of d independent
uncertain input variables of pdf f(x) = f1(x1)×. . .×fd(xd), G(·) a numerical
model and Y = G(X) ∈ R the model output, the QoI is a statistical quantity
derived from Y . For instance, it can be the mean, the variance, a quantile
or a threshold exceedance probability of the model output. In this paper, we
limit the PLI analysis in the case of independent inputs and let to further
studies the development of PLI in the dependent inputs case.

A PLI aims to measure the impact of the modification of an input density
on a QoI [33]. In order to compute the i-th PLI, we change the density fi of
Xi into a density fiδ, where δ ∈ R represents the level of the perturbation.
The PLI is then simply defined as the relative change in the QoI generated
by the perturbation:

Siδ =
QoIiδ −QoI

QoI
. (1)

This definition slightly differs from the one proposed in previous studies
[33, 38]. Indeed, after several applications of the PLI, it has been found
more convenient to compute directly the relative variation of the quantile
when submitted to a density perturbation [32]. The interpretation of PLI is
then straightforward.

2.2 Quantiles and superquantiles

The quantile of order α of Y is

qα = qα(Y ) = inf{t ∈ R, FY (t) ≥ α} , (2)

where FY is the cumulative distribution function of the random variable
Y . In BEPU studies, a high-order (e.g. 95%) quantile value is most often
preferred to a failure probability computation, as it can easily be related to
safety margin concepts [4].
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However, the quantile does not give any information about what is hap-
pening in the distribution-tail above the quantile. Another quantity, called
superquantile, giving more information about the distribution-tail has there-
fore been introduced [40]. A superquantile of order α is defined by

Qα = Qα(Y ) = E
(
G(X)1G(X)≥qα

1− α

)
, (3)

where E(·) denotes the expectation operator and 1A is the indicator function
of the set A. If FY is continuous, we have the equivalence with the following
definition [41]:

Qα = E(G(X)|G(X) ≥ qα) . (4)

Also known under the name of expected-shortfall and conditional-value-at-
risk in finance, the superquantile has been proven to be a coherent risk mea-
sure (which is not the case for the quantile) [40, 35]. Moreover, its empirical
estimator often presents more regularities than those of the quantile empirical
estimator.

2.3 Reverse importance sampling-based estimation formulas

In a lot of applications, for instance in nuclear safety studies (see, e.g., [42]),
the computer models are costly in terms of CPU time and memory. Only
a limited number N of code runs is then available for the estimation of all
the PLIs. The sample XN = {x(n) = (x

(n)
1 , ..., x

(n)
d )}1≤n≤N of N independent

realizations of X (which follow the pdf f) is propagated through the model
G to produce the sample YN = {yn}1≤n≤N of N model outputs. The most
standard estimation of a quantile is based on the empirical quantile estimator

denoted q̂αN = inf{t ∈ R, F̂N
Y (t) ≥ α} where F̂N

Y (t) =
1

N

N∑
n=1

1yn≤t is the

empirical estimator of the cumulative density function of Y . The Wilks
formula or the bootstrap technique can then be used to add a second level of
conservatism (due to the limited size of the sample [43]). In this work, the
bootstrap technique will be used.

From (2), the perturbed quantile writes:

qαiδ = inf{t ∈ R, FY,iδ(t) ≥ α} , (5)

with FY,iδ the cumulative distribution function corresponding to the input
variable Xi sampled from fiδ. In order to give an estimation of the perturbed

5



quantile (denoted q̂αN,iδ) from the same sample XN , we use the so-called re-
verse importance sampling mechanism [44] to compute F̂N

Y,iδ [39]:

F̂N
Y,iδ(t) =

N∑
n=1

L
(n)
i 1(yn≤t)

N∑
n=1

L
(n)
i

, (6)

with L(n)
i the likelihood ratio

fiδ(x
(n)
i )

fi(x
(n)
i )

. We obtain

q̂αN,iδ = inf{t ∈ R, F̂N
Y,iδ(t) ≥ α} . (7)

The estimator ŜN,iδ of the PLI-quantile consists in replacing QoI by q̂αN in
Eq. (1). Its theoretical properties (asymptotic consistence and central limit
theorem) have been given in [45].

From (3), the perturbed superquantile writes:

Qα
iδ = Eiδ

(
G(X)1G(X)≥qαiδ

1− α

)
, (8)

where Eiδ means that the expectation is taken under the perturbed distri-
bution (f1, . . . , fiδ, . . . , fd). We define an alternative version (used in the
engineering study of [36]) of the perturbed superquantile:

Q′αiδ = E
(
G(X)1G(X)≥qαiδ

1− α

)
. (9)

This equation gives an alternative estimator because the expectation is taken
under the initial distribution instead of the perturbed distribution. Its in-
terest is that its estimation is easier and more stable (because the available
sample is more representative of the initial distribution than the perturbed
distribution). In the following, the alternative perturbed superquantile refers
to Eq. (9), while the original perturbed superquantile refers to Eq. (8).

In order to estimate these quantities from the sample (XN ,YN), we use
the same mechanism (i.e. the reverse importance sampling procedure) as
before by using the discretized-integral formula

Q̂α
N,iδ =

1

N(1− α)

N∑
n=1

G(x(n))1G(x(n))≥q̂αN,iδ
L
(n)
i . (10)
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The estimator ŜN,iδ of the original PLI-superquantile consists in replacing
QoI (resp. QoIiδ) by Q̂α

N (resp. Q̂α
N,iδ) in Eq. (1). For the alternative

PLI-superquantile estimation, we simply write:

Q̂′
α

N,iδ =
1

N(1− α)

N∑
n=1

G(x(n))1G(x(n))≥q̂αN,iδ
. (11)

In the following sections, the PLI-quantile and original PLI-superquantile
are considered. Moreover, the estimator ŜN,iδ will be denoted Ŝiδ.

2.4 Input density perturbation method

The density perturbation approach proposed in [33] (and used in [38, 46])
consists of replacing the density fi of one input Xi by a perturbed one fiδ,
where δ ∈ R represents a shift of a moment (e.g. the mean or the variance).
Amongst all densities with shifted mean or variance of a δ value, fiδ is defined
as the one minimizing the Kullback-Leibler divergence from fi. Figure 1
illustrates some perturbed pdf after a perturbation on the mean of initial
pdf. Increasing the mean of a Gaussian pdf just consists in translating it by
a constant shift (the perturbed pdf remains Gaussian). Increasing the mean
of a uniform pdf turns to a non-uniform pdf (because we force its support to
be fixed) which gives more weights to the large values.

In the following, we focus on one type of perturbations used in most of
the studies, that is the perturbation of the mean of the random variable.
However, even in this simplest perturbation case, minimizing the Kullback-
Leibler divergence can be difficult or even impossible for some particular
distributions (such as the log-normal one) [33]. A simpler approach proposed
in [30] starts by applying an iso-probabilistic operator (such as the Rosenblatt
transform [47]) to the initial input pdf, in order to transform all the input
random variables into centered normalized Gaussian ones (denoted N (0, 1)).
In case of independent inputs, it just corresponds to the inverse probability
distribution transform. Then, the perturbations are applied on Gaussian pdf
(as in Figure 1, left) and the solution is trivial as the perturbed pdf is N (δ, 1)
where δ is the perturbation level. This method allows to make perturbations
comparable when applied in this standard space [39, 30, 32].

In practice, one has to define the variation range of δ as it can be of interest
to decrease and increase it. Looking at the PLI evolution as a function of
δ will be also informative. To illustrate this, we compute the PLI-quantile
at order α = 0.95 on the linear model output Y = 2X1 + X2 + X3/2 with
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Figure 1: Examples of perturbed pdf for Gaussian (top) and uniform (bot-
tom) initial pdf and a perturbation on the mean.

Xi ∼ N (0, 1) for i = 1, 2, 3. The estimations are made by using a Monte
Carlo sample (XN ,YN) of size N = 5000, by applying a mean perturbation
on the range δ ∈ [−1, 1] (with a regular discretization). Figure 2 shows the
PLI curve for each input. In this linear model case, the PLI curves are linear
because the output quantile increases linearly with the increase of each input
mean. Moreover, the larger weight of X1 in the model equation explains its
larger impact than that of X2 and X3.

Thanks to the use of a Monte Carlo sample, applying a bootstrap tech-
nique (here with 200 replicas) allows to associate a confidence interval (CI),
typically at 95%, to each PLI estimate. Evaluating this estimation uncer-
tainty is crucial in practice as the limited sample size can lead to erroneous
result from a certain level of perturbation (e.g. when there are not enough
sample values close to the perturbed quantile). For δ = 0, the PLI logically
becomes null without any estimation error.
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Figure 2: PLI-quantile (α = 0.95) for the linear model. The points are
the PLI at different discretized values of δ. The lines are the corresponding
bootstrap 95%-confidence intervals.

3. Numerical validation tests

In order to validate the PLI-based robustness analysis, we develop in this
section several numerical tests on toy functions with a small number of inputs
(three inputs Xi ∼ N (0, 1) for i = 1, 2, 3). Note that the method can be
applied to large-dimensional models and non-Gaussian inputs as it will be
shown in Section 4. The two toy models are the linear model shown in Section
2.4:

Y = 2X1 +X2 +X3/2 , (12)

and the well-known (in global sensitivity analysis) Ishigami function:

Y = sin(X1) + 7 sin2(X2) + 0.1X4
3 sin(X1) . (13)

The PLI-quantile and (original) PLI-superquantile estimation (which are
based on the same principles) are studied by applying a mean perturbation
on the range δ ∈ [−3, 3]. In this section, the bootstrap-based 95% PLI-CI
are computed with R = 200 replicas.

The Figure 3 shows the PLI-quantiles (first and second lines) and PLI-
superquantiles (third and fourth lines) with α = 0.95, for the input X2 of the
linear model 12, computed by using a Monte Carlo sample (XN ,YN) of size
N = 1000 (first and third lines) and N = 10000 (second and fourth lines).
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Results for X1 and X3 are not shown for sake of conciseness and as they are
quite similar than those for X2 (except than the PLI amplitudes are larger
for X1 and smaller for X3 as preliminary shown in Fig. 2) due to their similar
structural effects in the linear model (12).

The left column of Fig. 3 consists in comparing the PLI estimates in black
(formulas of Section 2.3) with the reference results based on resimulations in
red (i.e. results that are obtained without the reverse importance sampling
procedure but by resampling the input following the perturbed pdf). Of
course, in a real-case study, only the reverse sampling approach is applicable.
Note that the CI of the PLI estimates are obtained by bootstrap (as in
Fig. 2) while the CI of the reference results are obtained by 100 Monte
Carlo repetitions of the resimulation process (so these CI are no subject to
bootstrap-based approximation). We can observe that the PLI (and the PLI-
CI) are valid in the central zone of the plots (centered on the value δ = 0)
and turn to be invalid at large δ values (when red CI are not inside black
CI). Moreover, increasing the sample size extends the PLI-CI validity domain
with respect to the δ variation range. Indeed, as the sample size is finite, at
a certain level of perturbation, there is not enough sample values to correctly
compute the perturbed quantile and its CI.

From these findings, two heuristics are proposed to provide warnings to
users when δ is too large:

1. The number of values in XN , smaller or larger of the δ-perturbed mean
of an input variable, has to be sufficient. A value of Nx = 30 has been
chosen (from several numerical tests) as the smallest size. This criterion
is easily computed from XN and each δ-value. It is represented by the
green vertical lines on each plot. Of course, this value of 30 is quiet
subjective and will be subject to further sensitivity studies.

2. The number of values in YN , smaller or larger of the δ-perturbed quan-
tile of the model output, has to be sufficient. A value of Ny = 5 (resp.
Ny = 10) has been chosen (from several numerical tests) as the smallest
size for the PLI-quantile (resp. PLI-superquantile). It is represented
by the blue vertical line on each plot. Of course, these values of 5 and
10 are quiet subjective and will be subject to further sensitivity studies.

In Figure 3 (left column), these two criteria are visualized in each plot. It
shows their relevance to warn the user that the PLI values (and their CI) no
longer make sense beyond these limits (e.g. because PLI-CI do not contain
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Figure 3: PLI validation results applied on X2 of the linear model.
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the PLI reference values). Of course, the green and blue vertical lines are
not visible in the plots when they are outside of the δ variation range.

The right column of Fig. 3 visualizes the uncertainty on the PLI-CI by
showing the 95%-CI of the PLI-CI lower bound (in orange) and the 95%-CI
of the PLI-CI upper bound (in red). These 95%-CI are obtained by 50 Monte
Carlo repetitions of the bootstrap-based estimation of the PLI-CI. It aims
to visualize the stability of the PLI-CI, knowing that looking at the value of
the PLI should not be done without looking at its associated CI. We verify
that, beyond the limits given by the green and blue vertical lines, the CIs of
the lower and upper bounds of the PLI-CI explode.

For the Ishigami function (13), the Figure 4 provides the results of the
validity tests, computed by using a Monte Carlo sample (XN ,YN) of size
N = 1000 and N = 10000. The PLI-quantiles (first and second lines) and
PLI-superquantiles (third and fourth lines), with α = 0.95, are given for X1

(left column) and X2 (right column). The interest of this toy case is to show
that the PLI can also capture some strong non-linear behavior. Inside the
bounds given by the green vertical lines (criteria on the sufficient number
of points smaller or larger of the δ-perturbed mean of the input variable),
we observe the validity of the PLI-CI (the PLI-CI encompasses the red curve
corresponding to resimulation which gives reference PLI values, i.e. estimates
without bias). The blue vertical line does not appear on these plots, meaning
that the number of output variable points smaller or larger of the δ-perturbed
quantile or superquantile is sufficient. We conclude that these results show
similar behavior than the linear model ones and confirm the relevance of the
two heuristic validity criteria.

4. Application on IBLOCA industrial use-case

As a nuclear facility operator, EDF (the French company of electricity) has to
perform safety analysis on his pressurized water nuclear reactors. Those stud-
ies include the “Loss of Coolant Accident” resulting in a cold leg intermediate-
break on the primary loop of the reactor (noted IBLOCA). This hypothetical
scenario is simulated using system thermal-hydraulic computer codes, which
include tens of physical parameters such as condensation or heat transfer
coefficients [48, 49]. Yet, the values of the model parameters are known with
a limited precision as they are evaluated through tests performed on small-
scale experimental facilities. Some other variables are only observed during
periodic inspections, such as the characteristics of hydraulics systems.
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Figure 4: PLI validation results applied on X1 and X2 of the Ishigami func-
tion.
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The use-case of the present work is a 4-loop reactor from the French fleet1.
The transient studied is an IBLOCA, the break considered is a 13-inches
break located on the cold leg. The reactor is supposed to be at nominal power
at the opening of the break. The main common assumptions for IBLOCA
safety analysis are considered. The availability of the systems is assumed
to be restricted to the minimum safety systems (ECCS, EFWS, . . . ), other
systems are considered to be unavailable. The most limiting additional single
failure is postulated.

The IBLOCA transients are computed using the CATHARE2 code (de-
veloped by CEA, EDF, Framatome and IRSN [50]), which simulates the time
evolution of physical quantities during a thermal hydraulic transient. In our
simulation scenario, d ≈ 100 random inputs are considered and the output
variable of interest is the second peak cladding temperature. For each input,
depending on its nature and the information available on it, a pdf type (e.g.
uniform, truncated Gaussian, truncated lognormal, triangular) is chosen, in
concordance with its parameters. A Monte Carlo sample of N = 2000 input
and output values have then be generated.

The QoI for this study is 95%-quantile and 75%-superquantile of the peak
cladding temperature, which is estimated from the Monte Carlo sample at
q0.95 = 737◦C and Q0.75 = 673◦C. Our PLI approach consists in transforming
each input pdf in a N (0, 1) one, then perturbing the mean of each input
with δ ∈ [−1.64, 1.64]. This range corresponds to the 5%-quantile and 95%-
quantile of aN (0, 1) variable. Figure 5 illustrates several perturbed empirical
pdf from the Monte Carlo sample for four different variables.

On this high dimensional industrial application case (100 inputs), all the
PLI can be easily computed. For a sake of conciseness, only 8 inputs with
strong influence (described in Table 1) are shown in Fig. 6 through their
PLI-quantile and (original) PLI-superquantile curves. The bootstrap-based
95% CI are computed with R = 50 replicas. Validity criteria do not appear
on the plots because the size of the Monte Carlo sample is sufficient with
respect to the perturbation values that have been considered.

By comparing the results of PLI-quantile and PLI-superquantile, we ob-
serve that both PLI give the same trends. However, differences can be noted
on the most influential parameters, depending on the level of perturbation
δ reached. Furthermore, PLI clearly determine the penalizing variation di-

1The input data considered for this case, and thus the obtained peak cladding temper-
ature, do not correspond to actual industrial values
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(a) Truncated Gaussian (b) Truncated lognormal

(c) Uniform (b) Triangular

Figure 5: Examples of perturbed pdf for four inputs with different pdf of
the IBLOCA case. Each case (a, b, c, d) shows the initial pdf (left) and the
perturbed pdf by taking δ = 1.28 (right).

rection of each input: the QoI (0.95-quantile and 0.75-superquantile of the
PCT) increase with an increase of the friction coefficients (X78, X110 and
X111) and a decrease of the stable film temperature (X52), the exchange
coefficients (X64 and X76) and the bubble-rise velocity X113. Decreasing
X111 also leads to an increase of the QoI which allows to emphasize the
non-monotonic behavior of the peak cladding temperature with respect to
the interfacial friction in the core during blowdown phase. Such information
is precious for discussing BEPU results.

In Figure 6, one important observation is the behavior of the confidence
interval when δ is high. For some variables, for example X111 on the PLI-
quantile calculation, a saturation of the CI occur for high values of δ. This
is due to the limited number of value of the output exceeding the quantile,
which is particularly large for X111. That behavior is not observed in the
PLI-superquantile calculation because of the inherent regularity of the su-
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Input Variable description Distribution
X52 Minimum Stable Film Temperature Uniform
X64 HTC wall-steam exchange in C7 zone Log-Normal
X76 HTC primary-secondary - Natural liquid

convection in SG Log-Uniform
X78 Wall-steam friction coefficient (CV) in HA Log-Uniform
X110 Interfacial friction in the downcomer Log-Normal
X111 Interfacial friction in the core during

blowdown phase Log-Normal
X113 Bubble-rise velocity in the upper plenum Log-Normal
X116 Bubble-rise velocity in the upper head Log-Normal

Table 1: Definition of the 8 input variables considered for the PLI calcula-
tions. All the log-normal distributions are truncated.

perquantile, and the fact that the level of superquantile considered is low
enough. This phenomenon seems to be fostered by the combination of PLI-
quantile at high quantile level and strong perturbation. Thus, for further
industrial applications, in order to have the most accurate estimation of the
PLI, the use of PLI-superquantile associated to limited value of δ (typically
δ ≤ 1) should be considered, in addition to the application of the heuristic
validity criteria. This recommendation has already been considered in the
industrial methodology presented in [36].

5. Conclusion

In the context of uncertainty quantification studies and in particular when
applying BEPU methodologies, hypotheses have to be made in order to define
the input distributions which are not always easy to justify. This work has
focused on the PLI approach which allows to challenge the hypotheses made
on the uncertain input pdf. The main goal of PLI is to quantify the robustness
of a BEPU QoI with respect to uncertainty on the pdf of the model inputs.
However, PLI is also a sensitivity measure quantifying the influence of each
input on the QoI. In this paper, PLI has allowed to quantify the impact
of each input mean on quantiles and superquantiles. Finally, an important
contribution of this work relies in the introduction of new criteria for studying
the validity of the PLI analysis.
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Figure 6: PLI-0.95-quantile (upper panels) and PLI-0.75-superquantile
(lower panels) of the IBLOCA case.

This approach has been applied to an IBLOCA scenario (nuclear reactor
thermal-hydraulic phenomena) simulated with the CATHARE2 code. In
addition to the rich information that is provided on the inputs’ influence
and on the QoI robustness, it has enlightened the two important advantages
of the PLI approach: it only needs a simple Monte Carlo sample and it
is not limited in terms of number of model inputs. For further industrial
applications, in order to have the most accurate estimation of the PLI, the
use of PLI-superquantile associated to limited value of δ (typically less or
equal to 1) should be considered.

To develop more deeply the PLI, further works have to focus on more
general perturbation type (see, e.g., a first proposition in [45]), on developing
multivariate PLI (perturbing several inputs at the same time), on considering
the dependent inputs case (as in [51] in another methodological framework)
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and on using more efficient sampling technique than Monte Carlo scheme (as
the importance sampling as preliminary studied in [37] for PLI estimation).
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