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ABSTRACT
One of the most critical hypothesis in BEPU studies is the choice of the probability
distributions of uncertain input variables which are propagated through a numeri-
cal model. Depending on the method used for this choice, the probability density
functions (pdf) for these variables are established with various levels of confidence,
not always well known. Hence, bringing stringent justifications to the BEPU ap-
proach requires quantifying the impact of this second-level uncertainty (i.e. the
uncertainty on the input variable pdf). To solve this problem, this paper deepens the
robustness analysis based on the “Perturbed-Law based sensitivity Indices” (PLI).
The PLI quantifies the impact of a perturbation of an input pdf on the quantity of
interest (as a quantile of a model output or a safety margin) in the BEPU study.
The mathematical formalism of the PLI is firstly applied to two particular quanti-
ties of interest: the quantile and the superquantile (which is the mean of the pdf tail
exceeding the quantile). For both quantities, the PLI can be easily computed us-
ing a unique Monte-Carlo sample (ensemble of code runs) containing model inputs
and output. Then, numerical tests are developed in order to define validity criteria
of a PLI-based robustness analysis. The method is finally illustrated to the study
of the thermal-hydraulic responses of a test facility during a cold leg Intermediate
Break Loss Of Coolant Accident (IBLOCA) modelled using the calculation code
CATHARE.

1. INTRODUCTION

One of the most critical hypothesis in classical BEPU and uncertainty quantification studies is the
choice of the probability distributions of uncertain input variables which are propagated through a
numerical model. Depending on the method used for this choice, the probability density functions
(pdf) for these variables are established with various levels of confidence, not always well known.
Hence, bringing stringent justifications to the BEPU approach requires quantifying the impact of
this second-level uncertainty (i.e. the uncertainty on the input variable pdf) on the specific quantity
of interest (QoI) related to the BEPU study.

To address such issues, the new branch of robustness analysis in uncertainty quantification has
emerged during the recent years in the field of sensitivity analysis of model outputs [4]. It consists
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of evaluating the impact of the choice of the inputs’ distributions and, more precisely, by analyz-
ing the QoI variations with respect to this choice. One particularly interesting solution has been
proposed in the context of reliability-oriented sensitivity analysis by [11] with the Perturbed-Law
based sensitivity Indices (PLI). This measure presents the important advantage to be not limited
by the number of model inputs that can be considered. Another advantage of the PLI is that it
explicitly focuses on a particular QoI, that has to be specified by the user. The QoI of most BEPU
studies is a high-order (e.g. 95%) quantile of the model output variable [15, 13, 9]. However, in
simulation-based risk analysis, several works [8, 10] have shown the interest of also considering
the superquantile (i.e. the mean of the pdf tail exceeding the quantile) as a QoI. This risk measure
gives interesting information about what is happening in the distribution-tail above the quantile.
Its estimation also presents more regularities than those of the quantile estimation.

In this paper, the PLI-quantile concept [19, 20, 1] is extended to the PLI-superquantile one. Via in-
tensive simulation studies, our work also addresses a fundamental question that arises in practice:
which level of perturbations can be applied on an input pdf so that the method remains valid? The
following section develops the mathematical formalism of the PLI applied to the quantile and su-
perquantile. It shows that, for both the QoI, the PLI can be easily computed using a unique Monte-
Carlo sample (ensemble of code runs) containing model inputs and output. Section 3 describes the
numerical tests that allow to define validity criteria of a PLI-based robustness analysis. Section 4
illustrates the PLI approach to assess the robustness of a thermal-hydraulic simulation study (cold
leg Intermediate Break Loss Of Coolant Accident) that uses the calculation code CATHARE. A
conclusion section ends this paper.

2. PRINCIPLES OF PLI-QUANTILES AND PLI-SUPERQUANTILES

2.1 Introduction to PLI

Given the random vector X = (X1, . . . ,Xd) ∈X ⊆ Rd of d independent uncertain input variables
of pdf f (x) = f1(x1)× . . .× fd(xd), G(·) a numerical model and Y = G(X) ∈ R the model output,
the QoI is a statistical quantity derived from Y . For instance, it can be the mean, the variance, a
quantile or a threshold exceedance probability of the model output.

A PLI aims to measure the impact of the modification of an input density on a QoI [11]. In order to
compute the i-th PLI, we change the density fi of Xi into a density fiδ , where δ ∈R represents the
level of the perturbation. The PLI is then simply defined as the relative change in the QoI generated
by the perturbation:

Siδ =
QoIiδ −QoI

QoI
. (1)

This definition slightly differs from the one proposed in previous studies [11, 20]. Indeed, after
several applications of the PLI, it has been found more convenient to compute directly the relative
variation of the quantile when submitted to a density perturbation [9]. The interpretation of PLI is
then straightforward.
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2.2 Quantiles and superquantiles

The quantile of order α of Y is

qα = qα(Y ) = inf{t ∈ R,FY (t)≥ α} , (2)

where FY is the cumulative distribution function of the random variable Y . In BEPU studies, a
high-order (e.g. 95%) quantile value is most often preferred to a failure probability computation,
as it can easily be related to safety margin concepts [15].

However, the quantile does not give any information about what is happening in the distribution-
tail above the quantile. Another quantity, called superquantile, giving more information about the
distribution-tail has therefore been introduced [16]. A superquantile of order α is defined by

Qα = Qα(Y ) = E
(

G(X)1G(X)≥qα

1−α

)
, (3)

where E(·) denotes the expectation operator and 1A is the indicator function of the set A. If FY is
continuous, we have the equivalence with the following definition [17]:

Qα = E(G(X)|G(X)≥ qα) . (4)

Also known under the name of expected-shortfall and conditional-value-at-risk in finance, the
superquantile has been proven to be a coherent risk measure (which is not the case for the quantile)
[16, 8]. Moreover, its empirical estimator often presents more regularities than those of the quantile
empirical estimator.

2.3 Estimation formulas

In a lot of applications, for instance in nuclear safety studies (see, e.g., [7]), the computer models
are costly in terms of CPU time and memory. Only a limited number N of code runs is then
available for the estimation of all the PLIs. The sample XN = {x(n) = (x(n)1 , ...,x(n)d )}1≤n≤N of
N independent realizations of X (which follow the pdf f ) is propagated through the model G to
produce the sample YN = {yn}1≤n≤N of N model outputs. The most standard estimation of a
quantile is based on the empirical quantile estimator denoted q̂α

N = inf{t ∈ R, F̂N
Y (t) ≥ α} where

F̂N
Y (t) =

1
N

N

∑
n=1

1yn≤t is the empirical estimator of the cumulative density function of Y . The Wilks

formula or the bootstrap technique can then be used to add a second level of conservatism (due to
the limited size of the sample [21]). In this work, the bootstrap technique will be used.

From (2), the perturbed quantile writes:

qα

iδ = inf{t ∈ R,FY,iδ (t)≥ α} , (5)

with FY,iδ the cumulative distribution function corresponding to the input variable Xi sampled from
fiδ . In order to give an estimation of the perturbed quantile (denoted q̂α

N,iδ ) from the same sample
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XN , we use the so-called reverse importance sampling mechanism [3] to compute F̂N
Y,iδ [1]:

F̂N
Y,iδ (t) =

N
∑

n=1
L(n)

i 1(yn≤t)

N
∑

n=1
L(n)

i

, (6)

with L(n)
i the likelihood ratio

fiδ (x
(n)
i )

fi(x
(n)
i )

. We obtain q̂α

N,iδ = inf{t ∈ R, F̂N
Y,iδ (t)≥ α}. The estimator

ŜN,iδ of the PLI-quantile consists in replacing QoI by q̂α
N in Eq. (1). Its theoretical properties

(asymptotic consistence and central limit theorem) have been given in [2].

From (3), the perturbed superquantile writes:

Qα

iδ = Eiδ

(
G(X)1G(X)≥qα

iδ

1−α

)
, (7)

where Eiδ means that the expectation is taken under the perturbed distribution ( f1, . . . , fiδ , . . . , fd).
We define an alternative version (used in the engineering study of [10]) of the perturbed superquan-
tile:

Q′αiδ = E

(
G(X)1G(X)≥qα

iδ

1−α

)
. (8)

This equation gives an alternative estimator because the expectation is taken under the initial dis-
tribution instead of the perturbed distribution. Its interest is that its estimation is easier and more
stable (because the available sample is more representative of the initial distribution than the per-
turbed distribution). In the following, the alternative perturbed superquantile refers to Eq. (8),
while the original perturbed superquantile refers to Eq. (7).

In order to give an estimation of these quantities from the sample (XN ,YN), we use the same
mechanism as before by using the discretized-integral formula

Q̂α

N,iδ =
1

N(1−α)

N

∑
n=1

G(x(n))1G(x(n))≥q̂α

N,iδ
L(n)

i . (9)

The estimator ŜN,iδ of the PLI-superquantile consists in replacing QoI by Q̂α
N in Eq. (1). For the

alternative PLI-superquantile estimation, we simply write:

Q̂′
α

N,iδ =
1

N(1−α)

N

∑
n=1

G(x(n))1G(x(n))≥q̂α

N,iδ
. (10)

In the following sections, only the PLI-quantile and original PLI-superquantile are considered.
Moreover, the estimator ŜN,iδ will be denoted Ŝiδ .
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2.4 Input density perturbation method

The density perturbation approach proposed in [11] (and used in [20, 6]) consists of replacing the
density fi of one input Xi by a perturbed one fiδ , where δ ∈ R represents a shift of a moment (e.g.
the mean or the variance). Amongst all densities with shifted mean or variance of a δ value, fiδ is
defined as the one minimizing the Kullback-Leibler divergence from fi. Figure 1 illustrates some
perturbed pdf after a perturbation on the mean of initial pdf. Increasing the mean of a Gaussian pdf
just consists in translating it by a constant shift (the perturbed pdf remains Gaussian). Increasing
the mean of a uniform pdf turns to a non-uniform pdf (because we force its support to be fixed)
which gives more weights to the large values.

Figure 1: Examples of perturbed pdf for Gaussian (left) and uniform (right) initial pdf and a
perturbation on the mean.

In the following, we focus on one type of perturbations used in most of the studies, that is the
perturbation of the mean of the random variable. However, even in this simplest perturbation
case, minimizing the Kullback-Leibler divergence can be difficult or even impossible for some
particular distributions (such as the log-normal one) [11]. A simpler approach proposed in [14]
starts by applying an iso-probabilistic operator (such as the Rosenblatt transform) to the initial
input pdf, in order to transform all the input random variables into centered normalized Gaussian
ones (denoted N (0,1)). In case of independent inputs, it just corresponds to the inverse probability
distribution transform. Then, the perturbations are applied on Gaussian pdf (as in Figure 1, left)
and the solution is trivial as the perturbed pdf is N (δ ,1) where δ is the perturbation level. This
method allows to make perturbations comparable when applied in this standard space [1, 14, 9].

In practice, one has to define the variation range of δ as it can be of interest to decrease and increase
it. Looking at the PLI evolution as a function of δ will be also informative. To illustrate this, we
compute the PLI-quantile at order α = 0.95 on the linear model output Y = 2X1 +X2 +X3/2 with
Xi ∼N (0,1) for i = 1,2,3. The estimations are made by using a Monte Carlo sample (XN ,YN)
of size N = 5000, by applying a mean perturbation on the range δ ∈ [−1,1]. Figure 2 shows the
PLI curve for each input. In this linear model case, the PLI curves are linear because the output
quantile increases linearly with the increase of each input mean. Moreover, the larger weight of X1
in the model equation explains its larger impact than that of X2 and X3.

Thanks to the use of a Monte Carlo sample, applying a bootstrap technique (here with 200 replicas)
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Figure 2: PLI-quantile (α = 0.95) for the linear model. The points are the PLI at different dis-
cretized values of δ . The lines are the corresponding bootstrap 95%-confidence intervals.

allows to associate a confidence interval (CI), typically at 95%, to each PLI estimate. Evaluating
this estimation uncertainty is crucial in practice as the limited sample size can lead to erroneous
result from a certain level of perturbation (e.g. when there are not enough sample values close to
the perturbed quantile). For δ = 0, the PLI logically becomes null without any estimation error.

3. NUMERICAL VALIDATION TESTS

In order to validate the PLI-based robustness analysis, we develop in this section several numerical
tests on toy functions with a small number of inputs (three inputs Xi ∼N (0,1) for i = 1,2,3).
Note that the method can be applied to large-dimensional models and non-Gaussian inputs as it
will be shown in Section 4. The two toy models are the linear model shown in Section 2.4:

Y = 2X1 +X2 +X3/2 , (11)

and the well-known (in global sensitivity analysis) Ishigami function:

Y = sin(X1)+7sin2(X2)+0.1X4
3 sin(X1) . (12)

The PLI-quantile and (original) PLI-superquantile estimation (which are based on the same prin-
ciples) are studied by applying a mean perturbation on the range δ ∈ [−3,3]. In this section, the
bootstrap-based 95% PLI-CI are computed with R = 200 replicas. In Figure 3, the PLI-quantile
(first and second lines) and PLI-superquantile (third and fourth lines) are computed on the variable
X2 of the linear model with α = 0.95, by using a Monte Carlo sample (XN ,YN) of size N = 1000
(first and third lines) and N = 10000 (second and fourth lines).

The left column of Fig. 3 consists in comparing the PLI estimates in black (formulas of Section
2.3) with the reference results based on resimulations in red (i.e. results that would be obtained
without the reverse sampling procedure but by resampling the input following the perturbed pdf).
Note that the CI of the PLI estimates are obtained by bootstrap (as in Fig. 2) while the CI of the
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Figure 3: PLI validation results applied on X2 of the linear model.
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reference results are obtained by 100 Monte Carlo repetitions of the resimulation process (so these
CI are no subject to bootstrap-based approximation). We can observe that the PLI (and the PLI-CI)
are valid in the central zone of the plots (centered on the value δ = 0) and turn to be invalid at
large δ values (when red CI are not inside black CI). Moreover, increasing the sample size extends
the PLI-CI validity domain with respect to the δ variation range. Indeed, as the sample size is
finite, at a certain level of perturbation, there is not enough sample values to correctly compute the
perturbed quantile and its CI.

From these findings, two heuristics are proposed to provide warnings to users when δ is too large:

1. The number of values in XN , smaller or larger of the δ -perturbed mean of an input variable,
has to be sufficient. A value of Nx = 30 has been chosen (from several numerical tests) as
the smallest size, but can be changed. This criterion is easily computed from XN and each
δ -value. It is represented by the green vertical lines on each plot.

2. The number of values in YN , smaller or larger of the δ -perturbed quantile of the model
output, has to be sufficient. A value of Ny = 5 (resp. Ny = 10) has been chosen (from several
numerical tests) as the smallest size for the PLI-quantile (resp. PLI-superquantile), but can
be changed. It is represented by the blue vertical line on each plot.

In Figure 3 (left column), these two criteria are visualized and show their relevance to warn the
user that the PLI values (and their CI) no longer make sense beyond these limits (e.g. because
PLI-CI do not contain the PLI reference values). Of course, the green and blue vertical lines are
not visible in the plots when they are outside of the δ variation range.

The right column of Fig. 3 visualizes the uncertainty on the PLI-CI by showing the 95%-CI of the
PLI-CI lower bound (in orange) and the 95%-CI of the PLI-CI upper bound (in red). These 95%-
CI are obtained by 50 Monte Carlo repetitions of the bootstrap-based estimation of the PLI-CI. It
aims to visualize the stability of the PLI-CI, knowing that looking at the value of the PLI should
not be done without looking at its associated CI. We verify that, beyond the limits given by the
green and blue vertical lines, the CIs of the lower and upper bounds of the PLI-CI explode.

The validity results for the Ishigami function are given in Fig. 4, by using a Monte Carlo sample
(XN ,YN) of size N = 1000, for the PLI-quantile (first and third lines) and PLI-superquantile (sec-
ond and fourth lines) with α = 0.95, for X1 (first and second lines) and X3 (third and fourth lines).
The results show similar behavior than the linear model ones and confirm the relevance of the two
heuristic validity criteria.

4. APPLICATION on IB-LOCA

As a nuclear facility operator, EDF has to perform safety analysis on his pressurized water nuclear
reactors, those studies include the “Loss of Coolant Accident” (LOCA) resulting in a break on the
primary loop of the reactor. This scenario is simulated using system thermal-hydraulic computer
codes, which include tens of physical parameters such as condensation or heat transfer coefficients
[12, 18]. Yet, the values of the model parameters are known with a limited precision as they are

8



Figure 4: PLI validation results applied on X1 and X3 of the Ishigami function.
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evaluated through tests performed on small-scale experimental facilities. Some other variables are
only observed during periodic inspections, such as the characteristics of hydraulics systems.

The case of application is a 4-loop reactor from the French fleet1. The transient studied is an IB-
LOCA, the break considered is a 13-inches break located on the cold leg. The reactor is supposed
to be at nominal power at the opening of the break. The main common assumptions for LOCA
safety analysis are considered. The availability of the systems is assumed to be restricted to the
minimum safety systems (ECCS, EFWS, . . . ), other systems are considered to be unavailable. The
most limiting additional single failure is postulated.

The LOCA transients are simulated using the CATHARE code developed by the CEA, EDF, Fram-
atome and IRSN. In our simulation scenario, d ≈ 100 random inputs are considered and the output
variable of interest is the second peak cladding temperature (PCT). For each input, depending on
its nature and the information available on it, a pdf type (e.g. uniform, truncated Gaussian, trun-
cated lognormal, triangular) is chosen, in concordance with its parameters. A Monte Carlo sample
of N = 2000 input and output values have then be generated.

The QoI for this study is 95%-quantile and 75%-superquantile of the PCT, which is estimated
from the Monte Carlo sample at q0.95 = 737◦C and Q0.75 = 673◦C. Our PLI approach consists
in transforming each input pdf in a N (0,1) one, then perturbing the mean of each input with
δ ∈ [−1.64,1.64]. This range corresponds to the 5%-quantile and 95%-quantile of a N (0,1)
variable. Figure 5 illustrates several perturbed empirical pdf from the Monte Carlo sample for four
different variables.

(a) Truncated Gaussian (b) Truncated lognormal

(c) Uniform (b) Triangular

Figure 5: Examples of perturbed pdf for four inputs with different pdf of the IB-LOCA case. Each
case (a, b, c, d) shows the initial pdf (left) and the perturbed pdf by taking δ = 1.28 (right)

1The input data considered for this case, and thus the PCT reached do not correspond to actual industrial values
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On this high dimensional industrial application case (100 inputs), PLI can be easily computed but
visualizing a large number of PLI curves remain a challenge. Therefore, only 8 inputs with strong
influence (described in Table 1) are shown in Fig. 6 through their PLI-quantile and (original) PLI-
superquantile curves. The bootstrap-based 95% CI are computed with R=50 replicas. Validity
criteria do not appear on the plots because the size of the Monte Carlo sample is sufficient with
respect to the perturbation values that have been considered.

Variable Variable description Distribution
X52 Minimum Stable Film Temperature Uniform
X64 HTC wall-steam exchange in C7 zone Log-Normal
X76 HTC primary-secondary - Natural liquid convection in SG Log-Uniform
X78 Wall-steam friction coefficient (CV) in HA Log-Uniform
X110 Interfacial friction in the downcomer Log-Normal
X111 Interfacial friction in the core during blowdown phase Log-Normal
X113 Bubble-rise velocity in the upper plenum Log-Normal
X116 Bubble-rise velocity in the upper head Log-Normal

Table 1: Definition of the 8 parameters considered for the PLI calculations. All the log-normal
distributions are truncated.

By comparing the results of PLI-quantile and PLI-superquantile, we observe that both PLI give
the same trends. However, differences can be noted on the most influential parameters, depending
on the level of perturbation δ reached. Furthermore, PLI clearly determine the penalizing varia-
tion direction of each input: the QoI (0.95-quantile and 0.75-superquantile of the PCT) increase
with an increase of the friction coefficients (X78, X110 and X111) and a decrease of the stable
film temperature (X52), the exchange coefficients (X64 and X76) and the bubble-rise velocity
X113. Decreasing X111 also leads to an increase of the QoI which allows to emphasize the non-
monotonic behavior of the PCT with respect to the interfacial friction in the core during blowdown
phase. Such information is precious for discussing BEPU results.

In Figure 6, one important observation is the behavior of the confidence interval when δ is high.
For some variables, for example X111 on the PLI-quantile calculation, a saturation of the CI occur
for high values of δ . This is due to the limited number of value of the output exceeding the quan-
tile, which is particularly large for X111. That behavior is not observed in the PLI-superquantile
calculation because of the inherent regularity of the superquantile, and the fact that the level of
superquantile considered is low enough. This phenomenon seems to be fostered by the combi-
nation of PLI-quantile at high quantile level and strong perturbation. Thus, for further industrial
applications, in order to have the most accurate estimation of the PLI, the use of PLI-superquantile
associated to limited value of δ (typically δ ≤ 1) should be considered, in addition to the appli-
cation of the heuristic validity criteria. This recommendation has already been considered in the
industrial methodology presented in [10].
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Figure 6: PLI-0.95-quantile (upper panels) and PLI-0.75-superquantile (lower panels) of the IB-
LOCA case.

5. CONCLUSION

In the context of uncertainty quantification studies and in particular when applying BEPU method-
ologies, hypotheses have to be made in order to define the input distributions which are not always
easy to justify. This work has focused on the PLI approach which allows to challenge the hy-
potheses made on the uncertain input pdf. The main goal of PLI is to quantify the robustness of a
BEPU QoI with respect to uncertainty on the pdf of the model inputs. However, PLI is also a sen-
sitivity measure quantifying the influence of each input on the QoI. In this paper, PLI has allowed
to quantify the impact of each input mean on quantiles and superquantiles. Finally, an important
contribution of this work rely in the introduction of new criteria for studying the validity of the PLI
analysis.

This approach has been applied to an IB-LOCA scenario simulated with the CATHARE code. In
addition to the rich information that is provided on the inputs’ influence and on the QoI robustness,
it has enlightened the two important advantages of the PLI approach: it only needs a simple Monte
Carlo sample and it is not limited in terms of number of model inputs. For further industrial
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applications, in order to have the most accurate estimation of the PLI, the use of PLI-superquantile
associated to limited value of δ (typically less or equal to 1) should be considered.

To develop more deeply the PLI, further works have to focus on more general perturbation type
[2], on developing multivariate PLI, on considering the dependent inputs case and on using more
efficient sampling technique than Monte Carlo scheme (as the importance sampling one [19]).
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