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ABSTRACT 

The calculation of the Osmotic Pressure and the Diffusion Coefficient. characterizing the cake layer devel 

oping during the Ultrafiltration (UF) of Bovine Serum Albumin (BSA), through a Multiscale Model based 

on Quantum Mechanics (QM) and Monte Carlo methods (MC) was the aim of this work. From the ab initio 
results described in previous works, the distribution of the BSA surface charges was used. A home made 

Metropolis MC algorithm. aimed at simulating the formation of BSA loose or concentrated layers during 

membrane operations, was also implemented. In such a MC algorithm, a DLVO energy calculation 
methodology of the adsorbed system was developed Different MC simulations and Hypernetted Chain 

theory (HNC) calculations were performed so to determine both the Osmotic Pressure and the 
Diffusion Coefficient of BSA according to the Chun and Bowen approach, thus allowing a comparison 

between the calculated values of osrnotic pressure and a set of experimental data taken from the litera 
ture. Such a comparison showed a good agreement between the simulated and the experimental results. 
teins, protein hydrolysates, polysaccharides, vitamins and amino 1. Introduction
On an industrial scale, membrane processes have been proved 
to be effective and economically attractive in a variety of processes, 
e.g. protein recovery, pharmaceutical or oil water separations, 
alcohol or latex recovery (Cheng et al., 1998; Chakraborty et al., 
2017 ). The separation and purification of bio products such as pro
acids are important steps in the food industry due to the large 
number of possible applications (Zin et al., 2016; Nath et al., 
2014). In particular, Ult rafiltration (UF) is widely used in colloidal 
dispersions treatment and has become a standard method in 
protein recovery due to its good performance in terms of cost 
and selectivity (Saha et al., 2017). 



However, UF has a number of downsides, the major one being
the flux reduction during permeation. Such a problem is due both
to concentration polarization (CP), a reversible phenomenon
referred to the development of concentration gradients at a mem
brane/solution interface, and to membrane fouling, an irreversible
phenomenon, which is due either to solute deposition on the mem
brane surface forming a gel layer or to solute adsorption inside the
pore structure and over the membrane (Suki et al., 1984).

The interplay between osmotic pressure and applied trans
membrane pressure (TMP) is responsible for CP and fouling forma
tion and strongly affects membrane performance. Four classes of
models have been proposed in the literature to describe membrane
fouling; each of these models takes into account the actual charac
teristics of both the membrane and the solute(s) dispersed in the
solution to be filtered (Bolton et al., 2006).

In particular, with reference to the cake filtration model, in
order to properly predict the behavior of UF process, it is necessary
to precisely calculate both the additional resistance, Radd, to perme
ate flow and the osmotic pressure Dp, related to the solute concen
tration, which, evaluated at the membrane surface, leads to a
decrease in the driving pressure that is equal to Dp.

Many models aimed either at the description of the fouling for
mation during UF through stochastic approaches or at the calcula
tion of osmotic pressure were formulated. Chen Y. and Kim H.
proposed an on lattice Monte Carlo model referred to a two dimen
sional membrane pore and surface and simulated the pore blocking
and the cake formation (Chen and Kim, 2008). J. Flora proposed a
stochastic approach to model the fouling of ultrafiltration mem
brane surfaces (Flora, 1993). BowenW. et al. proposed a mathemati
cal a priorimodel for predicting osmotic pressure of electrostatically
stabilized colloids in UF process; the colloidal interactions were
described by the Wigner Seitz cell approach and the osmotic pres
sure calculation was essentially based on the addition of different
contributions to the interaction energy in agreement with the
extended Deryaguin Landau Verwey Overbeek (DLVO) theory
(Bowen and Williams, 1996). Roa R. et al. proposed different
approaches to calculate the Osmotic Pressure of solutes accumulat
ing on the membrane surface during the UF process; in particular,
either a macroscopic description of cross flow UF of non ionic
microgels modeled as solvent permeable spheres (Roa et al., 2015)
or a theoretical description based on the one component macroion
fluid model (OCM) (Roa et al., 2016) were proposed.

However, these papers and many others available in the litera
ture, do not contain a complete multi scale approach, actually ori
ented to the simulation of UF process starting from the ab initio
knowledge acquired at sub nanoscopic scale. In most of the papers,
only partial multi scale pathways, which generally describe the
system behavior at a mesoscopic scale or are based on a set of
experimental parameters such as the colloidal charge, have been
developed.

The actual aim of a complete multi scale approach is to provide
a comprehensive, theoretical model, which can predict macro
molecules structuration or aggregation and, then, the permeate
flux decay typical of UF, starting from fundamental quantities,
namely the electrostatic surface charges of the macromolecule
under study, resulting from the ab initio calculations.

Two papers describing a complete multi scale model for the
simulation of UF processes were already published by some of
the authors of the present work (De Luca et al., 2014; Curcio
et al., 2018). The first one (De Luca et al., 2014) had to be consid
ered as a ‘‘first brick” for the formulation of a more comprehensive
and accurate modeling approach aimed at predicting the behavior
of protein purification by UF. In fact, the noncovalent interactions
existing between the protein molecules and the membrane sur
face, which significantly affect membrane permeability during UF
(Szymczyk and Fievet, 2005), were not taken into account. In the
second paper (Curcio et al., 2018), the noncovalent proteins
surface interactions were accurately evaluated by a quantum and
molecular mechanics approach. This ab initio modeling allowed
defining the actual structure of the first layer of adsorbed proteins
and the equilibrium distance among them. In this way, a physical
limit to both the volume fraction and the additional resistance,
as due to adsorbed macromolecules, was rigorously calculated.
However, in these papers (De Luca et al., 2014; Curcio et al.,
2018; Petrosino et al., 2019) only the interactions between a lim
ited number of macromolecules and the surface was analyzed.
Nevertheless, the methods used to simulate the phenomena in
mesoscopic and macroscopic scales were founded on a major
assumption: the formation of the protein deposit layers towards
the bulk, in fact, was simulated through a force balance written
with reference to a specific protein packing symmetry that yielded
a compactly ordered cake. Although, the noncovalent proteins
surface interactions were accurately evaluated by a quantum and
molecular mechanics approach (De Luca et al., 2014; Curcio
et al., 2018) and, as a result, the structure of the first layer of pro
teins adsorbed on membrane surface was obtained by calculating
the equilibrium distance between them, a body centered cubic
structure symmetry was assumed. A physical limit for both the vol
ume fraction and the additional resistance, as due to either the
compact or the loose proteins deposit, was rigorously calculated
presuming that this symmetry held also for the loose layers.

The present paper, starting from the fundamental parameters
already calculated in the described articles, is intended to propose
a stochastic procedure for the simulation of cake layer formation
during UF processes without exploiting any protein packing
assumptions. In addition, the calculations of the osmotic pressure
and of the diffusion coefficient of BSA in the cake have been per
formed more rigorously, using this calculated structure.

A Metropolis Monte Carlo procedure has been implemented in a
home made algorithm. A number of simulation boxes large enough
to be representative of the proteins layers were analyzed. The
potential energy calculation relied on the DLVO pair potential, with
a Yukawa model for electrostatic interactions and a van der Waals
contribution. Periodic boundary conditions were enforced in the 3
space directions to simulate a large enough volume as compared to
the colloid scale but small enough as compared to a macroscopic
concentration polarization layer.

It was therefore possible to calculate the osmotic pressure of
the deposit layer as a function of the volume fraction related to
the total potential characterizing the considered box system. From
the generalized virial pressure equation, the formulation for the
osmotic pressure calculation was obtained (Roa et al., 2016;
Deserno and von Grünberg, 2002; Hansen and McDonald, 2006).
Moreover, the diffusion coefficient was evaluated by the
approaches based on the Donnan equilibrium (Stell and Joslin,
1986) and Kirkwood and Buff theory (Braga et al., 2018) as exploited
in Roa R. et al. papers (Roa et al., 2016; Roa et al., 2015).

It is worthwhile remarking that the present model did not make
use of any adjustable parameter since its inputs were represented
by fundamental quantities calculated by ab initio methods; this
allows developing a computational tool capable of accurately sim
ulating colloids adsorption in UF process without resorting to any
empirical or adjustable parameter.
2. Theoretical

2.1. Quantum mechanics calculations

The protein surface charges are necessary to evaluate the elec
trostatic short and long range interactions by the present multi
scale approach. The distribution of surface charges depends on



the arrangement and of the nature of external amino acids, as well
as on the experimental conditions such as type of solvent, pH, sol
vated ions, etc. The considered crystallographic structure of BSA, as
reported in the pbd file, is referred to a stable structure at pH val
ues ranging from 4.5 to 8 (Barbosa et al., 2010) taking into account
the BSA adaptable nature. Thus, the external amino acids defining
the protein surface were preliminarily identified. A home made
algorithm was implemented so as to obtain the coordinates of
the BSA external amino acids from its crystallographic structure.
(Curcio et al., 2018; Petrosino et al., 2019).

The atomic partial charges were calculated in the frame of the
Density Functional Theory (DFT) using two quantum approaches
(De Luca et al., 2014): the Electro Static Potential (ESP) and the
Löwdin methods as implemented in NWChem (Valiev et al.,
2010) code. It is worthwhile remarking that the atomic partial
charges were evaluated taking into account both the protonation
and the de protonation of external amino acids according to the
pH value related to the structure of the considered BSA, as shown
in (De Luca et al., 2014). The ESP method allowed evaluating the
atomic charges from the fitting of the quantummechanical electro
static potential on selected grid points centered on each of the
atoms of the aforementioned calculated external surface (Curcio
et al., 2018; Petrosino et al., 2019). Finally, the BSA total charge
number, Z, was evaluated (De Luca et al., 2014). The computed
total charge was in good agreement with the reported values (de
la Casa et al., 2008; Fukuzaki et al., 1996). Moreover, it is important
to emphasize that this fundamental property was calculated with
out resorting to any adjustable parameter.
2.2. Colloid interaction potential energy

The study of colloidal interactions by MC simulations is very
effective since it is explicitly based on the knowledge of the inter
action potential, which depends on both the polydispersity and the
volume fraction (Iacovella et al., 2010).

Here BSA is coarse grained as a sphere with a bare charge Z e
given by QM calculations and an equivalent radius of a = 3.2 nm
permitting to conserve the protein volume approximately. It is
worthwhile noting that this value as also been exploited in the lit
erature (Bowen and Williams, 1996). Though BSA exhibits a non
zero dipole moment (Scheider et al., 1976), for the values of vol
ume fractions considered in the present paper, the system showed
a dominance of long range interactions where the dipole effect
became negligible; hence, a coarse grained sphere was considered
detailed enough to properly describe the behavior of BSA at long
range.

The total potential energy was split up into three contributions.
A hard sphere part, an electrostatic potential and a van der Waals
potential. The hard sphere contribution was classically imple
mented as:

UHS rij
� � 1; rij � r

0; rij > r

�
ð1Þ

where rij is the center to center distance and r 2a the overlap
limit distance between two interacting spheres.

The electrostatic repulsion potential can be considered as the
characterizing part of the total interactions and is usually repre
sented as the Static Screened Coulomb Potential (SSCP) also known
as Yukawa Potential (YP). (Edwards et al., 2017) For two microion
dressed charged colloid spheres of radius a at centre to centre dis
tance rij, the YP can be modeled as:

Uelc rij
� �

lBZef f
2 expðkef f aÞ

1þ kef f a

� �2 expð kef f rijÞ
rij

KBT ð2Þ
Which is valid for non overlapping spheres. Here,
lB e2= 4pe0eRKBTð Þ is the Bjerrum length of the suspending fluid
and e, e0, eR, KB and T , are, respectively, the electron charge, the
void and relative dielectric constants, the Boltzmann constant
and the operating temperature. Zeff and keff are the colloid effective
charge number and effective screening parameter, respectively.
These parameters are equal to the bare charge Z and to the inverse
Debye length k for dilute suspensions of weakly charged objects. In
highly charged or concentrated suspensions, they can be computed
from Z, k and the volume fraction with so called renormalization
methods.

Even if the long range repulsive Yukawa potential is the charac
terizing contribution in the considered system, the attractive con
tributions should also be evaluated by the van der Waals (vdW)
formulation: (Nägele, 2004)

Uvdw rij
� � Aef f

6
2a2

rij2 4a2 þ
2a2

rij2
þ ln 1

4a2

rij2

� �� �
ð3Þ

The effective Hamaker constant, Aeff , incorporates, to some
extent, the electrodynamic retardation and non additivity effects
on the dispersion forces. (Nägele, 2004)

For dispersions of highly charged colloidal particles, Uvdw

becomes completely masked by the electrostatic part Uelc. In this
case, the colloidal particles (with associated microion layer) are
usually referred as Yukawa spheres, since their microstructural
properties are determined only by the Yukawa like exponentially
screened Coulomb potential Uelc . (Nägele, 2004) It is worthwhile
remarking that, instead, for weakly charged colloidal particles,
Uvdw was not masked and proteins would aggregate, under the
combined effect of the van der Waals interactions at moderate dis
tance and anisotropic, local, electrostatic interactions, close to con
tact. The prediction of the cake close packed structure would thus
require the extension of the present method to short range aniso
tropic interactions. However, the computation of such complex
interactions was far beyond the scopes of the present paper.

It is assumed that the total potential energy of a N particle liq
uid system can be approximated by a sum of pair interactions.
Under the premise of this pairwise additivity assumption, the ther
modynamic and microstructural properties of the fluid are solely
expressible in terms of utot rij

� �
UHS rij

� �þ Uelc rij
� �þ Uvdw rij

� �
and

of its associated Radial Distribution Function (RDF), gðrÞ (Vlugt,
2009). It should be noted that the vdW term is sometimes negligi
ble in the calculation of the osmotic pressure. It will be the case in
the present work, as shown later.

2.3. Monte Carlo simulation method

The Monte Carlo (MC) method is a stochastic simulation proce
dure especially suitable to problems involving particle(s) dynamics
due to its capability to evaluate each discrete particle displace
ment. (Chen et al., 2005) The used scheme for the implementation
of the present simulation code is based on the Metropolis Monte
Carlo approach thanks to which the total energy of the system,
based on the exploited energy calculation, is used as a criterion
for evaluating the acceptance or rejection of each single MC step.

The Metropolis method starts with a tentative random location
of the considered system of particles. Defining an ensemble where
the number of particles, simulation box volume and temperature
are fixed (NVT ensemble), a set of particles coordinate can be ran
domly evaluated inside the specified box (see Fig. 1).

The method proceeds with the random choice of a particle, its
random displacement of a fixed distance drmax and the evaluation
of the MC move. One point to note is that it is necessary to protect
against a trial move, which might result in a significant molecular
overlap. However, with the implementation of the explained hard
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Fig. 1. First random configuration of an MC box. Box length • 65 nm. 

is 
sphere contribution in potential energy calculation, the colloids 
overlapping can be excluded. 

The maximum allowed displacement ôr m"" governs the size of 
the trial MC move. If this parameter is too small, a large fraction 
of displacement is accepted but the phase space of the system is 
explored slowly. If ôr mox is too large, nearly all the trial moves are 
rejected and the possible movement through the phase space is 
rather limited. An optimal value of ôrm"", equal to colloid radius 
a, was therefore chosen to perfonn the simulations. 

Severa! details on the implemented procedure will be presented 
hereafter in the subsequent sections of the manuscript. 
2.4. Theoretical approaches 

The structures resulting from the MC simulations were firstly 
compared to those calculated by solving the Omstein Zernike 
(OZ) equation with the Hypernetted Chain (HNC) closure 
(Howard and Frank, 1976). 

The osmotic pressure calculation was performed by (Roa et al., 
2016): 

(4) 

where fJ 1 /(KsT), n N,/V was the colloidal number concentra 
tion,g(o-+) was the RDF function value at r q+_ The 1 on the right 
hand side is the ideal contribution. The second and third terms are 
contributions from contacts and non contact interactions, respec 
tively. When using an effective potential such as U,1c, two other 
tenns can appear in this relation One is the so called "volume 
tenn" and the other is an integral involving a density derivative of 
U,1, (Boon et al., 2015). They are important when the effective 
charge and screening length differ significantly from their bare val 
ues. In the present work, the colloidal charge is quite Jow and the 
sait content quite high so renonnalization has only a mild effect 
and these two tenns can be omitted. 
The concentration dependent collective diffusion coefficient, 
D,(</i), was expressed as: (Roa et al., 2016) 

D,(</!) Do K(</!) (5) 
losm 

where Do KsT/(611:11oa) was the single particle diffusion coeffi 
cient, l'/o the water viscosity, K( <fi) was the long time sedimentation 
coefficient (Roa et al., 2015) and l'.

œm 
was the osmotic compressibil 

ity coefficient, which can be expressed as: 

_1_ â(/JIT) 1 

losm ân T 
(6) 

The reported long time sedimentation coefficient strongly 
depends on system interactions, which detennine a significant 
change of settling particles structure; therefore, two limiting cases, 
referred respectively for Hard Sphere mode! (Richardson, 1954) 
(low interaction system) and Happe! crystal mode! (Happe!, 
1958) (high interaction system) were taken into account and 
exploited in section 4 of the present paper. 

A final expression for diffusion coefficient was therefore 
obtained as: 

D,(</!) 
2a2 

K(<ti/TI
I9'70 â<fi T 

(7) 

Starting from the total energy derived from the Monte Carlo 
simulations, Eqs. 4 7 allowed calculating both the Osmotic Pres 
sure and the Diffusion Coefficient of BSA as a function of the vol 
urne fraction ( or concentration) of colloids. 

3. NumericaI impiementation 

The complete multi scale framework implementation started
from the ab initio knowledge acquired at both sub nanoscopic 
and nanoscopic scales, and was therefore independent on experi 
mental or empirical information. The fundamental linking param 
eter, namely the BSA surface charge distribution, was exploited so 
to achieve the proper scale transition, allowing the calculation of 
the total, bare charge number, Z. 

The MC simulations used to compute the osmotic pressure and 
the diffusion coefficient are based on the effective electrostatic 
potential U,i, involving an effective charge and an effective screen 
ing length. These parameters were obtained with the Extrapolated 
Point Charge (EPC) renormalization method (Boon et al., 2015) 
with the bare charge Z computed with Quantum Mechanics as 
input parameter. 

The other required inputs of MC simulations were: the number 
of adsorbed molecules, N, the simulation box volume fraction, <fi, 
the system temperature, T, the Boltzmann Constant Ks, the mini 
mum distance, o-, the radius, a, the maximum number of iterations, 
maxjter, the overlapping energy limit U,or.=, which represents 
the highest energy value of overlapped spheres in the hard sphere 
energy approach, the parameter d..gr, which represented the num 
ber of MC steps whenever the box structure and the RDF files are 
saved, the parameter layJick used to define the layer thickness in 
the calculation of the RDF and the seed value used to contrai the 
random generation (Matsumoto and Nishimura, 1998). 

A total potential energy code was implemented in agreement 
with Eqs. (1) (3) for a macromolecules coordinates matrix. The 
eo,BR and A.tt constants were defined within the simulation code. 

For each volume fraction, <fi, 8 sets of simulations were per 
fonned with 8 different seeds related to the number of available 
processors. For each of the considered seeds, a maxjter number 
of MC iterations were performed. 

A characteristic number of MC iterations nMech was set on the 
basis of the steps, which were actually necessary to notice an initial 



decrease in system energy. After different tests, a number of 3nMCch 

accepted displacements was considered as adequate to obtain sat 
isfactory RDFs and osmotic pressure results. 

Two Intel Xeon CPU ES 2609 v2 processors were used on 8 
cores and the calculation times in the case of high volume fractions 
were equal, on average, to about 72 h. 
4. Resuits and discussions

In this section, the fundamental results deriving from sub nano 
and nanoscopic scales are firstly illustrated, together with the 
results of MC simulations calculated in a range of concentrations 
deriving from the flux decay profiles characterizing the ultrafiltra 
tion process (De Luca et al., 2014; Curcio et al., 2018). The valida 
tion of MC code carried out by the Hypernetted Chain (HNC) 
theory (Haliez and Meireles, 2017) is then presented. Finally, the 
calculations of the Osmotic Pressure and the Diffusion Coeffiàent 
for an experimental study available in the literature (Bowen and 
Williams, 1996), are reported. The theoretical calculations of the 
Osmotic Pressure were performed by the HNC theory too. It was 
then possible to carry out both a theoretical analysis and an exper 
imental validation of the formulated computational model. 
4.1. Ab initio total protein charge and minimum distance 

The surface charges distribution calculation was performed by 
the ESP method (De Luca et al., 2014; Curcio et al., 2018; Zeng 
et al., 2013). At pH= 7, the externat amino acids functional groups 
were protonated or deprotonated as described in section 2.1. The 
surface charges were used to evaluate the protein total charge, 
obtaining 15.82 atomic units. Consequently, the colloid charge 
numberZ = 15.82 was used as a bare charge in the model. 

The exploited radius was equal to a 32A (Bowen and 
Williams, 1996). The center to center minimum distance among 
the adsorbed proteins, <T 64A, was imposed as the lower bound 
in total energy calculation for MC simulation. 
600 

Fig. 2. Concentration-polarization profile discretization for a volume fraction set choice

Rej• 0.9875, for a filtration time of 3200 s (considered curve)(Curcio et al., 2018}. 
4.2. MC simulation sets and code validation 

An NVf ensemble was defined to perform the MC simulations. A 
set of volume fractions was defined in agreement with a previously 
obtained ultrafiltration concentration polarization profiles (Curcio 
et al., 2018) as i llustrated in Fig. 2. Referring to Fig. 9 of previous 
work (Curcio et al., 2018) the disperse cake profile was analyzed. 
The deriving concentration diagram for an ultrafiltration time of 
3200s, a transmembrane pressure of 1.Sbar and a membrane rejec 
tion of 0.9875, was discretized. Different characteristic points as a 
set of corresponding volume fractions were obtained. 

Thanks to these considerations, a volume fraction, </J, ranging 
between 0.05 and 0.30 was chosen. As a trade off between a high 
enough box dimension and an affordable computer effort, a num 
ber of BSA colloids, N, equal to 200 was chosen. From a fixed N and 
<fJ the simulation box volume was calculated and the resulting box 
length ranged from 45 to 82 nm. The other input parameters were 

T 300K, maxjter 1.5 104, U,or..PWX 10 13
], d_gr 100,

lay...tick 2A. The BR constant was fixed equal to the water dielec 

tric constant, BR 81.07 and A,ff 1.354 10 20]. 

For MC calculations validation a total charge number Z 15.82 
was set up. A ionic strength, 1 0.15M, was analyzed in order to 
compare the simulation results as provided by the present multi 
scale model to the experimental data reported in the literature 
(Bowen and Williams, 1996), giving a screening parameter equal 

to k 1/(8.0068 10 10
) 1.25 109. However, the renormaliza

tion procedure (Boon et al., 2015) was performed, and yielded 

Z,ff 15.56 and 1<,11 1.27 109
• Both the values are practically

coinàdent with the ones corresponding to the non renormalized 

parameters (Z 15.82, k 1.25 109
) for the considered conditions.

As shown in Fig. 3, after 5000 MC iterations the total energy was 
stable with a rather small fluctuation around the equilibrium state. 

The Metropolis algorithm was first validated in the case of hard 
sphere interactions (Fig. 4). 

Theo, for a more complete test, the RDFs produced by MC sim 
ulations considering bath hard sphere collisions and effective elec 
trostatic interactions were also compared to RDFs calculated 
-t=l5S 

. BSA ultrafiltration on polysulfone membrane TMP • 1.5 bar, membrane Rejection 
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Fig. 3. Total energy profile as function of MC iterations for different volume 
fractions. Z 15.82, / 0.15M, pH 7, a 32A, <J 64A.T 300K 
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Fig. 4. Hard-Sphere potential RDFs validations.+ is the MC simulation points, lines 
the HNC theory results. r/a is the normalized distance with colloids radius a. 
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Fig. 5. Yukawa potential RDFs validations. + is the MC simulation points, lines the 
HNC theory results. r/a is the normalized distance with colloids radius a. Z 15.82, 
/ 0.15M, pH 7, a 32A, <J 64À,T 300K 
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energy. Z 15.82, / 0.15M, pH 7, a 32A. <J 64A,T 300K 
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theoretically with HNC. As shown in Figs. 4 and 5 a very good 
agreement between these techniques can be observed for hard 
sphere and Yukawa type electrostatic potential, which validates 
our MC implementation. 

The Yukawa case shows g(2a) - 0, which means that contacts 
are not much present. 

Therefore, it was decided to perform some other simulations 
without considering the van der Waals contribution. 
� 
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Fig. 7. Osmotic pressure comparison as function as colloid concentration between 
the presented mode) Monte Carlo results {black dots} HNC theory results {red line) 
and experimental data. Ionie Strength 0.15 M, pH • 7. Concentratio n in g/L in 
agreement with literature {Bowen and Williams. 1996). 
4.3. Osmotic pressure and diffusion coefficient 

Once the MC mode) was validated, different sets of simulations 
were performed on the basis of the previously defined total bare 
charge number Z and screening parameter k.

The energy set from MC simulations is reported in Fig. 6. 
The total Yukawa energy compared to the KsT value is 0.SKsT 

energy per colloid particle. 
The osmotic pressure was carried out using Eq. ( 4). Moreover, in 

order to achieve the experimental validation of the present mode), 
a set of data reported in Bowen et aL paper (Bowen and Williams, 
1996), were taken as reference. A comparison of MC results with 
both HNC theory and Bowen et al. data (Bowen and Williams, 
1996) is reported in Fig. 7. 
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Fig. 1 O. Model predicted diffusion coefficient, De/Do, of the fouling cake as function 
The results show a good agreement between the present multi 
scale theoretical mode), based both on the ab initio knowledge 
acquired at sub nanoscopic scale and on MC simulations, and the 
experimental data, with maximum relative errors equal to 6%. 

Once the pressure calculation has been validated, basing on the 
Eq. (4), three osmotic pressure contributions were analyzed and 
reported in Fig. 8. 

The Jinear colloidal ideal gas contribution Pi4 denoted a medium 
of 15% of the total pressure. However, for very dilute system it rep 
resented the characterizing contribution due to the assimilation of 
the system to an ideal one. The contact and non contact interaction 
pressure contributions contributed more or Jess equally to the total 
pressure. As expected, at high concentrations these interaction 
contributions dominate the total pressure. 

At this Jevel it is possible to derive an important transport prop 
erty of the deposit layer starting from sub nanoscopic information, 
the diffusion coefficient ( using Eqs. ( 5) (7)) if the sedimentation 
coefficientK( 4>) is known. K( 4>) is a hydrodynamic function depend 
ing on the suspension structure, and is thus still unknown for arbi 
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Fig. 8. Mode! predicted osmotic Pressure of the fouling cake as function of volume 
fraction during ultrafiltration process for Yukawa potential formulation. Total 
osmotic pressure in continuous line and the three different contributions basing on 
Eq.4.2 15.82,/ 0.15M,pH 7,a 32À,q 64A.T 300K.Process conditions: 
TMP • 1 .5 bar, Rej • 0.9875, t • 3200 s. 
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Fig. 9. Sedimentation coefficient, K(q,), comparison between Hard Sphere model 
and Happe! model calculations. 

of volume fraction during ultrafiltration process for Yukawa potential formulation. 
Both hard sphere and Happel models were implemented for K(q,) calculation. 
Do 7.72-10 11 af.Z 15 .82, / 0.15M, pH 7, a 32A, q 64A, T 300K. 
Process conditions: TMP 1.Sbar, Rej 0.9875, r 3200s. 
trary colloidal interactions. In what follows, we therefore report 
two diffusion coeffiàent calculations based on the two extreme 
pictures of vanishing electrostatic interactions (the Hard Sphere 
mode)) and strongly repulsive interactions (a solide like 
suspension). 

For the Hard Sphere case, the Richarson and Zaki correlation 

(Richardson, 1954) was implemented as K(t/l) (1 <f>t
° with the 

now well accepted exponent et 5.1 (see Ref. (Lecampion and 
Garagash, 2014) for nice comparison of K(t/l) for hard spheres). 
Instead, for strongly repulsive systems colloids remain far from 
each other during sedimentation and the solution of Happel's œll 

3 tY+tf 3y6 

mode) (Happe), 1958) is better suited. It reads K(t/l) -3-:;:-2ys 

with y �4>- These two sedimentation coefficient models are 
reported in Fig. 9 and the corresponding diffusion coefficients are 
reported in Fig. 10. 

The diffusion coefficient trend presented a smooth rising trend 
in agreement with similar literature data (Roa et al., 2016). This is 
the signature of repulsive electrostatic interactions promoting the 
classical Brownian collective diffusion. 

In the case of the Happe) mode), Jower values of diffusion coef 
ficient were observed, since particle repulsion is strong, thus deter 
mining a particle arrangement represented by a crystal or glass; in 
this case friction is important since the fluid flow has to occur 
through a high number of tiny spaces. Instead, in the case of the 
Hard Sphere mode), particle tend to form at Jeast some couples 
which results in wider spaces available for the fluid and, therefore, 
in Jower friction and a higher diffusion coefficient. 
5. Conclusions

In the present work, key macroscopic quantities of ultrafiltra 
tion processes, i.e. osmotic pressure and diffusion coefficient, were 
obtained starting from the BSA surface charges through a rigorous 
quantum ab initio method regardless of any empirical parameters 
at fixed pH. The very crucial quantity, the colloid charge number, 
was exploited from quantum mechanics approach rather than 
using different experimental fitted values. It is worthwhile empha 
sizing that the present work makes use of different theories and 
merges all of them according to a real multiscale approach which 
starts at sub nanoscopic scale. 



In other previous works a fouling modelling approach in UF pro
cesses considered equilibrium quantities to characterize the
adsorbed compact cake and classical force balance for the descrip
tion of loose layers. In the present one a stochastic approach, based
on a metropolis MC method, was used to describe the fouling for
mation. The formulated model was validated by well assessed col
loid physics theoretical methods and a very good agreement was
actually observed.

Moreover, a good agreement between osmotic pressure and
corresponding experimental data taken from the literature was
remarked.

Quantum Mechanics is a powerful tool to access detailed prop
erties of colloids involved in UF, but its application is limited to the
scale of one object and it does not account for entropic effects driv
ing the meso structure of colloidal dispersions. On the other hand,
Monte Carlo simulations are designed to capture the structuration
at this meso scale, but they require the detailed characteristics of
colloids (as the surface charge) as input parameter.

The multiscale framework presented here combines these two
approaches to get the best of both worlds. It can be used as a
‘‘first brick” for different processes simulations, as a mean to com
pute thermodynamic and transport properties of colloidal disper
sions. In addition, this multiscale framework could be used to
predict partial or total aggregation for example.

The next step would be to introduce a third component at even
large scale: the transport coefficients, computed from the present
multiscale framework, can be considered as input parameters for
a continuous description of mass and momentum transfers at the
scale of processes with a Computational Fluid Dynamics approach.
This will be conducted using MC box meshes in CFD simulations
obtaining different fouling cake properties, such as the cake
permeability.
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Appendix

Nomenclature
a
 Protein radius
 m½ �

Aeff
 Effective Hamaker constant
 J½ �

d gr
 MC steps files saving
 ½ �

Dc
 Diffusion coefficient
 m2=s

� �
� �
D0
 Single particle diffusion coefficient
 m2=s

e
 Electron charge ( 1:60217646 10�19)
 ½C�

gðrÞ
 Radial distribution function
 ½ �� �

k
 Inverse of Debye length
 m�1
K
 Long time sedimentation coefficient
 ½ �

KB
 Boltzmann constant
 J=K½ �
(1:3806503 10�23)

lB
 Bjerrum length
 m½ �

lay tick
 RDF layer thickness
 A½ �

max iter
 Maximum number of MC iterations
 ½ �� �

n
 Colloidal number concentration
 m�3
nMCch
 Characteristic MC steps number
 ½ �� �

nres
 Reservoir ion density
 m�3
Nc
 Number of colloids
 ½ �

rij
 Proteins centre to centre distance
 m½ �

seed
 Seeds MC number
 ½ �

T
 Temperature
 K½ �

TMP
 Transmembrane pressure
 Pa½ �

Uelc
 Electrostatic energy contribution
 J½ �

UHS
 Hard Sphere energy contribution
 J½ �

Utot
 Total interaction energy (=A)
 J½ �

Uvdw
 van der Waals energy contribution
 J½ �

Utot max
 Overlapping energy limit
 J½ �� �

V
 Simulation volume
 m3� �

Vc
 Total volume of colloids
 m3
Z
 Colloid charge number
 ½ �h i

b
 Energy constant (=1=ðKBTÞ)
 J�1
drmax
 Random displacement
 m½ �

eR
 Relative dielectric constant (81.07)
 ½ �h i

e0
 Void dielectric constant

8:8541878 10�12

C2= Jmð Þ
g0
 Water viscosity
 Pa s½ �

P;Posm
 Osmotic pressure
 Pa½ �

r
 Centre to centre minimum distance
 m½ �

/
 Volume fraction
 ½ �

vosm
 Osmotic compressibility coefficient
 ½ �
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