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Abstract 
Summary: GReNaDIne (Gene Regulatory Network Data-driven Inference) is a Python package that implements 

18 Machine Learning data-driven gene regulatory network inference methods. It includes 8 generalist pre-

processing techniques, suitable for RNAseq and MicroArray datasets analysis, as well as 4 RNAseq normalization 

techniques. This package has been successfully assessed under the DREAM5 challenge benchmark dataset. 

Availability and implementation: The open source GReNaDIne Python package is freely available at 

https://gitlab.com/bf2i/grenadine as well as its latest documentation https://grenadine.readthedocs.io/en/latest/  
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1 Introduction  

Inferring Gene Regulatory Networks (GRN) from gene expression data is a challenging problem for the system 

biology community, and plethora of methods have been proposed so far to address it (Aibar et al., 2017; Glass et 

al., 2015; Sanguinetti and Huynh-Thu 2019). GRN inference approaches based on the data-driven paradigm are 

among the most popular ones, due to their simplicity, computational efficiency and accuracy (Sanguinetti and 

Huynh-Thu, 2019). Such approaches aim at using experimental gene expression data to score potential regulatory 

links between transcription factors (TFs) and target genes (TGs). Some of them assume that the regulatory 

interaction between TFs and TGs can be measured using correlation statistics (Zhang and Horvath 2005) or 

information theory measures such as Mutual Information (MI) (Faith et al., 2007). Finally, other techniques use a 

feature importance scoring procedure, training regression or classification algorithms to predict the expressions of 

TGs from those of TFs (Haury et al., 2012; Irrthum et al., 2010; Peignier et al., 2019). Here we introduce 

GReNaDIne, a Python package implementing 18 data-driven GRN inference methods, 8 generalist pre-processing 

techniques for RNAseq and microarray datasets and 5 RNAseq normalization techniques. 

2 Program Overview 
 
GReNaDIne consists of three separate modules (Fig. 1) allowing preprocessing gene expression data, scoring 

potential regulatory links with data-driven approaches, selecting the most promising links to generate GRNs and 

evaluating the resulting GRNs. GReNaDIne is implemented as a library for Python 3 and relies on widely used 

libraries: Scikit-learn (Pedregosa et al., 2011), NumPy (Oliphant 2006), Pandas (McKinney 2010) and SciPy 

(Virtanen 2020). 

 



2.1 Module 1: preprocessing 

As a preliminary step, the first GReNaDIne module, aims at normalizing and standardizing the datasets: classic 

RNAseq normalization techniques are included to cope with library size biases (Reads Per Million (RPM)), gene 

length biases (Reads Per Kilobase (RPK)), or both problems simultaneously (Reads Per Kilobase Million (RPKM) 

and Transcripts Per Kilobase Million (TPM)). In addition, GReNaDIne includes a wrapper to use DESeq2 (Love, 

et al., 2014) from Python. GReNaDIne also includes five discretization techniques for gene expression data: Equal 

Frequency Discretization (EFD), Equal Width Discretization (EWD), Kmeans Discretization applied by rows, 

columns, and the bidirectional Kmeans method (Bi-Kmeans) (Jung, et al. 2015). Finally, GReNaDIne incorporates 

three standardization methods based on z-scores, namely row/column-wise z-score and polishing standardization 

methods (Olshen and Rajaratnam, 2010). 

2.2 Module 2: GRN Inference 

Data-driven GRN inference methods score all possible regulatory links between TFs and TGs, based on their gene 

expression. Traditional GRN inference methods assume that the regulatory relationships between TFs and TGs 

can be inferred by measuring the correlation/MI between their respective gene expression levels: GReNaDIne 

includes four methods based on the widely used Pearson, Spearman, Kendall tau and MI statistics.  

Inference methods based on classification and regression aim at training a model (respectively a classifier or a 

regressor) to predict the expression level of TGs from those of a set of TFs. Then, the importance of each TF to 

the prediction task is computed, as a feature importance score. These scores are directly used as proxies to score 

the regulatory relation between each TF and its TGs. Regressors are directly trained on continuous gene expression 

data, while classifiers require the TG expression to be previously discretized. GReNaDIne includes two methods 

based on Support Vector Machines (SVM) classifiers (C) and regressors (R), as described in Peignier et al., 2019. 

It incorporates eight methods based on decision tree regressors and classifiers: AdaBoost (AB), Gradient Boosting 

(GB), Random Forest (RF) and eXtreme Randomized Trees (XRT) (Friedman, 2002; Huynh-Thu et al., 2010; 

Peignier et al., 2019). GReNaDIne also includes two methods based on regression stability selection criteria 

(Haury et al. 2011) and two novel methods based on Bayesian Ridge Regression or Complement Naive Bayes 

classification 

2.3 Module 3: links selection and evaluation 

After scoring all possible regulatory links between TFs and TGs, a classic procedure consists in selecting a subset 

of regulatory links with high scores to define putative GRNs. GReNaDIne includes functions that allow ranking 

the possible regulatory links according to their scores, as well as functions that select the top-k links of the dataset 

as well as the top-k links involving a particular TF or TG. Finally, the third GReNaDIne module includes some 

methods computing standard evaluation measures for binary classification to assess predicted GRNs, when gold 

standard datasets describing validated regulatory links are available. The methods implemented in this module are 

inspired on those described and used by Marbach et al. (2012), in their evaluation framework. 

 

 

 



3 Evaluation and Conclusion  

3.1 Evaluation protocol 

The DREAM5 evaluation framework (Marbach et al., 2012) was used to assess the GReNADIne performances. 

This framework relies on three gold standard datasets from living organisms, namely Escherichia coli, 

Saccharomyces cerevisiae and Staphylococcus aureus, and a synthetic gold standard dataset. The GRN inference 

task has been evaluated as a binary classification task, which consisted in predicting the presence of true regulatory 

links from gene expression. The task was assessed using area under the precision recall curve (AUPR) (Davis and 

Goadrich, 2006) and area under the receiver operating characteristic curve (AUROC) (Fawcett, 2006).  

3.2 Results 

The different methods included in GReNaDIne provide results that are comparable or outperform those obtained 

by the 35 DREAM5 competitors, as well as those obtained by the robust community approach that combined all 

the participants’ results (Marbach et al., 2012) (Supp. Fig.1.  and 2). The inference methods based on ensembles 

of decision trees are comparable to the community, for most datasets. The new approaches introduced in 

GReNaDIne based on SVMs, Bayesian Ridge Score, and Complement Naive Bayes, lead to important gains for 

real organisms’ datasets, but exhibit a quality loss for the synthetic dataset. Methods based on correlation/MI lead 

to comparable results for the real organisms’ datasets, while exhibiting poorer results for the synthetic dataset. In 

average, the best preprocessing techniques are those ensuring that genes have comparable levels of expression, 

i.e., row z-score, EFD, and row k-means (Supp. Fig. 3 and 4). These positive results support the value of 

GReNaDIne for the data-driven GRN inference community. 
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Figure 1 GReNaDIne GRN Inference workflow organized in three modules: a) gene expression preprocessing, including RNAseq 
normalization, standardization and discretization b) GRN data-driven inference scoring methods and c) regulatory edges selection 
and GRN evaluation 


