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Spectrum estimation from truncated, non-
linearly phase shifted or irregularly sampled
Interferograms

ALAIN KATTNIGY, JULIEN JAECK?, OLIVIER GAZZzANO?, JEROME PRIMOT?
'DOTA, ONERA, Université Paris Saclay, F91123 Palais- France

Abstract: For performance or speed reasons, many typeseafremeters record only part of
the interferogram thanks to its redundancy. Hereexamine the consequences of this choice
on the resulting spectrum. We jointly explore otlseurces of error also encountered on
spectrometers, such as the irregular samplingeoirtterferometer and the non-linear phase of
the spectrum. Then we revisit and improve the @akprocessing chain.

© 2019 Optical Society of America under the terrhthe OSA Open Access Publishing Agreement

OCIS codes: (100.3175) Interferometric imaging; (110.4234) hagectral and hyperspectral imaging; (150.1488)
Calibration; (110.3080) Infrared imaging; (120.028Remote sensing and sensors; (300.6300) Speopws
Fourier transforms

1. Introduction

Temporal Fourier Transform Spectrometers are trelmes tools for extracting spectral
information from radiations [1]. However, the temgoexploration of the interferometric
range by these spectrometers limits the access#ibhporal resolution to a few seconds
without giving up too high a spectral and radionieetesolution. In addition, the moving parts
of such spectrometers are difficult to use in emvinents subject to strong vibrations, such as
vehicles or aircraft.

One solution is to record only half of the intedgram thanks to their central symmetry.
Going further means moving from spreading the vVamaof the optical path difference
(OPD) over time to spreading it over the spatiahelision on an array of detectors [2,3,4].
But this solution drastically limits the possiblgrsad of the OPD to the non-aberrant optical
focal plane, thus limiting the spectral resoluti@mnce again we can record only part of the
interferogram, increasing the spectral resolutiuit. this comes at a cost.

Here we present an analysis and a numerical mamesgectrum reconstruction that
explicitly takes into account the current erroratthffect these systems, such as irregular
sampling and phase errors. We rely on an existisfiment to work on realistic parameters,
of the type we measured in the Sieleters instrunidpt We will then evaluate the
effectiveness of the correction steps. We will alsady the spectral errors made by the usual
Forman [6] and Mertz method [7]. We will then prepddifferent, unfiltered solutions which
will be evaluated.

Note that the spectrum estimators presented here wged in a previous paper in which
we explored calibration issues in spatial calilmatiof static imaging Fourier Transform
Spectrometers [8].

2. Asymmetrical and irregularly sampled OPD interfe ~ rograms

Let us begin by detailing the reasons for theseeifigat measures and then we will show how
to simulate properly such measures.

2.1 Interferogram truncation and phase errors



Since the spectral resolution of Fourier transfepectrometers (FTS) is proportional to the
maximum range of the optical path difference, itwisrth increasing it by truncating the

recorded interferogram. This is particularly thesedor static FTS, as it is much more
difficult to extend OPDs in space than in time. dixding OPDs in time means longer mirror
displacement or a larger rotation range, depenadinthe apparatus [1]. But in order to extend
the OPDs in spatial FTS we would need to widenithage plane to preserve the initial

optical quality. This means more sophisticated @mdplex optics.

Such histogram truncation is possible due to theghlli redundant nature of
interferograms. Indeed, if we had "perfect" intesfgams, only one side of the
interferograms would be sufficient to compute thgedrum since in this case the
interferograms are theoretically even (cf. Eq..(1))

10)=|L,v)xcog2mo|dv + | L, (v )dv
(9)=[ 1 )xcofomalar + L,/ "

o being the OPD, note that it can also be negateing the difference between two
optical paths. {(v) being the spectral luminance of incoming radiatio

Unfortunately, there are many sources of errohia mmeasure that break this symmetry.
The best known are phase errors in the opticsefriterferometer, electronics and sampling
OPD errors [1], especially in spatial spectrometengre the OPD is not as easy to adjust as
its temporal counterpart.

Fortunately, it is noted in the characterizatiorFofS instruments that the phase is slowly
varying [1,6]. We believe that it is common to eaocter this kind of situation because
instrumentalists by seeking linearity spare us ftbim problem. Thus it becomes possible to
estimate this phase from an interferogram with @nfgaction of the range, thus making room

for a much higher maximum OPD reached on a simgégferogram wing (see Fig. 1).
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Fig. 1 : example of a truncated interferogram w\lith necessary symmetrical part to estimate
the phase error.

Estimating and reconstructing the necessary ddtanevitably have an impact on spectra
SNR. Here we define the SNR as the ratio betweentrilie spectrum and the difference
between the true and the estimated spectrum.

2.2 Interferogram irregular sampling

Time FTS often have a very sophisticated laser<ha3BD displacement measure [1], so
irregular OPD sampling should not truly exist, @wsleby design (e.g. to increase spectral
resolution and/or eliminate frequency folding).



But the spatial FTS is not so fortunate becausepbagiof the OPD by the focal plane
array (FPA) will depend on actual position and wt@tion of the FPA as well as optical
distortion. Thus spatial FTS using lenses in tbptical design will be particularly exposed to
irregular samplings [9].

3. Numerical based experiments

Experimental comparison of infrared spectra is flicdit subject because, even today, the
optics of laboratory spectrometers are seldom comeryogenic temperatures. Comparisons
of high-precision spectra are therefore experinigntiifficult to carry out. Fortunately, a
large part of the potential errors can be studiedhematically and numerically through the
use of models. This is the purpose of this paper.

To this end we have devised a synthetic spectruth teixing properties, such as fast
slopes (a in Fig. 2), an unresolved trough (redipra large dynamic frequency chirp (region
c¢) as well as non-linear phase error (cf. right p&Fig. 2).
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Fig. 2 : On the left is the synthetic spectrum utedest the entire spectrum interferogram
signal processing pipeline. There are several dasending and descending slopes (a), an
unresolved trough (b) and a large dynamic frequehay (c). On the right, we plot the slowly
varying non-linear phase, with a dynamic range .6f ddians. Values outside the spectral
range of [900-1250] cthare undetermined and have been chosen constawiztalisation
reason. Due to the limited OPD range only 60 sargpfioints are available in the spectrum
description on the instrument spectral range.

We have also chosen to stick as much as possibieatdnstrumental characteristics by
mimicking the instrumental characteristics of thend-wave infrared Sieleters Fourier
Transform Static Spectro imaging system [5]. Irstbése, the characteristics are mainly the
spectral band, the phase of the spectrum and tiev@Ries on the Focal Plane Array. These
last two parameters have been measured on thermstt [5] (see Fig. 5). Other than that
the spectra amplitude has been chosen arbitrar@iyhas no unit.

Let's start by studying boundary effects which g@eaaticularly important in such an
asymmetric signal.

3.1 Eliminating boundary effects

Processes making use of nearby samples, suchespdlation or Fourier transform, will be
subject to signal boundary effects if they are paperly taken into account. In addition,
significant values are still found on the truncateihg (the right in our example) of the
interferogram (see Fig. 1), compounding the problem

Therefore, it is necessary to extrapolate on botls éhese interferograms as faithfully as
possible. Since they will then be subject to Faufieansformations, these extrapolations
must preserve the initial spectrum as much as Iplesdrortunately, it is possible to obtain



such properties by using autoregressive (AR) mofdlsl1]. Here we found that limited-
order AR models (less than 10) were sufficient aptare the important properties of the
interferograms. We introduce in Fig. 3 the intesfgiam obtained from the spectrum defined
in Fig. 2 and we show how well its extrapolatedtpét with the original truncated part.
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Fig. 3 : The original truncated interferogram fréhe spectrum of Fig. 2 is in red and the
extrapolated signal is in black. On the left, wewlthe full extrapolated signal from a low

order autoregressive model. This model is calcdlatdy on the decreasing part of each side
of the interferogram to better catch its decreagirgperty. On the right, we zoom in on the
joining between signals to show its good fit to ¢iginal signal.

Fig. 4 shows that the modified signal keeps rougidysame spectrum as the original one.
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Fig. 4 : Left, the original spectrum is reproduc@ht, we show the spectrum calculated from
the extrapolated signal of Fig. 3,. Note how wied bandpass nature of the original signal is
respected as well as the largest oscillations.

All further processes to reconstruct the originggrfectly symmetric and regularly
sampled interferogram will use this auto-regressixteapolation.

3.2 Correcting the irregular sampling

We show here how to obtain a regularly sampledrfietegram from its initial irregular
sampling without damaging the underlying spectréirst, in order to analyze the quality of
the process of spectrum estimation from these ifapeinterferograms, we need to insure the
quality of our simulation.

While it is simple to generate an interferogrammfrknowledge of the spectrum, including
its chromatic phase by a Fourier Transform, it éssl straightforward to generate an
interferogram sampled on an irregular grid by usihg same tool (for consistency). In



particular to do this, we must first define a regurid on which the interpolation will be
performed to achieve the irregular values we need.

To avoid extrapolation, this regular grid will befshed by a ramp from the lowest to the
highest OPD values over as many samples as imréglar sampling of the initial OPD. The
irregular OPD is then expressed in relation to tras/ly defined regular OPD sampling scale
(see Fig. 5).
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Fig. 5 : Deviation of the OPD from the regular Offale expressed in OPD sampling units.
One unit being 2.7 um. Values measured on thet8isleWIR instrument.

3.2.1 Interpolation step

Interferograms are band-limited because spectiialdiinstalled in the instrument limit the
spectrum of the incoming light. The Nyquist rulethen fulfilled, and therefore the Fourier
shift theorem can be used to interpolate the ietegrams at any sampling position without
damaging the underlying signal.

Since the interferogram has been directly defimeBdurier space, it is already periodized
and therefore no errors will be introduced by theftstheorem due to possible edge
discontinuities.

As the shift theorem translates the whole grid bg same displacement value, this
process must be repeated for each point in thefénbgram (except for the first and last point
of the interferogram, by construction). We giveeample of the resulting interferogram in
Fig. 6.
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Fig. 6 : Comparison of the irregular and regulangling of the interferogram ofFig. 3. The
regular interferogram is in blue while the irregiyyasampled interferogram is in red. Since
they are plotted against their real OPD abscisdetaNyquist condition is met, the two plots
describe exactly the same signal.



However, since the evolution of the OPD is very sthcand limited in range, we need to

demonstrate that such small deviations will nevdetbs damage the resulting spectrum if
they are not compensated or corrected. In the Vitig step, we performed the Fourier

transform of the irregularly sampled interferograms if it was regularly sampled and

supplemented by the correct values for the missgig wing and then phase-corrected by the
exact phase. The resulting spectrum is given inFig
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Fig. 7 : On the left we plot the true spectrum éd against the spectrum in black calculated
from the irregularly sampled interferogram of Fég.On the right, we give the spectral SNR of
this spectrum estimator. The median SNR over relewavenumbers is 40.

Thus we have shown that even the modest departurethe OPD linearity on the FPA
shown in Fig. 5 is enough to condemn the ambitibrthe instrument’'s spectral SNR
(between 150 and 200, depending on the wavenurBber [

Therefore, we must correct these deviations tqgalae sampling grid. Note that we have
anticipated here the use of the spectrum estimatlioh will be explained later in this paper
(cf. 3.3). It is indeed always preferable to evidummethod on the relevant criterion, here the
SNR of the spectrum.

3.2.2 Correcting irregular sampling

To improve our spectrum estimator we need to okddinear OPD sampling, thus we need
an interpolation method on nonuniform samples wisgsectral preservation properties are
compatible with the desired spectral SNR. Among #wailable methods we chose to
compare a simple Fourier based solution to a fanatly weighted Lagrange interpolation
[12] of greater sophistication and complexity.

Our Fourier solution takes advantage of the faat, tim this particular case, the sampling
step is locally almost regular. Thus we simply &xplthe shift theorem used to create the
irregular sampling of 3.2 but with —OPD instead+@PD to reverse the displacement of the
sampling grid and thus approaching the originalulag sampling. The stronger the
oversampling in Fourier space, the better.

Since this solution is built on the hypothesis tihat initial sampling is regular, it can only
be an approximation.

Thus we introduced the functionally weighted Lagmrnnterpolation which solves the
oscillation problem between sampled points by wiighdown the usual reconstructing
Lagrangian basis functions and thus limiting oatiitins (see Fig. 8).
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Fig. 8 : Comparison of errors made by Fourier ap@yfited Lagrangian reconstruction
methods.

The precision of the functionnally weighted Lagriamgmethod [12] is regularly thousands
of times higher than that of the Fourier transfofiinus with an SNR greater than one million,
this processing step will not degrade the qualitshe signal spectrum.

3.3 Spectrum calculation from an incomplete interferogram

We now focus on the spectrum estimation. The biggkallenge in this calculation is the
guality of the phase estimation and its subsequsst

There are many culprits that explain an erronedase (Fig. 2), some of them producing
a non-linear phase [1]. Unfortunately, this medmet the Zero Path Difference (ZPD) is
undefined and thus there is an ambiguity in dejrtire center of the interferogram.

This is troublesome since the phase measuremenidshe done on the centered and
balanced interferogram extracted from the asymwadtnnitial interferogram (of Fig. 3). And
we have, to our knowledge, no way to know it befiared.

Thus we propose to test iteratively all likely st until we find the best one. All that
remains to be done is to define the criterion faing so.

3.3.1 Centering the phase-distorted interferogram

We choose to use the quality of the final spectasna criterion, since it is the end result of
the whole process. Because we won’t know in advaneespectrum we will measure, it is
impossible to use any error function, thus we symglsted the non-trivial property that
spectra possess: their positivity. So we will siynphoose the center that gives the least
negative parts on the whole final spectrum. Fig.gi9es an example of spectrum
miscalculation.



| ‘ 1 | 1 | | | 1
800 1000 1200 1400

wavenumber (cm )

Fig. 9 : Spectrum obtained by our final estimatpshifting the center of the interferogram
under test by 7 samples.

This procedure is surprisingly effective. We hairawdated a very large phase dynamic,
up to 60 radians with the same phase shape, wittroat. Thus, at the cost of an iterative
procedure, we are able to find perfectly the cerfge Fig. 10) of the underlying
interferogram.
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Fig. 10 : Symmetrical part of the interferograntaj. 3.

3.3.2 Producing a phase-correcting convolution kernel

The phase thus measured can be used to correspdutrum in Fourier space (as in
Mertz-like methods). However, the use of the Forni@éhmethod requires producing a
convolution kernel in “real” space with good localfion properties.
This kernel is classically obtained by taking timwerrse Fourier Transform of the phase
measured on the symmetrically part of the inteesm (see Fig. 10). Since we are only
interested in a given spectral range and becausefdand phase measures are unreliable, it
makes sense to use only the phase defined onfteesencies (see Fig. 11).

But if we simply and classically zero this phaseooit-of-band frequencies we produce a
weakly decreasing convolution kernel (see Fig. 12).

Such wide and weakly decreasing kernel means Heatonvolution will use a lot of
extrapolated points (up to a tenth of the interdeam) of dubious relevance to the true
interferogram, thus damaging it. Worse, missinggamare often simply set to zero, which



unbalances the convolution. That's why in Formam'sthod, there is an additional phase
apodization step which increases the rejectiomgtre(see Eq. (2)).

2 2
Aral0)= 1—(2] ,0 beingtheOPDandA is theOPDmax valus @

The resulting kernel has a much better rejectiah iardecreasing faster than before (see
Fig. 13).
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Fig. 11 : On the left, the absolute value of thecspum obtained from the interferogram of Fig.
10, notice that it doesn’t reach 0. On the righe, wrapped phase of the spectrum. Out of band
values aren’'t well defined and thus are in pragtoelom.
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Fig. 12 : On the left, zeroing the phase of Fig.at frequencies outside the spectral band of
interest. On the right, the inverse Fourier Tramsfmf the doctored phase on the left.
Rejection at end-points is only a few tens.
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Fig. 13 : Convolution kernel obtained by multiplgithe kernel of Fig. 12 by the Forman
apodization function Amanof Eq. (2).

Unfortunately this step is potentially as damaghsgthe asymmetrical ponderation of the
Mertz method. Let’s write Mertz and Forman estimatoEg. (3).

Sutertz(@) = [1(8) X Aperez(8)1(0) X e7m70()
= [(5(0) X eZin(pH(G)) * AMertz(U)] x ¢~2in09(0)

SForman(a) = [1(6) * ([e_m(o-)] X AForman(s))] (3)

— S(O') X eZiTm(p(O‘) X [e—ZimT(p(a') * AF;?;CLTI(O-)]

1(d) being the regularly sampled interferogram wittagdd(0), Suerz @and Porman bEING
the Mertz and Forman spectrum estimator @ndo) being the wavenumber dependent
erroneous phase of the interferograne£(0) and Ama{0) are the functions respectively
used by Mertz and Forman to balance the OPD andizapthe convolution kernel (see Fig.
14).
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Fig. 14 : In red is the initial incomplete interdgram. In green is the multiplication of the
truncated interferogram by the balancing functid®Dbefore the Fourier Transformation and
phase correction. In blue is the balancing funcAga., used to equilibrate the OPD.

These equations show that these induced pertunsatibthe spectrum cannot be easily
compared since they occur at different stages.
But we can see in Fig. 15 how these functions dishe spectral shape we built in Fig. 2.



Although we did not incorporate the Mertz apodiaation the left interferogram part
because our extrapolation makes it unnecessargtilvend (see Fig. 15) that Forman’s SNR
is more often greater than Mertz's SNR [13].

But on the other hand it seems that Forman’s methds much more strongly than
Mertz's when against the strongly rising curve fowat the lower edge of the spectral band.
Unfortunately since such situations are ubiquitdtusecomes difficult to choose one over the
over.

Fortunately, improvement can be made without thednr additional and disruptive
features. We just have to observe that the phasEigpf 12 is, by design, made up of
discontinuous signals. And discontinuous signalgettheir Fourier Transform well spread,
which gives the low rejection kernel of Fig. 12.

The solution is simply to get rid of these discounifies by joining the phase at its
boundaries with straight lines (see Fig. 16). Sacmanipulation is possible because no
information is sought on frequencies affected kg tilew phase, so that no damage will be
done to the spectrum concerned. It is even postibi® further by removing discontinuities
on the derivative of the phase signal, to go fro6f aolution to a €solution.
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Fig. 15 : On the left, we plot the spectra in @#inscale: in red, the original spectrum, in blue,
Mertz's estimate and in green, Forman’s estimatee ®riginal spectrum is made to cover

other curves, so when green or blue are appatengans that there are noticeable errors. On
the right, we give the spectral signal-to-noiséraf each estimator.
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Fig. 16 : On the left, the synthetic phase realizgcconnecting the useful spectral values of
Fig. 12 by straight lines. On the right, is the wointion kernel obtained by inverse Fourier
Transform of the synthetic phase on the left. R&jaat end-points is better than 500.

This simple operation already considerably imprafesquality of spectrum estimation in
Forman’s method, but it can even be improved byeasing the spectral resolution of the
phase up to the final sampling grid. This is simdhne by classical linear interpolating



method in Fig. 16, thus encoding implicitly moréoirmation on the smoothness of the phase.
All subsequent spectrum estimators will use thisrpolated phase.

But the use of this kernel, however “sharp” it ntsg; requires an extrapolation of the
interferogram since its end-points do not have Hdlfthe data needed to compute the
convolution. It seems to us that this signal preresstep is most often ignored in theoretical
development and left to undocumented procedures.

Unfortunately, this missing data, no matter whatdeewill be defined. Their definition is
explicit when using the Forman [6] convolution nathbut implicit when using the Mertz [7]
method because it operates in Fourier space. Ifather case, the missing data is silently
replaced by the data at the other end of the etegfam because of enforced interferogram
periodization.

But it is indeed reasonable to expect that by usingnore reliable interferogram
extrapolation the quality of the phase correctioill imcrease. We will therefore use the
solution in paragraph 3.1 which increases thefiestegram size by extrapolation to exploit all
the values of the convolution kernel (Fig. 12&FiH). The aberrant phase will then be
corrected either in Fourier space either in reatep

Then, it is important that the wing of the untrutechinterferogram is simply duplicated
on the other wing since the phase-corrected integfam should be now symmetric but is not
in practice because of the extrapolated data addélde shortest wing.

In Fig. 17, we compare these two new estimatorsclwaire devoid of any filtering steps,

with the legacy estimators.
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Fig. 17 : On the left, we have represented all spkestimators with respect to the original
spectrum. On the right, we give the spectral signaoise ratio of each estimator.

Unfiltered estimators are much better than thevegtrs inherited from Mertz and Forman,
thanks to the abandonment of apodizations thateptowe harmful. It can also be noted that
real space or Fourier space estimators are alnevtqgly equivalent, which is theoretically

expected.

4. Conclusions

The advent in the real world of static Fourier Bfanm Spectrometers which have a very
limited optical path difference range, gives greateactical importance than before to the
process of extracting the spectrum from truncatestograms. As these instruments rely
heavily on signal processing, we have chosen tysbaly this part by performing numerical
experiments.

After demonstrating the quality of the numericahslation of realistic defects affecting
these instruments, we proved that predictable éxeetal defects such as irregular OPD
sampling and non-linear phase can, and shouldpobgensated for. At the same time, we



showed that the classical methods of Mertz and Bormoaused large spectral errors.
However, the classical solution of smoothing digtmrities in signals that will need to be
transformed by a Discrete Fourier Transform, in thal or spectral domain, has proved
sufficient to lead to new, well behaved spectrutimestors.

Finally, it should be noted that the performancéheise estimators is strongly dependent
on the shape of the spectrum being measured.

Further studies will involve the analysis of thecamt of interferogram symmetry needed
to reliably evaluate the non-linear phase andnipact on performance. Future work will
move backward in the acquisition pipeline and wiplore the impact of image resampling
on the spectra.
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