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Spectrum estimation from truncated, non-
linearly phase shifted or irregularly sampled 
interferograms 
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Abstract: For performance or speed reasons, many types of spectrometers record only part of 
the interferogram thanks to its redundancy. Here we examine the consequences of this choice 
on the resulting spectrum. We jointly explore other sources of error also encountered on 
spectrometers, such as the irregular sampling of the interferometer and the non-linear phase of 
the spectrum. Then we revisit and improve the classical processing chain. 
© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

OCIS codes: (100.3175) Interferometric imaging; (110.4234) Multispectral and hyperspectral imaging; (150.1488) 
Calibration; (110.3080) Infrared imaging; (120.0280) Remote sensing and sensors; (300.6300)   Spectroscopy, 
Fourier transforms 

1. Introduction 

Temporal Fourier Transform Spectrometers are tremendous tools for extracting spectral 
information from radiations [1]. However, the temporal exploration of the interferometric 
range by these spectrometers limits the accessible temporal resolution to a few seconds 
without giving up too high a spectral and radiometric resolution. In addition, the moving parts 
of such spectrometers are difficult to use in environments subject to strong vibrations, such as 
vehicles or aircraft. 

One solution is to record only half of the interferogram thanks to their central symmetry. 
Going further means moving from spreading the variation of the optical path difference 
(OPD) over time to spreading it over the spatial dimension on an array of detectors [2,3,4]. 
But this solution drastically limits the possible spread of the OPD to the non-aberrant optical 
focal plane, thus limiting the spectral resolution. Once again we can record only part of the 
interferogram, increasing the spectral resolution. But this comes at a cost. 

Here we present an analysis and a numerical model for spectrum reconstruction that 
explicitly takes into account the current errors that affect these systems, such as irregular 
sampling and phase errors. We rely on an existing instrument to work on realistic parameters, 
of the type we measured in the Sieleters instrument [5]. We will then evaluate the 
effectiveness of the correction steps. We will also study the spectral errors made by the usual 
Forman [6] and Mertz method [7]. We will then propose different, unfiltered solutions which 
will be evaluated. 

Note that the spectrum estimators presented here were used in a previous paper in which 
we explored calibration issues in spatial calibration of static imaging Fourier Transform 
Spectrometers [8]. 

 

2. Asymmetrical and irregularly sampled OPD interfe rograms 

Let us begin by detailing the reasons for these imperfect measures and then we will show how 
to simulate properly such measures. 

 

2.1 Interferogram truncation and phase errors 



Since the spectral resolution of Fourier transform spectrometers (FTS) is proportional to the 
maximum range of the optical path difference, it is worth increasing it by truncating the 
recorded interferogram. This is particularly the case for static FTS, as it is much more 
difficult to extend OPDs in space than in time. Extending OPDs in time means longer mirror 
displacement or a larger rotation range, depending on the apparatus [1]. But in order to extend 
the OPDs in spatial FTS we would need to widen the image plane to preserve the initial 
optical quality. This means more sophisticated and complex optics. 

Such histogram truncation is possible due to the highly redundant nature of 
interferograms. Indeed, if we had "perfect" interferograms, only one side of the 
interferograms would be sufficient to compute the spectrum since in this case the 
interferograms are theoretically even (cf. Eq. (1)). 
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δ being the OPD, note that it can also be negative, being the difference between two 
optical paths. Lν(ν) being the spectral luminance of incoming radiation. 

 
Unfortunately, there are many sources of error in this measure that break this symmetry. 

The best known are phase errors in the optics of the interferometer, electronics and sampling 
OPD errors [1], especially in spatial spectrometers where the OPD is not as easy to adjust as 
its temporal counterpart. 

Fortunately, it is noted in the characterization of FTS instruments that the phase is slowly 
varying [1,6]. We believe that it is common to encounter this kind of situation because 
instrumentalists by seeking linearity spare us from this problem. Thus it becomes possible to 
estimate this phase from an interferogram with only a fraction of the range, thus making room 
for a much higher maximum OPD reached on a single interferogram wing (see Fig. 1). 

 
Fig. 1 : example of a truncated interferogram with the necessary symmetrical part to estimate 

the phase error. 

Estimating and reconstructing the necessary data will inevitably have an impact on spectra 
SNR. Here we define the SNR as the ratio between the true spectrum and the difference 
between the true and the estimated spectrum. 

 

2.2 Interferogram irregular sampling 

Time FTS often have a very sophisticated laser-based OPD displacement measure [1], so 
irregular OPD sampling should not truly exist, unless by design (e.g. to increase spectral 
resolution and/or eliminate frequency folding). 



But the spatial FTS is not so fortunate because sampling of the OPD by the focal plane 
array (FPA) will depend on actual position and orientation of the FPA as well as optical 
distortion. Thus spatial FTS using lenses in their optical design will be particularly exposed to 
irregular samplings [9]. 
 

3. Numerical based experiments 

Experimental comparison of infrared spectra is a difficult subject because, even today, the 
optics of laboratory spectrometers are seldom cooled to cryogenic temperatures. Comparisons 
of high-precision spectra are therefore experimentally difficult to carry out. Fortunately, a 
large part of the potential errors can be studied mathematically and numerically through the 
use of models. This is the purpose of this paper. 

To this end we have devised a synthetic spectrum with taxing properties, such as fast 
slopes (a in Fig. 2), an unresolved trough (region b), a large dynamic frequency chirp (region 
c) as well as non-linear phase error (cf. right part of Fig. 2). 

 
Fig. 2 : On the left is the synthetic spectrum used to test the entire spectrum interferogram 
signal processing pipeline. There are several fast ascending and descending slopes (a), an 
unresolved trough (b) and a large dynamic frequency chirp (c). On the right, we plot the slowly 
varying non-linear phase, with a dynamic range of 0.6 radians. Values outside the spectral 
range of [900-1250] cm-1 are undetermined and have been chosen constant for vizualisation 
reason. Due to the limited OPD range only 60 sampling points are available in the spectrum 
description on the instrument spectral range. 

We have also chosen to stick as much as possible to real instrumental characteristics by 
mimicking the instrumental characteristics of the long-wave infrared Sieleters Fourier 
Transform Static Spectro imaging system [5]. In this case, the characteristics are mainly the 
spectral band, the phase of the spectrum and the OPD values on the Focal Plane Array. These 
last two parameters have been measured on the instrument [5] (see  Fig. 5). Other than that 
the spectra amplitude has been chosen arbitrarily and has no unit. 

Let’s start by studying boundary effects which are particularly important in such an 
asymmetric signal. 

 

3.1 Eliminating boundary effects 

Processes making use of nearby samples, such as interpolation or Fourier transform, will be 
subject to signal boundary effects if they are not properly taken into account. In addition, 
significant values are still found on the truncated wing (the right in our example) of the 
interferogram (see Fig. 1), compounding the problem. 

Therefore, it is necessary to extrapolate on both ends these interferograms as faithfully as 
possible. Since they will then be subject to Fourier Transformations, these extrapolations 
must preserve the initial spectrum as much as possible. Fortunately, it is possible to obtain 



such properties by using autoregressive (AR) models [10,11]. Here we found that limited-
order AR models (less than 10) were sufficient to capture the important properties of the 
interferograms. We introduce in Fig. 3 the interferogram obtained from the spectrum defined 
in Fig. 2 and we show how well its extrapolated parts fit with the original truncated part. 

 
Fig. 3 : The original truncated interferogram from the spectrum of Fig. 2 is in red and the 
extrapolated signal is in black. On the left, we show the full extrapolated signal from a low 
order autoregressive model. This model is calculated only on the decreasing part of each side 
of the interferogram to better catch its decreasing property. On the right, we zoom in on the 
joining between signals to show its good fit to the original signal. 

Fig. 4 shows that the modified signal keeps roughly the same spectrum as the original one. 

 

Fig. 4 : Left, the original spectrum is reproduced. Right, we show the spectrum calculated from 
the extrapolated signal of Fig. 3,. Note how well the bandpass nature of the original signal is 

respected as well as the largest oscillations. 

All further processes to reconstruct the original, perfectly symmetric and regularly 
sampled interferogram will use this auto-regressive extrapolation. 

 

3.2 Correcting the irregular sampling 

We show here how to obtain a regularly sampled interferogram from its initial irregular 
sampling without damaging the underlying spectrum. First, in order to analyze the quality of 
the process of spectrum estimation from these imperfect interferograms, we need to insure the 
quality of our simulation. 

While it is simple to generate an interferogram from knowledge of the spectrum, including 
its chromatic phase by a Fourier Transform, it is less straightforward to generate an 
interferogram sampled on an irregular grid by using the same tool (for consistency). In 



particular to do this, we must first define a regular grid on which the interpolation will be 
performed to achieve the irregular values we need. 

To avoid extrapolation, this regular grid will be defined by a ramp from the lowest to the 
highest OPD values over as many samples as in the irregular sampling of the initial OPD. The 
irregular OPD is then expressed in relation to this newly defined regular OPD sampling scale 
(see Fig. 5). 

  
Fig. 5 : Deviation of the OPD from the regular OPD scale expressed in OPD sampling units. 

One unit being 2.7 µm. Values measured on the Sieleters LWIR instrument. 

 

3.2.1 Interpolation step 

Interferograms are band-limited because spectral filters installed in the instrument limit the 
spectrum of the incoming light. The Nyquist rule is then fulfilled, and therefore the Fourier 
shift theorem can be used to interpolate the interferograms at any sampling position without 
damaging the underlying signal. 

Since the interferogram has been directly defined in Fourier space, it is already periodized 
and therefore no errors will be introduced by the shift theorem due to possible edge 
discontinuities. 

As the shift theorem translates the whole grid by the same displacement value, this 
process must be repeated for each point in the interferogram (except for the first and last point 
of the interferogram, by construction). We give an example of the resulting interferogram in 
Fig. 6. 

 
Fig. 6 : Comparison of the irregular and regular sampling of the interferogram ofFig. 3. The 
regular interferogram is in blue while the irregularly sampled interferogram is in red. Since 

they are plotted against their real OPD abscissa and the Nyquist condition is met, the two plots 
describe exactly the same signal. 



However, since the evolution of the OPD is very smooth and limited in range, we need to 
demonstrate that such small deviations will nevertheless damage the resulting spectrum if 
they are not compensated or corrected. In the following step, we performed the Fourier 
transform of the irregularly sampled interferogram as if it was regularly sampled and 
supplemented by the correct values for the missing right wing and then phase-corrected by the 
exact phase. The resulting spectrum is given in Fig. 7. 

 

 
Fig. 7 : On the left we plot the true spectrum in red against the spectrum in black calculated 
from the irregularly sampled interferogram of Fig. 6. On the right, we give the spectral SNR of 
this spectrum estimator. The median SNR over relevant wavenumbers is 40. 

Thus we have shown that even the modest departure from the OPD linearity on the FPA 
shown in Fig. 5 is enough to condemn the ambition of the instrument’s spectral SNR 
(between 150 and 200, depending on the wavenumber [5]). 

Therefore, we must correct these deviations to a regular sampling grid. Note that we have 
anticipated here the use of the spectrum estimation which will be explained later in this paper 
(cf. 3.3). It is indeed always preferable to evaluate a method on the relevant criterion, here the 
SNR of the spectrum. 
 

3.2.2 Correcting irregular sampling 

To improve our spectrum estimator we need to obtain a linear OPD sampling, thus we need 
an interpolation method on nonuniform samples whose spectral preservation properties are 
compatible with the desired spectral SNR. Among the available methods we chose to 
compare a simple Fourier based solution to a functionally weighted Lagrange interpolation 
[12] of greater sophistication and complexity. 

Our Fourier solution takes advantage of the fact that, in this particular case, the sampling 
step is locally almost regular. Thus we simply applied the shift theorem used to create the 
irregular sampling of 3.2 but with –OPD instead of +OPD to reverse the displacement of the 
sampling grid and thus approaching the original regular sampling. The stronger the 
oversampling in Fourier space, the better. 

Since this solution is built on the hypothesis that the initial sampling is regular, it can only 
be an approximation. 

Thus we introduced the functionally weighted Lagrange interpolation which solves the 
oscillation problem between sampled points by weighting down the usual reconstructing 
Lagrangian basis functions and thus limiting oscillations (see Fig. 8). 



  
Fig. 8 : Comparison of errors made by Fourier and weighted Lagrangian reconstruction 

methods. 

The precision of the functionnally weighted Lagrangian method [12]  is regularly thousands 
of times higher than that of the Fourier transform. Thus with an SNR greater than one million, 
this processing step will not degrade the quality of the signal spectrum. 
 

3.3 Spectrum calculation from an incomplete interferogram 

We now focus on the spectrum estimation. The biggest challenge in this calculation is the 
quality of the phase estimation and its subsequent use. 

There are many culprits that explain an erroneous phase (Fig. 2), some of them producing 
a non-linear phase [1]. Unfortunately, this means that the Zero Path Difference (ZPD) is 
undefined and thus there is an ambiguity in defining the center of the interferogram. 

This is troublesome since the phase measurement should be done on the centered and 
balanced interferogram extracted from the asymmetrical initial interferogram (of Fig. 3). And 
we have, to our knowledge, no way to know it beforehand. 

Thus we propose to test iteratively all likely centers until we find the best one. All that 
remains to be done is to define the criterion for doing so.  

 

3.3.1 Centering the phase-distorted interferogram 

We choose to use the quality of the final spectrum as a criterion, since it is the end result of 
the whole process. Because we won’t know in advance the spectrum we will measure, it is 
impossible to use any error function, thus we simply tested the non-trivial property that 
spectra possess: their positivity. So we will simply choose the center that gives the least 
negative parts on the whole final spectrum. Fig. 9 gives an example of spectrum 
miscalculation. 



 
Fig. 9 : Spectrum obtained by our final estimator by shifting the center of the interferogram 

under test by 7 samples. 

This procedure is surprisingly effective. We have simulated a very large phase dynamic, 
up to 60 radians with the same phase shape, without error. Thus, at the cost of an iterative 
procedure, we are able to find perfectly the center (see Fig. 10) of the underlying 
interferogram. 

 

 
Fig. 10 : Symmetrical part of the interferogram of Fig. 3. 

 

3.3.2 Producing a phase-correcting  convolution kernel 
The phase thus measured can be used to correct the spectrum in Fourier space (as in 

Mertz-like methods). However, the use of the Forman [6] method requires producing a 
convolution kernel in “real” space with good localization properties. 
This kernel is classically obtained by taking the inverse Fourier Transform of the phase 
measured on the symmetrically part of the interferogram (see Fig. 10). Since we are only 
interested in a given spectral range and because out of band phase measures are unreliable, it 
makes sense to use only the phase defined on these frequencies (see Fig. 11). 

But if we simply and classically zero this phase on out-of-band frequencies we produce a 
weakly decreasing convolution kernel (see Fig. 12).  

Such wide and weakly decreasing kernel means that the convolution will use a lot of 
extrapolated points (up to a tenth of the interferogram) of dubious relevance to the true 
interferogram, thus damaging it. Worse, missing samples are often simply set to zero, which 



unbalances the convolution.  That’s why in Forman’s method, there is an additional phase 
apodization step which increases the rejection strength (see Eq. (2)). 
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The resulting kernel has a much better rejection and is decreasing faster than before (see 

Fig. 13). 
 

 
Fig. 11 : On the left, the absolute value of the spectrum obtained from the interferogram of Fig. 
10, notice that it doesn’t reach 0. On the right, the wrapped phase of the spectrum. Out of band 
values aren’t well defined and thus are in practice random. 

 
Fig. 12 : On the left, zeroing the phase of Fig. 11 at frequencies outside the spectral band of 
interest. On the right, the inverse Fourier Transform of the doctored phase on the left. 
Rejection at end-points is only a few tens. 



 
Fig. 13 : Convolution kernel obtained by multiplying the kernel of Fig. 12 by the Forman 

apodization function AForman of Eq. (2). 

Unfortunately this step is potentially as damaging as the asymmetrical ponderation of the 
Mertz method. Let’s write Mertz and Forman estimator in Eq. (3). 
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(3) 

I(δ) being the regularly sampled interferogram with phase ϕ(σ), SMertz and SForman being 
the Mertz and Forman spectrum estimator and ϕ (σ) being the wavenumber dependent 
erroneous phase of the interferogram. AMertz(δ) and AForman(δ) are the functions respectively 
used by Mertz and Forman to balance the OPD and apodize the convolution kernel (see Fig. 
14). 

 
Fig. 14 : In red is the initial incomplete interferogram. In green is the multiplication of the 

truncated interferogram by the balancing function OPD before the Fourier Transformation and 
phase correction. In blue is the balancing function AMertz used to equilibrate the OPD. 

These equations show that these induced perturbations of the spectrum cannot be easily 
compared since they occur at different stages. 

But we can see in Fig. 15 how these functions distort the spectral shape we built in Fig. 2. 



Although we did not incorporate the Mertz apodization on the left interferogram part 
because our extrapolation makes it unnecessary, we still find (see Fig. 15) that Forman’s SNR 
is more often greater than Mertz’s SNR [13]. 

But on the other hand it seems that Forman’s method fails much more strongly than 
Mertz’s when against the strongly rising curve found at the lower edge of the spectral band. 
Unfortunately since such situations are ubiquitous, it becomes difficult to choose one over the 
over. 

Fortunately, improvement can be made without the need for additional and disruptive 
features. We just have to observe that the phase of Fig. 12 is, by design, made up of 
discontinuous signals. And discontinuous signals have their Fourier Transform well spread, 
which gives the low rejection kernel of Fig. 12. 

The solution is simply to get rid of these discontinuities by joining the phase at its 
boundaries with straight lines (see Fig. 16). Such a manipulation is possible because no 
information is sought on frequencies affected by this new phase, so that no damage will be 
done to the spectrum concerned. It is even possible to go further by removing discontinuities 
on the derivative of the phase signal, to go from a C0 solution to a Cn solution. 

 

 

Fig. 15 : On the left, we plot the spectra in a linear scale: in red, the original spectrum, in blue, 
Mertz’s estimate and in green, Forman’s estimate. The original spectrum is made to cover 
other curves, so when green or blue are apparent, it means that there are noticeable errors. On 
the right, we give the spectral signal-to-noise ratio of each estimator. 

 
Fig. 16 : On the left, the synthetic phase realized by connecting the useful spectral values of 
Fig. 12 by straight lines. On the right, is the convolution kernel obtained by inverse Fourier 
Transform of the synthetic phase on the left. Rejection at end-points is better than 500. 

This simple operation already considerably improves the quality of spectrum estimation in 
Forman’s method, but it can even be improved by increasing the spectral resolution of the 
phase up to the final sampling grid. This is simply done by classical linear interpolating 



method in Fig. 16, thus encoding implicitly more information on the smoothness of the phase. 
All subsequent spectrum estimators will use this interpolated phase. 

 But the use of this kernel, however “sharp” it may be, requires an extrapolation of the 
interferogram since its end-points do not have half of the data needed to compute the 
convolution. It seems to us that this signal processing step is most often ignored in theoretical 
development and left to undocumented procedures. 

Unfortunately, this missing data, no matter what we do, will be defined. Their definition is 
explicit when using the Forman [6] convolution method but implicit when using the Mertz [7] 
method because it operates in Fourier space. In the latter case, the missing data is silently 
replaced by the data at the other end of the interferogram because of enforced interferogram 
periodization. 

But it is indeed reasonable to expect that by using a more reliable interferogram 
extrapolation the quality of the phase correction will increase. We will therefore use the 
solution in paragraph 3.1 which increases the interferogram size by extrapolation to exploit all 
the values of the convolution kernel (Fig. 12&Fig. 16). The aberrant phase will then be 
corrected either in Fourier space either in real space. 

Then, it is important that the wing of the untruncated interferogram is simply duplicated 
on the other wing since the phase-corrected interferogram should be now symmetric but is not 
in practice because of the extrapolated data added on the shortest wing. 

In Fig. 17, we compare these two new estimators, which are devoid of any filtering steps, 
with the legacy estimators. 

 
Fig. 17 : On the left, we have represented all spectral estimators with respect to the original 
spectrum. On the right, we give the spectral signal-to-noise ratio of each estimator. 

Unfiltered estimators are much better than the estimators inherited from Mertz and Forman, 
thanks to the abandonment of apodizations that prove to be harmful. It can also be noted that 
real space or Fourier space estimators are almost perfectly equivalent, which is theoretically 
expected. 
 

4. Conclusions 

The advent in the real world of static Fourier Transform Spectrometers which have a very 
limited optical path difference range, gives greater practical importance than before to the 
process of extracting the spectrum from truncated histograms. As these instruments rely 
heavily on signal processing, we have chosen to study only this part by performing numerical 
experiments. 

After demonstrating the quality of the numerical simulation of realistic defects affecting 
these instruments, we proved that predictable experimental defects such as irregular OPD 
sampling and non-linear phase can, and should, be compensated for. At the same time, we 



showed that the classical methods of Mertz and Forman caused large spectral errors. 
However, the classical solution of smoothing discontinuities in signals that will need to be 
transformed by a Discrete Fourier Transform, in the real or spectral domain, has proved 
sufficient to lead to new, well behaved spectrum estimators. 

Finally, it should be noted that the performance of these estimators is strongly dependent 
on the shape of the spectrum being measured. 

Further studies will involve the analysis of the amount of interferogram symmetry needed 
to reliably evaluate the non-linear phase and its impact on performance. Future work will 
move backward in the acquisition pipeline and will explore the impact of image resampling 
on the spectra. 
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