
HAL Id: hal-02863677
https://hal.science/hal-02863677v1

Submitted on 10 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental Analysis in SDN Open Source
Environment

Kuljaree Tantayakul, Riadh Dhaou, Béatrice Paillassa, Wasimon
Panichpattanakul

To cite this version:
Kuljaree Tantayakul, Riadh Dhaou, Béatrice Paillassa, Wasimon Panichpattanakul. Experimental
Analysis in SDN Open Source Environment. ECTI-CON 2017 : 14th International Conference on
Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, Jun
2017, Phuket, Thailand. pp.334-337, �10.1109/ECTICon.2017.8096241�. �hal-02863677�

https://hal.science/hal-02863677v1
https://hal.archives-ouvertes.fr

OATAO is an open access repository that collects the work of Toulouse
researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent
to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/22069

To cite this version:

Tantayakul, Kuljaree and Dhaou, Riadh and Paillassa, Béatrice and
Panichpattanakul, Wasimon Experimental Analysis in SDN Open
Source Environment. (2017) In: ECTI-CON 2017 : 14th
International Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology, 27
June 2017 - 30 June 2017 (Phuket, Thailand).

Open Archive Toulouse Archive Ouverte

Official URL :
https://doi.org/10.1109/ECTICon.2017.8096241

mailto:tech-oatao@listes-diff.inp-toulouse.fr
https://oatao.univ-toulouse.fr/22069
https://doi.org/10.1109/ECTICon.2017.8096241

Experimental Analysis in SDN Open Source
Environment

Kuljaree Tantayakul∗, Riadh Dhaou∗, Beatrice Paillassa∗,Wasimon Panichpattanakul†
∗IRIT-ENSEEIHT, University of Toulouse, France

†Department of Computer Engineering, Prince of Songkla University, Phuket, Thailand
kuljaree.tantayakul@etu.enseeiht.fr, {Riadh.Dhaou, Beatrice.Paillassa}@enseeiht.fr, wasimon@mail.coe.phuket.psu.ac.th

Abstract—The paper focuses on the free products used to setup
an Software-Defined Network by emulation and real experimen-
tation. Because SDN networking is a challenging research area,
objective of this paper is to provide assistance to researchers
wishing to evaluate their SDN work in an experimental setting.
In this paper, two collections of open source OpenFlow switches;
Open vSwitch (OVS) and ofsoftswitch13 (CPqD), which support
new version of OpenWRT firmware and the testing switches in
our laboratory, have been emulated and implemented in real
networks. The performances of OVS and CPqD in terms of UDP
throughput, TCP throughput and percentage of the packet loss
have been analyzed. The results indicate the consistency of the
results obtained by emulation and experimentation and highlight
the blocking parameter of the switch processing capacity.

Index Terms—Software-defined Network, OVS, CPqD.

TABLE I
COMPARISON BETWEEN EXISTING SIMULATORS/EMULATORS [7]

Simulators Mininet NS3 EstiNet OpenNet
OpenFlow Version 1.3.1 0.8.9 1.3.1 1.3.1
Simulation (S)/Emulation (E) E S/E S/E S/E
Wireless Functionality No No Scan Yes Yes
Controller Compatibility Yes No Yes Yes
Extendibility Yes Yes No Yes

and testing platforms supporting the SDN such as GEANT
OpenFlow Facility (GOFF) [8] from GEANT network, these
products and platforms are expensive and not easily accessible.
Thus, the use of open source products is a right solution for
many researchers. However, since there are many choices of
open source switches; it motivates us to make some experi-
ments and measure the performance of open source OpenFlow
switches. In this paper, we focused on two collection of
open source OpenFlow switches; Open vSwitch (OVS) and
ofsoftswitch13 (CPqD). The experiments and analysis of this
paper will be a guidance for the network administrators and
researchers, who are interested in deploying SDN to their
networks.

The outline of the paper is as follows: the concept of
SDN, controller and software OpenFlow switch are presented
in Section II. Then, the results of performance analysis on
experimental topology are shown in Section III and Section
IV. Finally, the conclusion and future works will be presented
in Section V.

II. RELATED WORKS

A. Software-defined Networking (SDN)

The concept of SDN is based on a centralized intelligence
by dividing the operation into two parts: the control plane and
the data plane. The operation methods require some protocols
such as NETCONF, Border Gateway Protocol (BGP), Open
vSwitch Database Management Protocol (OVSDB), MPLS
Transport Profile (MPLS-TP), and the OpenFlow protocol.
The key component of SDN architecture is the controller,
which operates as a brain since it coordinates and manages
all network devices in the SDN.

OpenFlow protocol [9] is the first standard protocol that
was defined by Open Network Foundation (ONF). It is a
Layer 2 protocol, which provides the communication between
the centralized controller and the network devices in SDN

I. INTRODUCTION

In legacy networks, each network device must be controlled
and managed individually. In addition, devices of different
vendors usually have different firmwares a nd t he forwarding
and control planes are coupled within one box. Thus, it is
inflexible a nd c omplicate t o m anage t he n etwork. S ince the
Software-Defined Network (SDN) [1][2] was proposed, a new
approach to computer networking has been introduced to
allow the network administrators to easily configure, update
and monitor the different network devices from different
manufacturers through a software application. Moreover, it is
more flexible t o extend network functions i n future.

Thus, it is not surprising that many simulation and em-
ulation tools, supporting SDN, have been published in both
commercial and open source tools e.g. Network Simulator 3
(NS3) [3][4], EstiNet [5], Mininet [6], and OpenNet [7]. These
tools can reduce the cost of designing, testing and optimiz-
ing solutions before implementating into the real networks.
Moreover, the interested data can be easily collected. The
comparison of these simulators [7] can be shown in TABLE
I. The main challenge of evaluation tools is the performance
assessment and OpenNet emulator is the best tool because it
links Mininet and NS3 together in order to use the Mininet
advantage in term of compatibility and the NS3 ability in
term of the wireless/mobility modeling. However, since this
paper made its experimental network based on wired network,
Mininet emulator has been selected as a sufficient tool.

To test the performance of SDN by deployment in real
networks, whether there are various commercial products

architecture. It works on top of the Transmission Control
Protocol (TCP) [10] and was released in many versions:
OpenFlow1.5.1 [11] (march 2015) is the current version.

B. SDN Controllers

The controller is one of the main components in the SDN
network. There are many different available SDN controllers
such as POX [12], RYU [13], Pyretic [14], Trema [15],
FloodLight [16], ONOS [17] and OpenDaylight [18]. In this
paper, RYU controller has been chosen because it is widely
used, provides well document and defines API for creating
various SDN application [19] [20]. It also is very fast python
based OpenFlow controller [21] as compare the performance
of application with POX and Pyretic controller.

C. Software OpenFlow Switch

There are many software switches [22][23] such as Open
vSwitch [24], CPqD OpenFlow switch [25], LINC switch [26]
and Pantou [27]. These different switches can be installed in
the network. However, from our review LINC supports Open-
Flow 1.3 but cannot be implemented on a small Linux router
such as OpenWRT while Pantou supports only OpenFlow 1.0.

1) Open vSwitch (OVS): is an open source software switch
implemented on Linux distribution. It is compatible with
OpenFlow1.0 and OpenFlow1.3. OVS can be used with flex-
ible controller in User-Space and perform fast Datapath in
Kernel.

2) CPqD software Switch (CPqD): was originally sup-
ported by Ericsson Innovation Center in Brazil in a partnership
with CPqD. CPqD switch is the first open source software kit,
which supports OpenFlow1.2 and the latest version supports
OpenFlow 1.3.

3) LINC Switch: is a pure OpenFlow software written in
Erlang, which supports for OpenFlow 1.2 to 1.4. It is not the
most efficient one but it gives a lot of flexibility and allows
users to quickly develop and test the new OpenFlow features.

4) Pantou: is an OpenFlow 1.0 implementation based on
the BackFire OpenWRT release (Linux 2.6.32). It turns a
commercial wireless router/Access Point to an OpenFlow
enabled switch by implementing an OpenFlow on top of Open-
WRT. The performance of Pantou on TP-Link WR1043ND is
declared that it can competently send out about 43 Mbps for
a single UDP flow [27].

III. EXPERIMENTAL TOPOLOGY

An experimental network has been setup as illustrated in
Fig. 1 in order to compare the performance of OVS and CPqD
switches. In this paper, the experiments have been separated
into 2 parts: emulation part and real experiment part. The
parameters of each case are set as shown in TABLE II.

For emulation part, Mininet has been used to generate a
topology consisting of one OpenFlow switch, three hosts, one
Linux Router and one RYU controller. The OpenFlow switch
was set to be OVS switch and changed to be CPqD switch
later. They have been configured to support OpenFlow 1.3.
The RYU controller runs script for OpenFlow 1.3.

Fig. 1. SDN Network Testbed

TABLE II
EXPERIMENTAL PARAMETERS

Parameter Setting
Emulation Tool Mininet 2.1.0p2

Link Speed 100Mbps
OpenFlow vSwitch 2.4.0/ofsoftswitch13
Controller RYU 3.18
OpenFlow v1.3.0

Testing Tool Iperf v2.0.5
UDP Datagram 1470 Bytes

TCP Window Size 85 KBytes

For our real experimental network, the device specification
is shown in TABLE III. TP-Link WR1043NDv3 is set as a
Router while TP-Link WR1043NDv2 is set as an OpenFlow
switch. We compiled a new OpenWRT firmware and added
the OpenFlow package version 1.3 from trunk source. This
firmware is a CPqD OFSoftswitch 1.3 [28][29] that is called
CPqD switch in this paper. The memory usage of OpenWRT
CPqD switch is 308 KBytes, about 7% of overlay. The
OpenWRT OVS switch is installed on TP-Link WR1043NDv2
[30] by installing OpenWRT firmware [31] first and using
sysupgrade firmware to specify a version that supports Open
vSwitch package. The Open vSwitch package can be installed
by using opkg command. The memory usage of OpenWRT
OVS switch is 2.5 MBytes about 54% of overlay. Both of the
OpenFlow switches were configured to support OpenFlow 1.3.

RYU controller is used to manage the routing path of
OpenFlow switch while Iperf [32] tool have been used to
generate UDP and TCP traffics in order to measure thier
performance. Wireshark [33] is also used to capture the traffics
and tshark [34] is used to classify the data for performance
analysis.

IV. PERFORMANCE ANALYSIS

For experimental results and analyses, three factors have
been considered. There are the bandwidth capability, the

TABLE III
HARDWARE SPECIFICATION IN REAL EXPERIMENT

Device Name Hardware Firmware/OS
h1 Lenovo ideapad 100 Ubuntu 14.04.4 LTS
h2 Acer ONE D270 Ubuntu 12.04.4 LTS
h3 MacBook Pro OS X EI Capitan
Controller DELL Precission T5610 Ubuntu 14.04.4 LTS
OVS Switch TP-Link WR 1043 ND v3 Linux OpenWrt 4.1.23
CPqD Switch TP-Link WR 1043 ND v2 Linux OpenWrt 4.1.11
R1 TP-Link WR 1043 ND v3 TP-Link Firmware v.3.16.9

Fig. 2. UDP/TCP Throughput

percentage of packet loss and the service time of one packet
in each OpenFlow switch. 1) Bandwidth Capability

Iperf was used to generate UDP and TCP traffic for one
hour. Every parameter was set as indicated in TABLE II. The
UDP and TCP bandwidth capabilities have been measured in
2 scenarios separated by traffic types: internal and external
traffics. Internal traffic is a traffic (or a connection) between
two hosts inside SDN network, which is the h1 and h2
connection in Fig. 1. The external traffic is a traffic of a host in
SDN network, which connects to another host outside the SDN
network e.g. h1 and h3 connection or h2 and h3 connection as
shown in Fig. 1. In this experiment, no traffic matrix has been
used because the main objective is to measure the bandwidth
capability of links in each OpenFlow switch. A single UDP
and TCP traffic have been generated 10 times. The results of
UDP/TCP throughput can be illustrated in Fig. 2. The trend
of the results of each switch in Mininet is similar to those of
each switch in real experiment.

Considering the UDP/TCP throughput of OVS switch, the
results are close to the link bandwidth capacity (100Mbps).
The UDP throughput in Mininet is higher than that of the real
experiment about 1.65% and about 1.78% for TCP throughput.

For CPqD switch, the UDP/TCP throughput in is about
50 Mbps in Mininet, and it is 20% higher than that of the
real experiment. The results show that OVS switch has better
performance than CPqD switch.

Fig. 3. Percentage of Packet Loss in 1 Hour

2) Packet Loss
Percentages of the packet loss in 1 hour of internal and

external traffics are illustrated in Fig. 3. Considering OVS
switch, the percentages of the packet loss in Mininet are about
3.3%, which are higher than those of the real experiment. In
contrast, considering the percentages of the CPqD switch, the
packet loss in the real experiments are about 57-58%, which
are higher than those in Mininet. The percentage of packet loss
of CPqD switch is very high because the maximum bandwidth
capacity of CPqD is only about 50 Mbps referring to the results
in previous sub-session(Bandwidth Capability). Thus, it cannot
handle the UDP traffic, which has its data rate equal to 100
Mbps.

From Fig. 2 and Fig. 3, Mininet indicates higher throughput
than experiment, meanwhile loss is higher. Thus, the number
of packet that is transmited by the Mininet host emulation
entity is higher than the real host, that is not a surprising
result. Besides, during experiment, we have found that the
throughtput is dependent of the kind of source devices (Acer
One, MacBook Pro, Lenovo). Since the Iperf generates flow
at the congestion limit, we can suppose that emulated host
is transmitting more rapidly than real host increases loss at
the emulated switch, while real hosts does not. This explains
the loss and throughtput results. Note decreasing the Iperf data
rate, reducing the loss. The experiment with 1Gbps shows that
the throughtput is limited around 700 Mbps.

3) Service Time
In the sub-experiment, tcpdump [35] has been used for

capturing the incoming packets and outgoing packages of
OpenFlow switches in order to calculate the total times that a
packet spends in the switch. Results are shown in TABLE IV.

When a packet arrives at a switch, the switch lookups its
flow entry for forwarding. If there is no flow entry, the switch
will send a PACKET IN message to its controller. Then, the
controller sends a FLOW MOD message back to allow the
switch to add a flow entry. Thus, the switch is able to forward

TABLE IV
SERVICE TIME

Setting
Emulation Experiment Real Experiment

O
V

S

C
Pq

D

O
V

S/
C

Pq
D

O
V

S

C
Pq

D

O
V

S/
C

Pq
D

First Packet 2.7878 4.8472 0.5757 2.6904 2.662 1.0107
(no flow entry)

Next Packet 0.1565 0.0995 1.5729 0.3084 0.203 1.5192

packets to the right destination.
Service time is the time between packet arrival and depar-

ture at the switch. It is a processing time inside the switch
plus the flow entry established time, which are a sending
process of a PACKET IN message from a switch to the
controller, controller processing time and sending process of a
FLOW MOD message back to the switch. Results in TABLE
IV show that OVS switch took shorter time to connect to the
controller than OVS switch in Mininet experiment, but the
results are similar in the real experiment.

An average switch processing time of one packet has been
analyzed. It has been derived from a period of time that the
switch treats each packet (except the first packet). The results
show that the CPqD switches can process the packets about
1.5 times faster than OVS switches.

V. CONCLUSION AND FUTURE WORK

This paper presents an original analysis of SDN tools.
A commercial router (TPLINK WR1043ND v2) has been
implemented in the real networks and is set as an OVS switch
and CPqD switch in order to compare the bandwidth capability
of a single UDP and TCP traffic.

From our experiments, every result acquired by Mininet and
the real network (such as throughput and the percentage of
packet losses) presents in the same trend. In our scenarios, the
OVS switch has the maximum bandwidth capability higher
than the CPqD switch for both of UDP and TCP traffics.
Moreover, we found that the OpenWRT OVS switch is easier
to install than the OpenWRT CPqD switch in the real network.

However, please note that even the CPqD switch has its
bandwidth capability limitation about 50 Mbps, it provides
faster OpenFlow handshake and uses less memory space for
the package installation than those of the OVS switch. For
future works, our studies should be extended to wireless
SDN networks and several OpenFlow switches should be
implemented and analysed in real networks.

REFERENCES

[1] Open Networking Foundation, ”Software-Defined Networking: The New
Norm for Networks,” in ONF White Paper, April 2012.

[2] C. Alaettinoglu, ”Software Defined Networking,” in PACKET DESIGN,
2013.

[3] NS3 OpenFlow switch support in version 3.18. Available:
http://www.nsnam.org/docs/release/3.18/models/html/openflow-
switch.html

[4] Gustavo J.A.M Carneiro. NS-3:Network Simulator 3. Available:
https://www.nsnam.org/tutorials/NS-3-LABMEETING-1.pdf

[5] S.Y. Wang, C.L. Chou, and C.M. Yang, ”EstiNet 8.0 OpenFlow Network
Simulator ans Emulator,” in Vol.51, Issue 9, September 2013.

[6] Mininet: An Instant Virtual Network on your Laptop (or other PC).
Available: http://mininet.org

[7] M. Chan, C. Chen, JX. Huang, T. Kuo, LH. Yen, and CC. Tseng, ”Open-
Net: A Simulator for Software-Defined Wireless Local Area Network,”
IEEE WCNC’14, April, 2014.

[8] C. Argyropoulos, B. Arslan, J. Aznar, K. Baumann, K. Dombek,
E. Escalona, D. Guija, E. Jacob, A. Juszczyk, J. Melnkov, A. Mendiola,
S. Naegele-Jackson, T. Ogrodowczyk, D. Pajin, D. Pamiewicz, R. van der
Pol, M. Przwecki, ”Deliverable D13.1 (DJ2.1.1) Specialised Applications’
Support Utilising OpenFlow/SDN,” GEANT, March, 2015.

[9] Open Networking Foundation, ”OpenFlow-enabled Transport SDN (ONF
Solution Brief),” May 2014.

[10] J. Postel, ”Transmission Control Protocol,” in RFC 793, September
1981.

[11] Open Networking Foundation, ”OpenrFlow Switch Specification version
1.5.1 (Protocol version 0x06),” March 2015.

[12] POX wiki. Available: https://openflow.stanford.edu/display/ONL/POX
+Wiki

[13] Ryu 3.18 documentation: WELCOME TO RYU THE
NETWORK OPERATING SYSTEM (NOS). Available:
http://ryu.readthedocs.org/en/latest/index.html

[14] Pyretic. Available: http://http://frenetic-lang.org/pyretic/
[15] Trema. Available: https://trema.github.io/trema/
[16] Floodlight. Available: http://www.projectfloodlight.org/floodlight/
[17] ONOS. Available: http://onosproject.org/
[18] OpenDayLight Controller. Available: http://www.opendaylight.org/
[19] A. Shalimov, D. Zuikov, D. Zimarina, V.Pashkov, and R.Smeliansky,

”Advanced Study of SDN/OpenFlow Controllers,” CEE-SECR ’13, Oc-
tober 2013.

[20] R. Khondoker, A. Zaalouk, R. Marx, and K. Bayarou, ”Feature-based
Comparison and Selection of Software Defined Networking (SDN) Con-
trollers,” WCCAIS 2014, October 2014.

[21] K. Kaur, S. Kaur, and V. Gupta, ”Perfomance Analysis of Phyton Based
OpenFlow Controllers,” EEECOS 2016, June 2016.

[22] Open Networking Foundation, ”OpenFlow Switch Specification Version
1.2 (Wire Protocol 0x03),” December 2011.

[23] Open Networking Foundation, ”OpenFlow Switch Specification Version
1.3.0 (Wire Protocol 0x04),” June 2012.

[24] B. Pfaff, J. Pettit, T. Koponen, Ethan J. Jackson, A. Zhout, J.Rajahalme,
J. Gross, A.Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado, ”The
Design and Implementation of Open vSwitch,” NSDI’15, May, 2015.

[25] CPqD OpenFlow 1.3 Software Switch. Available:
http://cpqd.github.io/ofsoftswitch13/

[26] LINC - OpenFlow software switch. Available:
https://github.com/FlowForwarding/LINC-Switch

[27] Pantou: OpenFlow 1.0 for OpenWRT. Available:
http://archive.openflow.org/wk/index.php/Pantou : OpenFlow 1.0 for
OpenWRT

[28] OpenFlow 1.3 for OpenWRT. Available:
https://github.com/CPqD/ofsoftswitch13/wiki/OpenFlow-1.3-for-
OpenWRT

[29] OpenFlow for OpenWRT OpenFlow Wireless Network. Available:
https://github.com/Farzaneh1363/OpenFlow-for-OpenWRT-OpenFlow-
wireless-network-/wiki

[30] Turning TP-LINK WR1043NDv2.1 router into OpenFlow-enabled
switch. Available: http://ljdelight.com/turning-tp-link-wr1043ndv2-1-
router-into-openflow-enabled-switch/.

[31] OpenWrt Wireless Freedom. Available:
https://downloads.openwrt.org/snapshots/trunk/ar71xx/generic/

[32] iPerf - The network bandwidth measurement tool. Available:
https://iperf.fr/

[33] Wireshark. Available: https://www.wireshark.org/#learnWS
[34] tshark - Dump and analyze network traffic. Available:

https://www.wireshark.org/docs/man-pages/tshark.html
[35] tcpdump(8)-Linux man page. Available:

http://linux.die.net/man/8/tcpdump

