
HAL Id: hal-02863658
https://hal.science/hal-02863658v1

Submitted on 10 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automatic Generation of Security Compliant (Virtual)
Model Views

Salvador Martínez, Alexis Fouche, Sébastien Gerard, Jordi Cabot

To cite this version:
Salvador Martínez, Alexis Fouche, Sébastien Gerard, Jordi Cabot. Automatic Generation of Security
Compliant (Virtual) Model Views. International Conference on Conceptual Modeling - ER 2018, Oct
2018, Xi’an, China. pp.109-117, �10.1007/978-3-030-00847-5_10�. �hal-02863658�

https://hal.science/hal-02863658v1
https://hal.archives-ouvertes.fr

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/327875915

Automatic Generation of Security Compliant (Virtual) Model Views: 37th

International Conference, ER 2018, Xi'an, China, October 22–25, 2018,

Proceedings

Chapter · September 2018

DOI: 10.1007/978-3-030-00847-5_10

CITATIONS

2
READS

75

4 authors, including:

Some of the authors of this publication are also working on these related projects:

Conceptual Modeling View project

Advanced Execution Modes for Model Transformations View project

Salvador Martínez Pérez

IMT Atlantique

31 PUBLICATIONS 225 CITATIONS

SEE PROFILE

Sébastien Gérard

Atomic Energy and Alternative Energies Commission

225 PUBLICATIONS 2,464 CITATIONS

SEE PROFILE

Jordi Cabot

Catalan Institution for Research and Advanced Studies

304 PUBLICATIONS 4,310 CITATIONS

SEE PROFILE

All content following this page was uploaded by Salvador Martínez Pérez on 28 September 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/327875915_Automatic_Generation_of_Security_Compliant_Virtual_Model_Views_37th_International_Conference_ER_2018_Xi%27an_China_October_22-25_2018_Proceedings?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/327875915_Automatic_Generation_of_Security_Compliant_Virtual_Model_Views_37th_International_Conference_ER_2018_Xi%27an_China_October_22-25_2018_Proceedings?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Conceptual-Modeling-3?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Advanced-Execution-Modes-for-Model-Transformations?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salvador_Perez8?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salvador_Perez8?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/IMT_Atlantique?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salvador_Perez8?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastien_Gerard?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastien_Gerard?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Atomic_Energy_and_Alternative_Energies_Commission?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sebastien_Gerard?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jordi_Cabot?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jordi_Cabot?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Catalan_Institution_for_Research_and_Advanced_Studies?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jordi_Cabot?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Salvador_Perez8?enrichId=rgreq-169b9aae9022791e6d26350febb66aec-XXX&enrichSource=Y292ZXJQYWdlOzMyNzg3NTkxNTtBUzo2NzU3Nzk1MDM0NjQ0NDhAMTUzODEyOTc5NzEzMg%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Automatic Generation of Security Compliant (Virtual)
Model Views

Salvador Martı́nez1, Alexis Fouche1, Sébastien Gérard1 and Jordi Cabot2

1 CEA-LIST, Paris-Saclay, France
{salvador.martinez,alexis.fouche,sebastien.gerard}@cea.fr

2 ICREA-UOC, Barcelona, Spain
jordi.cabot@icrea.cat

Abstract. The increased adoption of model-driven engineering in collaborative
development scenarios raises new security concerns such as confidentiality and
integrity. In a collaborative setting, the model, or fragments of it, should only be
accessed and manipulated by authorized parties. Otherwise, important knowledge
could be unintentionally leaked or shared artifacts corrupted. In this paper we
explore the introduction of access-control mechanisms for models. Our approach
relies on the definition of a domain specific language tailored to the definition of
access-control rules on models and on its enforcement thanks to the automatic
generation of security compliant (virtual) views.

1 Introduction

The increased adoption of the model driven engineering (MDE) paradigm in complex
collaborative scenarios introduces the need for effective confidentiality and integrity
protection mechanisms at the modeling level. Indeed, in such scenarios, a given model
(or type of model) may be shared among different stakeholders over possibly untrusted
channels. This model, or fragments of it, should only be accessed and manipulated
by authorized parties. Otherwise, the collaboration process could lead to the leak of
important knowledge, likely triggering reputation and/or economical losses.

Access-control (AC) policies are often the mechanism of choice to implement the
security requirements of confidentiality and integrity and thus, they constitute a perva-
sive mechanism in current information systems. However, while there exist standard
access-control languages based on well-defined paradigms (e.g., Role-based access-
control (RBAC) [4] and attribute-based access control (ABAC) [12]) the available AC
frameworks can not be directly used in an MDE scenario as they either provide a coarse
granularity that only allow for managing permissions at the file level (e.g., file systems
rights), requiring the manual fragmentation of the model to enforce security, or do not
take into account specificities of the modelware technical space such as the existence of
metamodels and the conformance relation.

This makes it difficult to define and enforce policies that respect the least privilege
principle that states that subjects must only have the rights they need to perform their
assigned duties. Indeed, an effective access-control mechanism for models must 1) pro-
vide the means to define and enforce fine-grained access-control rules (i.e., the means

to control access to any part of a model, be it a class, an attribute, a relation or an opera-
tion); 2) protect both models and their metamodels since metamodel information is also
valuable and should be protected; 3) be usable by modelers (which requires a language
that uses familiar model concepts as language primitives) and 4) keep the consistency
of the secured models, so that they can be viewed and manipulated by existing MDE
tools with no adaptation.

To the best of our knowledge, a language satisfying all these constraints does not
exist. While modeling has been intensively used as a means of including security and
access-control concerns in the early phases of systems design and specification[7] [8],
very few approaches are specially tailored to the protection of the models themselves
, e.g.[3], and none of them consider the modification of a model’s metamodel as a
requirement and enforcement mechanism.

Thus, we have decided to build a new fine-grained access-control mechanism for
models. More specifically, in this paper we present an approach composed of: 1) a role-
based access-control language specially designed to work with models allowing for the
specification of conditions at the M2 and M1 level and 2) an enforcement mechanism
based on the automatic generation of security compliant (virtual) views that protects
both the model and metamodel.

2 Concepts

In order to ease the discussion, we give a few notions on the concepts of access-control
and model views.

-Access-Control: Figure 1 (a) shows the core concepts of access-control: Objects rep-
resent the passive resources that can be accessed within a system and that we may want
to protect (files in an operation system, tables in a database,...). Subjects are the active
entities in a system. They represent the actors to which the access to Objects is con-
trolled. Actions are any kind of access to the Objects that may be performed by the
Subjects in a given system. Permissions relate Actions with Objects. A permission is
thus the right to perform a given Action (or set of actions) on a given Object (or set of
objects). These permission are, in turn, granted to Subjects.

Nevertheless, directly assigning permissions to Subjects becomes unpractical when
the user-base of the applications is large. Hence, in real applications, the definition of
the permissions and its assignment is often performed by using the concepts of Rule
and Policy. A rule is the assignment (or denial) of a permission to a given subject. Gen-
erally, access control rules have the form: Ri : {conditions} → {decision}, where the
sub-index i specifies the ordering of the rule, decision can be accept or deny and con-
ditions is a set of rule matching attributes (e.g., hold roles). An access-control security
policy is the set of permission assignments within a given information system, which is
composed of a set of Rules. This policy constitutes a mere definition of the security re-
quirements for the system, while the process of implementing the mechanisms to make
the system follow the rules it defines is called enforcement.

-Model-Views: The concept of view is very common in the field of databases, and
serves as a way to provide a certain perspective tailored for a specific type of use.

conforms to

M1

M2

Base metamodel

Base model

Viewtype

View

querying

querying

View
specification conforms to

ObjectAction

Subject

permission
assignment

Permission

(a) access control (b) model views

Fig. 1. Core Concepts

Company

name : String

street : String

city : String

state : String

zip : String

phone : String

email : String

Contact

street : String

city : String

state : String

zip : String

phone : String

email : String

Drug

name : String

dailyDosage : String

startDate : Date

stopDate : Date

Hospital

mixed : EFeatureMapEntry

MedicalParentGuardian

Patient

patientDoB : Date

patientGender : GenderType = male

policyNumber : String

Person

name : String Physician

registrationID : String

Record

recordID : String

Result

test : String

value : String

date : Date

performedBy : String

Treatment

comment : String

[0..*] record

[0..*] treatment
[0..*] result

[0..1] contact

[1..1] patient

[0..2] parentGuardian

[0..1] primaryCarePhysician

[1..1] insurer

[1..1] medical

[0..*] drug

Fig. 2. Medical Record Running Example

As such, a database view may be considered as a security enforcement mechanism that
filters and restricts the information a certain user can see from the database. There exists
several solutions bringing the concept of views to the modelware realm using a number
of different strategies. We base our work on the virtual models approach where views
are not serialized but instead are the result of executing live queries on the original
model. In particular, we adopt the terminology described in [2]. The main concepts
(depicted in Figure 1 (b)) are: Base meta-model: a regular meta-model involved in the
definition of a viewtype; base model: a regular model used as an input for building a
view; viewtype: a metamodel which structure is defined through the specification of
queries on one (or more) meta-model; view: a model conforming to a viewtype, and
resulting from the querying of one (or more) base model.

3 Approach

This section introduces the main elements of our approach and a running example to
illustrate them.

Running Example: We show in Figure 2 the metamodel of a medical record, the same
example used in the XACML specification[10]. Medical records, identified by a recor-
did string, contain five different types of information: 1) information about the insurer
of the patient represented by the Company metaclass; 2) Information about the Patient,
including name and Contact information; 3) information about the parents of the pa-
tient represented by the ParentGuardian metaclass; 4) information about the prescribed
treatments, represented by the Medical metaclass that aggregates data regarding the
Treatment and the Drugs it uses and regarding the Result of medical visits; and fi-
nally 5) information about the physician assigned to that patient. Given this metamodel,
there are different security scenarios we may want to consider: 1) Hiding part of the
metamodel to a partner, e.g. if we are outsourcing the development of the “people” sub-
system, we may want to hide to that partner the existence of classes to store medical
information on treatments and drugs, 2) Restricting access to medical information based
on the profile of the user, e.g. in a models@run.time scenario, we may want to block
access to record objects except to physicians in charge of that patient. Note that scenario
1 involves defining a rule at the “type-level” while the rule for scenario 2 involves the
“instance-level”. We support both kinds of rules (and combinations of both).

Our Solution: Figure 3 summarizes our approach for providing access-control for mod-
els. The process starts with a security engineer that specifies the desired policy. This
policy is written using a language specially tailored to define such modeling access
control rules. This policy is then transformed to a viewtype specification. The viewtype
specification is interpreted by a view engine in order to generate a filtered metamodel
(viewtype) and eventually, a filtered model (view). These are the elements the end-user
will obtain upon an access request. Note that different filtered artefacts (viewtypes and
views) are generated for each accessing role or end-user.

Our approach is thus composed of two main building blocks, an AC language and
a view generator in charge of the enforcement of the policy defined with such AC lan-
guage. We provide tool support3 for the AC language, its transformation towards a view
specification, and the execution of such view specification.

Security engineer

Policy

View generator

view
model

Role

input
model

viewtype
model

input
metamodel

View
specification
per role

Writes AC
rules

Fig. 3. Approach

3 https://gitlab.com/smartine/SecureModelViews

https://gitlab.com/smartine/SecureModelViews

PolicyRoleDeclaration

name : EString

Import

importURI : EString

Rule

id : EString

LHS

RHS
Subject

Action

action : ActionKind

ObjectCondition

ClassCondition

value : EString
 classCondRef : EClass

ReferenceCondition

 featureCondRef : EReference

FeatureCondition

 featureCondRef : EAttribute

OperationCondition

 operationCondRef : EOperation

AccessDecision

decision : DecisionKind = Accept

ActionKind

Read
Write
Execute

DecisionKind

Accept
Deny
Undetermined

[0..1] imports[0..*] roledeclaration

[0..*] rules

[0..1] lhs [0..1] rhs

[0..*] subjects

[0..*] actions

[0..1] objectCondition

[0..*] decisions

[0..1] name

Fig. 4. Access-control Policy Metamodel

4 Access-Control Language for Models

The first step requires providing the means to define access-control rules for models.
We do so by creating a domain specific policy language. This language allows security
engineers to write rules based on the base metamodel (i.e. filtering access based on
certain element types; the types themselves should not even be visible to the users)
and/or its instances (i.e. preventing access to model elements with certain values). In the
rest of this section we discuss the language’s abstract syntax and its execution semantics
and we provide a textual concrete syntax to ease its utilization.

4.1 Abstract Syntax

Figure 4 shows the conceptual schema of our RBAC-based policy language. It allows
the definition of rules that associate roles to the permissions (or prohibitions) to perform
actions on model elements. In this language, a Policy contains a number of access-
control Rules. These rules are composed of a left-hand side and a right-hand side. The
left-hand side is meant to be used to express a number of conditions for a given access-
control rule to apply to a given access request. We provide our language with three
specific condition elements:
1) Subject identified by its reference to a RoleDeclaration and representing the subject
accessing the protected resource.
2) Action that represents the operation to be performed on the protected resource. The
values of the actionType attribute of type ModelAction can be Read, Write or Execute
(this action only applies to model operations). Note that we include the three CRUD
operations Create, Update and Delete on the Write operation as the granularity of our
language permits to obtain the same effects by the combination of Write and Read
operations on the different model elements.
3) ObjectCondition that represents the resource to which the rule applies. Our lan-
guage allows the definition of ClassCondition to express permissions that apply to a
class, AttributeCondition ReferenceConditions that are meant to represent permissions
on specific attributes and references and OperationCondition to represent permissions
on model operations. Note that all ObjectCondition elements hold a reference to the
metamodel element they refer to. Besides, the ClassCondition holds a value attribute

of type String meant to be a place holder for model queries to filter model elements
w.r.t. complex conditions. Concrete implementations may link this query place holder
to concrete query languages such as OCL [11]. Their evaluation is nevertheless dele-
gated to the view framework in charge of generating the view models from a given view
specification.

The right-hand side of rules is used to express the effect the application a Rule has by
means of a Decision. DecisionKind lists the type of decisions that can be issued, namely
Allow for granting a permission, Deny for a prohibition. Note that the Policy holds a
default attribute of type DefaultPolicy used to provided a general decision when no rule
applies. This policy language can be easily enhanced so that elements such as roles and
actions have attributes as we have done in a previous work [9]. Finally, we consider user
management issues (such as role hierarchies or role delegation) and policy constraints
(such as Separation of Duty) out of the scope of this paper. Nevertheless, our language
may be easily extended to support advanced concepts and integrate contributions where
OCL constraints are used to impose constraints on the policy [1].

4.2 Concrete Syntax

In order to ease its use, we also define a textual concrete syntax for the Policy language.
Access-control policies may easily become large and thus, a textual syntax would be
easier to read and manipulate than a graphical or form-based one. Listing 1.1 shows
an example of this concrete syntax. A policy with a default behaviour of deny is de-
fined for our Medical Record example introduced in Section 2. The policy defines three
roles, Physician, Patient and Clerk and then proceeds to define access-control rules for
the Clerk role. Rules c1 to c4 grant read access to the Company, Hospital, Patient and
Record elements. Rule c3 However restricts the granted access to Records with recor-
dID greater than 100. c5 to c7 deny the access to the Physician, Medical and Parent
elements. Finally, rule c8 forbids the access to the patientGender attribute of Patient.

As we can see, the access control policy mixes positive with negative permissions.
This simplifies the propagation of permissions leading to policies that are more com-
pact and easier to read. Also, it does not list all of the metamodel classes, attributes,
references and operations (which would be tedious and error prone). For its correct in-
terpretation we need to provide our language with a set of precise execution semantics.
We do so in the following subsection.

Listing 1.1. Policy Example

i m p o r t ” p l a t f o r m / / T e s t 1 / r e c o r d s . e c o r e ”

D e c l a r e R o l e P h y s i c i a n , P a t i e n t , C l e r k

r u l e c1 (C l e r k ; Read ; c l a s s r e c o r d s . Company)−> Accept
r u l e c2 (C l e r k ; Read ; c l a s s r e c o r d s . H o s p i t a l)−> Accept
r u l e c3 (C l e r k ; Read ; c l a s s r e c o r d s . Record

WithValue = < ” s e l f . r e c o r d I D > 100 ” >)−> Accept
r u l e c4 (C l e r k ; Read ; c l a s s r e c o r d s . P a t i e n t)−> Accept
r u l e c5 (C l e r k ; Read ; c l a s s r e c o r d s . P h y s i c i a n)−> Deny
r u l e c6 (C l e r k ; Read ; c l a s s r e c o r d s . Medica l)−> Deny
r u l e c7 (C l e r k ; Read ; c l a s s r e c o r d s . P a r e n t)−> Deny
r u l e c8 (C l e r k ; Read ; a t t r e c o r d s . P a t i e n t . p a t i e n t G e n d e r)−> Deny

4.3 Execution Semantics

In the general case, the calculation of the permissions for each metamodel and model
element requires 1) to match an applicable access-control rule if such a rule exists and
2) to apply permissions propagation policies that may affect the evaluation of that rule.
These two mechanisms work as follows:
Rule matching. As shown in Figure 4, each rule may list several Role and several
Action elements. However, they only list one metamodel element (metaclass, struc-
turalfeature, or operation). This limitation simplifies the process of matching applica-
ble rules and, more importantly, prevents rule conflicts due to the intersection of rule
conditions (and well-formedness rules defined at the policy language level already pre-
vent the existence of two rules on the same metamodel element with an overlapping set
of roles). An additional generic query language helps to write arbitrary conditions to
precisely define the set of instances of the metamodel elements affected by the rule.
Permission Propagation. In order to clarify the interpretation of access-control poli-
cies, we propose a numbers of permission propagation principles that simplify the spec-
ification of such rules freeing the designers from manually defining in each rule the
priorities in case of conflict:

– SuperClass Propagation. Permissions defined for a superclass are inherited by the
subclasses if no other rule is defined for the subclasses.

– Containment Relationship Propagation. Permissions are propagated through the
containment relationship as defined in the metamodel.

– Containment Propagation. Permissions on a Class are propagated to its contained
elements (i.e., its attributes, references and operations).

– Deny Overrides. A rule denying a permission on a given model element is prop-
agated to all the subtree of contained elements overriding any rule granting the
permission that may be found on the subtree (including its contained attributes,
references and operations). This guarantees that the containment hierarchy is pre-
served, a requirement to have valid models.

– Default Propagation. If no access rule is applicable to a given model element, and
no permission is inherited from the previous propagation principles, the default
policy applies;

As a result of applying the aforementioned execution semantics to the example in
Listing 1.1 we will obtain the following list of permissions: Accept Classes: Hospi-
tal, Record (with RecordId greater than 100), Company and Patient; Deny Classes:
Physician, ParentGuardian, Medical, Treatment, Result, Drug and Contact; Accept all
Attributes and References from Accept Classes apart from patientGender and contact;
Deny all other Attributes and References. Note that the rule C1 is redundant, as Com-
pany inherits the accept permission from Record. We detect this kind of anomalies and
report them to the user during the transformation process we describe in Section 5.

5 Enforcement with Virtual Model Views

As stated in Section 3, the second building block of our approach is a model view gen-
erator. Indeed, we use views as an access-control enforcement mechanism. We adapt

the implementation of the virtual model view approach as described in EMFViews[2]
for that purpose. A view specification corresponding to an access-control policy con-
forming to our PolicyDSL language is automatically obtained by the use of a model
transformation. This transformation takes as input three models: an access-control pol-
icy; the metamodel referred by that policy; and a parameters model indicating for which
role the view is to be generated. It produces as output a view definition.

Due to space limitations we do not show here the transformation nor the View def-
inition and Parameter metamodels. They are available in the project website together
with a demo showing a view automatically derived from the policy in Listing 1.1.

The biggest advantage of enforcing access-control through the use of virtual model
views resides in 1) its capacity to modify the metamodel of the model to be protected
thanks to the generation of a specific viewtype for the view; 2) the elimination of the
synchronization issues that would appear otherwise between the original model and
the filtered parts (synchronization between the views and the original model is also
supported at the individual attribute level, while more complex updates fall under the
limits of the well-known view update challenge[5]).

As future work we intend to support other modelling artifacts, like OCL queries
and model transformations that should be adapted when producing a view so that they
continue to be executable and meaningful in the secure context. From a tooling per-
spective, we will complete the integration of the components described into the open
source Papyrus UML environment [6].

References

1. A. Ben Fadhel, D. Bianculli, and L. Briand. GemRBAC-DSL:a high-level specification lan-
guage for role-based access control policies. In SACMAT’16, pages 179–190. ACM, 2016.

2. H. Bruneliere, J. G. Perez, M. Wimmer, and J. Cabot. EMF views: A view mechanism for
integrating heterogeneous models. In ER’15, pages 317–325. Springer, 2015.

3. C. Debreceni, G. Bergmann, I. Ráth, and D. Varró. Enforcing fine-grained access control
for secure collaborative modelling using bidirectional transformations. SOSYM, pages 1–33,
2017.

4. D. Ferraiolo, J. Cugini, and D. R. Kuhn. Role-based access control (RBAC): Features and
motivations. In ACSAC, pages 241–48, 1995.

5. J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt. Combinators for
bidirectional tree transformations: A linguistic approach to the view-update problem. ACM
TOPLAS, 29(3):17, 2007.

6. S. Gérard et al. Papyrus uml. URL: http://www. papyrusuml. org, 8, 2012.
7. J. Jürjens. UMLsec: Extending UML for secure systems development. In ”UML’02”, pages

412–425. Springer, 2002.
8. T. Lodderstedt, D. Basin, and J. Doser. SecureUML: A UML-based modeling language for

model-driven security. In ”UML’02”, pages 426–441. Springer, 2002.
9. S. Martı́nez, J. Garcı́a, and J. Cabot. Runtime support for rule-based access-control evalua-

tion through model-transformation. In SLE’16, pages 57–69. ACM, 2016.
10. E. Rissanen et al. extensible access control markup language (XACML) 3.0, 2013.
11. O. Uml. 2.0 OCL specification. OMG Adopted Specification (ptc/03-10-14), 2003.
12. E. Yuan and J. Tong. Attributed based access control (ABAC) for web services. In ICWS’05.

IEEE, 2005.

View publication statsView publication stats

https://www.researchgate.net/publication/327875915

	Automatic Generation of Security Compliant (Virtual) Model Views

