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Guaranteed lower bounds on eigenvalues of
elliptic operators with a hybrid high-order

method

Carsten Carstensen∗ Alexandre Ern † Sophie Puttkammer˚

This paper introduces a novel hybrid high-order (HHO) method to approxi-
mate the eigenvalues of a symmetric compact differential operator. The HHO
method combines two gradient reconstruction operators by means of a parameter
0 ă α ă 1 and introduces a novel cell-based stabilization operator weighted by a
parameter 0 ă β ă 8. Sufficient conditions on the parameters α and β are iden-
tified leading to a guaranteed lower bound property for the discrete eigenvalues.
Moreover optimal convergence rates are established. Numerical studies for the
Dirichlet eigenvalue problem of the Laplacian provide evidence for the superiority
of the new lower eigenvalue bounds compared to previously available bounds.

1 Introduction

The eigenvalue problem for symmetric compact differential operators is a fundamental task
in the numerical analysis with a well-understood a priori error analysis for conforming finite
element methods (FEM) leading to optimal asymptotic convergence rates [BO91, Bof10]. The
Rayleigh–Ritz min-max principle shows that the discrete FEM eigenvalues are also guaranteed
upper bounds of the exact eigenvalues, even in the pre-asymptotic range of coarse triangula-
tions. In practice, guaranteed lower bounds (GLBs) can be even more important in a safety
analysis in computational mechanics or for the detection of spectral gaps. The computation
of lower eigenvalue bounds has been achieved based on the solution of nonconforming finite
element schemes followed by a simple post-processing in [CG14a, CG14b]. In particular, let-
ting κ2 :“ π´2 ` p2npn` 1qpn` 2qq´1 in nD, and if λCRpjq is the j-th discrete eigenvalue
computed with the Crouzeix–Raviart FEM, [CG14b] proves (without extra conditions; the
linear independency condition in [CG14a, CG14b] can be neglected [Liu15, CP21]) that

GLBCRpjq :“
λCRpjq

1` κ2h2
maxλCRpjq

ď λpjq, (1.1)

thereby delivering a GLB on the j-th continuous Dirichlet eigenvalue λpjq for the Lapla-
cian. Several other contributions [LO13a, LO13b, Liu15, CDM`17, CDM`18, ŠV14, Vej18a,
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HHO EV-Bounds

Vej18b] derived GLBs using the maximal mesh-size hmax as a global parameter as in (1.1).
This results in a possible underestimation for locally refined triangulations.
This motivated the design of novel schemes for the direct computation of GLBs without
a global post-processing. The first example can be found in [CZZ20] for a hybridizable
discontinuous Galerkin (HDG) method with Lehrenfeld–Schöberl stabilization, also studied
under the label weak Galerkin scheme. The scheme proposed in [CZZ20] requires the fine
tuning of skeletal-based stabilization terms. The main contribution of the present work is to
introduce a new scheme which leads to GLBs on the eigenvalues under a simplified tuning
of the stabilization terms. To achieve our goal, we rely on the framework of hybrid high-
order (HHO) methods. HHO methods have been introduced in [DPEL14, DPE15] for linear
diffusion and locking-free linear elasticity and have been bridged to HDG and nonconforming
virtual element methods (ncVEM) in [CDPE16]. Recall that in HHO methods the discrete
unknowns are polynomials of degree k ě 0 attached to the mesh faces and polynomials of
degree ` P tk ´ 1, k, k ` 1u, ` ě 0, attached to the mesh cells. In the present setting, we
consider the degree ` “ k ` 1 for the cell unknowns. Moreover the two key ingredients in
HHO methods are a local gradient reconstruction operator and a local stabilization operator.
The HHO method devised herein introduces two novelties with respect to the literature. The
first novelty is that the gradient reconstruction combines an operator mapping to piecewise
Raviart–Thomas functions of degree k and an operator mapping to the piecewise gradient of
piecewise polynomials of degree at most pk ` 1q. Although Raviart–Thomas reconstructions
were considered previously in [AEP18, DPDM18], it is the first time that they are combined
with another reconstruction. Note that the present analysis cannot employ the single Raviart–
Thomas reconstruction. The second novelty is that the stabilization operator is not skeletal-
based but cell-based.
The weak formulation of the continuous Laplace eigenvalue problem seeks pλ, uq P R`ˆH1

0 pΩq
such that

apu, vq “ λbpu, vq for all v P H1
0 pΩq and bpu, uq “ 1. (1.2)

The discrete eigenvalue problem seeks pλh, uhq P R` ˆ Vh with

ahpuh, vhq “ λhbhpuh, vhq for all vh P Vh and bhpuh, uhq “ 1. (1.3)

While the bilinear form bh represents the L2pΩq scalar product b, the gradient-like approxima-
tions in the bilinear form ah involve two reconstructions R and GRT of the discrete unknowns
in Vh :“ Pk`1pT qˆPkpFq with the space of piecewise polynomials of degree at most pk`1q on
each simplex in the triangulation Pk`1pT q and the space of piecewise polynomials of degree
at most k on each face PkpFq. The precise definition of the linear maps R : Vh Ñ L2pΩ;Rq
and GRT : Vh Ñ L2pΩ;Rnq can be found below in Section 3.1. Given two positive parameters
0 ă α ă 1 and 0 ă βă 8, for any uh :“ puT , uF q and vh :“ pvT , vF q P Vh, the energy scalar
product reads

ahpuh, vhq :“ pGRT puhq, GRT pvhqqL2pΩq ´ α
`

p1´ΠkqGRT puhq, p1´ΠkqGRT pvhq
˘

L2pΩq
(1.4)

` βp∇pwpuT ´Rpuhqq,∇pwpvT ´RpvhqqqL2pΩq.

Section 7.1.2 presents an algorithm for an effective parameter selection in the lowest-order
case. The Raviart–Thomas reconstruction GRT of the gradient does not require a stabilization
in the source problem [AEP18, DPDM18], but the second term on the right-hand side in (1.4)
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has a negative sign and another stabilization with the reconstruction R in Pk`1pT q is added.
This paper investigates the a priori error analysis for discrete eigenvalues and eigenvectors
and confirms optimal convergence rates. Moreover it shows that the following GLB property
holds for the j-th discrete eigenvalue λhpjq of (1.3) and the j-th eigenvalue λpjq of (1.2):

σ2β ` δ2 mintλpjq, λhpjqu ď α ă 1 implies λhpjq ď λpjq, (1.5)

with δ :“ κhmax and σ, κ related to the stability of L2-projections onto piecewise polynomial
spaces. (Notice that (1.1) means that each of the conditions (i) σ2β ` δ2λpjq ď α ă 1 (a
priori) and (ii) σ2β ` δ2λhpjq ď α ă 1 (a posteriori) implies the GLB property.) Numerical
examples study the feasibility of the condition identified in the GLB (1.5) and the relation to
(1.1) and the bounds in [CZZ20].
The remaining parts of this paper are organised as follows. After a short summary of the
notation in Section 2, Section 3 introduces the new method (1.3) with all the necessary
operators and the discrete bilinear forms ah and bh. Theorem 4.1 in Section 4 establishes
(1.5). Section 5 contains the a priori error analysis which hinges on the Babuška–Osborn
theory [BO91] and is inspired by [CCDE19] for the eigenvalue approximation by means of
the standard HHO method (which does not have the GLB property). Section 6 concentrates
on an alternative formulation of the lowest-order version for comparison with the Crouzeix–
Raviart method. The numerical experiments in the final Section 7 illustrate the advantage
of the direct lower bounds delivered by the present HHO method in the case of non-convex
domains where adaptive mesh-refinement is necessary for optimal convergence rates. These
results also provide numerical evidence for the superiority of the new GLBs compared to the
aforementioned methods.

2 Notation and preliminaries

2.1 Triangulations

Let T denote a shape-regular triangulation of a bounded polyhedral Lipschitz domain Ω Ă Rn
into closed n-simplices in the sense of Ciarlet [BBF13, BS08, Bra13, EG04]. For any simplex
T P T , let FpT q denote the set of its pn` 1q sides and let N pT q denote the set of its pn` 1q
vertices. The intersection T1XT2 of two distinct, non-disjoint simplices T1 and T2 in T is the
shared sub-simplex convtN pT1q XN pT2qu “ BT1XBT2 of their shared vertices. Furthermore,
F :“

Ť

TPT FpT q (resp. FpΩq or FpBΩq) denotes the set of all (resp. interior or boundary)
sides. For any simplex or sub-simplex K, let hK :“ diampKq denote its diameter. The
piecewise constant function hT P P0pT q takes the value hT |T “ hT on each simplex T P T
and hmax :“ maxTPT hT denotes the maximal mesh-size. Throughout this paper, νT is the
piecewise constant function which denotes for each simplex T P T the outer unit normal
vector νT |T “ νT .

2.2 Scalar products and differential operators

Standard notation applies to Lebesgue and Sobolev spaces, H1pT q abbreviates H1pintpT qq
for a compact T with interior intpT q. Throughout this paper, p ‚ , ‚ qL2pωq abbreviates the
L2-scalar product associated with volumes ω Ď Ω, whereas x ‚ , ‚ yBω denotes the duality
brackets in H1{2pBωq ˆH´1{2pBωq that extend the scalar product in L2pBωq associated with
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the boundary Bω. We also abbreviate

x ‚ , ‚ yBT :“
ÿ

TPT
x ‚ , ‚ yBT .

We consider the differential operators divergence (div), gradient (∇), and the Laplace-operator
(∆), as well as their piecewise applications divpw, ∇pw, and ∆pw. For instance, ∇pwv ab-
breviates p∇pwvq|T “ ∇pv|T q for any T P T and a piecewise function v P H1pT q :“ tv P
L2pΩq : v|T P H

1pT q for any T P T u. The scalar products a : H1
0 pΩq ˆ H1

0 pΩq Ñ R and
b : L2pΩq ˆ L2pΩq Ñ R read

apu, vq :“ p∇u,∇vqL2pΩq for all u, v P H1
0 pΩq,

bpu, vq :“ pu, vqL2pΩq for all u, v P L2pΩq,

and induce the norms ~ ‚~2 :“ ap ‚ , ‚ q and } ‚ }2L2pΩq
:“ bp ‚ , ‚ q. We also consider the piecewise

bilinear form

apwpu, vq :“ p∇pwu,∇pwvqL2pΩq for all u, v P H1pT q,

with induced semi-norm ~ ‚~2
pw :“ apwp ‚ , ‚ q. The same notation applies to norms of scalar-

and vector-valued functions.

2.3 Discrete function spaces and L2-projections

For any M P T or M P F , ` P N0, m P N, let P`pM ;Rmq denote the set of polynomials of
total degree at most ` in each component regarded as functions in L8pM ;Rmq and set

P`pT ;Rmq :“
 

q P L8pΩ;Rmq : for all T P T , q|T P P`pT ;Rmq
(

,

P`pF ;Rmq :“
 

q P L8pF ;Rmq : for all F P F , q|F P P`pF ;Rmq
(

,

P`pFpΩq;Rmq :“
 

q P P`pF ;Rmq : for all F P FpBΩq, q|F “ 0
(

,

and we omit Rm whenever m “ 1. The piecewise Raviart–Thomas space is RT pw
` pT q :“

P`pT qx ` P`pT ;Rnq. The associated L2-projections are denoted Π` : L2pΩq Ñ P`pT q, ΠF ,` :

L2pFq Ñ P`pFq, ΠF,` : L2pF q Ñ P`pF q for all F P F , and ΠRT,` : L2pΩ;Rnq Ñ RT pw
` pT q.

These projections act componentwise, e.g., for all f P H1pΩq, Π`pfq P P`pT q and Π`p∇fq P
P`pT ;Rnq.
The following two properties of the L2-projections are useful in the analysis below. These
properties are classical (see, e.g., [BS08, Lemma 4.3.8], [BBF13, Prop. 2.5.1], [DPE12, §1.4])
and are stated without proof.

Lemma 2.1 (Commutation). Π`pΠRT,`pfqq “ Π`pfq “ ΠRT,`pΠ`pfqq holds for all f P

L2pΩ;Rnq.

Lemma 2.2 (Approximation). The following holds for all m “ 1, . . . , ` ` 1, all T P T ,
and all φ P HmpT q,

}φ´Π`pφq}L2pT q ` h
1{2
T }φ´Π`pφq}L2pBT q ď Capxh

m
T |φ|HmpT q, (2.1)

and for all φ P HmpT ;Rnq,

}φ´ΠRT,`pφq}L2pT q ` h
1{2
T }φ´ΠRT,`pφq}L2pBT q ď Capxh

m
T |φ|HmpT q. (2.2)

The constant Capx depends on the shape-regularity of T and on the polynomial degree `, but
is independent of the cell diameter hT .
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The following refined stability estimates for L2-projections play an important role in the
devising of guaranteed lower bounds on the eigenvalues.

Theorem 2.3 (Refined stability estimates). There is Cst ě 1 such that, for all T P T
and all f P H1pT q,

}∇p1´Π``1qpfq}L2pT q ď Cst}p1´Π`qp∇fq}L2pT q. (2.3)

Moreover there is κ ą 0 such that for all T P T and all f P H1pT q,

}p1´Π``1qpfq}L2pT q ď κhT }p1´Π`qp∇fq}L2pT q. (2.4)

The constants Cst and κ depend on the shape-regularity of T and on the polynomial degree `,
but are independent of the cell diameter hT .

Remark 2.4 (Constants Cst and κ) The stability estimate (2.3) is established in [CZZ20] where
it is shown that, for any T P T , the conditions

(H1) Π``1p1q “ 1 and (H2) P`pT ;Rnq X∇H1pT q Ă ∇P``1pT q

are equivalent to the existence of an hT -independent constant CstpT q ą 0 such that (2.3)
holds on T P T , and one then sets Cst :“ maxtCstpT q : T P T u. The estimate Cst ě 1 readily
follows from the trivial bound }∇p1´Π``1qpfq}L2pT q ě }p1´Π`qp∇fq}L2pT q since ∇Π``1pfq P
P`pT ;Rnq. The Poincaré inequality }p1´Π0qpfq}L2pT q ď CPhT }∇f}L2pT q for all f P H1pT q and
(2.3) lead to (2.4) with κ ď CPCst. The Poincaré constant reads CP :“ 1{j11 for n “ 2 with
the first root of the first Bessel function j11 [LS10] and CP ď 1{π for n ě 3 [PW60, Beb03].
For ` “ 0, an upper bound on the constant κ was first computed in [CG14b] and improved
in [CG14a] for n “ 2. The appendix of [CZZ20] proves κ2 ď π´2 ` p2npn` 1qpn` 2qq´1 for
any space dimension n.

2.4 Vector and matrix notation

For a, b P Rmˆk, let a ¨ b “ aJb P Rkˆk and a b b “ abJ P Rmˆm. The notation | ‚ | depends
on the context and denotes the Euclidean length, the cardinality of a finite set, the n- or
pn´ 1q-dimensional Lebesgue measure of a subset of Rn. Furthermore a . b abbreviates that
there exists a generic constant C (independent of the mesh-size) with a ď Cb, whereas a « b
abbreviates a . b . a.

3 The modified HHO method

This section is devoted to the reconstruction and stability operators of the new method (1.3)
and their properties. Moreover, the discrete bilinear forms are discussed and the abstract
matrix eigenvalue problem is introduced.

3.1 Operators of interest

Set V :“ H1
0 pΩq. Let k ě 0 be the polynomial degree and set

Vh :“ Pk`1pT q ˆ PkpFpΩqq. (3.1)
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The components of vh :“ pvT , vF q P Vh are vT :“ pvT qTPT , vF :“ pvF qFPF . Note that vF ” 0
whenever F P FpBΩq by definition of PkpFpΩqq. Let I denote the interpolation operator
I : V Ñ Vh such that Ipφq “ pΠk`1pφq,ΠF ,kpφqq for all φ P V .
Define the reconstruction operator R : Vh Ñ Pk`1pT q such that for any vh :“ pvT , vF q P
Vh, Rpvhq P Pk`1pT q is the unique function with Π0Rpvhq “ Π0pvT q and

p∇pwRpvhq,∇pwpqL2pΩq “ ´pvT ,∆pwpqL2pΩq ` xvF ,∇pwp ¨ νT yBT for all p P Pk`1pT q. (3.2)

Let G denote the Galerkin projection onto Pk`1pT q, i.e., for any φ P H1pT q, we have
Gpφq P Pk`1pT q with Π0Gpφq “ Π0pφq and apwpp1´Gqpφq, pq “ 0 for all p P Pk`1pT q.

Lemma 3.1 ([DPEL14, DPE15]). R ˝ I “ G holds in V :“ H1
0 pΩq.

The Raviart–Thomas reconstruction GRT : Vh Ñ RT pw
k pT q defines a unique GRT pvhq P

RT pw
k pT q for all vh :“ pvT , vF q P Vh such that

pGRT pvhq, qRT qL2pΩq “ ´pvT ,divpwqRT qL2pΩq ` xvF , qRT ¨ νT yBT for all qRT P RT
pw
k pT q.

(3.3)

The comparison of (3.2) with (3.3) proves that ∇pwRpvhq “ Π∇Pk`1
GRT pvhq for all vh P Vh,

where Π∇Pk`1
denotes the L2-projection onto ∇pwPk`1pT q (composed of the gradients of

piecewise polynomials of degree pk`1q). Since ∇pw ˝G “ Π∇Pk`1
˝∇, we have p∇pw ˝Rq˝I “

Π∇Pk`1
˝∇ in V :“ H1

0 pΩq.

Lemma 3.2 ([AEP18, DPDM18]). GRT ˝ I “ ΠRT,k ˝∇ holds in V :“ H1
0 pΩq.

The stabilization operator S : Vh Ñ Pk`1pT q is defined for any vh :“ pvT , vF q P Vh by

Spvhq :“ vT ´Rpvhq. (3.4)

Lemma 3.3. Given any φ P V “ H1
0 pΩq and any simplex T P T , the stability term fulfils

SpIφq “ Πk`1pφq ´Gpφq, (3.5)

}∇SpIφq}L2pT q ď σ}p1´Πkqp∇φq}L2pT q, (3.6)

~SpIφq~pw ď σ}p1´Πkqp∇φq}L2pΩq (3.7)

with σ2 :“ C2
st ´ 1 and the constant Cst from Theorem 2.3.

Proof. The definition (3.4) and Lemma 3.1 imply (3.5). Since ∇pwp1´Gqpφq is L2-orthogonal
to ∇pwPk`1pT q, the Pythagoras theorem proves for any T P T ,

}∇SpIφq}2L2pT q “ }∇Πk`1pφq ´∇Gpφq}2L2pT q “ }∇p1´Πk`1qpφq}
2
L2pT q ´ }∇p1´Gqpφq}

2
L2pT q.

The first term is estimated in (2.3) by C2
st}∇φ´Πkp∇φq}2L2pT q, whereas the best approximation

property of Πk proves that

}∇φ´Πkp∇φq}L2pT q ď }∇φ´∇Gpφq}L2pT q “ }∇p1´Gqpφq}L2pT q.

The combination finishes the proof of (3.6), and (3.7) follows by summation over T P T . l

Remark 3.4 (Piecewise evaluation) For all T P T , the reconstructions Rpvhq|T and GRT pvhq|T
and the stabilization Spvhq|T soley depend on the local data vT “ vT |T and vF “ vF |F for all
F P FpT q, so that all these quantities can be computed piecewise and in parallel.
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3.2 Discrete bilinear forms

Given global constants 0 ă α ă 1 and 0 ă βă 8, the reconstructions in (3.2)–(3.3), and the
stabilization (3.4), the bilinear form ah : Vh ˆ Vh Ñ R is defined in (1.4), and we define the
L2 scalar product bh : Vh ˆ Vh Ñ R by bhpuh, vhq :“ puT , vT qL2pΩq for all uh “ puT , uF q and
vh “ pvT , vF q P Vh. The L2-projection property of Πk and the definition of the piecewise
bilinear form apw imply that the bilinear form ah can be rewritten as follows for any uh, vh P
Vh,

ahpuh, vhq “ p1´ αq
`

p1´ΠkqGRT puhq, p1´ΠkqGRT pvhq
˘

L2pΩq
(3.8)

` pΠkGRT puhq,ΠkGRT pvhqqL2pΩq ` βapwpSpuhq, Spvhqq.

The vector space Vh is equipped with the norms } ‚ }h [DPEL14, Eq. (28)] and } ‚ }a,h, defined
for any vh P Vh by

}vh}
2
h :“

ÿ

TPT

´

}∇vT }2L2pT q `
ÿ

FPFpT q
h´1
F }vF ´ vT }

2
L2pF q

¯

, (3.9)

}vh}
2
a,h :“ ahpvh, vhq

“ }GRT pvhq}
2
L2pΩq ´ α}p1´ΠkqGRT pvhq}

2
L2pΩq ` β~Spvhq~

2
pw

“ p1´ αq}GRT pvhq}
2
L2pΩq ` α}ΠkGRT pvhq}

2
L2pΩq ` β~Spvhq~

2
pw. (3.10)

The definiteness of } ‚ }h is known and that of } ‚ }a,h follows from Lemma 3.5 below. This
guarantees that ahp ‚ , ‚ q is a scalar product on Vh ˆ Vh which induces a norm on Vh. Con-
sequently the source problem associated with ah is well posed owing to the Lax–Milgram
lemma.

Lemma 3.5. There exist constants γ, γ ą 0, independent of the mesh-size, such that

γ}vh}
2
h ď ahpvh, vhq ď γ}vh}

2
h for all vh P Vh.

Proof. The Pythagoras theorem and the best approximation property of ΠF,k show for any
T P T , F P FpT q, and vh “ pvT , vF q P Vh with vT |T “ vT and vF |F “ vF , that

}vT ´ vF }
2
L2pF q “ }p1´ΠF,kqpvT q}

2
L2pF q ` }ΠF,kpvT q ´ vF }

2
L2pF q

ď }p1´Π0qpvT q}
2
L2pF q ` }ΠF,kpvT q ´ vF }

2
L2pF q.

The trace inequality from [CF00, CB18] and [DPE12, Eq. (1.42)] together with the Poincaré
inequality and the shape-regularity of T lead to

}p1´Π0qpvT q}
2
L2pF q ď

|F |

|T |
}p1´Π0qpvT q}L2pT q

`

}p1´Π0qpvT q}L2pT q ` 2hT {n}∇vT }L2pT q

˘

ď CP
h2
T |F |

|T |
pCP ` 2{nq}∇vT }2L2pT q ď C2hF }∇vT }2L2pT q.

It is shown in [AEP18, DPDM18] (see, e.g., Lemma 1 in [AEP18]) that there is C1 such that
for any T P T ,

ÿ

FPFpT q
h´1
F }ΠF,kpvT q ´ vF }

2
L2pT q ď C1}GRT pvhq}

2
L2pT q.

7 May 28, 2021



HHO EV-Bounds

The combination of the preceding three displayed inequalities leads to an estimator of h´1
F }vT´

vF }
2
L2pF q. The sum over all T P T and F P FpT q reads

ÿ

TPT

ÿ

FPFpT q
h´1
F }vT ´ vF }

2
L2pF q ď C1}GRT pvhq}

2
L2pΩq ` C2pn` 1q~vT ~

2
pw. (3.11)

Recalling that ∇pwR “ Π∇Pk`1
GRT , we infer that ~Rpvhq~pw “ }Π∇Pk`1

GRT pvhq}L2pΩq ď

}GRT pvhq}L2pΩq. This and the triangle inequality show that

~vT ~pw ď ~vT ´Rpvhq~pw ` ~Rpvhq~pw “ ~Spvhq~pw ` }Π∇Pk`1
GRT pvhq}L2pΩq

ď ~Spvhq~pw ` }GRT pvhq}L2pΩq. (3.12)

The combination of (3.11)–(3.12) and the last identity from (3.10) shows that

}vh}
2
h “ ~vT ~

2
pw `

ÿ

TPT

ÿ

FPFpT q
h´1
F }vT ´ vF }

2
L2pF q

ď 2p1` C2pn` 1qq~Spvhq~
2
pw ` p2` C1 ` 2C2pn` 1qq}GRT pvhq}

2
L2pΩq

ď γ´1
`

p1´ αq}GRT pvhq}
2
L2pΩq ` β}Spvhq}

2
L2pΩq

˘

ď γ´1}vh}
2
a,h

with the constant γ´1 :“ maxt2p1 ` C2pn ` 1qq{β, p2 ` C1 ` 2C2pn ` 1qq{p1 ´ αqu. On the
other hand, for any T P T , (3.3) with qRT “ GRT pvhq, an integration by parts, and the
Cauchy–Schwarz inequality lead to

}GRT pvhq}
2
L2pT q “ p∇vT , GRT pvhqqL2pT q ` xvF ´ vT , GRT pvhq ¨ νT yBT

ď }∇vT }L2pT q}GRT pvhq}L2pT q `
ÿ

FPFpT q
h

1{2
F }GRT pvhq}L2pF qh

´1{2
F }vF ´ vT }L2pF q.

A combination of a trace and an inverse estimate for Raviart–Thomas functions shows that
h

1{2
T }GRT pvhq}L2pBT q ď C3}GRT pvhq}L2pT q. Since hF ď hT for any F P FpT q, the Cauchy–

Schwarz inequality in Rn`1 leads to

}GRT pvhq}
2
L2pT q ď 2}∇vT }2L2pT q ` 2C2

3

ÿ

FPFpT q
h´1
F }vF ´ vT }

2
L2pF q.

The sum over all T P T reads

}GRT pvhq}
2
L2pΩq ď 2~vT ~

2
pw ` 2C2

3

ÿ

TPT

ÿ

FPFpT q
h´1
F }vF ´ vT }

2
L2pF q ď 2 maxt1, C2

3u}vh}
2
h.

The boundedness of the stability contribution follows from the triangle inequality, the estimate
~Rpvhq~pw ď }GRT pvhq}L2pΩq shown above and the last bound, leading to

~Spvhq~pw ď ~vT ~pw ` }GRT pvhq}L2pΩq ď

´

1`
?

2 maxt1, C3u

¯

}vh}h.

The second identity in (3.10) shows that }vh}
2
a,h ď }GRT pvhq}

2
L2pΩq ` β~Spvhq~

2
pw. This

concludes the proof with γ :“ 2β ` p1` 2βq2 maxt1, C2
3u. l
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3.3 Matrix eigenvalue problem

The algebraic realization of the eigenvalue problem (1.3) leads to a matrix eigenvalue problem
with coefficient matrices and vector pxT , xF q P RdimPk`1pT q`dimPkpFpΩqq

˜

AT T AT F
AFT AFF

¸˜

xT
xF

¸

“ λh

˜

BT T 0
0 0

¸˜

xT
xF

¸

and xT ¨BT T xT “ 1. (3.13)

The bilinear form bh solely depends on the volume components. The elimination of the face
unknowns leads to the Schur complement

ST T “ AT T ´AT FA
´1
FFAFT ,

and the equivalent matrix eigenvalue problem

ST T xT “ λhBT T xT and xT ¨BT T xT “ 1. (3.14)

The mass matrix BT T P RdimPk`1pT qˆdimPk`1pT q is positive definite and allows the approxi-
mation of dimPk`1pT q eigenvalues and the application of the min-max principle (e.g. [SF08,
Chapter 6]). The alternative formulation (3.14) will be exploited in Section 5 below.

4 Lower eigenvalue bounds

This section proves the main theorem, namely that the modified HHO method (1.3) provides
guaranteed lower bounds for the continuous eigenvalues. Recall the constants Cst and κ from
Theorem 2.3, set σ2 :“ C2

st ´ 1, and δ :“ κhmax.

Theorem 4.1. Let λpjq denote the j-th continuous eigenvalue of (1.2) and λhpjq the j-th
discrete eigenvalue of (1.3). Then each of the conditions (i) σ2β ` δ2λpjq ď α ă 1 (a priori)
and (ii) σ2β ` δ2λhpjq ď α ă 1 (a posteriori) implies λhpjq ď λpjq.

Proof. To alleviate the notation we simply write λh and λ.

Step 1. Reduction to δ2λ ă 1 . If 1 ď δ2λ, then (i) fails and (ii) holds. Consequently,
δ2λh ď α ă 1 ď δ2λ implies λh ď λ as claimed. It remains the case δ2λ ă 1 throughout the
remainder of the proof.

Step 2. Claim: Linear independence of Πk`1 pφ1 q, . . . ,Πk`1 pφj q P Pk`1 pT q. For the contin-
uous eigenvalue problem (1.2), let φ1, . . . , φj P H

1
0 pΩq denote the first j-th exact eigenfunctions

and λ the j-th eigenvalue. The proof is by contraposition and concerns φ P spantφ1, . . . , φju
with }φ}L2pΩq “ 1 and Πk`1pφq “ 0. The estimate (2.4) in Theorem 2.3 implies for δ “ κhmax

that

1 “ }φ}L2pΩq “ }p1´Πk`1qpφq}L2pΩq ď δ}p1´Πkqp∇φq}L2pΩq.

The Pythagoras theorem }∇φ}2L2pΩq “ }Πkp∇φq}2L2pΩq ` }p1´Πkqp∇φq}2L2pΩq implies that

}p1´Πkqp∇φq}2L2pΩq ď }∇φ}
2
L2pΩq.

The min-max principle on the exact eigenvalues of (1.2) for φ shows that

}∇φ}2L2pΩq ď λ “ max
vPspantφ1,...,φju

}∇v}2L2pΩq

}v}2
L2pΩq

. (4.1)

The combination of the last three displayed inequalities reads 1 ď δ2λ.
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Step 3. Claim: Dφ P spantφ1 , . . . , φj u, }φ}
2 “ 1, }∇φ}2 ď λ, λhbhpIpφq, Ipφqq ď ahpIpφq, Ipφqq.

Owing to Step 2 , the subspace Uj :“ spantIpφ1q, . . . , Ipφjqu of Vh has dimension j. If Upjq
denotes the space of all subspaces of Vh of dimension j, then the min-max principle for (1.3)
(on the algebraic level) characterizes the j-th discrete eigenvalue λh as

λh “ min
UhPUpjq

max
vhPUhzt0u

ahpvh, vhq

bhpvh, vhq
ď max

vhPUjzt0u

ahpvh, vhq

bhpvh, vhq
. (4.2)

The maximum in the finite-dimensional space Uj :“ spantIpφ1q, . . . , Ipφjqu is attained for
some vh P Uj . Therefore, there exists φ P spantφ1, . . . , φju with }φ}2 “ 1, }∇φ}2 ď λ (by the
above min-max principle on the continuous level cf. (4.1)), and

λhbhpIpφq, Ipφqq ď ahpIpφq, Ipφqq.

Step 4: Lower bound for bhpI pφq, I pφqq. Given φ P spantφ1, . . . , φju Ă H1
0 pΩq from Step 3 ,

the estimate (2.4) and the Pythagoras theorem show that

1´ δ2}p1´Πkqp∇φq}2L2pΩq ď 1´ }p1´Πk`1qpφq}
2
L2pΩq “ }Πk`1pφq}

2
L2pΩq “ bhpIpφq, Ipφqq.

Since δ2λ ă 1 and }p1 ´ Πkqp∇φq}2L2pΩq ď }∇φ}
2
L2pΩq ď λ, the displayed lower bound proves

bhpIpφq, Ipφqq ą 0. This also shows that λh ă 8.

Step 5: Upper bound for ahpI pφq, I pφqq. Given φ P H1
0 pΩq from Step 3 , the alternative form

of ah in (3.8) and Lemma 3.2 prove

ahpIpφq, Ipφqq “ }ΠkΠRT,kp∇φq}2L2pΩq ` p1´ αq}p1´ΠkqΠRT,kp∇φq}2L2pΩq ` β~SpIφq~
2
pw.

(4.3)

The commuting property from Lemma 2.1, the Pythagoras theorem, and }∇φ}2L2pΩq ď λ from
Step 3 show that

}ΠkΠRT,k∇φ}2L2pΩq “ }Πk∇φ}2L2pΩq ď λ´ }p1´Πkq∇φ}2L2pΩq. (4.4)

Lemma 2.1 and the boundedness of ΠRT,k with }ΠRT,k} ď 1 show that

}p1´ΠkqΠRT,kp∇φq}L2pΩq “ }ΠRT,kp1´Πkqp∇φq}L2pΩq ď }p1´Πkqp∇φq}L2pΩq. (4.5)

The combination of (4.3)–(4.5) with (3.7) proves (for 0 ă α ă 1) that

ahpIpφq, Ipφqq ď λ` pβσ2 ´ αq}p1´Πkqp∇φq}2L2pΩq.

Step 6: Finish of the proof. The combination of Step 3 –Step 5 shows that

pα´ βσ2 ´ δ2λhq}p1´Πkqp∇φq}2L2pΩq ď λ´ λh. (4.6)

The pre-factor on the left-hand side is non-negative in the case where the assumption (ii)
holds and (4.6) proves the claim λh ď λ. In the case where the assumption (i) holds, (4.6)
implies that

δ2pλ´ λhq}p1´Πkqp∇φq}2L2pΩq ď λ´ λh.

For contradiction assume λ´ λh ă 0 and divide the previous inequality by this difference so
that 1 ď δ2}p1´Πkqp∇φq}2L2pΩq. This is smaller than or equal to

δ2}∇φ}2L2pΩq ď δ2λ ď δ2λ` σ2β ď α ă 1.

This contradiction concludes the proof. l
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5 Convergence analysis

This section proves that the discrete eigenvalues converge with the expected optimal rates.
The analysis hinges on the Babuška–Osborn theory for the spectral approximation of compact
selfadjoint operators and adapts the arguments devised in [CCDE19] to analyze the spectral
approximation using the standard HHO method.

5.1 Babuška–Osborn theory

Let H denote a Hilbert space with inner product p ‚ , ‚ qH and let T P LpH;Hq denote a
bounded, linear, compact, and selfadjoint operator. Assume that Tn P LpH;Hq is a member
of a sequence of compact, selfadjoint operators that converge to T in operator norm, i.e.
limnÑ8 }T ´ Tn}LpH;Hq “ 0. Let σpT q denote the spectrum of T and µ P σpT qzt0u be a
non-zero eigenvalue of T with eigenspace Eµ “ kerpµI ´ T q of dimension m “ dimpEµq P N.

Theorem 5.1 (Convergence). For any eigenvalue µ P σpT qzt0u of multiplicity m, there
exists m eigenvalues µn,1, . . . , µn,m of Tn, that converge to µ as nÑ8, and

max
1ďjďm

|µ´ µn,j | ď Ca

ˆ

sup
φ,ψPEµzt0u

|ppT ´ Tnqφ, ψqH |

}φ}H}ψ}H
` }pT ´ Tnq|Eµ}

2
LpEµ;Hq

˙

.

If wn,j P kerpµn,jI ´ Tnq is a unit vector in the eigenspace of µn,j for 1 ď j ď m, then there
exists u P Eµ “ kerpµI ´ T q such that for all n P N

}u´ wn,j}H ď Cb}pT ´ Tnq|Eµ}LpEµ;Hq.

The constants Ca and Cb may depend on µ but are independent of n.

Proof. These are Theorems 7.2 and 7.4 in [BO91] for a selfadjoint operator T , see also in
[Bof10, Section 9] or [SZ17, Section 1.4.2]. l

5.2 The source problem and relevant solution operators

Given a right-hand side f P L2pΩq, the weak formulation of the Poisson model problem and
its solution is associated with the solution operator T : L2pΩq Ñ L2pΩq with

apT pfq, vq “ bpf, vq for all v P H1
0 pΩq. (5.1)

The source problem for the new method (1.3) seeks uh P Vh such that

ahpuh, vhq “ bpf, vT q for all vh “ pvT , vF q P Vh, (5.2)

is associated with the solution operator pTh : L2pΩq Ñ Vh with pThpfq :“ uh, and well-posed
by Lemma 3.5. Using Lemma 3.5 and proceeding as in [CCDE19, Lemma 3.2] shows that
the operator pTh is bounded uniformly with respect to the mesh-size. The first component of
pThpfq “ uh “ puT , uF q P Vh defines the selfadjoint, positive definite operator

Th : L2pΩq Ñ Pk`1pT q Ă L2pΩq with Thpfq :“ uT . (5.3)

This operator Th allows for the application of the Babuška–Osborn theory. If pλh, uhq with
uh “ puT , uF q is an eigenpair of (1.3), then pλ´1

h , uT q P R` ˆ Vh is an eigenpair of Th.
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The analysis of the solution operators pTh and Th, based on the discrete error estimate in
Theorem 5.2 below, follows the arguments of Section 4 in [CCDE19] (reduced to the present
case of a symmetric bilinear form ahp ‚ , ‚ q). Let s ą 1{2 be the index resulting from the
(reduced) elliptic regularity on the polyhedral domain Ω.

Theorem 5.2 (Discrete error estimate). The following holds for any s ď m ď k` 1 and
φ P L2pΩq with T pφq P H1`mpΩq,

} pThpφq ´ IpT pφqq}h . hmmax}T pφq}H1`mpΩq.

Proof. This proof adapts the arguments of [DPEL14, Thm. 8] and [CCDE19, Lemma 3.3]
to the modified HHO method. We abbreviate uh :“ pThpφq P Vh and u :“ T pφq P H1

0 pΩq.
Lemma 3.5 shows that

γ}Ipuq ´ uh}h ď sup
vhPVh,}vh}h“1

ahpIpuq ´ uh, vhq, (5.4)

where the above right-hand side represents the consistency error. The solution property
´∆u “ φ a.e. in Ω, and a piecewise integration by parts show, for vh “ pvT , vF q P Vh, that

ahpuh, vhq “ bpφ, vT q “ p´∆u, vT qL2pΩq “ p∇u,∇pwvT qL2pΩq ´
ÿ

TPT

ÿ

FPFpT q
xvT |T ,∇u ¨ νT yL2pF q

“ p∇u,∇pwvT qL2pΩq `
ÿ

TPT

ÿ

FPFpT q
xvF ´ vT ,∇u ¨ νT yL2pF q.

The last equality holds since vF“ pvF qFPF P PkpFpΩqq is single-valued for F P FpΩq and
vanishes along F Ă BΩ, and vT “ pvT qTPT . The combination of the alternative form of ah
from (3.8), Lemma 3.2, and Lemma 2.1 proves that

ahpIpuq, vhq “ pΠkGRT Ipuq, GRT pvhqqL2pΩq ` p1´ αq
`

p1´ΠkqGRT Ipuq, GRT pvhq
˘

L2pΩq

` βapwpSpIuq, Spvhqq

“
`

pp1´ αqΠRT,k ` αΠkqp∇uq, GRT pvhq
˘

L2pΩq
` βapwpSpIuq, Spvhqq,

because

ΠkGRT Ipuq ` p1´ αqp1´ΠkqGRT Ipuq “ p1´ αqGRT Ipuq ` αΠkGRT Ipuq

“ pp1´ αqΠRT,k ` αΠkqp∇uq.

The abbreviation qRT :“ pp1 ´ αqΠRT,k ` αΠkqp∇uq P RT pw
k pT q, the definition (3.3) of

GRT pvhq and an integration by parts show that

ahpIpuq, vhq “ pqRT ,∇pwvT qL2pΩq ` xvF ´ vT , qRT ¨ νT yBT ` βapwpSpIuq, Spvhqq.

The last three displayed equalities lead to

ahpIpuq ´ uh, vhq “ pqRT ´∇u,∇pwvT qL2pΩq ` xvF ´ vT , pqRT ´∇uq ¨ νT yBT
` βapwpSpIuq, Spvhqq “: S1 ` S2 ` S3.

For any T P T , the combination of (2.1)–(2.2) and 0 ă α ă 1 proves that

}qRT ´∇u}L2pT q ď p1´ αq}p1´ΠRT,kq∇u}L2pT q ` α}p1´Πkq∇u}L2pT q . hmT |u|H1`mpT q.
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Hence, the Cauchy–Schwarz inequality shows that

|S1| ď }qRT ´∇u}L2pΩq}∇pwvT }L2pΩq . hmmax|u|H1`mpΩq}vh}h. (5.5)

The term S2 is controlled similarly, and the term S3 is controlled via Lemma 3.3 and (2.1).
The bounds on S1, S2, S3 combined with the estimate (5.4) conclude the proof. l

5.3 Error analysis for the eigenvalue problem

Based on Theorem 5.2, the difference T ´ Th in the summands in Theorem 5.1 are estimated
as in [CCDE19] resulting in Theorem 5.6 below. Let us briefly outline the main steps. Recall
the index s P p1{2, 1s of the (reduced) elliptic regularity on the polyhedral domain Ω Ă Rn.

Lemma 5.3. }T ´ Th}LpL2pΩqq . hsmax holds for some 1{2 ă s ď 1.

Proof. This is [CCDE19, Lemma 4.1] for a symmetric ahp ‚ , ‚ q in combination with Theo-
rem 5.2. l

For a spectral value µ P σpT qzt0u, the smoothness of the functions in the eigenspaces Eµ is
quantified by t P rs, k ` 1s (depending on µ) and a constant Ct such that

}φ}H1`tpΩq ` }T pφq}H1`tpΩq ď Ct}φ}L2pΩq for all φ P Eµ. (5.6)

Since possibly Eµ Ă Hs`εpΩq for some ε ą 0, we can have t ą s ą 1{2.

Lemma 5.4. }pT ´ Thq|Eµ}LpEµ;L2pΩqq . htmax holds for s ď t ď k ` 1 and µ P σpT qzt0u
verifying (5.6).

Proof. The proof is analogous to [CCDE19, Lemma 4.2] utilizing Theorem 5.2. l

On Eµ ˆ Eµ this bound can be improved.

Lemma 5.5. For any s ď t ď k ` 1 and µ P σpT qzt0u verifying (5.6), any φ, ψ P Eµ satisfy

|
`

pT ´ Thqpφq, ψ
˘

L2pΩq
| . h2t

max}φ}L2pΩq}ψ}L2pΩq.

Proof. We detail the proof since it is slightly different from [CCDE19, Lemma 4.3]. For any
φ, ψ P Eµ, the definition of pTh and Th show that

`

pT ´ Thqpφq, ψ
˘

L2pΩq
“ pT pφq, ψqL2pΩq ´ bpThpφq, ψq “ pT pφq, ψqL2pΩq ´ ahp pThpφq, pThpψqq,

where we used that pTh is the solution operator in (5.2). Using the symmetry of ah and again
that pTh is the solution operator in (5.2), we infer that

`

pT ´ Thqpφq, ψ
˘

L2pΩq
“ pT pφq, ψqL2pΩq ´ ahpIT pφq, pThpψqq ` ahpIT pφq ´ pThpφq, pThpψqq

“
`

p1´Πk`1qT pφq, ψ
˘

L2pΩq
` ahpIT pφq ´ pThpφq, pThpψqq “: S4 ` S5.

To exploit the additional smoothness (5.6) of ψ P H1`tpΩq for S4, the projection property is
combined with the Cauchy–Schwarz inequality and (2.1) to obtain

S4 “
`

p1´Πk`1qT pφq, p1´Πk`1qpψq
˘

L2pΩq
ď C2

apxC
2
t h

2p1`tq
max }φ}L2pΩq}ψ}L2pΩq. (5.7)
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The term S5 needs a bit more algebraic manipulation. We first write

S5 “ ahpIT pφq ´ pThpφq, pThpψq ´ IT pψqq ` ahpIT pφq ´ pThpφq, IT pψqq.

The Cauchy–Schwarz inequality for ah, Theorem 5.2, and (5.6) prove for the first part that

ahpIT pφq ´ pThpφq, pThpψq ´ IT pψqq . h2t
maxC

2
t }φ}L2pΩq}ψ}L2pΩq. (5.8)

With the abbreviation S6 :“ ahpIT pφq, IT pψqq ´ apT pφq, T pψqq the solution properties of T
and pTh show for the second summand of S5 that

ahpIT pφq ´ pThpφq, IT pψqq ´ S6 “ apT pφq, T pψqq ´ ahp pThpφq, IT pψqq

“ pφ, T pψqqL2pΩq ´ pφ,Πk`1T pψqqL2pΩq

“ pφ, p1´Πk`1qT pψqqL2pΩq

“ pp1´Πk`1qpφq, p1´Πk`1qT pψqqL2pΩq

ď C2
apxC

2
t h

2p1`tq
max }φ}L2pΩq}ψ}L2pΩq, (5.9)

where the last inequality follows as in (5.7). The alternative form of ah from (3.8), the
definition of a, as well as a combination of Lemma 3.2 and Lemma 2.1 lead to

S6 “ pΠk∇T pφq,Πk∇T pψqqL2pΩq ` p1´ αq
`

ΠRT,kp1´Πkq∇T pφq,ΠRT,kp1´Πkq∇T pψq
˘

L2pΩq

` βapwpSIT pφq, SIT pψqq ´ p∇T pφq,∇T pψqq.

The Cauchy–Schwarz inequality, Lemma 3.3, and (2.1)-(2.2) prove for all φ, ψ P Eµ verifying
(5.6) that

S6 ď }p1´Πkq∇T pφq}L2pΩq}p1´Πkq∇T pψq}L2pΩq ` p1´ αq}ΠRT,kp1´Πkq∇T pφq}L2pΩq

ˆ }ΠRT,kp1´Πkq∇T pψq}L2pΩq ` β~SIT pφq~pw~SIT pψq~pw

ď p2´ αq}p1´Πkq∇T pφq}L2pΩq}p1´Πkq∇T pψq}L2pΩq

` βσ2}p1´Πkqp∇T pφqq}L2pΩq}p1´Πkqp∇T pψqq}L2pΩq

ď h2t
maxpp2´ αq ` βσ

2qC2
t C

2
apx}φ}L2pT q}ψ}L2pT q. (5.10)

The combination of (5.8)–(5.10) proves |S5| . h
2p1`tq
max }φ}L2pΩq}ψ}L2pΩq. This and (5.7) con-

clude the proof. l

5.4 Resulting estimates

Let µ P σpT qzt0u denote an eigenvalue of T of multiplicity m P N. Lemma 5.3 proves the
convergence Th Ñ T in LpL2pΩqq as hmax Ñ 0. Hence there are m discrete eigenvalues
µh,1, . . . , µh,m in multiplicity which converge to µ as hmax Ñ 0.

Theorem 5.6 (Error estimates). Given an eigenvalue µ P σpT qzt0u of multiplicity m,
t P rs, k ` 1s such that (5.6) holds, and the m eigenvalues µh,1, . . . , µh,m of Th, that converge
to µ as hmax Ñ 0, then

max
1ďjďm

|µ´ µh,j | ď Cah
2t.
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Moreover, given any unit vector uT ,j P kerpµh,jI ´ Thq Ă Pk`1pT q, there exist an unit vector
u P kerpµI ´ T q “ Eµ such that

}u´ uT ,j}L2pΩq ď Cbh
t.

Given a discrete eigenfunction uT P kerpµh,jI ´ Thq Ă Pk`1pT q, there exist an unit vector
u P kerpµI ´ T q “ Eµ such that uh :“ puT , ZF puT qq P Vh satisfies

}uh ´ Iu}
2
a,h “ ahpuh ´ Iu, uh ´ Iuq ď Cch

2t.

The constants Ca, Cb, Cc ą 0 may depend on µ, the polynomial degree k, the domain Ω, and
the mesh regularity but are independent of the mesh-size.

Proof. The combination of Lemma 5.4–5.5 with the Babuška–Osborn theory in Theorem 5.1
provides the first two assertions. The proof for the final claim is analogue to Corollary 4.6 in
[CCDE19]. In fact Lemma 5.5 provides the bound (5.10) for δu :“ ahpIu, Iuq´apu, uq “ S6.l

Remark 5.7 The eigenvalues λh in (1.3) and λ in (1.2) are associated with µh “ λ´1
h and

µ “ λ´1, respectively, which leads to the same estimates. If the smoothness is optimal, i.e.,
t “ k ` 1, the proven convergence is of order h2k`2 for the eigenvalues and hk`1 for the
eigenvectors in the H1-seminorm.

6 Lowest-order case

This section is devoted to the analysis of the lowest-order case and provides a comparison
to the Crouzeix–Raviart method. Throughout this section we set k :“ 0 so that Vh :“
P1pT q ˆ P0pFpΩqq.
Let midpKq :“ 1

m

řm
j“1 Pj P K denote the barycenter of K :“ convtP1, . . . , Pmu. The associ-

ated piecewise constant function midpT q P P0pT ;Rnq takes on each simplex T P T the value
midpT q|T :“ midpT q. Let us set

spT q :“ 1{n2 Π0p| ‚ ´midpT q|2q P P0pT q,
SpT q :“ Π0

`

p ‚ ´midpT qq b p ‚ ´midpT qq
˘

P P0pT ;Rnˆnq.

6.1 Comparison with the Crouzeix–Raviart method

The Crouzeix–Raviart (CR) finite element space reads

CR1
0pT q :“ tvCR P P1pT q : vCR is continuous at midpF q for all F P FpΩq,

vCRpmidpF qq “ 0 for all F P FpBΩqu.

The vector spaces P0pFpΩqq and CR1
0pT q can be identified as follows. The extension operator

ICR : P0pFpΩqq Ñ CR1
0pT q maps bijectively vF “ pvF qFPF P P0pFpΩqq onto ICRpvF q :“

ř

FPF vFψF , where ψF P CR
1
0pT q denotes the basis function with ψF pmidpEqq “ δEF for all

F,E P F . This leads to ΠF ,0ICRpvF q “ vF for any vF P P0pFpΩqq. Furthermore, if INC :

H1
0 pΩq Ñ CR1

0pT q denotes the nonconforming interpolation INCpφq :“
ř

FPF ´
ş

F φ dsψF P

CR1
0pT q of φ P H1

0 pΩq, then INCpφq “ ICRΠF ,0pφq. In other words we have INC “ ICR ˝ΠF ,0.
Recall the operators R from (3.2), GRT from (3.3), and S from (3.4).
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Lemma 6.1. For any vh :“ pvT , vF q P Vh, letting vCR :“ ICRpvF q P CR
1
0pT q, the following

holds:

(a) Rpvhq “ p1´Π0qpvCRq `Π0pvT q,

(b) GRT pvhq “ ∇pwvCR `
1
n

1
spT q

`

Π0pvCR ´ vT q
˘

p ‚ ´midpT qq,

(c) Spvhq “ p1´Π0qpvT ´ vCRq.

Proof. (a) For any p P P1pT q the definition (3.2) of R and an integration by parts show that

apwpRpvhq, pq “ ´pvT ,∆pwpqL2pΩq ` xvF ,∇pwp ¨ νT yBT “ xvCR,∇pwp ¨ νT yBT “ apwpvCR, pq.

Hence, ∇pwRpvhq “ ∇pwvCR. The condition Π0Rpvhq “ Π0pvT q concludes the proof of (a).

(b) For any qRT P RT0pT q, the definition (3.3) of GRT and an integration by parts show that

pGRT pvhq, qRT qL2pΩq “ ´pvT ,divpwqRT qL2pΩq ` xvCR, qRT ¨ νT yBT

“ pvCR ´ vT ,divpwqRT qL2pΩq ` p∇pwvCR, qRT qL2pΩq

“ pΠ0pvCR ´ vT q, divpwqRT qL2pΩq ` p∇pwvCR,Π0pqRT qqL2pΩq.

On the other hand, since any qRT P RT
pw
0 pT q can be written as

qRT “ Π0qRT ` n
´1divpwqRT p ‚ ´midpT qq,

the Pythagoras theorem for Π0 and the definition of spT q show that

pGRT pvhq, qRT qL2pΩq “ pΠ0GRT pvhq,Π0pqRT qqL2pΩq `
`

p1´Π0qGRT pvhq, p1´Π0qpqRT q
˘

L2pΩq

“ pΠ0GRT pvhq,Π0pqRT qqL2pΩq

`
1

n2

`

divpwGRT pvhqp ‚ ´midpT qq,divpwqRT p ‚ ´midpT qq
˘

L2pΩq

“ pΠ0GRT pvhq,Π0pqRT qqL2pΩq ` pspT qdivpwGRT pvhq, divpwqRT qL2pΩq.

The comparison of the last two displayed equalities shows that spT qdivpwGRT pvhq “ Π0pvCR´

vT q and Π0GRT pvhq “ ∇pwvCR. That completes the proof of (b).

(c) This follows directly from the definition (3.4) and (a). l

Proposition 6.2. (a) The bilinear forms in the lowest-order case read for all uh :“ puT , uF q
and vh :“ pvT , vF q P Vh,

ahpuh, vhq “ apwpICRpuF q, ICRpvF qq ` β apwpuT ´ ICRpuF q, vT ´ ICRpvF qq

` p1´ αq
`

spT q´1Π0pICRpuF q ´ uT q,Π0pICRpvF q ´ vT q
˘

L2pΩq
,

bhpuh, vhq “ puT , vT qL2pΩq.

(b) The discrete solution uh :“ puT , uF q P Vh of the lowest-order EVP satisfies

ICRpuF q “

ˆ

1´
λhspT q
1´ α

˙

Π0puT q `

˜

ˆ

1´
λhSpT q

β

˙

∇pwuT

¸

¨ p ‚ ´midpT qq, (6.1)

apwpICRpuF q, vCRq “ λhpuT , vCRqL2pΩq, for all vCR P CR
1
0pT q. (6.2)
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Proof. (a) Using the alternative form for ah from (3.8) for the lowest-order case k “ 0, the
substitution of the operators with Lemma 6.1 proves the claim.

(b) With the bilinear forms of Proposition 6.2(a), (1.3) leads for any vh “ pvT , 0q P Vh with
vT P P1pT q to

p1´ αq
`

spT q´1Π0puT ´ ICRpuF qq, vT q
˘

L2pΩq
` β apwpuT ´ ICRpuF q, vT q “ λhpuT , vT qL2pΩq.

(6.3)

The choice Π0pvT q P P0pT q in (6.3) shows that 1´α
spT qΠ0puT ´ ICRpuF qq “ λhΠ0puT q and

equivalently

Π0ICRpuF q “

ˆ

1´
λhspT q
p1´ αq

˙

Π0puT q.

The substitution of p1´Π0qpvT q P P1pT q in (6.3) proves

βapwpuT ´ ICRpuF q, vT q “ λh
`

uT , p1´Π0qpvT q
˘

L2pΩq
.

Since for any v1 P P1pT q, we have v1 “ Π0pv1q ` ∇pwv1 ¨ p ‚ ´ midpT qq, the last displayed
identity concludes the proof of (6.1) with

∇pwICRpuF q “

ˆ

1´
λhSpT q

β

˙

∇pwuT .

Since the operator ICR : P0pFpΩqq Ñ CR1
0pT q is surjective, the choice of test functions

vh “ pICRpvF q, vF q P Vh in (1.3) proves (6.2). l

Let pλCR, φCRq P R` ˆ CR1
0pT q denote a Crouzeix–Raviart eigenvalue pair with

apwpφCR, vCRq “ λCRbpφCR, vCRq and }φCR}L2pΩq “ 1 for all vCR P CR
1
0pT q. (6.4)

Corollary 6.3 (Comparison with Crouzeix–Raviart). If λCRpjq denotes the j-th eigen-
value of (6.4) and λhpjq the j-th eigenvalue of (1.3), then λhpjq ď λCRpjq.

Proof. The proof is similar to [CZZ20, Thm.6.2]. Since ICRΠF ,0pvCRq “ vCR for any Crouzeix–
Raviart function vCR P CR

1
0pT q, Proposition 6.2 shows that for vCR,h :“ pvCR,ΠF ,0vCRq P Vh,

ahpvCR,h, vCR,hq “ apwpvCR, vCRq and bhpvCR,h, vCR,hq “ bpvCR, vCRq.

The discrete min-max principles for λhpjq and λCRpjq conclude the proof. l

6.2 Estimate on the constant σ

Recall the a posteriori condition σ2β ` δ2λhpjq ď α ă 1 in Theorem 4.1 sufficient for the
j-th discrete eigenvalue λhpjq of (1.3) to be a guaranteed lower bound for the j-th exact
eigenvalue λpjq of (1.2). Thus the constants σ and κ (recall that δ :“ κhmax) are essential
for the choice of the parameters α and β. The constant κ is estimated in Remark 2.4 as
κ2 ď π´2 ` p2npn` 1qpn` 2qq´1 for any space dimension n, and for n “ 2, this bound can
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be improved to κ ď p1{48 ` j´2
11 q

1{2 “ 0.298234942888 [CG14a], where j11 denotes the first
root of the first Bessel function.
The constant σ is more difficult to estimate (recall that σ :“

a

C2
st ´ 1 but the proof of

the existence of Cst in [CZZ20, Thm 3.1] is non-constructive). Actually the constant σ is
only needed in Lemma 3.3 to bound ~SpIφq~pw for all φ P V :“ H1

0 pΩq. To bound this
quantity in the lowest-order case, we can use an inverse inequality. Let us set for all T P T ,
cinvpT q :“ supv1PP1pT q }∇v1}L2pT q{}v1}L2pT q. Notice that cinvpT q is the square root of the
maximal eigenvalue of the generalized matrix eigenvalue problem with the stiffness and mass
matrix of P1pT q. Let us set cinv :“ maxTPT cinvpT q. Recall from Remark 2.4 the Poincaré
constant CP such that }p1´Π0qpfq}L2pT q ď CPhT }∇f}L2pT q for all f P H1pT q.

Lemma 6.4 (Bound on σ). Let cinv be the constant associated with the inverse estimate
in P1 and let CP be the Poincaré constant. Then ~SpIφq~pw ď σ}p1´Π0qp∇φq}L2pΩq for all
φ P V :“ H1

0 pΩq with σ ď CP cinv.

Proof. Any φ P H1
0 pΩq satisfies

~SpIφq~pw “ ~Π1pφq ´ ICRΠF ,0pφq~pw “ ~pΠ1 ´ INCqpφq~pw.

For any T P T , the projection properties of Π0 and Π1 and the inverse estimate for affine
functions in P1pT q show that

hT c
´1
inv}∇pΠ1 ´ INCqpφq}L2pT q “ hT c

´1
inv}∇p1´Π0qΠ1p1´ INCqpφq}L2pT q

ď }p1´Π0qΠ1p1´ INCqpφq}L2pT q “ }Π1p1´Π0qp1´ INCqpφq}L2pT q

ď }p1´Π0qp1´ INCqpφq}L2pT q ď CPhT }∇p1´ INCqpφq}L2pT q.

This implies that ~SpIφq~pw ď cinvCP}∇p1 ´ INCqpφq}L2pT q and the identity ∇INC “ Π0∇
concludes the proof. l

For n “ 2 the constant cinvpT q is computed in [CH17, Lemma 4.10] in terms of the minimum
angle ω0

T in T P T as

cinvpT q
2 “ 24 cotpω0

T q
`

2 cotpω0
T q ´ cotp2ω0

T q ` pp2 cotpω0
T q ´ cotp2ω0

T qq
2 ´ 3q1{2

˘

. (6.5)

For a triangulation composed of right isosceles triangles, we have cinv “
?

72. Combined with
Lemma 6.4 and the estimate on CP from Remark 2.4 shows that σ ď 2.2145. Lemma 6.4 gives
a first analytical upper bound for the constant σ for the lowest-order method utilized in the
numerical experiments below. Sharper bounds for the parameter σ (in particular for higher
polynomial degrees) may be computed by a related PDE eigenvalue problem on a reference
domain; details and numerical examples shall appear elsewhere.

7 Numerical experiments

This section presents numerical experiments illustrating the superiority of the guaranteed
lower bounds delivered in the framework of Theorem 4.1, compared to the guaranteed lower
bounds of [CG14b, CZZ20] for the lowest-order variants on regular triangulations of the
polygonal domains in Fig. 7.1 in 2D.
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Figure 7.1: Initial triangulation T0 of the L-shaped domain (a), the slit domain (b), and the isospectral
domains (c) and (d).

7.1 Preliminaries

7.1.1 Implementation

The implementation is realized in MATLAB based on the data structure and assembling from
[CB18, Section 7.8]. The resulting algebraic eigenvalue problem is solved with the MATLAB
routine eigs exactly; the termination and round-off errors are neglected for simplicity. (An
algebraic bound [Par98, 15.9.1] could partly circumvent the issue of inexact solve as in [CG14b]
– however, this bound solely clarifies the existence of an eigenvalue but gives no information
on its numbering.)
Given a regular triangulation T of the bounded polygonal Lipschitz domain Ω Ă R2 into
triangles, the Crouzeix–Raviart eigenpairs pλCRpjq, uCRpjqq of (6.4) and the post-processed
GLBCRpjq (1.1) from [CG14b] are computed, together with the lowest-order version of the
skeletal method (SM) defined in [CZZ20] (7.1) below. All these methods deliver guaranteed
lower bounds which are compared to those delivered by the present modified HHO method.
The SM method features the same discrete space Vh “ P1pT q ˆ P0pFpΩqq as the modified
HHO method, whereas the discrete bilinear forms in the 2D case read (with κ defined in
Remark 2.4 and ICR from Section 6.1)

aSMpuh, vhq :“ apwpICRpuF q, ICRpvF qq ` κ
´2ph´2

T puT ´ ICRpuF qq, vT ´ ICRpvF qqL2pΩq,

bSMpuh, vhq :“ puT , vT qL2pΩq “ bhpuh, vhq for any uh “ puT , uF q, vh “ pvT , vF q P Vh.

The discrete eigenvalue problem seeks pλSMpjq, uSMpjqq P R` ˆ Vh with

aSMpuSMpjq, vhq “ λSMpjqbSMpuSMpjq, vhq for all vh P Vh and bSMpuSMpjq, uSMpjqq “ 1.
(7.1)

These quantities are computed and compared with the discrete eigenvalues λhpjq of the lowest-
order modified HHO method (1.3) with the bilinear forms of Proposition 6.2.

7.1.2 Setting the parameters of the modified HHO method

The computable condition σ2β ` δ2λhpjq ď α ă 1 shows in Theorem 4.1 that the discrete
eigenvalue λhpjq of the new method (1.3) is a lower bound for the exact eigenvalue λpjq of
(1.2). This condition restricts the choice of the parameters 0 ă α ă 1 and 0 ă β ă 8. For
right-isosceles triangles Lemma 6.4 shows that σ ď

?
72{j11 ď 2.2145 in (3.7) and δ ď κhmax

in (2.4). The numerical bound κ ď 0.1893 from [Liu15] slightly improves the analytical
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bound κ ď 0.2983 from [CG14a] in the numerical experiments below. If λCRpjq denotes
the j-th Crouzeix–Raviart eigenvalue and λhpjq the j-th eigenvalue of (1.3), Corollary 6.3
proves λhpjq ď λCRpjq. This means that on a given triangulation T with known λCRpjq, the
parameter choice 0 ă α ă 1 and β “ pα ´ δ2λCRpjqq{σ

2 ą 0 leads to a guaranteed lower
bound λhpjq of the j-th exact eigenvalue λpjq. If the parameters are chosen before hand, the
condition σ2β`δ2λhpjq ď α may not be satisfied on a coarser mesh due to the impact of hmax.
In this case the computed value λhpjq is replaced by zero (which is an obvious guaranteed
lower bound).

7.1.3 Adaptive mesh refinement

Adaptive mesh refinement may recover optimal convergence rates. For the related Crouzeix–
Raviart adaptive finite element method (AFEM) driven by the estimator η, whose local
contributions for any T P T of area |T | read

η2pT q :“ |T | }λCRuCR}
2
L2pT q ` |T |

1{2
ÿ

FPFpT q
}rBuCR{BssF }

2
L2pF q, (7.2)

[CGS15] proves optimality for the principal eigenvalue of the CR-EVP. Since the a posteriori
error analysis for the new modified HHO method and the skeletal method [CZZ20] is left
open, the refinement indicator (7.2) drives adaptive mesh-refinement in the AFEM algorithm
[CFPP14, Algorithm 2.2] with Dörfler marking for bulk parameter θ “ 0.5 (and θ “ 1 for
uniform refinement) and newest-vertex bisection. This refinement preserves the interior angles
in the triangulation.

7.1.4 Displayed quantities

Fig. 7.1 displays the initial triangulations T0 for the three numerical experiments below. The
respective convergence history plots in Fig. 7.2, Fig. 7.4, and Fig. 7.6 display the difference of
the exact eigenvalue and the various guaranteed lower bounds for uniform mesh refinement
θ “ 1 (solid line and filled markers) and adaptive mesh refinement θ “ 0.5 (dashed line and
striped markers) plotted against the number of triangles |T |. On the uniform meshes the
GLBCRpjq (line color blue) and λSMpjq (line color teal) coincide; see [CZZ20, Thm. 6.3].
The error λpjq ´ λhpjq (line color green) is replaced by λpjq if the condition in Theorem 4.1
is not satisfied for the chosen parameter. The number j of the eigenvalue is illustrated by
different markers. Fig. 7.8 exemplifies adaptive triangulations for the first eigenvalue on all
the domains with |T | “ 1375 triangles in (a), |T | “ 1421 in (b), and |T | “ 1118 in (c).
Figures 7.3, 7.5, and 7.7 display a parameter study for the different domains. The figures
compare the guaranteed lower bound GLBCRpjq (which is on uniform triangulations the
bound λSMpjq in [CZZ20] marked by a dotted blue line) with the guaranteed lower bound
λhpjq (dotted green curve) computed with the new method and different choices of α (and
β “ pα´ δ2λCRpjqq{σ

2 ą 0 from Section 7.1.2). In these graphs the dot-density of the curves
indicates on which triangulation T` (the `-th uniform refinement of the initial triangulation
T0) the values were computed. For comparison the eigenvalue approximation (assumed to be
exact) is displayed as well (dark violet line).
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Figure 7.2: L-shaped domain: comparison of the distance between λpjq and λhpjq (computed with
α “ 0.4, β “ 0.07 (left) and β “ 0.06 (right)), GLBCRpjq [CG14b], and λSMpjq [CZZ20]
computed on uniform (θ “ 1, solid) and adaptive (θ “ 0.5, dashed) meshes with (7.2). Left:
λp1q. Right: λp103q “ λp104q “ λp105q.

7.2 Experiments on the L-shaped domain

On the non-convex L-shaped domain Ω :“ p´1, 1q2zr0, 1q ˆ p´1, 0s, the principal eigenvalue
λp1q “ 9.6397238389738806 is computed with a P2 finite element method on uniformly re-
fined triangulations with Aitken extrapolation. The associated eigenvector is apparently in
H1

0 pΩqzH
2pΩq resulting in the reduced convergence rate 0.8 for uniform mesh-refinement in

Fig. 7.2.a. As soon as the initial triangulation from Fig. 7.1.a is refined three times, λhp1q
slightly improves the known bound λSMp1q “ GLBCRp1q on the uniform meshes. The adap-
tive mesh-refinement driven by the estimator (7.2) allows to recover the optimal convergence
rate with the skeletal method in [CZZ20] and the modified HHO method. Remarkably, the
modified HHO method with the parameter choice α “ 0.4 and β “ 0.07 convinces with
sharper bounds. In [TB06] the multiple eigenvalue λp103q “ λp104q “ λp105q “ 50π2 and
the associated eigenfunction in C8pΩq are presented. Fig. 7.2.b shows for these eigenvalues
the optimal convergence rate of one with uniform mesh-refinement. The similar plots ob-
tained with adaptive mesh-refinement are omitted for brevity. The parameter choice α “ 0.4
and β “ 0.06 guarantees the condition σ2β ` δ2λhpjq ď α for λp103q “ λp104q “ λp105q on
coarser meshes. Fig. 7.3 illustrates that the new method improves all known guaranteed lower
bounds for the principal eigenvalue on the L-shaped domain on at least three times uniform
refined meshes for an appropriate parameter choice and that the parameter range that leads
to improvement grows with mesh-refinement, but the improvement is more impressive on the
coarser triangulation. For higher eigenvalues the parameter studies show similar results.
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Figure 7.3: L-shaped domain: comparison of GLBCRp1q and λhp1q for parameter α varying in p0, 1q
and β “ pα´ δ2λCRp1qq{σ

2
P p0.001, 0.199q on coarse uniform triangulations.

7.3 Experiments on the slit domain

On the non-convex slit domain Ω :“ p´1, 1q2zpr0, 1q ˆ t0uq, the principal eigenvalue λp1q “
8.371330522443726 and the sixth λp6q “ 30.535991049204789 are approximated with a P2

finite element method on uniformly refined meshes and Aitken extrapolation for compar-
ison. The first and sixth eigenfunction on the non-convex slit domain are obviously in
H1

0 pΩqzH
2pΩq. For uniform mesh-refinement, this leads to the reduced convergence rates

0.4 for the first in Fig. 7.4.a and 0.6 for the sixth in Fig. 7.4.b. The AFEM algorithm with
bulk parameter θ “ 0.5 driven by the estimator (7.2) allows to recover the optimal rates for
both λSMpjq and λhpjq, j P t1, 6u, in Fig. 7.4. The parameter choice α “ 0.4 and β “ 0.07
allows to compute sharper bounds with the new method on finer meshes. The orange line
illustrates that with the parameter choice α “ 0.4 and β “ pα ´ δ2λCRpjqq{σ

2, the discrete
eigenvalue λhpjq is a guaranteed lower bound on each triangulation. For the slit domain,
Fig. 7.5 illustrates that the new method improves all known guaranteed lower bounds on the
moderately (three resp. four times for λp1q and λp6q) uniformly refined triangulation for an
appropriate parameter choice with a wider range of appropriate parameters on a finer mesh.

7.4 Experiments on the isospectral domains

The isospectral drums with the initial triangulation of Fig. 7.1.c and Fig. 7.1.d have the same
eigenvalues. The paper [Dri97] displays approximations for the first 25 identical eigenvalues
on these domains and [TB06] gives the approximation λp50q “ 54.187936. Fig. 7.6 presents
convergence plots for the error in the principal and the fiftieth eigenvalue. The first eigen-
function to the principal eigenvalue λp1q “ 2.53794399980 is in H1

0 pΩqzH
2pΩq and leads to

the reduced convergence rate 0.8 for uniform mesh-refinement. The AFEM algorithm driven
by (7.2) (after three uniform refinements to guarantee σ2β ` δ2λhpjq ď α) recovers the op-
timal convergence rate for the direct lower bounds in Fig. 7.6.a. In [TB06] are no remarks
on the smoothness of the fiftieth eigenfunction. The numerical results displayed in Fig. 7.6.b
suggest that this eigenfunction is indeed in H2pΩq. Uniform and adaptive mesh-refinement
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Figure 7.4: Slit domain: comparison of the distance between λpjq and λhpjq (computed with α “ 0.4,
β “ 0.07), GLBCRpjq [CG14b], and λSMpjq [CZZ20] computed on uniform (θ “ 1, solid)
and adaptive (θ “ 0.5, dashed) meshes with (7.2). Left: λp1q. Right: λp6q.
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Figure 7.6: First isospectral domain: comparison of the distance between λpjq and λhpjq (computed
with α “ 0.4, β “ 0.07), GLBCRpjq, and λSMpjq. Left: λp1q. Right: λp50q.

lead to optimal convergence rates. For brevity the adaptive results are not displayed. The
parameter studies in Fig. 7.7 indicate that a parameter 0.1 ď α ď 0.5 and an appropriate β
from Section 7.1.2 improve all known guaranteed lower bounds on refined meshes.

7.5 Conclusions

This subsection summarizes the empirical observations of the numerical experiments in Sec-
tions 7.2–7.4.

(i) All experiments confirm the a priori convergence rates of Theorem 5.1. The convergence
rate depends only on the smoothness of the approximated eigenfunction. For instance in
Fig. 7.2.b and 7.6.b, the optimal convergence rate is one for uniform refinement despite the
reduced convergence rate in Fig. 7.2.a and 7.6.a for the principal eigenvalue in H1

0 pΩqzH
2pΩq.

(ii) Theorem 5.1 predicts a convergence provided the initial mesh is sufficiently fine. In all
examples the convergence rate is visible for moderate triangulations, so this restriction does
not affect the numerical examples too much.

(iii) The parameter choice of Section 7.1.2 provides indeed guaranteed lower bounds in all
numerical experiments and fully confirms Theorem 4.1.

(iv) The guaranteed lower bounds computed with Theorem 4.1 do not always improve the
known bounds by λSMpjq. The numerical examples suggest the conjecture that the new
bounds are better for finer triangulations.

(v) For the majority of the numerical experiments, the parameters α “ 0.4 and β ď α{σ2 ´

δ2λhpjq{σ
2 lead to the best known guaranteed lower bounds for the eigenvalues.
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Figure 7.7: First isospectral domain: comparison of GLBCRpjq and λhpjq for parameter α varying in
p0, 1q and β “ pα´ δ2λCRpjqq{σ

2
P p0.001, 0.199q.
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Figure 7.8: Adaptive triangulation T for θ “ 0.5 of the L-shaped domain (a), the slit domain (b),
and the first isospectral domain (c) computed for the first eigenvalue λhp1q (with α “ 0.4,
β “ 0.07).
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(vi) For the eigenfunctions in H1
0 pΩqzH

2pΩq, the AFEM algorithm recovers the optimal con-
vergence rates and illustrates the advantage of a direct lower bound compared to GLBCRpjq
in (1.1).

(vii) This first realization of the new method concerns the lowest-order case and illustrates
that the scheme can be competitive to other methodologies for the computation of guaranteed
lower eigenvalue bounds. For the appropriate parameter selection, the scheme can provide
the sharpest bounds in comparison to [CG14b, CZZ20]. Numerical benchmarks with the
higher-order versions of the method suggested in the paper are even more promising provided
the mesh is adapted appropriately and will be investigated in future research.
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