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Guaranteed lower bounds on eigenvalues of
elliptic operators with a hybrid high-order
method

Carsten Carstensen*  Alexandre Ern T Sophie Puttkammer®

This paper introduces a novel hybrid high-order (HHO) method to approxi-
mate the eigenvalues of a symmetric compact differential operator. The HHO
method combines two gradient reconstruction operators by means of a parameter
0 < a < 1 and introduces a novel cell-based stabilization operator weighted by a
parameter 0 < 8 < co. Sufficient conditions on the parameters o and 5 are iden-
tified leading to a guaranteed lower bound property for the discrete eigenvalues.
Moreover optimal convergence rates are established. Numerical studies for the
Dirichlet eigenvalue problem of the Laplacian provide evidence for the superiority
of the new lower eigenvalue bounds compared to previously available bounds.

1 Introduction

The eigenvalue problem for symmetric compact differential operators is a fundamental task
in the numerical analysis with a well-understood a priori error analysis for conforming finite
element methods (FEM) leading to optimal asymptotic convergence rates [BO91, Bof10]. The
Rayleigh—Ritz min-max principle shows that the discrete FEM eigenvalues are also guaranteed
upper bounds of the exact eigenvalues, even in the pre-asymptotic range of coarse triangula-
tions. In practice, guaranteed lower bounds (GLBs) can be even more important in a safety
analysis in computational mechanics or for the detection of spectral gaps. The computation
of lower eigenvalue bounds has been achieved based on the solution of nonconforming finite
element schemes followed by a simple post-processing in [CG14a, CG14b]. In particular, let-
ting k2 := 772+ (2n(n + 1)(n +2))~! in nD, and if Acr(j) is the j-th discrete eigenvalue
computed with the Crouzeix—Raviart FEM, [CG14b] proves (without extra conditions; the
linear independency condition in [CG14a, CG14b] can be neglected [Liul5, CP21]) that
Acr(J)

GLBCR()) i= 1y 55 < AU, (1.1)

thereby delivering a GLB on the j-th continuous Dirichlet eigenvalue A(j) for the Lapla-
cian. Several other contributions [LO13a, LO13b, Liul5, CDM*17, CDM*18, SV14, Vej18a,
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Vej18b] derived GLBs using the maximal mesh-size hpax as a global parameter as in (1.1).
This results in a possible underestimation for locally refined triangulations.

This motivated the design of novel schemes for the direct computation of GLBs without
a global post-processing. The first example can be found in [CZZ20] for a hybridizable
discontinuous Galerkin (HDG) method with Lehrenfeld-Schoberl stabilization, also studied
under the label weak Galerkin scheme. The scheme proposed in [CZZ20] requires the fine
tuning of skeletal-based stabilization terms. The main contribution of the present work is to
introduce a new scheme which leads to GLBs on the eigenvalues under a simplified tuning
of the stabilization terms. To achieve our goal, we rely on the framework of hybrid high-
order (HHO) methods. HHO methods have been introduced in [DPEL14, DPE15] for linear
diffusion and locking-free linear elasticity and have been bridged to HDG and nonconforming
virtual element methods (ncVEM) in [CDPE16]. Recall that in HHO methods the discrete
unknowns are polynomials of degree k > 0 attached to the mesh faces and polynomials of
degree ¢ € {k — 1,k,k + 1}, £ > 0, attached to the mesh cells. In the present setting, we
consider the degree ¢ = k + 1 for the cell unknowns. Moreover the two key ingredients in
HHO methods are a local gradient reconstruction operator and a local stabilization operator.
The HHO method devised herein introduces two novelties with respect to the literature. The
first novelty is that the gradient reconstruction combines an operator mapping to piecewise
Raviart-Thomas functions of degree k and an operator mapping to the piecewise gradient of
piecewise polynomials of degree at most (k + 1). Although Raviart—-Thomas reconstructions
were considered previously in [AEP18, DPDM18], it is the first time that they are combined
with another reconstruction. Note that the present analysis cannot employ the single Raviart—
Thomas reconstruction. The second novelty is that the stabilization operator is not skeletal-
based but cell-based.

The weak formulation of the continuous Laplace eigenvalue problem seeks (A, u) € RT x H} (1)
such that

a(u,v) = Ab(u,v) for all v e HL(Q) and b(u,u) = 1. (1.2)
The discrete eigenvalue problem seeks (Ap,up) € RT x Vj, with
ah(uh,vh) = )\hbh(uh,vh) for all Vp € Vh and bh(uh, uh) = 1. (13)

While the bilinear form by, represents the L?(£2) scalar product b, the gradient-like approxima-
tions in the bilinear form a;, involve two reconstructions R and G gy of the discrete unknowns
in Vj, := Pi11(T) x Py (F) with the space of piecewise polynomials of degree at most (k+1) on
each simplex in the triangulation Py, 1(7) and the space of piecewise polynomials of degree
at most k on each face Py(F). The precise definition of the linear maps R : V}, — L*(Q;R)
and Grr : Vi, — L?(€;R") can be found below in Section 3.1. Given two positive parameters
0 <a<1and0 < < oo, for any up, := (ur,ur) and vy, := (v, vr) € V3, the energy scalar
product reads

ah(uh, ’Uh) = (GRT(uh), GRT(vh>)L2(Q) — a((l — Hk)GRT(uh), (1 — Hk)GRT(Uh))L2(Q) (1.4)
+ B(Vpw(ur — R(up)), Vpw(vr — R(vn))) L2(0)-

Section 7.1.2 presents an algorithm for an effective parameter selection in the lowest-order
case. The Raviart—Thomas reconstruction GG gy of the gradient does not require a stabilization
in the source problem [AEP18, DPDM18], but the second term on the right-hand side in (1.4)
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has a negative sign and another stabilization with the reconstruction R in Py.1(7) is added.
This paper investigates the a priori error analysis for discrete eigenvalues and eigenvectors
and confirms optimal convergence rates. Moreover it shows that the following GLB property
holds for the j-th discrete eigenvalue A, (j) of (1.3) and the j-th eigenvalue A(j) of (1.2):

o?B + 82 min{\(4), ()} < a <1 implies A,(j) < A(j), (1.5)

with 0 := khmax and o, k related to the stability of L?-projections onto piecewise polynomial
spaces. (Notice that (1.1) means that each of the conditions (i) 028 + ?A(j) < a < 1 (a
priori) and (ii) 028 + 62A1(j) < a < 1 (a posteriori) implies the GLB property.) Numerical
examples study the feasibility of the condition identified in the GLB (1.5) and the relation to
(1.1) and the bounds in [CZZ20].

The remaining parts of this paper are organised as follows. After a short summary of the
notation in Section 2, Section 3 introduces the new method (1.3) with all the necessary
operators and the discrete bilinear forms aj and b,. Theorem 4.1 in Section 4 establishes
(1.5). Section 5 contains the a priori error analysis which hinges on the Babuska—Osborn
theory [BO91| and is inspired by [CCDE19] for the eigenvalue approximation by means of
the standard HHO method (which does not have the GLB property). Section 6 concentrates
on an alternative formulation of the lowest-order version for comparison with the Crouzeix—
Raviart method. The numerical experiments in the final Section 7 illustrate the advantage
of the direct lower bounds delivered by the present HHO method in the case of non-convex
domains where adaptive mesh-refinement is necessary for optimal convergence rates. These
results also provide numerical evidence for the superiority of the new GLBs compared to the
aforementioned methods.

2 Notation and preliminaries

2.1 Triangulations

Let 7 denote a shape-regular triangulation of a bounded polyhedral Lipschitz domain €2 < R"
into closed n-simplices in the sense of Ciarlet [BBF13, BS08, Bral3, EG04]. For any simplex
T e T,let F(T) denote the set of its (n + 1) sides and let N (T') denote the set of its (n + 1)
vertices. The intersection 171 N 15 of two distinct, non-disjoint simplices T} and T in T is the
shared sub-simplex conv{N (T1) " N(T»)} = 0Ty n 0T» of their shared vertices. Furthermore,
F = Urper F(T) (resp. F(2) or F(052)) denotes the set of all (resp. interior or boundary)
sides. For any simplex or sub-simplex K, let hx := diam(K) denote its diameter. The
piecewise constant function hy € Py(7) takes the value hy|r = hp on each simplex T' € T
and hApax := maxpe7 hy denotes the maximal mesh-size. Throughout this paper, vy is the
piecewise constant function which denotes for each simplex T € T the outer unit normal
vector v|p = vyp.

2.2 Scalar products and differential operators

Standard notation applies to Lebesgue and Sobolev spaces, H!(T) abbreviates H!(int(7T))
for a compact T" with interior int(7"). Throughout this paper, («, )72, abbreviates the
L2-scalar product associated with volumes w < €, whereas («, s )a, denotes the duality
brackets in H'/2(éw) x H~?(dw) that extend the scalar product in L?(0w) associated with
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the boundary dw. We also abbreviate
. L] >6T Z < L] .
TeT

We consider the differential operators divergence (div), gradient (V), and the Laplace-operator
(A), as well as their piecewise applications divpy, Vpw, and Apy. For instance, Vv ab-
breviates (Vpwv)|r = V(v|r) for any T € T and a piecewise function v € HY(T) := {v €
L*(Q) : v|y € HY(T) for any T € T}. The scalar products a : HE(Q) x H} () — R and
b: L3(Q) x L*(Q) — R read

a(u,v) == (Vu, V)2 forallu, ve H(Q),

b(u,v) = (u,v)r2(0) for all u, v e L*(Q),
and induce the norms ||« ||? := a(+, «) and | + || 120) "= = b(+, +). We also consider the piecewise
bilinear form

apw(u,v) 1= (pru,VpWU)Lz(Q) for all u, ve HY(T),

with induced semi-norm || « [||2
and vector-valued functions.

5w = apw(+, +). The same notation applies to norms of scalar-

2.3 Discrete function spaces and L>-projections

For any M € T or M € F, £ € Ny, m € N, let Pp(M;R™) denote the set of polynomials of
total degree at most ¢ in each component regarded as functions in L*(M;R™) and set

Py(T;R™) :={qe L*(Q;R™) : forall T e T, g|r € P(T;R™)},
Py(F;R™) = {q eL®(F;R™): forall FeF, q|lp€ Pg(F;Rm)},
Py(F(Q);R™) := {q € P(F;R™) : for all F € F(R), ¢|r =0},

and we omit R™ whenever m = 1. The piecewise Raviart-Thomas space is RT}" (T) :=
Py(T)x + Py(T;R™). The associated L?-projections are denoted Iy : L*(2) — Py(T), Ix, :
L*(F) — Py(F), gy : L*(F) — Py(F) for all F € F, and Hpr, : L*(QR™) — RTY™(T).
These projections act componentwise, e.g., for all f € H'(Q), I,(f) € P,(T) and I,(Vf) €
Pg(T; Rn).

The following two properties of the L2-projections are useful in the analysis below. These
properties are classical (see, e.g., [BS08, Lemma 4.3.8], [BBF13, Prop. 2.5.1], [DPE12, §1.4])
and are stated without proof.

Lemma 2.1 (Commutation). IIy(Ilgr(f)) = He(f) = rre(Ie(f)) holds for all f €
L2(;R™).

Lemma 2.2 (Approximation). The following holds for allm =1, ..., 0+ 1, all T € T,
and all p € H™(T),
2 m
lp —Te(P) L2y + hy 6 — e()lr2(ory < Capxh || 5 (1) (2.1)
and for all $ € H™(T;R"),
16 = Trr,e (@) 2cry + 1116 — Tare(6) | 2(er) < Capch16]mm(r)- (2.2)

The constant Capx depends on the shape-regularity of T and on the polynomial degree ¢, but
is independent of the cell diameter hp.

4 May 28, 2021



HHO EV-Bounds

The following refined stability estimates for L?-projections play an important role in the
devising of guaranteed lower bounds on the eigenvalues.

Theorem 2.3 (Refined stability estimates). There is Csy > 1 such that, for all T € T
and all f € HY(T),

IV =T 1) ()l 2y < Cst| (X =T ) (V)| 221y (2.3)

Moreover there is k > 0 such that for all T € T and all f € HY(T),

(1 = e 1) (Nl 27y < shrll(X =) (V)| r2(7)- (2.4)

The constants Cg and k depend on the shape-reqularity of T and on the polynomial degree £,
but are independent of the cell diameter hp.

Remark 2.4 (Constants Cs; and r) The stability estimate (2.3) is established in [CZZ20] where
it is shown that, for any 7" € T, the conditions

(H1) Ty (1) =1 and  (H2) P(T;R™) n VHY(T) < VP 1(T)

are equivalent to the existence of an hp-independent constant Cys (7)) > 0 such that (2.3)
holds on T" € T, and one then sets Cy; := max{Cx(T) : T € T}. The estimate Cy > 1 readily
follows from the trivial bound |V (1 —1Tl11)(f)|z2(r) = [(1=T1)(V f) | 22(r) since V1L 1(f) €
Py(T;R™). The Poincaré inequality |(1—Io)(f)llz2¢r) < Cohr|V f|12¢r) for all f € H'(T) and
(2.3) lead to (2.4) with k < CpCy. The Poincaré constant reads Cp := 1/j1; for n = 2 with
the first root of the first Bessel function j1; [LS10] and Cp < 1/7 for n > 3 [PW60, Beb03].
For ¢ = 0, an upper bound on the constant x was first computed in [CG14b] and improved
in [CG14a] for n = 2. The appendix of [CZZ20] proves x? < 72 + (2n(n + 1)(n + 2))~! for
any space dimension n.

2.4 Vector and matrix notation

For a,be R™* let a-b=a'be R** and a @b = ab" € R™*™, The notation |«| depends
on the context and denotes the Euclidean length, the cardinality of a finite set, the n- or
(n — 1)-dimensional Lebesgue measure of a subset of R™. Furthermore a < b abbreviates that
there exists a generic constant C' (independent of the mesh-size) with a < Cb, whereas a ~ b
abbreviates a < b < a.

3 The modified HHO method

This section is devoted to the reconstruction and stability operators of the new method (1.3)
and their properties. Moreover, the discrete bilinear forms are discussed and the abstract
matrix eigenvalue problem is introduced.

3.1 Operators of interest

Set V := H}(£2). Let k > 0 be the polynomial degree and set

Vi 1= Ped(T) x Pe(F(9))- (3.1)
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The components of vy, := (vy,vr) € Vj, are vy = (vp)rer, vF = (vp)per. Note that vp =0
whenever F' € F(02) by definition of Py(F(f2)). Let I denote the interpolation operator
I:V — V), such that I(¢) = (IIy41(9), ILr x(¢)) for all p € V.

Define the reconstruction operator R : Vj, — Py 1(T) such that for any v, := (vy,vr) €
Vi, R(vp) € Pit1(T) is the unique function with g R(vy) = Ip(v7) and

(VpwR(vn), Vpwp)r2() = —(v7, Apwp) 12() + VF, Vpwp - v1)or for all p € Pyya(T). (3.2)

Let G denote the Galerkin projection onto Py q(7), i.e., for any ¢ € H'(T), we have
G(¢) € P41 (T) with IIoG(¢) = IIp(¢) and apw((1 — G)(¢),p) = 0 for all p € Py (T).

Lemma 3.1 ([DPEL14, DPE15]). Rol = G holds in V := H}(Q).

The Raviart-Thomas reconstruction Gy : Vj, » RT}."(T) defines a unique Grr(vp) €
RTIEW(T) for all vy, := (v, vr) € V}, such that

(Grr(vh), qrr)2(0) = —(v7, divpwqrT) L2(0) + {vF, qrT - V7)ot for all grr € RTY™(T).
(3.3)

The comparison of (3.2) with (3.3) proves that Vi R(vy) = Ilvp,,, Grr(vy) for all vy, € Vj,
where Iy p,,, denotes the L%-projection onto VpwPii1(7) (composed of the gradients of
piecewise polynomials of degree (k+1)). Since VoG = Ilyp,,, oV, we have (Vp,oR)ol =
lyp,., oV in V= H}(Q).

Lemma 3.2 ([AEP18, DPDM18)]). Ggrol =gy oV holds in V := HE(Q).

The stabilization operator S : Vj, — P;1(7) is defined for any vy, := (vy,vr) € V} by

S(vn) = R(vn). (3.4)
Lemma 3.3. Given any ¢ € V = H}(Q) and any simplex T € T, the stability term fulfils
SI¢) = p11(¢) — G(9), (3.5)

IVSUB)| r2ry < o (1 = Tk) (Vo) 2 (1),
ISP lpw < al(1 =Tk ) (V)| 12

with 02 := C% — 1 and the constant Cs; from Theorem 2.3.

Proof. The definition (3.4) and Lemma 3.1 imply (3.5). Since V(1 —G)(¢) is L?-orthogonal
to VpwPi41(T), the Pythagoras theorem proves for any 7' € T,

VS22 (ry = [ VIIk11(0) = VG(@) T2y = V(L = Tir1)(9) |72y — IV(1 = G)(@)l 72 ()

The first term is estimated in (2.3) by C% |V~ (V¢)|? 12(7)> Whereas the best approximation
property of I proves that

Vo =1k(VO)|r2(r) < VO = VG(9)|r2(r) = IV(1 = G) (@)l L2(r)-
The combination finishes the proof of (3.6), and (3.7) follows by summation over T'e 7. []

Remark 3.4 (Piecewise evaluation) For all T' € T, the reconstructions R(vp,)|r and Grr(vn)|r
and the stabilization S(vp)|r soley depend on the local data vy = vy|r and vp = vE|F for all
F e F(T), so that all these quantities can be computed piecewise and in parallel.
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3.2 Discrete bilinear forms

Given global constants 0 < o < 1 and 0 < < 0, the reconstructions in (3.2)—(3.3), and the
stabilization (3.4), the bilinear form ay : Vi x Vj, — R is defined in (1.4), and we define the
L? scalar product by, : Vj, x Vi, — R by by, (up,vp) i= (UT,UT)LQ(Q) for all up = (uy,ur) and
v, = (vr,vF) € V. The L2-projection property of II; and the definition of the piecewise
bilinear form ap, imply that the bilinear form aj, can be rewritten as follows for any wuy, vy, €
Vh,

ah(uh, ’Uh) = (1 - Od) ((1 - Hk)GRT(uh), (1 - Hk)GRT(Uh))LQ(Q) (3.8)
+ (kG rr(un), kG rr (vn)) 2(0) + Bapw(S(un), S(vn)).

The vector space V}, is equipped with the norms | « |, [DPEL14, Eq. (28)] and | +||4 4, defined
for any vy, € Vj, by

lonll7 -

> (HVUTH%2(T) + D, hptlve - UTH%z(F)>, (3.9)

TeT FeF(T)
thl\i,h i= ap(vn, vn)
|Grr(0n) 720y — @l (1 = T)Grr(0n) 720y + BIIS(08) 15
=(1- a)I\GRT(vh)HLz + aHHkGRT(vh)HLa(Q + BIIS (wr) - (3.10)

guarantees that ap(«, «) is a scalar product on V} x V} which induces a norm on V. Con-
sequently the source problem associated with a; is well posed owing to the Lax—Milgram
lemma.

Lemma 3.5. There exist constants v,y > 0, independent of the mesh-size, such that

Yvnlh < an(on, vn) <Flonli  for all vy, € Vi

Proof. The Pythagoras theorem and the best approximation property of Il ; show for any
TeT,FeFT),and v, = (vr,vr) € Vj, with vr|r = vp and vr|p = vp, that

lor = vrlier) = |1 = Wpk) (0r)[Z2gr) + IMrgk(or) = vrl2(p
< (1= To) (vr) [F2 () + [Tk (vr) = vrla(r

The trace inequality from [CF00, CB18] and [DPE12, Eq. (1.42)] together with the Poincaré
inequality and the shape-regularity of 7 lead to

_F

11— HO)('UT)H%P ’T|

|(1 = o) (vr) | 2¢r) (I (1 = o) (vr) L2(r) + 2hr/nl| Vvr| o)

< oo 2 Co b 2/ VorlFagr, < Carl Vol

It is shown in [AEP18, DPDM18] (see, e.g., Lemma 1 in [AEP18]) that there is C} such that
for any T € T,

Y. hp Mer(or) = velfzer) < CLIGRT(n) [72¢r)
FeF(T)
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The combination of the preceding three displayed inequalities leads to an estimator of h;l |vp—
UFH%Q(F). The sum over all T e T and F € F(T) reads

oD hEtvr = vrl3ae < CilGrr(vn)3aq) + Caln + 1)|lurll2,. (3.11)
TeT FeF(T)

Recalling that prR Uyp,,,Grr, we infer that [[R(vs)|lpw = [TIve,,, Grr(vr)|r2@) <
|G rr(v)| z2(q)- This and the triangle inequality show that

v = R(vn)lpw + [1R(0n) [lpw = 1S (r)llpw + [Ty pyy Grr (00) ] L2(0)

1S (vr)llpw + |G rr(vn) | £2(02)- (3.12)

The combination of (3.11)-(3.12) and the last identity from (3.10) shows that

lonl = NlorllZe + > D) h’F lor = vrlZa(p
TeT FeF (T

2(1+ Co(n + ))HIS(vh)H\pw (2+ C1 +2C2(n + 1))|Grr(vn) [72(q)
<77 A = )Grr(on)Z2) + BISO)I72() <37 onlan
() )

o7 low < |
|

<
<

with the constant 77! := max{2(1 + Ca(n + 1))/8, (2 + C1 + 2Ca(n + 1))/(1 — a)}. On the
other hand, for any T' € T, (3.3) with qgr = Gpgrr(vp), an integration by parts, and the
Cauchy—Schwarz inequality lead to

HGRT(WL)H%?(T) = (vav GRT(Uh))L2(T) + <v]: —uT, GRT(vh) . V7’>6T

< IVorlz) IGrRr(wn)lzery + Y. b IGRr (i)l r2(myhs lor — vrlr2ry
FeF(T)

A combination of a trace and an inverse estimate for Raviart—-Thomas functions shows that
1/2 .

hT/ IGrr(vn)|2(or) < C3|Grr(vn)| L2(7)- Since hp < hr for any F e F(T), the Cauchy-

Schwarz inequality in R™*! leads to

|G rr (o) 727y < 20V0r |2y +2C5 Y, BE'lvr = vrlZaer)
FeF(T)

The sum over all T € T reads

|Grr(on)F2i0) < 2llvrllge +2C3 D D) hi'lvr —vrlfege < 2max{1, C3} vl
TeT FeF(T)

The boundedness of the stability contribution follows from the triangle inequality, the estimate
[ R(vp)llpw < |G T (vh)|L2() shown above and the last bound, leading to

IS @) llow < llorllpw + IGrr(en)l z2(0) < (1+ V2max{1, Cs}) ol

The second identity in (3.10) shows that [uvs]7, < HGRT(vh)|\%2(Q) + BlIS(vn)l|3,- This
concludes the proof with 7 := 28 + (1 + 28)2max{1, C3}. O
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3.3 Matrix eigenvalue problem

The algebraic realization of the eigenvalue problem (1.3) leads to a matrix eigenvalue problem
with coefficient matrices and vector (7, zx) € RIMPrr1(T)+dimPy(F(52))

Arr Arr) [z7) _ Brr 0) (z7 _
(A}‘T Apr or =M 0 0 or and a7 Byyxzr =1 (3.13)

The bilinear form by, solely depends on the volume components. The elimination of the face
unknowns leads to the Schur complement
ST = AT — ATrAZ R AFT,
and the equivalent matrix eigenvalue problem
Strxr = MwBrrxyr and  xy- Bryzy = 1. (3.14)

The mass matrix Byy € RAMPer1(T)xdimPei1(T) ig positive definite and allows the approxi-
mation of dimPy1(7) eigenvalues and the application of the min-max principle (e.g. [SF08,
Chapter 6]). The alternative formulation (3.14) will be exploited in Section 5 below.

4 Lower eigenvalue bounds

This section proves the main theorem, namely that the modified HHO method (1.3) provides
guaranteed lower bounds for the continuous eigenvalues. Recall the constants Cg; and x from
Theorem 2.3, set 02 := C?t — 1, and 9 := Khmax.

Theorem 4.1. Let A\(j) denote the j-th continuous eigenvalue of (1.2) and Ap(j) the j-th
discrete eigenvalue of (1.3). Then each of the conditions (i) 0?8 + §°A(j) < a < 1 (a priori)
and (i) 028 + 62\, (5) < a < 1 (a posteriori) implies M\ (§) < A(5).

Proof. To alleviate the notation we simply write A, and A.

Step 1. Reduction to 6°X < 1. If 1 < §2), then (i) fails and (ii) holds. Consequently,
2\, < a <1 < 62X implies A, < A as claimed. It remains the case 62\ < 1 throughout the
remainder of the proof.

Step 2. Claim: Linear independence of IIy11(¢1),..., 1 1(¢;) € Pry(T). For the contin-
uous eigenvalue problem (1.2), let ¢y, ..., ¢; € H} () denote the first j-th exact eigenfunctions
and A the j-th eigenvalue. The proof is by contraposition and concerns ¢ € span{¢, ..., d;}
with |@]r2(q) = 1 and Ilx11(¢) = 0. The estimate (2.4) in Theorem 2.3 implies for § = Khmax
that

L= [9[r20) = (1 = Hg11)(P) | 22y < (1 — ) (VP) | £2()-
The Pythagoras theorem HVgﬁH%Q(Q) = HHk(Vqﬁ)HQLQ(Q) + (1= Hk)(Vqﬁ)HQLQ(Q) implies that
|1 = T) (V) 20y < [Vl 72(0-
The min-max principle on the exact eigenvalues of (1.2) for ¢ shows that
[Vl
IVoIZaq) <A = o)

max Tz
vespan{¢i,...,p; } HU”L2(Q)

The combination of the last three displayed inequalities reads 1 < §2\.
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Step 3. Claim: 3¢ € span{y,....d;}, [¢]* = 1, [Vo[* < X, Mbu(1(9),1(9)) < an(1(), I(¢)).
Owing to Step 2, the subspace U; := span{l(¢1),...,I(¢;)} of V}, has dimension j. If U(j)
denotes the space of all subspaces of V}, of dimension j, then the min-max principle for (1.3)
(on the algebraic level) characterizes the j-th discrete eigenvalue \j, as

Ap = min  max Mé max M. (4.2)

Unel(§) vaeUn\{0} bp(Vn,vp)  vnelU;\{0} Dr(vh, vp)

The maximum in the finite-dimensional space U; := span{l(¢1),...,I(¢;)} is attained for
some vy, € Uj. Therefore, there exists ¢ € span{¢i,...,¢;} with [|[¢]|> = 1, [Vé|? < A (by the
above min-max principle on the continuous level cf. (4.1)), and

Anbi(1(9), 1(9)) < an(I(9), 1(9))-

Step 4: Lower bound for b,(1($),1(¢)). Given ¢ € span{é1,...,¢;} < HL() from Step 3,
the estimate (2.4) and the Pythagoras theorem show that

1= 621 = L) (V) Bay < 1 — (1 = ) (@) 22y = IMis1 (9) Brzgry = b(1(6), 1(9)).

Since 62X < 1 and |(1 — Hk)(ng)H%g(Q) < HV(bH%Q(Q) < A, the displayed lower bound proves
br(I(¢),I(¢)) > 0. This also shows that A, < co.

Step 5: Upper bound for an(1(¢),I(¢)). Given ¢ € H}(Q) from Step 3, the alternative form
of ap, in (3.8) and Lemma 3.2 prove

an(I1(6), 1(9)) = Mz (V) [72(0) + (1 = )| (1 = W) Mar (V) [72() + BIISTS) 15
(4.3)

The commuting property from Lemma 2.1, the Pythagoras theorem, and |[Vg||2, () < A from
Step 8 show that

Tk V122 ) = TRVl 220 < A — (1 = ) Vol2a . (4.4)
Lemma 2.1 and the boundedness of IIg7 ) with |[Ig7 x| < 1 show that
(1 = )Ry k (Vo) r2() = IMRr k(1 — He)(VO) | 12(0) < I(1 = Hk) (V) [12(0)-  (4.5)
The combination of (4.3)—(4.5) with (3.7) proves (for 0 < a < 1) that
an(1(9),1(9)) < A+ (B0 — a)[[(1 = TL) (V) [72(-
Step 6: Finish of the proof. The combination of Step 3—Step 5 shows that
(= Bo? = M) |(1 = ) (V) [T2i0) < A = Ans (4.6)

The pre-factor on the left-hand side is non-negative in the case where the assumption (ii)
holds and (4.6) proves the claim A, < A. In the case where the assumption (i) holds, (4.6)
implies that

P = A1~ T (V) oy < A — M

For contradiction assume A — Ay < 0 and divide the previous inequality by this difference so
that 1 < 62| (1 — Hk)(V@H%Q(Q). This is smaller than or equal to

2[Vo|72q) S PA< A+ 0B <a <],

This contradiction concludes the proof. O
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5 Convergence analysis

This section proves that the discrete eigenvalues converge with the expected optimal rates.
The analysis hinges on the Babuska—Osborn theory for the spectral approximation of compact
selfadjoint operators and adapts the arguments devised in [CCDE19] to analyze the spectral
approximation using the standard HHO method.

5.1 Babuska—Osborn theory

Let H denote a Hilbert space with inner product (e, )y and let T' € L(H; H) denote a
bounded, linear, compact, and selfadjoint operator. Assume that T, € L(H; H) is a member
of a sequence of compact, selfadjoint operators that converge to T in operator norm, i.e.
limy, o0 [T — Tl z(ar;5) = 0. Let o(T) denote the spectrum of T' and p € o(T)\{0} be a
non-zero eigenvalue of T' with eigenspace E,, = ker(ul — T') of dimension m = dim(E,) € N.

Theorem 5.1 (Convergence). For any eigenvalue p € o(T)\{0} of multiplicity m, there
exists m eigenvalues fin1,- .., fnm of Ty, that converge to 1 as n — 00, and

(T = ) )
x Ca
s <¢,w221£’\{0} [olalla

max — 1
léjsmm Hnj

(T - n)@ﬂ%wmm)-

If wyj € ker(pn ;I — Ty,) is a unit vector in the eigenspace of pi, ; for 1 < j < m, then there
exists u € E, = ker(ul —T') such that for alln e N

lu —wn o < Col|(T— 1), c(B;m)-

The constants C, and Cy may depend on p but are independent of n.

Proof. These are Theorems 7.2 and 7.4 in [BO91] for a selfadjoint operator T', see also in
[Bof10, Section 9] or [SZ17, Section 1.4.2]. O

5.2 The source problem and relevant solution operators

Given a right-hand side f € L?(12), the weak formulation of the Poisson model problem and
its solution is associated with the solution operator T : L?(Q)) — L?(f2) with

a(T(f),v) = b(f,v) forall ve H}(R). (5.1)
The source problem for the new method (1.3) seeks uy, € V}, such that
ap(up,vp) = b(f,vr) for all v, = (vy,vr) € Vj, (5.2)

is associated with the solution operator T}, : L*(Q) — V}, with f’h(f) = uyp, and well-posed
by Lemma 3.5. Using Lemma 3.5 and proceeding as in [CCDE19, Lemma 3.2] shows that
the operator fh is bounded uniformly with respect to the mesh-size. The first component of
fh( f) =up = (ur,ur) € Vi defines the selfadjoint, positive definite operator

Ty : L*(Q) — Py (T) € L2(Q)  with T (f) := ur. (5.3)

This operator T}, allows for the application of the Babuska—Osborn theory. If (A, u;) with
up = (ur,ur) is an eigenpair of (1.3), then (Aﬁl,uﬂ e Ry x V}, is an eigenpair of Tj,.
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The analysis of the solution operators fh and T}, based on the discrete error estimate in
Theorem 5.2 below, follows the arguments of Section 4 in [CCDE19] (reduced to the present
case of a symmetric bilinear form ap(+,+)). Let s > 1/2 be the index resulting from the
(reduced) elliptic regularity on the polyhedral domain €.

Theorem 5.2 (Discrete error estimate). The following holds for any s < m < k+1 and
¢ € L%(Q) with T(¢) e HT™(Q),

10 (6) — LT ()1 S AT IT(0) | pr1em ()

Proof. This proof adapts the arguments of [DPEL14, Thm. 8] and [CCDE19, Lemma 3.3]
to the modified HHO method. We abbreviate uy, := Tj,(¢) € V}, and u := T(¢) € H}(Q).
Lemma 3.5 shows that

Y (w) —uplln < sup  ap(I(w) — up,vp), (5.4)

vh€Vh,|vnn=1

where the above right-hand side represents the consistency error. The solution property
—Au = ¢ a.e. in Q, and a piecewise integration by parts show, for v, = (vy,vr) € V},, that

an(un, vn) = b(¢,v7) = (—Au,07) 120y = (VU Vv )r20) — 2, Do orlrs Vu- vr)pee
TeT FeF(T)

= (VU, vaUT)L2(Q) + Z Z <UF — v, Vu - VT>L2(F)-
TeT FeF(T)

The last equality holds since vr= (vp)rer € Pp(F(Q2)) is single-valued for F' € F(2) and
vanishes along F' < 02, and vy = (vp)per. The combination of the alternative form of aj
from (3.8), Lemma 3.2, and Lemma 2.1 proves that

ah(I(u), Uh) = (HkGRTI(U), GRT(Uh))Lz(Q) + (1 — a) ((1 — Hk)GRTI(u), GRT(U}L))LQ(Q)

+ Bapw (S(Tu), S(vn))
= (((1 - a)HRT,k + ollg)(Vu), GRT(Uh))Lz(Q) + BapW(S(Iu)a S(vn)),

because

0Grrl(u) + (1 —a)(1 —1Ix)Grrl(u) = (1 — «)Grrl(u) + allyGrrl(u)
= ((1 — a)IIgr + ally)(Vu).

The abbreviation qrr = ((1 — a)llgri + odIi)(Vu) € RT.V(T), the definition (3.3) of
Grr(vp) and an integration by parts show that

an(I(u),vn) = (qrT, VowvT) 12(0) + {VF — 0T, qRT - VT )oT + Bapw(S(Iu), S(vp)).
The last three displayed equalities lead to

an(I(uw) = un,vn) = (qrr — VU, Vpwor)2(0) + (vr — v7, (qrT — VU) - V7)ot
+ Bapw(S(Iu), S(vy)) =: S1 + S2 + Ss.

For any T € T, the combination of (2.1)-(2.2) and 0 < a < 1 proves that

lgrr — Vul 2y < (1 — @) [(1 = rr k) Vul r2¢r) + af (1 = Hg) V| 2y S b7 |ul grem .-
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Hence, the Cauchy—Schwarz inequality shows that

1S1] < llarr — VUl 2(0)| VowvT [ 22(0) S Prmax |l m1+m () 10811 (5.5)
The term Sy is controlled similarly, and the term S3 is controlled via Lemma 3.3 and (2.1).
The bounds on 51,52, S3 combined with the estimate (5.4) conclude the proof. O
5.3 Error analysis for the eigenvalue problem

Based on Theorem 5.2, the difference T'— T}, in the summands in Theorem 5.1 are estimated
as in [CCDE19] resulting in Theorem 5.6 below. Let us briefly outline the main steps. Recall

the index s € (1/2,1] of the (reduced) elliptic regularity on the polyhedral domain 2 < R™.
Lemma 5.3. [T — Thllz(z2(0)) S Pmax holds for some 1/2 < s < 1.

~ ‘max

Proof. This is [CCDE19, Lemma 4.1] for a symmetric ap(+, «) in combination with Theo-
rem 5.2. L

For a spectral value 1 € o(T)\{0}, the smoothness of the functions in the eigenspaces E,, is
quantified by ¢ € [s, k + 1] (depending on x) and a constant Cy such that

Dl 1+ ) + 1T(D) | Frve(q) < Cill9llr2q)  for all ¢ € E,. (5.6)

Since possibly E,, ¢ H**¢(Q2) for some ¢ > 0, we can have ¢t > s > 1/2.

Lemma 5.4. H(T - Th)’EHHE(Eu;LQ(Q)) S hfnax holds fO?” s<t<k+1and JYARS U(T)\{O}
verifying (5.6).

Proof. The proof is analogous to [CCDE19, Lemma 4.2] utilizing Theorem 5.2. O

On E, x E, this bound can be improved.

Lemma 5.5. For any s <t <k+1 and € o(T)\{0} verifying (5.6), any ¢, ¢ € E,, satisfy
(T = T, ) gy | S Wbl [l 20

Proof. We detail the proof since it is slightly different from [CCDE19, Lemma 4.3]. For any
¢, ¢ € E,, the definition of T), and T}, show that

~

((T - Th)(¢)v ¢) L2(Q) = (T(¢)a w)LQ(Q) - b(Th(¢)’ 1/1) = (T(¢)a ¢)L2(Q) - ah(f‘h(¢)7 Th(w))a

where we used that fh is the solution operator in (5.2). Using the symmetry of aj and again
that T}, is the solution operator in (5.2), we infer that

(T = Tu)(@):%) 12y = (T(),¥) 12(0) — an(IT(9), Th(¥)) + an(IT($) = Ta(9), Th (1))
= (1 =) T(9), %) 2 + T (@) = Ti(¢), Ta(¥h)) =t Su + Ss.

To exploit the additional smoothness (5.6) of 1 € H'**(Q) for Sy, the projection property is
combined with the Cauchy-Schwarz inequality and (2.1) to obtain

Sy = ((1 = )T (), (1 — Hk+1)(¢))L2(Q) < Cgpxclghig;—t) Bl L2 1% 20 - (5.7)
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The term S5 needs a bit more algebraic manipulation. We first write

S5 = an(IT(¢) — Th(9), Th(¥) — IT(¥)) + an(IT(¢) — Th(9), IT ().

The Cauchy—Schwarz inequality for ap, Theorem 5.2, and (5.6) prove for the first part that

an(IT(¢) — Th(), T(¥) — IT(¥)) S h . Co | L2 V]| L2(0)- (5.8)

With the abbreviation Sg := ap(IT(¢), [T (¢)) — a(T'(¢), T (¥)) the solution properties of T'
and T} show for the second summand of Sy that

ahuT(cb)—fh(qb),fT(w»—S a(T(¢> T()) — an(Th(¢), IT(1)))

&, T(Y)) 2y — (¢, 1 T (V) 120

= (¢, (1 = Mg1)T(Y)) 1202

(1 =Tk 1)(9), (1 = 1) T(¥)) £2(0)

< O P 10l 2oy 9 20y (5.9)

apx max

AAA

where the last inequality follows as in (5.7). The alternative form of a; from (3.8), the
definition of a, as well as a combination of Lemma 3.2 and Lemma 2.1 lead to

Ss = (VT (), I VT (¥)) r2(0) + (1 — @) (Mprk(l — ) VI (9), Mprk(l — ) VI () 12
+ Bapw (SIT(¢), SIT(¢)) — (VI'(), VT ()).
The Cauchy-Schwarz inequality, Lemma 3.3, and (2.1)-(2.2) prove for all ¢, € E,, verifying
(5.6) that
Se < [(1 = p)VT(9) | z2(0) [(1 = k) VT (Y) [ 22(0) + (1 — @) [Hgr i (1 — k) VT ($) ] 120
x Mgzl =) VI ()] L2y + BISTT(S) |pw | STT (¥) [ pw
< (2= o)1= 1) VT(9)| L2l (1 = He) VT (¥)] 22 ()
+ B0 (1 = ) (VT () | 2o (1 = ) (VT () 1202y
h?ﬁax((z - a) + BUQ)CfcgprngL?(T) HwHLQ(T) (510)

The combination of (5.8)—(5.10) proves |S5| < hﬁﬁi,f””gﬁ”wm) |%¥llz2(q)- This and (5.7) con-
clude the proof. ]

5.4 Resulting estimates

Let 1 € o(T)\{0} denote an eigenvalue of T' of multiplicity m € N. Lemma 5.3 proves the
convergence T}, — T in L(L?*()) as hmax — 0. Hence there are m discrete eigenvalues
Hh,1s- - fh,m in multiplicity which converge to p as hyax — 0.

Theorem 5.6 (Error estimates). Given an eigenvalue p € o(T)\{0} of multiplicity m,
t € [s,k + 1] such that (5.6) holds, and the m eigenvalues pip 1, ..., fthm of Th, that converge
to 1 as hypmax — 0, then

max |p — pp ;| < Coh®.

1<]<
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Moreover, gien any unit vector ur ; € ker(,uh’jl —Ty) © Piy1(T), there exist an unit vector
u € ker(ul —T) = E, such that

lu —ur jl2(0) < Coh'.

Given a discrete eigenfunction ur € ker(up jI — Ty) < Py (T), there exist an unit vector
u € ker(ul —T) = E,, such that up, := (ur, Zr(ut)) € V), satisfies

|up — Iqu,h = ap(up, — Tu,up, — ITu) < C.h?.

The constants Cy, Cy, C. > 0 may depend on u, the polynomial degree k, the domain ), and
the mesh reqularity but are independent of the mesh-size.

Proof. The combination of Lemma 5.4-5.5 with the Babuska—Osborn theory in Theorem 5.1
provides the first two assertions. The proof for the final claim is analogue to Corollary 4.6 in
[CCDE19]. In fact Lemma 5.5 provides the bound (5.10) for 6, := ap,({u, Iu) —a(u,u) = Se.[]

Remark 5.7 The eigenvalues A, in (1.3) and A in (1.2) are associated with y, = A, ' and
= A1, respectively, which leads to the same estimates. If the smoothness is optimal, i.e.,
t = k + 1, the proven convergence is of order h?**2 for the eigenvalues and h**! for the
eigenvectors in the H!'-seminorm.

6 Lowest-order case

This section is devoted to the analysis of the lowest-order case and provides a comparison
to the Crouzeix—Raviart method. Throughout this section we set k£ := 0 so that V}, :=
Pi(T) x Po(F(2)).

Let mid(K) := L1 2L, Pj € K denote the barycenter of K := conv{P,..., P,}. The associ-
ated piecewise constant function mid(7) € Py(7;R"™) takes on each simplex T € T the value
mid(7)|r := mid(T). Let us set

s(T) := 1/n*To(|« — mid(T)|?) € Po(T),
S(T) :=Tlo((+ —mid(7)) @ (+ —mid(T))) € Po(T;R™™).

6.1 Comparison with the Crouzeix—Raviart method

The Crouzeix—Raviart (CR) finite element space reads

CRY(T) := {vcr € P1(T) : vcr is continuous at mid(F) for all F € F(f),
ver (mid(F)) = 0 for all F e F(0Q)}.

The vector spaces Py(F(2)) and CRL(T) can be identified as follows. The extension operator
Icr @ Po(F(Q)) — CRY(T) maps bijectively vy = (vp)per € Po(F(Q)) onto Icr(vr) =
Y per VEYE, where ¢p € CR}(T) denotes the basis function with ¢p(mid(E)) = dgp for all
F,E € F. This leads to lIrglcr(vr) = vr for any vy € Py(F(Q2)). Furthermore, if Inc :
H}(Q) — CRY(T) denotes the nonconforming interpolation INc(¢) := Y per §p @ dstr €
CRY(T) of ¢ € HY(Q), then Inc(¢) = IcrIlzo(¢). In other words we have Inc = Icr o lx .
Recall the operators R from (3.2), Grr from (3.3), and S from (3.4).
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Lemma 6.1. For any vy, := (vr,vr) € Vi, letting ver := Icr(vr) € CRY(T), the following
holds:

(a) R(vp) = (1 —To)(ver) + Ho(vr),
(b) Grr(vn) = Vpwucr + %ﬁ(HO(UCR —v7))(+ —mid(7)),
(¢) S(vp) = (1 = 1o) (v — ver)-
Proof. (a) For any p € Pi(T) the definition (3.2) of R and an integration by parts show that
apw(R(vn),p) = —(v1, Apwp) 12(0) + vF, Vpwp - V1007 = (VCR, VpwD - VT )oT = Gpw(VCR, D)-
Hence, VwR(vp) = Vpwvcr. The condition IIgR(vp,) = Ig(vr) concludes the proof of (a).
(b) For any grr € RTo(T), the definition (3.3) of Grr and an integration by parts show that
(Grr(vh), qrT)12(0) = — (v, divpwqrT) 12(2) + {VCR, ART - VT )oT
= (vcr — v7, divpwqrT) L2(0) + (VpwUCR, 4RT) 12(0)
= (Ho(ver — v7), divpwgrr)L2(0) + (Vpwvcer, Ho(grr)) L2(0)-
On the other hand, since any qry € RT)"(T) can be written as
qrr = Hogqrr + n *divpwgrr (+ — mid(T)),
the Pythagoras theorem for IIy and the definition of s(7) show that
(Grr(vn), qrr)r2(0) = (MoGrr(vn), Mo(grr)) L2(0) + (1 — o) G Ry (vA), (1 — Ho)(QRT))Lz(Q)
= (oG rr(vn), Ho(grr)) 2
e (dwprRTwh)(o rmd( T)): divputr(+ = mid(T))) 2 0
= (MoGrr(vn), Lo(grr))L2() + ($(T)divpwG rr(vn), divpwqrr) L2 (0)-

The comparison of the last two displayed equalities shows that s(7)divpwGrr(vp) = Ho(ver —
vr) and HoGrr(vy) = Vpwver. That completes the proof of (b).

(c) This follows directly from the definition (3.4) and (a). O
Proposition 6.2. (a) The bilinear forms in the lowest-order case read for all up, := (ur, ur)
and vy, := (vy,vF) € Vp,

ap(up,vp) = apw(Icr(ur), Icr(vr)) + B apw(ur — Icr(ur), v7 — Icr(vF))
+ (1 - (S(T)flﬂo(ICR(u]:) — UT),H()([CR(U]:) — UT))LQ(Q),

bn(un, vn) = (ur, v7)L2(02)-

(b) The discrete solution up, := (u,ur) € Vi, of the lowest-order EVP satisfies

tentuz) = (1= 20 Y to(ur) + ((1 - Ah%m)vaw) (e —mid(T)),  (61)

apw(Icr(uF), ver) = Ap(ur, ver)r2(),  for all ver € CRy(T). (6.2)
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Proof. (a) Using the alternative form for a; from (3.8) for the lowest-order case k = 0, the
substitution of the operators with Lemma 6.1 proves the claim.

(b) With the bilinear forms of Proposition 6.2(a), (1.3) leads for any v, = (v7,0) € V), with
vr € P(T) to

(1—a)(s(T) 'Mo(ur — Icr(ur)), UT))LQ(Q) + B apw(ur — Icr(ur),v7) = An(uT, v7) L2(00)-
(6.3)

The choice Ig(vyr) € Po(T) in (6.3) shows that ﬁﬂo(uT — Icr(ur)) = MIlp(ur) and
equivalently

Molcr (ur) = <1 - (Al’ls'_(zono(uf).

The substitution of (1 —Ip)(v7) € Py(T) in (6.3) proves
Bapw (ur — Icr(ur),vr) = M (ur, (L= To) (v7)) 20

Since for any vi € Pi(T), we have v = Ilp(v1) + Vpwor - (¢ — mid(7)), the last displayed
identity concludes the proof of (6.1) with

VpWICR(U]-') = <1 - )W?B(,]-))vauT.

Since the operator Icgr : Po(F(Q2)) — CRY(T) is surjective, the choice of test functions
vy, = (Icr(vr),vr) € V3 in (1.3) proves (6.2). O
Let (Acr, ¢cr) € Ry x CR}(T) denote a Crouzeix—Raviart eigenvalue pair with

apw(®cr, Vcr) = Acrb(Pcr, vcr) and H(;SCRHLQ(Q) =1 forall vcr € CR%(T). (6.4)

Corollary 6.3 (Comparison with Crouzeix—Raviart). If \cr(j) denotes the j-th eigen-
value of (6.4) and A\p(j) the j-th eigenvalue of (1.3), then Ap(j) < Acr(j)-

Proof. The proof is similar to [CZZ20, Thm.6.2]. Since IcrIlr o(vcr) = vcr for any Crouzeix—
Raviart function ver € CRY(T), Proposition 6.2 shows that for vcgr p := (ver, L o0vcr) € Va,

an(VeR,hy VCR,1) = Apw(Ver, vcr)  and by (VeR,h, VOR,K) = D(VCR, VCR)-

The discrete min-max principles for A, (j) and Acr(j) conclude the proof. O

6.2 Estimate on the constant o

Recall the a posteriori condition 023 + §?A;(j) < a < 1 in Theorem 4.1 sufficient for the
j-th discrete eigenvalue A\,(j) of (1.3) to be a guaranteed lower bound for the j-th exact
eigenvalue A(j) of (1.2). Thus the constants o and x (recall that ¢ := khpax) are essential
for the choice of the parameters o and 5. The constant x is estimated in Remark 2.4 as
k2 <72+ (2n(n+1)(n +2))~! for any space dimension n, and for n = 2, this bound can
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be improved to xk < (1/48 + j;;%)"/? = 0.298234942888 [CG14a], where ji1 denotes the first
root of the first Bessel function.

The constant o is more difficult to estimate (recall that o := /C% — 1 but the proof of
the existence of Cy in [CZZ20, Thm 3.1] is non-constructive). Actually the constant o is
only needed in Lemma 3.3 to bound [|S(I¢)|pw for all ¢ € V := HE(Q). To bound this
quantity in the lowest-order case, we can use an inverse inequality. Let us set for all T € T,
Ciny(T) = supy,ep (1) Vil z2ry/lvilz2(r). Notice that einy(T) is the square root of the
maximal eigenvalue of the generalized matrix eigenvalue problem with the stiffness and mass
matrix of P;(7T). Let us set c¢ipy := maxre7 ciny(T'). Recall from Remark 2.4 the Poincaré
constant Cp such that |(1 —Io)(f)| 21y < Cphr|V fll 2 for all f e H(T).

Lemma 6.4 (Bound on o). Let ¢y be the constant associated with the inverse estimate
in P1 and let Cp be the Poincaré constant. Then ||S(I19)||pw < o||(1 —To) (V)| r2(q) for all
peV = H&(Q) with o < CpCiny.-

Proof. Any ¢ € HZ(Q) satisfies

IS lpw = [T1(¢) — IerIlF (@) |lpw = [T — Inc) (&) [[pw-

For any T € T, the projection properties of IIy and II; and the inverse estimate for affine
functions in P;(7T") show that

(1 = IIp)II; (1 — INC)( ezry = T (1 —Tlo)(1 — Inc)(9)ll L2 (r)
(1 =Tlo)(1 = Inc)(®) | z2(1y < Cphr|V(1 = Inc) (D) 21

This implies that [|S(I¢)||pw < cvCp|V(1 — Inc)(#)[2(r) and the identity VInc = TV
concludes the proof. O

TV (01 = Ine) (@) r2¢ry = hrcin [V (1 = To)Ii (1 = Inc)(9) [ 22(r)
|
|

<
<

For n = 2 the constant ciyy(7T') is computed in [CH17, Lemma 4.10] in terms of the minimum
angle wl in T € T as

cim,(T)2 =24 cot(w%) (2 cot(w%) — cot(Qw%) +((2 cot(w%) — cot(2w%))2 — 3)1/2). (6.5)

For a triangulation composed of right isosceles triangles, we have ¢y = +/72. Combined with
Lemma 6.4 and the estimate on Cp from Remark 2.4 shows that o < 2.2145. Lemma 6.4 gives
a first analytical upper bound for the constant ¢ for the lowest-order method utilized in the
numerical experiments below. Sharper bounds for the parameter o (in particular for higher
polynomial degrees) may be computed by a related PDE eigenvalue problem on a reference
domain; details and numerical examples shall appear elsewhere.

7 Numerical experiments

This section presents numerical experiments illustrating the superiority of the guaranteed
lower bounds delivered in the framework of Theorem 4.1, compared to the guaranteed lower
bounds of [CG14b, CZZ20] for the lowest-order variants on regular triangulations of the
polygonal domains in Fig. 7.1 in 2D.
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o 1 - 0 1 S 2 -1 0 1 2z 3 T S
(a) (b) (c) ()

Figure 7.1: Initial triangulation 7o of the L-shaped domain (a), the slit domain (b), and the isospectral
domains (c) and (d).

7.1 Preliminaries
7.1.1 Implementation

The implementation is realized in MATLAB based on the data structure and assembling from
[CB18, Section 7.8]. The resulting algebraic eigenvalue problem is solved with the MATLAB
routine eigs exactly; the termination and round-off errors are neglected for simplicity. (An
algebraic bound [Par98, 15.9.1] could partly circumvent the issue of inexact solve as in [CG14b)]
— however, this bound solely clarifies the existence of an eigenvalue but gives no information
on its numbering.)

Given a regular triangulation 7 of the bounded polygonal Lipschitz domain Q < R? into
triangles, the Crouzeix—Raviart eigenpairs (Acr(j), ucr (7)) of (6.4) and the post-processed
GLBCR(j) (1.1) from [CG14b] are computed, together with the lowest-order version of the
skeletal method (SM) defined in [CZZ20] (7.1) below. All these methods deliver guaranteed
lower bounds which are compared to those delivered by the present modified HHO method.
The SM method features the same discrete space Vi, = Pi(T) x Py(F(Q2)) as the modified
HHO method, whereas the discrete bilinear forms in the 2D case read (with s defined in
Remark 2.4 and Icg from Section 6.1)

asm(un, vp) = apw(Icr(ur), Icr (vF)) + 672 (h7 (ur — Icr(uF)), v — Icr(vF)) 12(0);
bsm(un, vp) == (ur, v7)2(2) = br(un,vp) for any up = (ur,ur), vi = (v7,vF) € Vj.

The discrete eigenvalue problem seeks (Agm(7), usm(j)) € Ry x Vi, with

asm(usm(7), vn) = Asm(d)bsm(usm (), vn) for all vy, € Vi, and bsm(usm(f), usm(j)) = 1.
(7.1)

These quantities are computed and compared with the discrete eigenvalues A; () of the lowest-
order modified HHO method (1.3) with the bilinear forms of Proposition 6.2.

7.1.2 Setting the parameters of the modified HHO method

The computable condition 028 + §2X;(j) < a < 1 shows in Theorem 4.1 that the discrete
eigenvalue A (j) of the new method (1.3) is a lower bound for the exact eigenvalue A(j) of
(1.2). This condition restricts the choice of the parameters 0 < @ < 1 and 0 < § < 0. For
right-isosceles triangles Lemma 6.4 shows that o < \/ﬁ/jn < 2.2145 in (3.7) and 0 < K hyax
in (2.4). The numerical bound x < 0.1893 from [Liul5| slightly improves the analytical
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bound x < 0.2983 from [CGl4a] in the numerical experiments below. If Acr(j) denotes
the j-th Crouzeix—Raviart eigenvalue and Ap(j) the j-th eigenvalue of (1.3), Corollary 6.3
proves Ap(j) < Acr(j). This means that on a given triangulation 7" with known Acr(j), the
parameter choice 0 < a < 1 and 8 = (a — 62Acr(j))/0? > 0 leads to a guaranteed lower
bound Ay, (j) of the j-th exact eigenvalue A(j). If the parameters are chosen before hand, the
condition 028+ 3%\;,(j) < @ may not be satisfied on a coarser mesh due to the impact of Ay ax.
In this case the computed value A (j) is replaced by zero (which is an obvious guaranteed
lower bound).

7.1.3 Adaptive mesh refinement

Adaptive mesh refinement may recover optimal convergence rates. For the related Crouzeix—
Raviart adaptive finite element method (AFEM) driven by the estimator 7, whose local
contributions for any 7' € T of area |T'| read

P (T) = |T| [AcrucrFo iy + TV Y] [[0ucr/0s]F |72 r), (7.2)
FeF(T)

[CGS15] proves optimality for the principal eigenvalue of the CR-EVP. Since the a posteriori
error analysis for the new modified HHO method and the skeletal method [CZZ20] is left
open, the refinement indicator (7.2) drives adaptive mesh-refinement in the AFEM algorithm
[CFPP14, Algorithm 2.2] with Doérfler marking for bulk parameter # = 0.5 (and § = 1 for
uniform refinement) and newest-vertex bisection. This refinement preserves the interior angles
in the triangulation.

7.1.4 Displayed quantities

Fig. 7.1 displays the initial triangulations 7y for the three numerical experiments below. The
respective convergence history plots in Fig. 7.2, Fig. 7.4, and Fig. 7.6 display the difference of
the exact eigenvalue and the various guaranteed lower bounds for uniform mesh refinement
6 = 1 (solid line and filled markers) and adaptive mesh refinement 6 = 0.5 (dashed line and
striped markers) plotted against the number of triangles |7|. On the uniform meshes the
GLBCR(j) (line color blue) and Agp(j) (line color teal) coincide; see [CZZ20, Thm. 6.3].
The error A(j) — A\n(j) (line color green) is replaced by A(j) if the condition in Theorem 4.1
is not satisfied for the chosen parameter. The number j of the eigenvalue is illustrated by
different markers. Fig. 7.8 exemplifies adaptive triangulations for the first eigenvalue on all
the domains with | 7] = 1375 triangles in (a), |7] = 1421 in (b), and |7] = 1118 in (c).
Figures 7.3, 7.5, and 7.7 display a parameter study for the different domains. The figures
compare the guaranteed lower bound GLBCR(j) (which is on uniform triangulations the
bound Agm(j) in [CZZ20] marked by a dotted blue line) with the guaranteed lower bound
An(j) (dotted green curve) computed with the new method and different choices of o (and
B = (a—6*Acr(j))/0? > 0 from Section 7.1.2). In these graphs the dot-density of the curves
indicates on which triangulation 7y (the ¢-th uniform refinement of the initial triangulation
7o) the values were computed. For comparison the eigenvalue approximation (assumed to be
exact) is displayed as well (dark violet line).
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Figure 7.2: L-shaped domain: comparison of the distance between A(j) and Axn(j) (computed with
a =04, § = 0.07 (left) and 8 = 0.06 (right)), GLBCR(j) [CG14b], and Asum(j) [CZZ20]
computed on uniform (6 = 1, solid) and adaptive (§ = 0.5, dashed) meshes with (7.2). Left:
A(1). Right: A(103) = A(104) = A(105).

7.2 Experiments on the L-shaped domain

On the non-convex L-shaped domain Q := (—1,1)2\[0,1) x (—1,0], the principal eigenvalue
A(1) = 9.6397238389738806 is computed with a P, finite element method on uniformly re-
fined triangulations with Aitken extrapolation. The associated eigenvector is apparently in
H}(Q)\H?(Q) resulting in the reduced convergence rate 0.8 for uniform mesh-refinement in
Fig. 7.2.a. As soon as the initial triangulation from Fig. 7.1.a is refined three times, Ay (1)
slightly improves the known bound Agy(1) = GLBCR(1) on the uniform meshes. The adap-
tive mesh-refinement driven by the estimator (7.2) allows to recover the optimal convergence
rate with the skeletal method in [CZZ20] and the modified HHO method. Remarkably, the
modified HHO method with the parameter choice « = 0.4 and 5 = 0.07 convinces with
sharper bounds. In [TB06] the multiple eigenvalue A(103) = A(104) = A(105) = 5072 and
the associated eigenfunction in C*(Q2) are presented. Fig. 7.2.b shows for these eigenvalues
the optimal convergence rate of one with uniform mesh-refinement. The similar plots ob-
tained with adaptive mesh-refinement are omitted for brevity. The parameter choice o« = 0.4
and 8 = 0.06 guarantees the condition 023 + 62\ (j) < « for A\(103) = A\(104) = A(105) on
coarser meshes. Fig. 7.3 illustrates that the new method improves all known guaranteed lower
bounds for the principal eigenvalue on the L-shaped domain on at least three times uniform
refined meshes for an appropriate parameter choice and that the parameter range that leads
to improvement grows with mesh-refinement, but the improvement is more impressive on the
coarser triangulation. For higher eigenvalues the parameter studies show similar results.
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Figure 7.3: L-shaped domain: comparison of GLBCR(1) and A\,(1) for parameter a varying in (0, 1)
and 8 = (a — 8*Acr(1))/0? € (0.001,0.199) on coarse uniform triangulations.

7.3 Experiments on the slit domain

On the non-convex slit domain Q := (—1,1)%\([0,1) x {0}), the principal eigenvalue A\(1) =
8.371330522443726 and the sixth A(6) = 30.535991049204789 are approximated with a P
finite element method on uniformly refined meshes and Aitken extrapolation for compar-
ison. The first and sixth eigenfunction on the non-convex slit domain are obviously in
H}(Q)\H?(Q2). For uniform mesh-refinement, this leads to the reduced convergence rates
0.4 for the first in Fig. 7.4.a and 0.6 for the sixth in Fig. 7.4.b. The AFEM algorithm with
bulk parameter 6 = 0.5 driven by the estimator (7.2) allows to recover the optimal rates for
both Agm(7) and Ap(j), j € {1,6}, in Fig. 7.4. The parameter choice & = 0.4 and § = 0.07
allows to compute sharper bounds with the new method on finer meshes. The orange line
illustrates that with the parameter choice a = 0.4 and 8 = (o — 62Acr(j))/0?, the discrete
eigenvalue \p(j) is a guaranteed lower bound on each triangulation. For the slit domain,
Fig. 7.5 illustrates that the new method improves all known guaranteed lower bounds on the
moderately (three resp. four times for A(1) and A(6)) uniformly refined triangulation for an
appropriate parameter choice with a wider range of appropriate parameters on a finer mesh.

7.4 Experiments on the isospectral domains

The isospectral drums with the initial triangulation of Fig. 7.1.c and Fig. 7.1.d have the same
eigenvalues. The paper [Dri97] displays approximations for the first 25 identical eigenvalues
on these domains and [TBO06] gives the approximation A(50) = 54.187936. Fig. 7.6 presents
convergence plots for the error in the principal and the fiftieth eigenvalue. The first eigen-
function to the principal eigenvalue A(1) = 2.53794399980 is in H}(Q)\H?(Q) and leads to
the reduced convergence rate 0.8 for uniform mesh-refinement. The AFEM algorithm driven
by (7.2) (after three uniform refinements to guarantee 023 + 62\, (j) < ) recovers the op-
timal convergence rate for the direct lower bounds in Fig. 7.6.a. In [TB06] are no remarks
on the smoothness of the fiftieth eigenfunction. The numerical results displayed in Fig. 7.6.b
suggest that this eigenfunction is indeed in H?(2). Uniform and adaptive mesh-refinement
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lead to optimal convergence rates. For brevity the adaptive results are not displayed. The
parameter studies in Fig. 7.7 indicate that a parameter 0.1 < « < 0.5 and an appropriate
from Section 7.1.2 improve all known guaranteed lower bounds on refined meshes.

7.5 Conclusions

This subsection summarizes the empirical observations of the numerical experiments in Sec-
tions 7.2-7.4.

(i) All experiments confirm the a priori convergence rates of Theorem 5.1. The convergence
rate depends only on the smoothness of the approximated eigenfunction. For instance in
Fig. 7.2.b and 7.6.b, the optimal convergence rate is one for uniform refinement despite the
reduced convergence rate in Fig. 7.2.a and 7.6.a for the principal eigenvalue in Hg (Q)\H?(€).

(ii) Theorem 5.1 predicts a convergence provided the initial mesh is sufficiently fine. In all
examples the convergence rate is visible for moderate triangulations, so this restriction does
not affect the numerical examples too much.

(iii) The parameter choice of Section 7.1.2 provides indeed guaranteed lower bounds in all
numerical experiments and fully confirms Theorem 4.1.

(iv) The guaranteed lower bounds computed with Theorem 4.1 do not always improve the
known bounds by Agny(j). The numerical examples suggest the conjecture that the new
bounds are better for finer triangulations.

(v) For the majority of the numerical experiments, the parameters o = 0.4 and 8 < a/o? —
82X (j)/0? lead to the best known guaranteed lower bounds for the eigenvalues.
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(vi) For the eigenfunctions in H}(Q)\H?(€), the AFEM algorithm recovers the optimal con-
vergence rates and illustrates the advantage of a direct lower bound compared to GLBCR(j)
in (1.1).

(vii) This first realization of the new method concerns the lowest-order case and illustrates
that the scheme can be competitive to other methodologies for the computation of guaranteed
lower eigenvalue bounds. For the appropriate parameter selection, the scheme can provide
the sharpest bounds in comparison to [CG14b, CZZ20]. Numerical benchmarks with the
higher-order versions of the method suggested in the paper are even more promising provided
the mesh is adapted appropriately and will be investigated in future research.
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