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Abstract

Graph clustering is one of the key techniques to understand structures that
are present in networks. In addition to clusters, bridges and outliers de-
tection is also a critical task as it plays an important role in the analysis
of networks. Recently, several graph clustering methods are developed and
used in multiple application domains such as biological network analysis, rec-
ommendation systems and community detection. Most of these algorithms
are based on the structural clustering algorithm. Yet, this kind of algorithm
is based on the structural similarity, this later requires to parse all graph
’ edges in order to compute the structural similarity. However, the height
needs of similarity computing make this algorithm more adequate for small
graphs, without significant support to deal with large-scale networks. In this
paper, we propose a novel distributed graph clustering algorithm based on
structural graph clustering. The experimental results show the efficiency in
terms of running time of the proposed algorithm in large networks compared
to existing structural graph clustering methods.

Keywords: Graph processing, Structural graph clustering, Big Graph
Analysis, Community detection, Outliers detection, hubs detection

1. Introduction

Recently, the graph model has risen one of the most used data models in
several applications like social networks (Said et al., 2018), road maps (Cao
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and Krumm, 2009), pattern mining Fournier-Viger et al. and bioinformatics
(Xu et al., 2002). For instance, a recent ranking shows that the popularity of5

graph databases model increased up to around 500% in the last years (Iyer
et al., 2018). It has shown an optimum data model that allows to represent
easily many relationships and facilitates the exploration of data. Taking so-
cial networks as an example, the graph model organizes data elements into
a set of vertices representing the members, and a list of edges to materialize10

the relationships between vertices. Also, the last years featured a big data
explosion especially in graph-based social networks. As an example, Face-
book in 2013 had over 874 million monthly users (Baborska-Narozny et al.,
2016). This proliferation of a huge amount of data and the massiveness of
graphs introduce additional factors to the renewed popularity of graph ana-15

lytics (Iyer et al., 2018). Consequently, new applications and use cases have
been mentioned in the literature. One important analysis technique in graph
mining and graph analysis fields is graph clustering. Graph clustering helps
identifying tightly connected regions within a graph (Žalik and Žalik, 2018;
Günnemann et al., 2012). It has been used to solve various problems such as20

discovering communities in social networks and detecting protein complexes
in Protein–Protein Interaction (PPI) networks (Xu et al., 2002).

It is important to mention that in some applications, the used graph
could be very large. In such situation, the considered graph could be parti-
tioned into several subgraphs and the computation is performed in a paral-25

lel/distributed way Dhifli et al. (2017); Aridhi et al. (2015). In this context,
graph clustering algorithms are used to ensure the partitioning of the graph
into several parts (Abbas et al., 2018; Yin et al., 2017).

In this paper, we propose DSCAN: a novel graph clustering algorithm in
the context of large and distributed graphs. The main contributions of this30

work are summarized as follows:

• We propose a distributed graph clustering algorithm of large graphs
(DSCAN). The proposed method is exact and allows discovering the
same clusters that are discovered by SCAN, the reference algorithm for
structural graph clustering (Xu et al., 2007).35

• We conduct an extensive experimental study with large graphs, to eval-
uate the scalability of DSCAN. We compare DSCAN with four existing
structural graph clustering algorithms.

The rest of the paper is organized as follows. After introducing graph clus-
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tering in Section 1, we present a brief overview of related work in Section 2.40

In Section 3, we present the basic concepts related to the structural graph
clustering. In Section 4, we present our proposed algorithms for large graph
clustering. In Section 5, we provide the experimental results. The last section
is devoted to the conclusion and the future work.

2. Related work45

Several graph clustering algorithms have been proposed in the literature.
Taking as examples, modularity-based approaches (LaSalle and Karypis,
2015) that represent an optimization solution of the modularity measure
for each partitioning schema (generated randomly or according to a heuristic
function) (LaSalle and Karypis, 2015). The Louvain method (Aynaud and50

Guillaume, 2010) represents one of the clustering algorithms based on mod-
ularity, that initially generates a random clustering. After that, it starts to
change every time a vertex from a cluster to another until getting a maxi-
mum modularity. Despite the fact that it gives very connected clusters in
the larger graphs, the modularity measure cannot capture the small clusters55

(Kozawa et al., 2017). Graph partitioning (Brandes et al., 2003) and min-
cut (Ding et al., 2001) are other methods used for the graph clustering which
consist of splitting a graph into subgraphs while optimizing the cut edge
during the partitioning. The spectral clustering (White and Smyth, 2005) is
based on the graph density. It represents an input graph with a matrix and60

transforms this matrix so that to apply the basic clustering algorithm, like
k-means (Hartigan and Wong, 1979).
A sampling-based distributed graph clustering method has been proposed in
Sun and Zanetti (2019). The proposed algorithm is based on the density of
the graph to produce a set of sparse subgraphs. Graph embedding has also65

been used in the graph clustering. In (Goyal and Ferrara, 2018), the authors
discussed the use of the graph embedding technique to combine the struc-
tural and attributed similarity over the graph clustering. The above methods
provide, as output, a list of clusters which are not really sufficient to under-
stand the graph behavior. To address this issue, the Structural Clustering70

Algorithm for Networks (SCAN) was proposed in (Xu et al., 2007) aiming,
not only to identify the clusters in a graph, but also to provide additional
informations like hubs (vertices between one or more clusters) and outliers
(vertices that do not belong to any cluster). These additional pieces of in-
formation can be used to detect vertices that can be considered as noise and75
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also vertices that can be considered as bridges between clusters. The func-
tional principle of SCAN is based on graph topology. It consists of grouping
vertices that share the maximum number of neighbors. Moreover, it com-
putes the similarity between all the edges of the graph in order to perform
the clustering. The similarity computation step in SCAN is linear accord-80

ing to the number of edges, which degrades SCAN performance especially in
case of large graphs. Structural graph clustering is one of the most effective
clustering methods for differentiating the various types of vertices in a graph.
In the literature, several works have been proposed for the structural graph
clustering to overcome the drawback of SCAN. In (Shiokawa et al., 2015),85

Shiokawa et al. proposed an extension of the basic SCAN algorithm, namely
SCAN++. The proposed algorithm aims to introduce a new data structure
of directly two-hop-away reachable node set (DTAR). This new data struc-
ture is the set of two-hop-away nodes from a given node that are likely to be
in the same cluster as the given node. SCAN++ could save many structural90

similarity operations, since it avoids several computations of structural sim-
ilarity by vertices that are shared between the neighbors of a vertex and its
two-hop-away vertices. In the same way, the authors in (Chang et al., 2016)
suppose that the identification of core vertices represents an essential and
expensive task in SCAN. Based on this assumption, they proposed a prun-95

ing method for identifying the core vertices after a pruning step, which aims
to avoid a high number of structural similarity computations. To improve
the performance and robustness of the basic SCAN, an algorithm named
LinkSCAN* has been proposed in (Lim et al., 2014). LinkSCAN* is based
on a sampling method, which is applied on the edges of a given graph. This100

sampling aims to reduce the number of structural similarity operations that
should be executed. However, LinkSCAN* provides approximate results.

Other works have proposed parallel implementations of SCAN algorithm
(Takahashi et al., 2017) (Mai et al., 2017) (Chang et al., 2017) (Stovall et al.,
2015) (Wen et al., 2017). In (Takahashi et al., 2017), the authors proposed105

an approach based on openMP library (Bull, 1999). The author’s aims were
to ensure a parallel computation of the structural similarity and to show the
impact of parallelism on the response time. Their method was proven to
be faster than the basic SCAN algorithm. Other works have focused on the
problem of dynamic graph clustering. In (Mai et al., 2017) and (Chang et al.,110

2017), the authors have extended SCAN algorithm to deal with the addition
or removal of edges. Authors in (Stovall et al., 2015), used the graphical
processing unit (GPU) whose purpose is to parallelize the processing and to
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benefit from the high number of processing slots in the GPU which increase
the degree of parallelism.115

On the other hand, an index approach is proposed in Wen et al. (2017) where
the authors have emphasized the impact of the two parameters µ and ε on the
running time of the structural graph clustering. Using the index approach
a significant improvement has been shown b in terms of clustering running
time. Again, the two sensitive parameters µ and ε have been taken into120

consideration by the authors in Wu et al. (2019). The main goal of the latter
consists of estimate the best µ and ε values in order to enhance the accuracy
and efficiency of the clustering results.

Most of the above presented works suffer from two major problems: (1)
they do not deal with big graphs and (2) they do not consider already dis-125

tributed/partitioned graphs. Through Table 1, we have summarized the
discussed approaches according to some features.
As shown in Table. 1, most proposed algorithms allow parallel processing but
could not deal with very large graphs. It is also clear that none of the studied
approaches allow distributed computing. In addition, these approaches are130

unable to process large graphs. Also in some applications, like social network,
graphs are distributed by nature. Thereby, using the discussed algorithms, it
should aggregate in one machine all partitions of a distributed graph in order
to run the graph clustering. based on this limits, in this work, we tackle the
problem of large and dynamic graph clustering in a distributed setting.135

3. Background

3.1. Structural graph clustering: Basic concepts

Graph clustering consists in dividing a graph into several partitions or
subgraphs. As with other clustering techniques, we must use one or more
metrics to measure the similarity between two vertices or partitions in the140

graph. In the structural clustering technique, the graph structure or topology
is splitted into a set of subgraphs that are relatively distant and a set of
vertices that are strongly connected.

As a well-known algorithm for structural graph clustering, SCAN algo-
rithm uses the structural similarity between vertices to perform the cluster-145

ing. In addition, it provides other pieces of information like outliers and
bridges. In what follows, we first present an overview of graphs and graph
clustering with the SCAN algorithm.
Consider a graph G = {V,E}, where V is a set of vertices, and E is a set of
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Table 1: Comparative study on existing graph clustering methods

Approach Parallel Distributed Processing
model

Graph
parti-
tioning

Main contri-
butions

SCAN (Xu
et al., 2007)

No No Sequential No Basic implemen-
tation of struc-
tural graph clus-
tering

SCAN++ (Sh-
iokawa et al.,
2015)

No No Sequential No Reducing the
number of
similarity com-
putations

AnySCAN
(Zhao et al.,
2017)

Yes No Parallel No Parallelizing
SCAN

pSCAN (Chang
et al., 2016)

Yes No Parallel No Reducing the
number of
similarity com-
putations

Index-based
SCAN (Wen
et al., 2017)

No No Sequential No Interactive
SCAN

ppSCAN (Che
et al., 2018)

Yes No Parallel No Parallel version
of pSCAN

SCAN based on
GPU (Stovall
et al., 2015)

Yes No Parallel No A GPU-based
version of SCAN

pm-SCAN (Seo
and Kim, 2017)

Yes No Parallel Yes Graph partition-
ing to reduce the
I/O costs

dpSCAN (Wu
et al., 2019)

No No Sequential No Clustering re-
sults without µ
and ε parame-
ters
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edges between vertices. Each of those elements can represent a real property150

in real-word applications. Let u and v be two vertices in V . We denote by
(u,v) an edge between u and v; u (resp. v) is said to be a neighbor of v (resp.
u).
In the following, we extend some basic definitions of structural graph clus-
tering, which will be used in our proposed algorithm.155

Definition 3.1. (Structural neighborhood) The structural neighborhood of a
vertex v,is denoted by N(v), and represents all the neighbors of a given vertex
v ∈ V , including the vertex v:

N(v) = {u ∈ V |(v, u) ∈ E} ∪ {v} (1)

Definition 3.2. (Structural similarity) The structural similarity between each
pair of vertices (u, v) in E represents a number of shared structural neighbors
between u and v. It is defined by σ(u, v).

σ(u, v) =
|N(u)| ∩ |N(v)|√
|N(u)| . |N(v)|

(2)

After calculating the structural similarity with Eq. (2), SCAN uses two
parameters to detect the core vertices in a given graph G.

Definition 3.3. (ε-neighborhood) Each vertex has a set of structural neigh-
bors, like it is mentioned in Definition 3.1. To group one vertex and its
neighbors in the same cluster, they must have a strong connection (denoted
by ε-neighborhood) between them. SCAN uses a ε threshold and Eq. (3) to fil-
ter, for each vertex, its strongest connections. The ε-neighborhood is defined
as follows.

Nε(u) = {N(u)|σ(u, v) ≥ ε} (3)

The ε threshold 0 < ε 6 1 shows to what extent two vertices u and v are
connected based on the shared structural neighbors. In addition, it represents
a metric with which the most important vertices, also called core vertices,160

are detected.

Definition 3.4. (Core) Core vertices detection is a fundamental step in
SCAN algorithm. It consists of finding the dominant vertices in a given
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graph G. This step allows to build the set of clusters or a clustering map-
ping. A core vertex v is a vertex which has a sufficient number of neighbors
strongly connected with it Nε(v). We use µ as a minimum number of strong
connected neighbors (see Definition 3.3). A core vertex is modeled as follows:

Vc = {v | |Nε(v)| ≥ µ} (4)

Definition 3.5. (Border) Let vc be a core vertex. vc has two lists of struc-
tural neighbors: (1) weak connected neighbors to vc, also called noise vertices
(N(Vc) \Nε(Vc)), and (2) strong connected neighbors called reachable struc-
tured neighbors. In our work, reachable structured neighbors are called border165

vertices. Nε(Vc) represents the border vertices of a core vertex Vc.

Once the nodes and their borders are determined, it is straightforward to
start a clustering step. To do so, we use the following definition:

Definition 3.6. (Cluster) A cluster C (|C| ≥ 1) is a nonempty subset of
vertices, where its construction is based on the set of core vertices and their170

border vertices. The main steps of clusters’ building algorithm are the follow-
ing: first, randomly chose a core from the cores’ list and create a cluster C,
then push the core and its borders into the same cluster. At the same time,
the algorithm checks if the list of borders has a core vertex. Then, it inserts
their borders into the same cluster and it applies this step recursively until175

adding all the borders of the connected cores. Finally, the algorithm chooses
other core vertices and applies the same previous steps until checking all core
vertices.

Among the fundamental information returned by SCAN, compared to other
graph clustering algorithms, we mention bridge and outlier information, de-180

fined as below:

Definition 3.7. (Bridge and Outlier) The clustering step aggregates the core
vertices and their borders into a set of clusters. However, some vertices
do not have strong connections with a core vertex, which does not give the
possibility to join any cluster. In this context, SCAN algorithm classifies185

these vertices into two families: bridges and outliers.
A vertex v, that is not part of any cluster and has at least two neighbors in
different clusters, is called bridge. Otherwise it is considered as an outlier.
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Algorithm 1: Basic SCAN algorithm

Input : A Graph G and parameters (µ ,ε)
Output: C,B,O

1 foreach (u, v) ∈ E do
2 Compute σ(u, v)
3 end
4 Core ← ∅
5 foreach u ∈ V do
6 if (|Nε(u)| ≥ µ) then
7 Core = Core ∪ {u}
8 end

9 end
10 Cluster ← ∅
11 foreach unprocessed core vertex u ∈ Core do
12 Cluster ← {u}
13 Mark u as processed
14 foreach unprocessed border of vertex v ∈Nε(u) do
15 Cluster←Cluster ∪ {v}
16 Mark v as processed

17 end

18 end
19
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3.2. Running example

In this section, we explain through a running example, how SCAN algo-190

rithm works. Consider a graph G presented in Figure 1 and the parameters
ε = 0.7 and µ = 3. In the first step, lines 1-3 of Algorithm 18 use Eq. (2) to
compute the structural similarity for each edge e ∈ E. Then, Eq. (3) (lines
5-8) is used to define the core vertices (see gray vertices in Fig. 1). After that,
we proceed to the clustering step, then we apply Definition 3.6 (lines 11-16)195

to build the clustering schema. In our example we have four core vertices:
0,2,9 and 1O. Each core has a list of border vertices (the neighbors that have
strong connections with a core). In our example, vertex number 2 is a core.
This later has the vertices number 1, 4, 5, 3 and 0 as the list of borders since
they have strong connections with the core. The core and its borders build a200

cluster, and if a border is a core we join all its borders into the cluster. Like
in our example, the vertex 2 is a core. Hence, we join all its borders (1, 3 ,5
,4 including 0 as being a core vertex). In this case, if the vertex 3 is not a
border of vertex 2 and it is a border of vertex 0, then vertex 3 should belong
to the same cluster of vertex 2 (which is a core vertex), since it is a reachable205

border of vertex 2. The last step of SCAN algorithm consists in defining the
bridges and the outliers. As shown in Fig. 1, we have two clusters. The
first one is composed of vertices 1,2,3,4, and 5, whereas the second cluster is
composed of nodes 8,9,10, and 11. The remaining vertices (6 and 7) must
be categorized as outliers and bridges according to the Definition 3.7. In our210

example, vertex 7 has two connections with two different clusters, and vertex
6 has only one connection with one cluster which makes vertex 7 a bridge
and vertex 6 an outlier.

4. DSCAN: A Distributed Algorithm for Large-Scale Graph Clus-
tering215

In this section, we introduce DSCAN: a new distributed algorithm for
structural graph clustering. Our proposed approach is based on a mas-
ter/slave architecture and is implemented on top of BLADYG framework
(Aridhi et al., 2017). This latter is a distributed graph processing framework
in which the slaves are responsible for the execution of a specific computa-220

tion and the master machine coordinates between all the slaves. The input
data must be divided into sets of chunks (subgraphs in our case). Each
chunck/partition is assigned to a worker, which performs a specific compu-
tation. The master machine orchestrates the workers’ execution. In the
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Figure 1: Running example ( ε = 0.7 and µ = 3).

following, we present the main two steps of DSCAN: (1) distributed graph225

partitioning and (2) distributed graph clustering.

4.1. Distributed graph partitioning

In this step, we split the input graph G into several small partitions
P1, P2, ..Pn, while keeping data consistency (graph structure). To ensure
the consistency property while dividing the input graph, we must identify230

a list of cuts edges in order to have a global view of G. Usually, the graph
partitioning problem is categorized under the family of NP-hard problems,
that need to parse all the combinations in order to have the best partitioning
result (Dhillon, 2001). For this reason, we proposed an approximation and a
distributed partitioning algorithm as a preliminary step for our distributed235

clustering algorithm. Algorithm 2 shows that, at the beginning, the master
machine divides equitably an input graph file into sub-files according to the
number of edges, and sends the sub-files to all the workers. Secondly, each
worker gets a list of edges and vertices from its sub-file. Thereafter, it sends
its list of vertices to all workers, in order to determine the frontier vertices240

so that to get the cuts edges. Afterwards, when each worker receives a list of
vertices from its neighbor workers, it determines the vertices that belong to
the current worker (partition). Consequently, these vertices are considered
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as frontier vertices in their partitions. In the last step, when each worker
could determine the frontier vertices, it starts to fix the cuts edges, i.e. edges245

that have a frontier vertex.

Algorithm 2: Distributed graph partitioning

Input : Graph file GF as a text file, parameter (NP number of
partitions)

Output: P set of partitions
1 BLADYG initialization according to the NP parameter
2 Master machine: split GF into a set of sub-files GF
3 foreach GFi ∈ GF do
4 Assign GFi to worker Wi

5 end
/* In parallel */

6 foreach Worker Wi ∈W do
7 Get list of vertices and edges from GFi
8 Find the list of frontier vertices from the neighbor workers

9 end
/* In parallel */

10 foreach Worker Wi ∈W do
11 foreach Edge ∈ E do
12 (a,b)=Edge ;

13 Let P f
i the frontier vertices

14 if (a ∈ P f
i ∪ b ∈ P

f
i ) then

15 end
16 Set E as a cut edge

17 end

18 end

4.2. Distributed graph clustering

DSCAN has two main steps: (1) local clustering step and (2) merging
step.

Step 1: Local clustering. As presented in Algorithm 3, the input graph250

G is splitted into multiple subgraphs/partitions (P), each one is assigned
to a worker machine. The partitioning step, as mentioned in Section 4.1,
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Algorithm 3: DSCAN
Input : Graph G , parameters (µ, ε, α)
Output: Clusters,Bridges,Outliers
/* Divide G into subgraphs G = {G1G2..Gα} according to parameter α */

1 P←− Partition (G,α)
/* In parallel */

2 foreach Pi ∈ P do
3 Assign Pi to Wi

4 end
/* In parallel */

/* Step 1: Local clustering */

5 foreach Worker Wi ∈W do
6 Let Pi the current partition
7 Find the frontier vertices in Pi and duplicate them into neighbor partitions

8 end
/* In parallel */

9 foreach Worker ∈W do
10 Compute the structural similarity of a partition Pi using V f list
11 Retrive local Cores and Borders in Pi
12 Build local clusters in Pi
13 Find local Bridges and Outliers in Pi
14 end

/* Step 2: Merging */

15 All workers exchange theirs local clusters between them; using Worker2Worker message
16 foreach Worker Wi ∈W do
17 if (C1 ∩ C2 ∩ .. ∩ Cα = V; and ∃Vi ∈ Core then
18 C ←Merge(C1, C2,..Cα)
19 Send C to the master

20 end
21 else
22 Send local clusters to master
23 end
24 for Vi IN Outliers do
25 if (Vi ∈ Core ∪ Border ∪ Bridges ) then
26 Remove Vi from the list of Outliers
27 end

28 end
29 for Vi IN Outliers do
30 NbConnections ← 0
31 for Ci IN Clusters do
32 if (N(Vi) ∩ C 6= ∅) then
33 NbConnections ++
34 end

35 end
36 if ( NbConnections ≥ 2 ) then
37 Add Vi to Bridges
38 Remove Vi from Outliers
39 end

40 end

41 end
42 Send Clusers,Bridges,Outliers to the master using Worker2Master message

13



is performed according to the α parameter, which refers to the number of
worker machines (line 1). To overcome the loss of information during the
partitioning step (edges connecting nodes in different partitions), frontier255

vertices are duplicated into neighboring partitions (line 5-8). Subsequently,
for each partition Pi, a local clustering is performed (lines 9-14) on each
worker machine. Fig. 2 shows a demonstrative example of the duplication
step. The demonstrative example describes how the graph consistency will
be ensured during the partitioning step.260

Figure 2: Illustrative example

Assume that a graph G is partitioned into two partitions P1 (vertices
in blue) and P2 (vertices in red), like it is depicted in Fig. 2, and each
partition has a set of vertices connected with other partitions. We call them
frontier vertices of a given partition P , and they are denoted by V f

P . For
example, V f

P1={1,2,5} and V f
P2={4,7}. Each v ∈ V f

P has a set of internal265

neighbors and external neighbors. For example, vertex 4 is a vertex of the
partition P2. It has the vertex 6 as internal and the vertices 1,2 and 5 as
external neighbors. Computing the structural similarity of a frontier vertex
u considers that all the neighbors of u belong to the same partition. Thereby,
we duplicate all frontier vertices in partition P to all neighbor partitions and270

we call them external vertices. For example in our running example, P1 has
frontier vertices V f

P1={1,2,5} and P2 is the neighboring partition. Thus, we
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must duplicate V f
P1 into P2 to ensure the accuracy of structural similarity of

V f
P2 (see Fig. 3).

After that, when we apply a local clustering on P1 and P2, we will find275

several conflicts such as the vertex v ∈ V f
P1 is a core vertex in P1, and an

outlier in P2. These conflicts should be avoided in the merging step.
Step 2: Merging. The distribution of similarity computation and the

local clustering step can improve the response time of our proposed DSCAN,
compared to the basic sequential algorithm. However, we should take into280

consideration the exactness of the returned results compared to those of the
basic SCAN. To ensure the same result of basic SCAN, we defined a set
of scenarios regarding the merging step. These scenarios will repetitively
be applied to every two partitions of G, until combining all the partitions
(see Algorithm 3, lines 16-40). For each pair of partitions Pi and Pj, a285

merging function is executed to combine the local results from Pi and Pj
and store them in global variables like clusters, borders, bridges and outliers.
Algorithm 3 also achieves several scenarios (Lemmas 4.1, 4.2 and 4.3) to solve
the encountered conflicts, mentioned below:

Lemma 4.1. (Merging local clusters) Let C1 and C2 two sets of local290

clusters in different partitions P1 and P2, respectively. ∃c1 ∈ C1 and ∃c2 ∈
C2, Core(c1) ∩ Core(c2) 6= ∅.

Let Ci be a cluster that groups a set of border and core vertices. If Ci shares
at least one core vertex c with another cluster Cj, then c has a set of borders
in Ci and Cj, and all the vertices in Ci and Cj are reachable from c. Hence,295

Ci and Cj should be merged into the same cluster.

Lemma 4.2. (Outlier to Bridge) Let C1 and C2 two sets of local clusters
in partitions P1 and P2, respectively. ∃ C1 and C2 two clusters that belong
to the two different sets of clusters C1 and C2. In addition, ∃ o an outlier in
both partitions P1 and P2, with N(o) ∩ c1 6= ∅ and N(o) ∩ c2 6= ∅300

If Ci and Cj (i 6= j) share an outlier o, this means that o is weakly
connected with the two clusters Ci and Cj. Hence, according to the Definition
3.7, o should be changed to a bridge vertex.

Lemma 4.3. (Bridge to Outlier) Let c1 and c2 two local clusters in the
partitions P1 and P2, respectively.305

∃ a bridge b according to only two clusters c1 and c2, when c1 and c2 two
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clusters that will be merged into one cluster, b should be changed into an
outlier.

Let Ci and Cj two clusters that have a set of vertices (borders or cores),
and a set of bridges with other local clusters, and ∃ b a bridge vertex according310

to the two clusters Ci and Cj only, where i 6= j. In the merging step and
according to Lemma 4.1, if one or several clusters share at least a core vertex,
then they will be merged into a single cluster. In this case, (Ci,Cj) ⇒ C
which makes b be weakly connected with only one cluster C, then according
to Definition 3.7, b should change its status from bridge to outilier.315

For instance looking at lines 16 to 22, we have focused on the shared
cores between two clusters and the case when they share at least one core.
According to Lemma 4.1, we should merge them into one single cluster.
Subsequently, in lines 23-27, we verify for each outlier if it does not belong to
some sets of cores, borders or bridges. In this case, we must remove it from320

the list of outliers. Otherwise, a vertex v should be changed as a bridge if
it is classified as an outlier in the two clusters Ci and Cj that are not in the
same partition, and if it has two connections with different clusters in the
merging step.

(a) Partition 1 (b) Partition 2

Figure 3: The partitioned graph G used in the running example in Section 3

4.2.1. Illustrative example325

Fig. 3 shows a demonstrative example of a graph clustering using DSCAN.
In this example, we use the same parameters (ε and µ ) of the running ex-
ample in Section 3, and two partitions (P1 and P2). In the first step of
DSCAN, the input graph G is divided into two partitions P1 and P1 as it
presented in Fig. 3, where the blue vertices represent the first partition and330

the red vertices represent the second partition. In the second step, DSCAN
duplicates the frontier vertices in each pair of adjacent partitions. For ex-
ample, the blue vertices 1,2 and 5 are duplicated in partition P2 since they
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represent frontier vertices in their partition. In the same way, the vertices
4 and 7 are duplicated in the partition P2. In the third step, all the work-335

ers perform the similarity computation, check the status for each vertex and
build the local clusters, as it is shown in Fig 3. The last step of DSCAN
consists of combining all local results returned by each worker. As shown in
Fig. 3, there are some conflicts in terms of node status. For example, vertex
2 is a core vertex in P1 whereas it is a noise (outlier) vertex in P2. In the340

same way, vertex 4 is a border in P1 and a noise in P2. Then, after building
the local clusters, P1 has one cluster (1,2,3,4, and 5) in which vertex 7 is
a noise vertex in P2. As for P2, it groups the vertices 8,9, 10 and 11 as a
cluster and the remaining vertices (4,5,1,2,7 and 6) are considered as noise
vertices including vertex 7. This latter is a bridge according to basic SCAN345

(see running example in Section 3). In the merging step, DSCAN considers
that the vertex 7 has two weak connections with two different clusters. Thus
vertex 7 is marked as a bridge.

4.2.2. Time complexity analysis of DSCAN

Let E be the set of all edges (internal and cut edges), V be the set of all350

vertices(internal and external) and the set of core vertices is Vc. The time
complexity of DSCAN is like basic SCAN, and can be divided into three step,
(i) the structural neighborhood step, when DSCAN according to Definition
3.1 aggregates for each vertex its list of neighbors. Thus, the complexity is
of the order of O((vi, vj)

|V |
i,j=1, (ui, uj) ∈ E)=O(|E|). (ii) The time complexity355

of the computation of structural similarity which is defined by Definition
3.2. In this step, DSCAN enumerates for each edge (u, v) the set of common
neighbors. Therefore, the time complexity is O = (min(|N(u)|, |N(v)|).|E|).
(iii) DSCAN perfoms the clustering step using the µ in order filter the core
vertices, and groups those which have strong connections into a same cluster.360

Like this, the complexity isO = (|Vc|−|(vi, vj)||V |i,j=1, vi, vj ∈ Vc and σ(vi, vj) ≥
ε).

5. Experiments

In this section, we present our experimental study that evaluates the
effectiveness and efficiency of our proposed algorithm for structural clustering365

of large and distributed graphs. In this experiment, we performed some
experiments like the impact of graph size and the number of machines in the
cluster, We also evaluated some features related to DSCAN.
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5.1. Experimental protocol

In the first experiment part, we compared DSCAN with four existing370

structural graph clustering algorithms:

1. Basic SCAN1.

2. pSCAN: a pruning SCAN algorithm2.

3. AnyScan: a parallel implementation of basic SCAN using OpenMP
library3.375

4. ppSCAN: a pruning and parallel SCAN implementation4.

The above mentioned algorithms are implemented with C language. Thus, we
used the GCC/GNU compiler to build their binary versions. The compared
algorithms are divided into two categories: (1) centralized algorithms such
as SCAN and pSCAN, and (2) parallel algorithms such as AnyScan and pp-380

SCAN. To run both centralized and parallel algorithms, we used a T3.2xlarge
virtual machine on Amazon EC2. This machine is equiped with an 8 vCPU
Intel Skylake CPUs at 2.5 GHz and 32 GB of main memory on a Ubuntu
16.04 server distribution. In order to evaluate DSCAN, we used a cluster of 10
machines, each of them is equipped with a 4Ghz CPU, 8 GB of main memory385

and operating with Linux Ubuntu 16.04. https://discan.yo.fr/DGC.html
provides some details about the configuration, deployment of DSCAN, and
also a user guide is presented.

5.2. Experimental data

For all test cases of static graphs, we used real-world graph datasets390

(see Table 2) obtained from the Stanford Network Analysis Project (SNAP)
(Leskovec and Krevl, 2015).

5.3. BLADYG framework

BLADYG is a distributed and parallel graph processing framework that
runs on a commodity hardware. The architecture of BLADYG is based395

on a master/slaves topology. BLADYG starts by reading the input graph
from many different sources, which can be local or distributed files such as

1https://github.com/eXascaleInfolab/pSCANdeploymet
2https://github.com/RapidsAtHKUST/ppSCAN/tree/master/SCANVariants/anySCAN
3https://github.com/RapidsAtHKUST/ppSCAN/tree/master/SCANVariants/anySCAN
4https://github.com/RapidsAtHKUST/ppSCAN/tree/master/ppSCAN-release
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Table 2: Graph datasets

Dataset name Number of
vertices

Number of edges Diameter Avg. CC

G1: California
road network

1 965 206 2 766 607 849 0.04

G2: Youtube 1 134 890 2 987 624 20 0.08
G3: Orkut 3 072 441 117 185 083 9 0.16
G4: LiveJournal 3 997 962 34 681 189 17 0.28
G5: Friendster 65 608 366 1 806 067 135 32 0.16

Hadoop Distributed File System (HDFS) and Amazon Simple Storage Service
(Amazon S3). The communication model used by BLADYG is the message
passing technique, which consists in sending messages explicitly from one400

component to another in order to get or send useful data during the graph
processing. In the same way, BLADYG defines two types of messages: (1)
worker-to-worker messages, and (2) master-to-worker messages. BLADYG
allows its users to implement their own partitioning techniques.

5.4. Experimental results405

Speedup. We evaluated the speedup of DSCAN compared to the basic
SCAN and its variants presented in Section 5.1. The compared algorithms
use different graph representations. In fact, AnyScan and SCAN implemen-
tations use the adjacency list representation (Doerr and Johannsen, 2007),
whereas both pSCAN and ppSCAN use the Compressed Sparse Row (CSR)410

format (D’Azevedo et al., 2005). In our proposed algorithm, we used an edge
list format, in which each line represents one edge of the graph. The incom-
patibility of the graph representations poses an additional transformation
cost while evaluating the studied methods. For example, the transformation
of the live journal dataset from edge list to adjacency list takes around 100415

seconds using one machine equipped with an 8 vCPU and 32 GB of main
memory.

Fig. 4 shows the runtime of the studied approaches with different datasets.
As shown in Fig. 4, our approach is slower than the other algorithms in

the case of small graphs (G1,G2,G3) and there was a very large gap between420

DSCAN and the other algorithms especially with pSCAN and ppSCAN. On
the other hand, this gap become reduced when the graph size increases (case
of G4 dataset). The plots bars in Fig. 4 shows a gap of 12x between DSCAN
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Figure 4: Impact of the graph size on the processing time of both SCAN and DSCAN

and basic SCAN with the G1 dataset and 2x only with the G4 dataset. We
notice that the gap between DSCAN and ppSCAN depends mainly on the425

size of the used dataset. For example, with the G1 dataset, the gap between
DSCAN and ppScan is about 20x, while this gap is reduced to 11x for the
G4 dataset. This can be explained by reaching the pruning step of pSCAN,
which exempts several similarity computings during the clustering step. It is
important to mention that DSCAN is a distributed implementation of SCAN430

and the other studied algorithms are centralized. This leads to additional
costs related to data distribution, synchronization and communication. Fig
4 also shows that with the modest hardware configurations, only DSCAN
can scale with large graphs like the G5 dataset.

Scalability. The main goal of this experiment is to evaluate the hori-435
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zontal scalability of our algorithm. We used two graphs (LiveJournal and
California road network). We set the values of µ and ε to 3 and 0.5 re-
spectively, and we varied the number of machines, with the goal to measure
the response time for each size of the cluster. It can be clearly seen, from
Fig. 5, that our algorithm is horizontally scalable, which was not guaranteed440

by the other algorithms, as discussed in the state-of-the-art section. Fig. 5
also shows that the running time will decrease depending on the number of
machines in the cluster. When we add a new machine to the cluster, the run-
ning time becomes smaller. As depicted in Fig. 5, the red curve (LiveJournal
graph) shows a significant improvement of about 82% in the response time,445

when the number of machines reaches 10. We also notice a weak improve-
ment, according to the number of machines in the cluster, when we have a
small graph. This is the case of California road network which is smaller
than LiveJournal graph. The red curve’s behavior can be explained by the
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Figure 5: Impact of the number of workers on the running time (with ε = 0.5, µ = 3).

splitting of the input graph into small sub-graphs and by performing a local450

clustering on each subgraph, which reduces the global response time even
with the additional cost of aggregating the intermediate results returned by
each machine in the cluster. That was not the case with the blue curve,
where we have an improvement of about 50% using a cluster of 10 machines,
compared to the results using a 6-machine cluster. We noted that the curve455
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starts to increase when the cluster size exceeds 8 machines. This is due to
the communication in the shuffling step.
Impact of ε value on DSCAN. The numbers of clusters, bridges and noise
vertices depend on the values of ε and µ. In ppSCAN, when we decrease the
value of µ, the running time increases, as the non-pruned edges are inreased.460

Similarly in this experiment, we evaluated the impact of ε value on the run-
ning time of DSCAN. For this, we varied the value of ε from 0.2 to 0.8 for
different graph data sets. As shown in Fig. 6, the response time is slightly
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Figure 6: Impact of ε size on the running time of DSCAN

dependent on the value of ε, especially with large graphs (G3 and G4). When
we increase the value of ε the response time increases. Overall, the observed465

behavior can be explained by the merging step in DSCAN algorithm, since
we did not see the impact of ε on the previous steps (graph loading and
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local clustering). In the graph loading step, we do not use this value and
in local clustering we use the basic SCAN clustering which is not dependent
to ε. That is why the impact of ε on the running time can by explaind by470

the merging step. In fact, when the value of ε increases, the number of out-
liers becomes larger. Also, in the merging function (see Algorithm 3, lines
17-40), DSCAN combines the local results by starting to check the clusters
that share almost one core, in order to merge them. Then, it verifies for all
outliers if they are bridges or cores. Hence, outliers’ checking requires more475

communication between the workers, which increases the respense time.
Evaluation of DSCAN steps: DSCAN algorithm is based on four main
steps. In each step, DSCAN performs a specific treatment with different
costs in terms of running time. To study the running cost of each step in
DSCAN, we used four graph datasets and we fixed the values of ε and µ to 0.5480

and 3, respectively. Fig. 7 shows the response time of each step in DSCAN.
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Figure 7: Performance of DSCAN phases

The merging function is the most expensive step that makes DSCAN slow,
compared to the other algorithms. It takes more than 50% of the global run-
ning time with all the used graph datasets, while the clustering step takes
about 30% only. The rest of computation time is devoted to the graph load-485
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ing step and the duplication of vertices in frontiers to ensure the consistency
property, as we discussed in Section 4.1. This disparity can be explained by
the communication between machines during the aggregation of local results
returned by each machine. Consequently, communication in DSCAN must
be improved because the clustering step takes a little time which can make490

DSCAN faster.
Imapct of the graph partitioning on DSCAN. In our vision, the par-
titioning step has a direct impact on the response time of DSCAN. For this
reason, we randomly generated four partitioning schemas, and for each one,
we got the number of cut-edges as follows: 17.6M, 19.2M, 22.3M and 24.6M495

for the partitions P1, P2, P3 and P4, respectively. Then, we run DSCAN
on all partitions with the same configuration (10 machines, ε=0.5 and µ=3).
As shown in Fig. 8, there is a very clear impact of the graph partitioning on
the response time of DSCAN, as this latter rises from nearly 800 to 1000 sec-
onds with P1 and P2. Furthermore, the elapsed time of each DSCAN step500

varies from one partitioning to another. This disparity is noticed mostly
during the merging step and slightly in the clustering step. This is prob-
ably explained by the number of vertices duplicated due to the number of
cuts-edges produced by the graph partitioning. This number would affect
the amount of similarity computing operations in the clustering step, and505

increases the communication cost during the merging step.

6. Conclusion

In this paper, we proposed DSCAN, a distributed algorithm for big graph
clustering based on the structural similarity. DSCAN is build on top of based
on a distributed and master/slaves architecture which makes it scalable and510

works on the community of modest machines. The proposed algorithm is
able to deal with any graph size and is scalable with a large number of
machines, in a parallel way. We have presented the main functions of DSCAN
starting from the partitioning to the combining of intermediate results for
each worker. Also, we have performed an extensive experimentation about515

our proposed algorithm, compared with other ones. The experiments have
shown that DSCAN featured an horizontal scalability that is not guaranteed
with other algorithms.

In our future works, we will improve the graph partitioning step of DSCAN.
Then, we will tackle the problem of clustering of large and dynamic graphs.520

In the partitioning step, we plan to use the density feature during the graph
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Figure 8: Impact of the partitionning step on DSCAN response time (ε=0.5, µ=3)

partitioning, whereas for the dynamic graph clustering, we plan to make
DSCAN support big evolving graphs in order to check all the snapshots of a
graph. Having this hand, we can evaluate and follow the evolution of each
cluster and other vertex types (border, outlier, and bridge).525
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