Wissm Inoubli

Sabeur Aridhi

Haithem Mezni

Mondher Madouri

Engelbert Mephu Nguifo

A Novel Scalable Clustering Method for Distributed Networks

Keywords: Graph processing, Structural graph clustering, Big Graph Analysis, Community detection, Outliers detection, hubs detection

Graph clustering is one of the key techniques to understand structures that are present in networks. In addition to clusters, bridges and outliers detection is also a critical task as it plays an important role in the analysis of networks. Recently, several graph clustering methods are developed and used in multiple application domains such as biological network analysis, recommendation systems and community detection. Most of these algorithms are based on the structural clustering algorithm. Yet, this kind of algorithm is based on the structural similarity, this later requires to parse all graph ' edges in order to compute the structural similarity. However, the height needs of similarity computing make this algorithm more adequate for small graphs, without significant support to deal with large-scale networks. In this paper, we propose a novel distributed graph clustering algorithm based on structural graph clustering. The experimental results show the efficiency in terms of running time of the proposed algorithm in large networks compared to existing structural graph clustering methods.

Introduction

Recently, the graph model has risen one of the most used data models in several applications like social networks [START_REF] Said | Cc-ga: A clustering coefficient based genetic algorithm for detecting communities in social networks[END_REF], road maps [START_REF] Cao | From gps traces to a routable road map[END_REF], pattern mining Fournier-Viger et al. and bioinformatics [START_REF] Xu | Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees[END_REF]. For instance, a recent ranking shows that the popularity of graph databases model increased up to around 500% in the last years [START_REF] Iyer | Bridging the gap: towards approximate graph analytics[END_REF]. It has shown an optimum data model that allows to represent easily many relationships and facilitates the exploration of data. Taking social networks as an example, the graph model organizes data elements into a set of vertices representing the members, and a list of edges to materialize the relationships between vertices. Also, the last years featured a big data explosion especially in graph-based social networks. As an example, Facebook in 2013 had over 874 million monthly users [START_REF] Baborska-Narozny | Exploring the relationship between a'facebook group'and face-to-face interactions in'weaktie'residential communities[END_REF]. This proliferation of a huge amount of data and the massiveness of graphs introduce additional factors to the renewed popularity of graph analytics [START_REF] Iyer | Bridging the gap: towards approximate graph analytics[END_REF]. Consequently, new applications and use cases have been mentioned in the literature. One important analysis technique in graph mining and graph analysis fields is graph clustering. Graph clustering helps identifying tightly connected regions within a graph [START_REF] Žalik | Memetic algorithm using node entropy and partition entropy for community detection in networks[END_REF][START_REF] Günnemann | Finding density-based subspace clusters in graphs with feature vectors[END_REF]. It has been used to solve various problems such as discovering communities in social networks and detecting protein complexes in Protein-Protein Interaction (PPI) networks [START_REF] Xu | Clustering gene expression data using a graph-theoretic approach: an application of minimum spanning trees[END_REF].

It is important to mention that in some applications, the used graph could be very large. In such situation, the considered graph could be partitioned into several subgraphs and the computation is performed in a parallel/distributed way [START_REF] Dhifli | Mr-simlab: Scalable subgraph selection with label similarity for big data[END_REF]; [START_REF] Aridhi | Density-based 530 data partitioning strategy to approximate large-scale subgraph mining[END_REF]. In this context, graph clustering algorithms are used to ensure the partitioning of the graph into several parts [START_REF] Abbas | Streaming graph partitioning: an experimental study[END_REF][START_REF] Yin | Local higher-order graph clustering[END_REF].

In this paper, we propose DSCAN: a novel graph clustering algorithm in the context of large and distributed graphs. The main contributions of this work are summarized as follows:

• We propose a distributed graph clustering algorithm of large graphs (DSCAN). The proposed method is exact and allows discovering the same clusters that are discovered by SCAN, the reference algorithm for structural graph clustering [START_REF] Xu | Scan: a structural clustering algorithm for networks[END_REF].

• We conduct an extensive experimental study with large graphs, to evaluate the scalability of DSCAN. We compare DSCAN with four existing structural graph clustering algorithms.

The rest of the paper is organized as follows. After introducing graph clus-tering in Section 1, we present a brief overview of related work in Section 2.

In Section 3, we present the basic concepts related to the structural graph clustering. In Section 4, we present our proposed algorithms for large graph clustering. In Section 5, we provide the experimental results. The last section is devoted to the conclusion and the future work.

Related work

Several graph clustering algorithms have been proposed in the literature. Taking as examples, modularity-based approaches (LaSalle and [START_REF] Lasalle | Multi-threaded modularity based graph clustering using the multilevel paradigm[END_REF] that represent an optimization solution of the modularity measure for each partitioning schema (generated randomly or according to a heuristic function) [START_REF] Lasalle | Multi-threaded modularity based graph clustering using the multilevel paradigm[END_REF]. The Louvain method [START_REF] Aynaud | Static community detection algorithms for evolving networks[END_REF] represents one of the clustering algorithms based on modularity, that initially generates a random clustering. After that, it starts to change every time a vertex from a cluster to another until getting a maximum modularity. Despite the fact that it gives very connected clusters in the larger graphs, the modularity measure cannot capture the small clusters [START_REF] Kozawa | Gpu-accelerated graph clustering via parallel label propagation[END_REF]. Graph partitioning [START_REF] Brandes | Experiments on graph clustering algorithms[END_REF] and mincut [START_REF] Ding | A min-max cut algorithm for graph partitioning and data clustering[END_REF] are other methods used for the graph clustering which consist of splitting a graph into subgraphs while optimizing the cut edge during the partitioning. The spectral clustering [START_REF] White | A spectral clustering approach to finding communities in graphs[END_REF] is based on the graph density. It represents an input graph with a matrix and transforms this matrix so that to apply the basic clustering algorithm, like k-means [START_REF] Hartigan | Algorithm as 136: A k-means clustering algorithm[END_REF]. A sampling-based distributed graph clustering method has been proposed in [START_REF] Sun | Distributed graph clustering and sparsification[END_REF]. The proposed algorithm is based on the density of the graph to produce a set of sparse subgraphs. Graph embedding has also been used in the graph clustering. In [START_REF] Goyal | Graph embedding techniques, applications, and performance: A survey[END_REF], the authors discussed the use of the graph embedding technique to combine the structural and attributed similarity over the graph clustering. The above methods provide, as output, a list of clusters which are not really sufficient to understand the graph behavior. To address this issue, the Structural Clustering Algorithm for Networks (SCAN) was proposed in [START_REF] Xu | Scan: a structural clustering algorithm for networks[END_REF] aiming, not only to identify the clusters in a graph, but also to provide additional informations like hubs (vertices between one or more clusters) and outliers (vertices that do not belong to any cluster). These additional pieces of information can be used to detect vertices that can be considered as noise and also vertices that can be considered as bridges between clusters. The functional principle of SCAN is based on graph topology. It consists of grouping vertices that share the maximum number of neighbors. Moreover, it computes the similarity between all the edges of the graph in order to perform the clustering. The similarity computation step in SCAN is linear according to the number of edges, which degrades SCAN performance especially in case of large graphs. Structural graph clustering is one of the most effective clustering methods for differentiating the various types of vertices in a graph. In the literature, several works have been proposed for the structural graph clustering to overcome the drawback of SCAN. In [START_REF] Shiokawa | Scan++: efficient algorithm for finding clusters, hubs and outliers on large-scale graphs[END_REF], Shiokawa et al. proposed an extension of the basic SCAN algorithm, namely SCAN++. The proposed algorithm aims to introduce a new data structure of directly two-hop-away reachable node set (DTAR). This new data structure is the set of two-hop-away nodes from a given node that are likely to be in the same cluster as the given node. SCAN++ could save many structural similarity operations, since it avoids several computations of structural similarity by vertices that are shared between the neighbors of a vertex and its two-hop-away vertices. In the same way, the authors in [START_REF] Chang | pscan: Fast and exact structural graph clustering[END_REF] suppose that the identification of core vertices represents an essential and expensive task in SCAN. Based on this assumption, they proposed a pruning method for identifying the core vertices after a pruning step, which aims to avoid a high number of structural similarity computations. To improve the performance and robustness of the basic SCAN, an algorithm named LinkSCAN* has been proposed in [START_REF] Lim | Linkscan*: Overlapping community detection using the link-space transformation[END_REF]. LinkSCAN* is based on a sampling method, which is applied on the edges of a given graph. This sampling aims to reduce the number of structural similarity operations that should be executed. However, LinkSCAN* provides approximate results.

Other works have proposed parallel implementations of SCAN algorithm [START_REF] Takahashi | Scan-xp: Parallel structural graph clustering algorithm on intel xeon phi coprocessors[END_REF] [START_REF] Mai | Scalable and interactive graph clustering algorithm on multicore cpus[END_REF] [START_REF] Chang | pscan: Fast and exact structural graph clustering[END_REF] [START_REF] Stovall | Gpuscan: Gpu-based parallel structural clustering algorithm for networks[END_REF] [START_REF] Wen | Efficient structural graph clustering: an index-based approach[END_REF]. In [START_REF] Takahashi | Scan-xp: Parallel structural graph clustering algorithm on intel xeon phi coprocessors[END_REF], the authors proposed an approach based on openMP library [START_REF] Bull | Measuring synchronisation and scheduling overheads in openmp[END_REF]. The author's aims were to ensure a parallel computation of the structural similarity and to show the impact of parallelism on the response time. Their method was proven to be faster than the basic SCAN algorithm. Other works have focused on the problem of dynamic graph clustering. In [START_REF] Mai | Scalable and interactive graph clustering algorithm on multicore cpus[END_REF] and [START_REF] Chang | pscan: Fast and exact structural graph clustering[END_REF], the authors have extended SCAN algorithm to deal with the addition or removal of edges. Authors in [START_REF] Stovall | Gpuscan: Gpu-based parallel structural clustering algorithm for networks[END_REF], used the graphical processing unit (GPU) whose purpose is to parallelize the processing and to benefit from the high number of processing slots in the GPU which increase the degree of parallelism.

On the other hand, an index approach is proposed in [START_REF] Wen | Efficient structural graph clustering: an index-based approach[END_REF] where the authors have emphasized the impact of the two parameters µ and on the running time of the structural graph clustering. Using the index approach a significant improvement has been shown b in terms of clustering running time. Again, the two sensitive parameters µ and have been taken into consideration by the authors in [START_REF] Wu | Dpscan: Structural graph clustering based on density peaks[END_REF]. The main goal of the latter consists of estimate the best µ and values in order to enhance the accuracy and efficiency of the clustering results.

Most of the above presented works suffer from two major problems: (1) they do not deal with big graphs and (2) they do not consider already distributed/partitioned graphs. Through Table 1, we have summarized the discussed approaches according to some features. As shown in Table . 1, most proposed algorithms allow parallel processing but could not deal with very large graphs. It is also clear that none of the studied approaches allow distributed computing. In addition, these approaches are unable to process large graphs. Also in some applications, like social network, graphs are distributed by nature. Thereby, using the discussed algorithms, it should aggregate in one machine all partitions of a distributed graph in order to run the graph clustering. based on this limits, in this work, we tackle the problem of large and dynamic graph clustering in a distributed setting.

Background

Structural graph clustering: Basic concepts

Graph clustering consists in dividing a graph into several partitions or subgraphs. As with other clustering techniques, we must use one or more metrics to measure the similarity between two vertices or partitions in the graph. In the structural clustering technique, the graph structure or topology is splitted into a set of subgraphs that are relatively distant and a set of vertices that are strongly connected.

As a well-known algorithm for structural graph clustering, SCAN algorithm uses the structural similarity between vertices to perform the clustering. In addition, it provides other pieces of information like outliers and bridges. In what follows, we first present an overview of graphs and graph clustering with the SCAN algorithm. Consider a graph G = {V, E}, where V is a set of vertices, and E is a set of parameters edges between vertices. Each of those elements can represent a real property in real-word applications. Let u and v be two vertices in V . We denote by (u,v) an edge between u and v; u (resp. v) is said to be a neighbor of v (resp. u).

In the following, we extend some basic definitions of structural graph clustering, which will be used in our proposed algorithm.

Definition 3.1. (Structural neighborhood) The structural neighborhood of a vertex v,is denoted by N (v), and represents all the neighbors of a given vertex v ∈ V , including the vertex v:

N (v) = {u ∈ V |(v, u) ∈ E} ∪ {v} (1)
Definition 3.2. (Structural similarity) The structural similarity between each pair of vertices (u, v) in E represents a number of shared structural neighbors between u and v. It is defined by

σ(u, v). σ(u, v) = |N (u)| ∩ |N (v)| |N (u)| . |N (v)| (2)
After calculating the structural similarity with Eq. (2), SCAN uses two parameters to detect the core vertices in a given graph G.

Definition 3.3. (-neighborhood) Each vertex has a set of structural neighbors, like it is mentioned in Definition 3.1. To group one vertex and its neighbors in the same cluster, they must have a strong connection (denoted by -neighborhood) between them. SCAN uses a threshold and Eq. (3) to filter, for each vertex, its strongest connections. The -neighborhood is defined as follows.

N (u) = {N (u)|σ(u, v) ≥ } (3)
The threshold 0 < 1 shows to what extent two vertices u and v are connected based on the shared structural neighbors. In addition, it represents a metric with which the most important vertices, also called core vertices, are detected. Definition 3.4. (Core) Core vertices detection is a fundamental step in SCAN algorithm. It consists of finding the dominant vertices in a given graph G. This step allows to build the set of clusters or a clustering mapping. A core vertex v is a vertex which has a sufficient number of neighbors strongly connected with it N (v). We use µ as a minimum number of strong connected neighbors (see Definition 3.3). A core vertex is modeled as follows: Once the nodes and their borders are determined, it is straightforward to start a clustering step. To do so, we use the following definition:

V c = {v | |N (v)| ≥ µ} (
Definition 3.6. (Cluster) A cluster C (|C| ≥ 1) is a nonempty subset of vertices, where its construction is based on the set of core vertices and their border vertices. The main steps of clusters' building algorithm are the following: first, randomly chose a core from the cores' list and create a cluster C, then push the core and its borders into the same cluster. At the same time, the algorithm checks if the list of borders has a core vertex. Then, it inserts their borders into the same cluster and it applies this step recursively until adding all the borders of the connected cores. Finally, the algorithm chooses other core vertices and applies the same previous steps until checking all core vertices.

Among the fundamental information returned by SCAN, compared to other graph clustering algorithms, we mention bridge and outlier information, defined as below:

Definition 3.7. (Bridge and Outlier) The clustering step aggregates the core vertices and their borders into a set of clusters. However, some vertices do not have strong connections with a core vertex, which does not give the possibility to join any cluster. In this context, SCAN algorithm classifies these vertices into two families: bridges and outliers.

A vertex v, that is not part of any cluster and has at least two neighbors in different clusters, is called bridge. Otherwise it is considered as an outlier.

Running example

In this section, we explain through a running example, how SCAN algorithm works. Consider a graph G presented in Figure 1 and the parameters = 0.7 and µ = 3. In the first step, lines 1-3 of Algorithm 18 use Eq. (2) to compute the structural similarity for each edge e ∈ E. Then, Eq. (3) (lines 5-8) is used to define the core vertices (see gray vertices in Fig. 1). After that, we proceed to the clustering step, then we apply Definition 3. 6 (lines 11-16) to build the clustering schema. In our example we have four core vertices: 0,2,9 and 1O. Each core has a list of border vertices (the neighbors that have strong connections with a core). In our example, vertex number 2 is a core. This later has the vertices number 1, 4, 5, 3 and 0 as the list of borders since they have strong connections with the core. The core and its borders build a cluster, and if a border is a core we join all its borders into the cluster. Like in our example, the vertex 2 is a core. Hence, we join all its borders (1, 3 ,5 ,4 including 0 as being a core vertex). In this case, if the vertex 3 is not a border of vertex 2 and it is a border of vertex 0, then vertex 3 should belong to the same cluster of vertex 2 (which is a core vertex), since it is a reachable border of vertex 2. The last step of SCAN algorithm consists in defining the bridges and the outliers. As shown in Fig. 1, we have two clusters. The first one is composed of vertices 1,2,3,4, and 5, whereas the second cluster is composed of nodes 8,9,10, and 11. The remaining vertices (6 and 7) must be categorized as outliers and bridges according to the Definition 3.7. In our example, vertex 7 has two connections with two different clusters, and vertex 6 has only one connection with one cluster which makes vertex 7 a bridge and vertex 6 an outlier.

DSCAN: A Distributed Algorithm for Large-Scale Graph Clustering

In this section, we introduce DSCAN: a new distributed algorithm for structural graph clustering. Our proposed approach is based on a master/slave architecture and is implemented on top of BLADYG framework [START_REF] Aridhi | Bladyg: A graph processing framework for large dynamic graphs[END_REF]. This latter is a distributed graph processing framework in which the slaves are responsible for the execution of a specific computation and the master machine coordinates between all the slaves. The input data must be divided into sets of chunks (subgraphs in our case). Each chunck/partition is assigned to a worker, which performs a specific computation. The master machine orchestrates the workers' execution. In the

Distributed graph partitioning

In this step, we split the input graph G into several small partitions P 1 , P 2 , ..P n , while keeping data consistency (graph structure). To ensure the consistency property while dividing the input graph, we must identify a list of cuts edges in order to have a global view of G. Usually, the graph partitioning problem is categorized under the family of NP-hard problems, that need to parse all the combinations in order to have the best partitioning result [START_REF] Dhillon | Co-clustering documents and words using bipartite spectral graph partitioning[END_REF]. For this reason, we proposed an approximation and a distributed partitioning algorithm as a preliminary step for our distributed clustering algorithm. Algorithm 2 shows that, at the beginning, the master machine divides equitably an input graph file into sub-files according to the number of edges, and sends the sub-files to all the workers. Secondly, each worker gets a list of edges and vertices from its sub-file. Thereafter, it sends its list of vertices to all workers, in order to determine the frontier vertices so that to get the cuts edges. Afterwards, when each worker receives a list of vertices from its neighbor workers, it determines the vertices that belong to the current worker (partition). Consequently, these vertices are considered as frontier vertices in their partitions. In the last step, when each worker could determine the frontier vertices, it starts to fix the cuts edges, i.e. edges 245 that have a frontier vertex.

V i IN Outliers do if (V i ∈ Core ∪ Border ∪ Bridges) then 26 Remove V i from the list of Outliers end end for V i IN Outliers do N b Connections ← 0 for C i IN Clusters do 32 if (N (V i) ∩ C = ∅) then 33 N b Connections + + 34 end end if (N b Connections ≥ 2) then 37 Add V i to Bridges 38 Remove V i from Outliers end end end
Send Clusers,Bridges,Outliers to the master using Worker2Master message is performed according to the α parameter, which refers to the number of worker machines (line 1). To overcome the loss of information during the partitioning step (edges connecting nodes in different partitions), frontier vertices are duplicated into neighboring partitions (line 5-8). Subsequently, for each partition P i , a local clustering is performed (lines 9-14) on each worker machine. Fig. 2 shows a demonstrative example of the duplication step. The demonstrative example describes how the graph consistency will be ensured during the partitioning step. Assume that a graph G is partitioned into two partitions P 1 (vertices in blue) and P 2 (vertices in red), like it is depicted in Fig. 2, and each partition has a set of vertices connected with other partitions. We call them frontier vertices of a given partition P , and they are denoted by V f P . For example, V f P 1 ={1,2,5} and V f P 2 ={4,7}. Each v ∈ V f P has a set of internal neighbors and external neighbors. For example, vertex 4 is a vertex of the partition P 2. It has the vertex 6 as internal and the vertices 1,2 and 5 as external neighbors. Computing the structural similarity of a frontier vertex u considers that all the neighbors of u belong to the same partition. Thereby, we duplicate all frontier vertices in partition P to all neighbor partitions and we call them external vertices. For example in our running example, P 1 has frontier vertices V f P 1 ={1,2,5} and P 2 is the neighboring partition. Thus, we must duplicate V f P 1 into P 2 to ensure the accuracy of structural similarity of V f P 2 (see Fig. 3).

After that, when we apply a local clustering on P 1 and P 2, we will find several conflicts such as the vertex v ∈ V f P 1 is a core vertex in P 1, and an outlier in P 2. These conflicts should be avoided in the merging step.

Step 2: Merging. The distribution of similarity computation and the local clustering step can improve the response time of our proposed DSCAN, compared to the basic sequential algorithm. However, we should take into consideration the exactness of the returned results compared to those of the basic SCAN. To ensure the same result of basic SCAN, we defined a set of scenarios regarding the merging step. These scenarios will repetitively be applied to every two partitions of G, until combining all the partitions (see Algorithm 3, lines 16-40). For each pair of partitions P i and P j , a merging function is executed to combine the local results from P i and P j and store them in global variables like clusters, borders, bridges and outliers. Algorithm 3 also achieves several scenarios (Lemmas 4.1, 4.2 and 4.3) to solve the encountered conflicts, mentioned below: Let C i be a cluster that groups a set of border and core vertices. If C i shares at least one core vertex c with another cluster C j , then c has a set of borders in C i and C j , and all the vertices in C i and C j are reachable from c. Hence, C i and C j should be merged into the same cluster. Let C i and C j two clusters that have a set of vertices (borders or cores), and a set of bridges with other local clusters, and ∃ b a bridge vertex according to the two clusters C i and C j only, where i = j. In the merging step and according to Lemma 4.1, if one or several clusters share at least a core vertex, then they will be merged into a single cluster. In this case, (C i ,C j) ⇒ C which makes b be weakly connected with only one cluster C, then according to Definition 3.7, b should change its status from bridge to outilier.

For instance looking at lines 16 to 22, we have focused on the shared cores between two clusters and the case when they share at least one core. According to Lemma 4.1, we should merge them into one single cluster. Subsequently, in lines 23-27, we verify for each outlier if it does not belong to some sets of cores, borders or bridges. In this case, we must remove it from the list of outliers. Otherwise, a vertex v should be changed as a bridge if it is classified as an outlier in the two clusters C i and C j that are not in the same partition, and if it has two connections with different clusters in the merging step.

Illustrative example

Fig. 3 shows a demonstrative example of a graph clustering using DSCAN. In this example, we use the same parameters (and µ) of the running example in Section 3, and two partitions (P 1 and P 2). In the first step of DSCAN, the input graph G is divided into two partitions P 1 and P 1 as it presented in Fig. 3, where the blue vertices represent the first partition and the red vertices represent the second partition. In the second step, DSCAN duplicates the frontier vertices in each pair of adjacent partitions. For example, the blue vertices 1,2 and 5 are duplicated in partition P 2 since they represent frontier vertices in their partition. In the same way, the vertices 4 and 7 are duplicated in the partition P 2. In the third step, all the workers perform the similarity computation, check the status for each vertex and build the local clusters, as it is shown in Fig 3 . The last step of DSCAN consists of combining all local results returned by each worker. As shown in Fig. 3, there are some conflicts in terms of node status. For example, vertex 2 is a core vertex in P 1 whereas it is a noise (outlier) vertex in P 2. In the same way, vertex 4 is a border in P 1 and a noise in P 2. Then, after building the local clusters, P 1 has one cluster (1,2,3,4, and 5) in which vertex 7 is a noise vertex in P 2. As for P 2, it groups the vertices 8,9, 10 and 11 as a cluster and the remaining vertices (4,5,1,2,7 and 6) are considered as noise vertices including vertex 7. This latter is a bridge according to basic SCAN (see running example in Section 3). In the merging step, DSCAN considers that the vertex 7 has two weak connections with two different clusters. Thus vertex 7 is marked as a bridge.

Time complexity analysis of DSCAN

Let E be the set of all edges (internal and cut edges), V be the set of all vertices(internal and external) and the set of core vertices is V c . The time complexity of DSCAN is like basic SCAN, and can be divided into three step, (i) the structural neighborhood step, when DSCAN according to Definition 3.1 aggregates for each vertex its list of neighbors. Thus, the complexity is of the order of O((v i , v j) (iii) DSCAN perfoms the clustering step using the µ in order filter the core vertices, and groups those which have strong connections into a same cluster.

|V | i,j=1 , (u i , u j) ∈ E)=O(|E|). (ii)
Like this, the complexity is

O = (|V c |-|(v i , v j)| |V | i,j=1 , v i , v j ∈ V c and σ(v i , vj) ≥).

Experiments

In this section, we present our experimental study that evaluates the effectiveness and efficiency of our proposed algorithm for structural clustering of large and distributed graphs. In this experiment, we performed some experiments like the impact of graph size and the number of machines in the cluster, We also evaluated some features related to DSCAN.

Experimental protocol

In the first experiment part, we compared DSCAN with four existing structural graph clustering algorithms:

1. Basic SCAN1 . 2. pSCAN: a pruning SCAN algorithm2 . 3. AnyScan: a parallel implementation of basic SCAN using OpenMP library3 .

4. ppSCAN: a pruning and parallel SCAN implementation4 .

The above mentioned algorithms are implemented with C language. Thus, we used the GCC/GNU compiler to build their binary versions. The compared algorithms are divided into two categories: (1) centralized algorithms such as SCAN and pSCAN, and (2) parallel algorithms such as AnyScan and pp-SCAN. To run both centralized and parallel algorithms, we used a T3.2xlarge virtual machine on Amazon EC2. This machine is equiped with an 8 vCPU Intel Skylake CPUs at 2.5 GHz and 32 GB of main memory on a Ubuntu 16.04 server distribution. In order to evaluate DSCAN, we used a cluster of 10 machines, each of them is equipped with a 4Ghz CPU, 8 GB of main memory and operating with Linux Ubuntu 16.04. https://discan.yo.fr/DGC.html provides some details about the configuration, deployment of DSCAN, and also a user guide is presented.

Experimental data

For all test cases of static graphs, we used real-world graph datasets (see Table 2) obtained from the Stanford Network Analysis Project (SNAP) [START_REF] Leskovec | {SNAP Datasets}:{Stanford} large network dataset collection[END_REF].

BLADYG framework

BLADYG is a distributed and parallel graph processing framework that runs on a commodity hardware. The architecture of BLADYG is based on a master/slaves topology. BLADYG starts by reading the input graph from many different sources, which can be local or distributed files such as 2) master-to-worker messages. BLADYG allows its users to implement their own partitioning techniques.

Experimental results

Speedup. We evaluated the speedup of DSCAN compared to the basic SCAN and its variants presented in Section 5.1. The compared algorithms use different graph representations. In fact, AnyScan and SCAN implementations use the adjacency list representation [START_REF] Doerr | Adjacency list matchings: an ideal genotype for cycle covers[END_REF], whereas both pSCAN and ppSCAN use the Compressed Sparse Row (CSR) format [START_REF] D'azevedo | Vectorized sparse matrix multiply for compressed row storage format[END_REF]. In our proposed algorithm, we used an edge list format, in which each line represents one edge of the graph. The incompatibility of the graph representations poses an additional transformation cost while evaluating the studied methods. For example, the transformation of the live journal dataset from edge list to adjacency list takes around 100 seconds using one machine equipped with an 8 vCPU and 32 GB of main memory.

Fig. 4 shows the runtime of the studied approaches with different datasets. As shown in Fig. 4, our approach is slower than the other algorithms in the case of small graphs (G1,G2,G3) and there was a very large gap between DSCAN and the other algorithms especially with pSCAN and ppSCAN. On the other hand, this gap become reduced when the graph size increases (case of G4 dataset). The plots bars in Fig. 4 and basic SCAN with the G1 dataset and 2x only with the G4 dataset. We notice that the gap between DSCAN and ppSCAN depends mainly on the size of the used dataset. For example, with the G1 dataset, the gap between DSCAN and ppScan is about 20x, while this gap is reduced to 11x for the G4 dataset. This can be explained by reaching the pruning step of pSCAN, which exempts several similarity computings during the clustering step. It is important to mention that DSCAN is a distributed implementation of SCAN and the other studied algorithms are centralized. This leads to additional costs related to data distribution, synchronization and communication. Scalability. The main goal of this experiment is to evaluate the hori-zontal scalability of our algorithm. We used two graphs (LiveJournal and California road network). We set the values of µ and to 3 and 0.5 respectively, and we varied the number of machines, with the goal to measure the response time for each size of the cluster. It can be clearly seen, from Fig. 5, that our algorithm is horizontally scalable, which was not guaranteed by the other algorithms, as discussed in the state-of-the-art section. Fig. 5 also shows that the running time will decrease depending on the number of machines in the cluster. When we add a new machine to the cluster, the running time becomes smaller. As depicted in Fig. 5, the red curve (LiveJournal graph) shows a significant improvement of about 82% in the response time, when the number of machines reaches 10. We also notice a weak improvement, according to the number of machines in the cluster, when we have a small graph. This is the case of California road network which is smaller than LiveJournal graph. The red curve's behavior can be explained by the splitting of the input graph into small sub-graphs and by performing a local clustering on each subgraph, which reduces the global response time even with the additional cost of aggregating the intermediate results returned by each machine in the cluster. That was not the case with the blue curve, where we have an improvement of about 50% using a cluster of 10 machines, compared to the results using a 6-machine cluster. We noted that the curve starts to increase when the cluster size exceeds 8 machines. This is due to the communication in the shuffling step. Impact of value on DSCAN. The numbers of clusters, bridges and noise vertices depend on the values of and µ. In ppSCAN, when we decrease the value of µ, the running time increases, as the non-pruned edges are inreased.

460

Similarly in this experiment, we evaluated the impact of value on the running time of DSCAN. For this, we varied the value of from 0.2 to 0.8 for different graph data sets. As shown in Fig. 6, the response time is slightly 0.2 0.4 0.6 0.8 0 500 1,000 1,500 2,000 Temps de réponse (S) G1 G2 G3 G4 Imapct of the graph partitioning on DSCAN. In our vision, the partitioning step has a direct impact on the response time of DSCAN. For this reason, we randomly generated four partitioning schemas, and for each one, we got the number of cut-edges as follows: 17.6M, 19.2M, 22.3M and 24.6M

for the partitions P1, P2, P3 and P4, respectively. Then, we run DSCAN on all partitions with the same configuration (10 machines, =0.5 and µ=3).

As shown in Fig. 8, there is a very clear impact of the graph partitioning on the response time of DSCAN, as this latter rises from nearly 800 to 1000 seconds with P1 and P2. Furthermore, the elapsed time of each DSCAN step varies from one partitioning to another. This disparity is noticed mostly during the merging step and slightly in the clustering step. This is probably explained by the number of vertices duplicated due to the number of cuts-edges produced by the graph partitioning. This number would affect the amount of similarity computing operations in the clustering step, and increases the communication cost during the merging step.

Conclusion

In this paper, we proposed DSCAN, a distributed algorithm for big graph clustering based on the structural similarity. DSCAN is build on top of based on a distributed and master/slaves architecture which makes it scalable and works on the community of modest machines. The proposed algorithm is able to deal with any graph size and is scalable with a large number of machines, in a parallel way. We have presented the main functions of DSCAN starting from the partitioning to the combining of intermediate results for each worker. Also, we have performed an extensive experimentation about our proposed algorithm, compared with other ones. The experiments have shown that DSCAN featured an horizontal scalability that is not guaranteed with other algorithms.

In our future works, we will improve the graph partitioning step of DSCAN. Then, we will tackle the problem of clustering of large and dynamic graphs.

In the partitioning step, we plan to use the density feature during the graph partitioning, whereas for the dynamic graph clustering, we plan to make DSCAN support big evolving graphs in order to check all the snapshots of a graph. Having this hand, we can evaluate and follow the evolution of each cluster and other vertex types (border, outlier, and bridge).

4)

 4 Definition 3.5. (Border) Let v c be a core vertex. v c has two lists of structural neighbors: (1) weak connected neighbors to v c , also called noise vertices (N (V c) \ N (V c)), and (2) strong connected neighbors called reachable structured neighbors. In our work, reachable structured neighbors are called border vertices. N (V c) represents the border vertices of a core vertex V c .

Figure 1 :

 1 Figure 1: Running example (= 0.7 and µ = 3).

Find

 local Bridges and Outliers in P i end /* Step 2: Merging */ All workers exchange theirs local clusters between them; using Worker2Worker message foreach W orker W i ∈ W do if (C 1 ∩ C 2 ∩ .. ∩ Cα = V; and ∃V i ∈ Core then C ← Merge(C 1 , C 2 ,..Cα) Send C to the master end else Send local clusters to master end for

Figure 2 :

 2 Figure 2: Illustrative example

 Lemma 4.1. (Merging local clusters) Let C 1 and C 2 two sets of local clusters in different partitions P 1 and P 2 , respectively. ∃c 1 ∈ C 1 and ∃c 2 ∈ C 2 , Core(c 1) ∩ Core(c 2) = ∅.

 Lemma 4.2. (Outlier to Bridge) Let C 1 and C 2 two sets of local clusters in partitions P 1 and P 2 , respectively. ∃ C 1 and C 2 two clusters that belong to the two different sets of clusters C 1 and C 2 . In addition, ∃ o an outlier in both partitions P 1 and P 2 , with N (o) ∩ c 1 = ∅ and N (o) ∩ c 2 = ∅ If C i and C j (i = j) share an outlier o, this means that o is weakly connected with the two clusters C i and C j . Hence, according to the Definition 3.7, o should be changed to a bridge vertex. Lemma 4.3. (Bridge to Outlier) Let c 1 and c 2 two local clusters in the partitions P 1 and P 2 , respectively. ∃ a bridge b according to only two clusters c 1 and c 2 , when c 1 and c 2 two clusters that will be merged into one cluster, b should be changed into an outlier.

Figure 3 :

 3 Figure 3: The partitioned graph G used in the running example in Section 3

 The time complexity of the computation of structural similarity which is defined by Definition 3.2. In this step, DSCAN enumerates for each edge (u, v) the set of common neighbors. Therefore, the time complexity is O = (min(|N (u)|, |N (v)|).|E|).

Figure 4 :

 4 Figure 4: Impact of the graph size on the processing time of both SCAN and DSCAN

 Fig 4 also shows that with the modest hardware configurations, only DSCAN can scale with large graphs like the G5 dataset.

Figure 5 :

 5 Figure 5: Impact of the number of workers on the running time (with = 0.5, µ = 3).

Figure 6 :

 6 Figure 6: Impact of size on the running time of DSCAN

Figure 7 :

 7 Figure 7: Performance of DSCAN phases

Figure 8 :

 8 Figure 8: Impact of the partitionning step on DSCAN response time (=0.5, µ=3)

Table 1 :

 1 Comparative study on existing graph clustering methods

	Approach	Parallel Distributed Processing	Graph	Main contri-
					model	parti-	butions
						tioning	
	SCAN	(Xu	No	No	Sequential	No	Basic implemen-
	et al., 2007)					tation of struc-
							tural graph clus-
							tering
	SCAN++ (Sh-	No	No	Sequential	No	Reducing	the
	iokawa et al.,					number	of
	2015)						similarity com-
							putations
	AnySCAN	Yes	No	Parallel	No	Parallelizing
	(Zhao et al.,					SCAN
	2017)						
	pSCAN (Chang	Yes	No	Parallel	No	Reducing	the
	et al., 2016)					number	of
							similarity com-
							putations
	Index-based	No	No	Sequential	No	Interactive
	SCAN	(Wen					SCAN
	et al., 2017)					
	ppSCAN (Che	Yes	No	Parallel	No	Parallel version
	et al., 2018)					of pSCAN
	SCAN based on	Yes	No	Parallel	No	A GPU-based
	GPU	(Stovall					version of SCAN
	et al., 2015)					
	pm-SCAN (Seo	Yes	No	Parallel	Yes	Graph partition-
	and Kim, 2017)					ing to reduce the
							I/O costs
	dpSCAN (Wu	No	No	Sequential	No	Clustering	re-
	et al., 2019)					sults without µ
							and

 Algorithm 2: Distributed graph partitioning Input : Graph file GF as a text file, parameter (N P number of partitions) Output: P set of partitions 1 BLADYG initialization according to the N P parameter 2 Master machine: split GF into a set of sub-files GF 3 foreach GF i ∈ GF do Find the list of frontier vertices from the neighbor workers Compute the structural similarity of a partition P i using V f list Retrive local Cores and Borders in P i Build local clusters in P i

	Algorithm 3: DSCAN
	Input : Graph G , parameters (µ, , α)
	Output: Clusters, Bridges, Outliers
	/* Divide G into subgraphs G = {G 1 G 2 ..Gα} according to parameter α	*/
	P ←-Partition (G,α)
	/* In parallel	*/
	foreach P i ∈ P do
			Assign P i to W i
	end
	/* In parallel	*/
	/* Step 1: Local clustering	*/
	foreach W orker W i ∈ W do
			Let P i the current partition
	4 end	Find the frontier vertices in P i and duplicate them into neighbor partitions Assign GF i to worker W i
	/* In parallel 5 end foreach W orker ∈ W do	*/
		/* In parallel	*/
	9 end
		/* In parallel	*/
	10 foreach W orker W i ∈ W do
	11		foreach Edge ∈ E do
	12		(a,b)=Edge ;
	13		Let P f i the frontier vertices
	14		if (a ∈ P f i ∪ b ∈ P f i) then
	15		end
	16		Set E as a cut edge
	17		end
	18 end
	4.2. Distributed graph clustering
		DSCAN has two main steps: (1) local clustering step and (2) merging
	step.
	250	Step 1: Local clustering. As presented in Algorithm 3, the input graph
	G is splitted into multiple subgraphs/partitions (P), each one is assigned
	to a worker machine. The partitioning step, as mentioned in Section 4.1,

6 foreach W orker W i ∈ W do 7

Get list of vertices and edges from GF i 8

Table 2 :

 2 Graph datasets

	Dataset name	Number of	Number of edges	Diameter	Avg. CC
		vertices			
	G1: California	1 965 206	2 766 607	849	0.04
	road network				
	G2: Youtube	1 134 890	2 987 624	20	0.08
	G3: Orkut	3 072 441	117 185 083	9	0.16
	G4: LiveJournal 3 997 962	34 681 189	17	0.28
	G5: Friendster	65 608 366	1 806 067 135	32	0.16
	Hadoop Distributed File System (HDFS) and Amazon Simple Storage Service	
	(Amazon S3). The communication model used by BLADYG is the message	
	passing technique, which consists in sending messages explicitly from one	
	component to another in order to get or send useful data during the graph	
	processing. In the same way, BLADYG defines two types of messages: (1)	
	worker-to-worker messages, and (

https://github.com/eXascaleInfolab/pSCANdeploymet

https://github.com/RapidsAtHKUST/ppSCAN/tree/master/SCANVariants/anySCAN

https://github.com/RapidsAtHKUST/ppSCAN/tree/master/SCANVariants/anySCAN

https://github.com/RapidsAtHKUST/ppSCAN/tree/master/ppSCAN-release

Algorithm 1: Basic SCAN algorithm

Input : A Graph G and parameters (µ ,)