
HAL Id: hal-02863574
https://hal.science/hal-02863574

Submitted on 10 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Apollonian emulsions
Sylvie Kwok, Robert Botet, Abdulwahed Shglabow, Bernard Cabane

To cite this version:
Sylvie Kwok, Robert Botet, Abdulwahed Shglabow, Bernard Cabane. Apollonian emulsions. EPL -
Europhysics Letters, 2020, 130 (3), pp.38001. �10.1209/0295-5075/130/38001�. �hal-02863574�

https://hal.science/hal-02863574
https://hal.archives-ouvertes.fr


Apollonian emulsions

Sylvie Kwok
CBI, ESPCI, CNRS, PSL University, 75005 Paris, France

Robert Botet
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Abstract
We have discovered the existence of extremely polydisperse High Internal-

Phase-Ratio Emulsions (HIPE) in which the internal-phase droplets, present
at 95% volume fraction, remain spherical and organize themselves in the
available space according to Apollonian packing rules. Such Apollonian
emulsions are obtained from dispersing oil dropwise in water in the pres-
ence of very little surfactant, and allowing them to evolve at rest for
a week. The packing structure of the droplets were confirmed through
size distribution measurements that evolved spontaneously towards power
laws with the known Apollonian exponents, as well as comparison of the
structure factors of aged HIPEs measured by Small-Angle X-ray Scatter-
ing with that of a numerically simulated Random Apollonian Packing.
Thanks to the perfect sphericity of the droplets, Apollonian emulsions
were found to display Newtonian flow even at such extremely high vol-
ume fraction. We argue that these fascinating, space-filling assemblies of
spherical droplets are a result of coalescence and fragmentation processes
obeying simple geometrical rules of conserving total volume and spheric-
ity. We argue that these peculiar, space-filling assemblies are a result of
coalescence and fragmentation processes obeying simple geometrical rules
of conserving total volume and minimizing the elastic energy associated
with interactions of neighboring droplets.

1 Historical introduction

In the third century B.C., in Hellenistic Alexandria, lived Apollonius of Perga
who wrote ten famous books on geometry[1]. In his book “Eπαϕαι” (“Tangen-
cies”), the last and most challenging problem was the construction of circles that
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would be tangent to three given circles in the Euclidean plane. All copies of this
book are now lost, but the question survived as an intellectual challenge, thanks
to Pappus of Alexandria who reviewed the problem 500 years later and named
it “Apollonius’ circle problem”[2]. From there, it became enriched through cen-
turies of discussions amongst mathematicians: Viète (1600) reconstructed the
plausible Apollonius solution using clues from ancient literature[3]; Descartes
(1643) introduced the premise of three mutually tangent circles at the initial
stage[4]; Leibniz (1706)[5] envisioned packing the plane with an infinity of non-
overlapping circles[8, 7, 6]; Kasner et al. (1943) proved Leibniz conjecture, and
Mandelbrot (1977) established the fractal nature of such a packing[9]. In paral-
lel, Apollonius’ circle problem was extended to the three-dimensional space, with
Soddy (1937) introducing close-packing in the context of an “infinitely infinite
number of spheres that theoretically can be packed into [a hollow sphere]”[10].
About real applications of this problem to our world, Newton (1687) recognized
its equivalence with triangulating a position from the differences of its distance
with respect to three known points, giving us the ubiquitous Global Position-
ing System[11]. Medical imaging[12, 13] and pharmacology[14] have similarly
benefited from Apollonius, both in experiment and simulation work. This non-
exhaustive list demonstrates the problems timelessness and how it has occupied
some of the most brilliant minds through the ages.

2 Outline of the present contribution

We consider here the three-dimensional variant of the Apollonian packing prob-
lem: by repeating the procedure ad infinitum, one could generate an infinite
number of increasingly smaller non-overlapping spheres that would completely
fill the spaces between the original ones. The final attainable volume fraction is
thus 100%, contrarily to the case of monodisperse spheres where it is 74%. Since
each constructed sphere must be selected precisely for its diameter, a constraint
is set on the diameters of particles that will be used to fill the voids. If the
original spheres are non-identical, the constructed spheres must possess a con-
tinuous power-law distribution of diameters[15]. The exponent of this power law
is −(df +1), where df is the fractal dimension of the union of all sphere surfaces
in the dense packing[6]. Advancements in numerical simulations have enabled
accurate determination of the Apollonian packing exponent, df , usually found
to be ≃ 2.47[16, 17, 18].

Consequently, this recursive packing protocol should be useful for assembling
spherical particles into materials with infinitely small porosity. However, the
practical use of this protocol in material manufacturing is severely limited, due
to the necessity of mixing discrete populations of spherical particles and hoping
that each particle would manage to find its preferred place in the network. Given
that small grains (colloidal particles or emulsion droplets) have a tendency to
segregate during processing[20], it seems highly unlikely that the desired self-
positioning can occur on its own. It would obviously be much more attractive
and convenient if we could generate materials which spontaneously evolved the
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Figure 1: Optical microscope photo of oil-in-water HIPEs at ϕ = 95%. (top)
surfactant-rich HIPE containing 20%wt non-ionic surfactant in the continuous
phase. The droplets are distorted into polyhedral shapes. (bottom) surfactant-
poor HIPE made with only 0.6% non-ionic surfactant in the continuous phase.
The droplets remain perfectly spherical, with an extremely broad size distribu-
tion.

necessary size distributions and local placements.
Here, we report a first step towards this goal, namely: the fabrication of

emulsions that evolve spontaneously to become materials with a random Apol-
lonian packing structure.

3 The recipe for an Apollonian emulsion

We make these Apollonian emulsions by dispersing oil dropwise under constant
stirring in an aqueous surfactant solution, much like making a mayonnaise.
When oil volume fraction ϕ exceeds the close-packing limit of spheres (64% for
random[21] or 74% for ordered[21]), the emulsion is called a “High Internal-
Phase-ratio Emulsion” (HIPE)[22]. In order to obtain space-filling structures,
we continue the addition of oil until its volume fraction as the internal phase,
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Figure 2: Flow curves of HIPEs with different amounts of surfactant in the
continuous phase. The Apollonian HIPE containing 0.6% non-ionic surfactant
in the continuous phase displays Newtonian flow behavior, as evidenced by the
flat slope of the flow curve (red diamonds). As surfactant concentration in-
creases, shear-thinning flow behavior is observed, which manifests as a negative
slope. This is the due to the progressive formation facetted surfaces between
the distorted droplets.

ϕ, is extremely high (95%− 99%).
The behaviors of a HIPE, like those of any emulsion, are determined by the

properties of the surfactant monolayers that are available to keep oil droplets
separated. In a surfactant-rich HIPE (typically 7 − 30%wt surfactant in the
continuous phase for non-ionic surfactants), strong monolayers (or multilayers)
keep oil droplets separated as soon as emulsification is completed. Consequently,
high ϕ can only be accommodated by deforming the oil droplets into polyhedral
volumes separated by flat surfactant films[23, 28, 25] (Fig.1, top). The system
then behaves like an elastic solid that withstands external stress by storing en-
ergy through further film distortion[26, 27]. Such surfactant-rich HIPE have
been extensively studied, and the shapes of the polyhedral droplets have been
determined. However, we took a seemingly unexplored path by severely reduc-
ing surfactant availability to only 0.6% in the continuous phase (water). We
found that in surfactant-poor HIPEs, high ϕ is accommodated by an Apollo-
nian packing of extremely polydisperse droplets: indeed, spaces between large
droplets are filled at all scales by smaller ones (Fig.1, bottom), indicating that
the droplets are packed to minimize elastic energy preferentially.
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4 Rheology of an Apollonian emulsion

Contrary to surfactant-rich HIPEs which exhibit plastic shear-thinning defor-
mation beyond their yield stress[27, 28, 29], surfactant-poor HIPEs flow like
Newtonian fluids (viscosity independent of shear rate, see Fig.2). Newtonian
behaviour has never been documented in emulsions beyond ϕ = 60%[30, 31],
making it all the more surprising that a HIPE at 95% displayed such behaviour.

5 Droplet size-distribution in Apollonian emul-
sion

Besides visual observation, another indication that our surfactant-poor HIPEs
are Apollonian comes from measuring their droplet-size distributions through
Dynamic Light Scattering. At short times, their number-weighted diameter dis-
tributions could be characterized by power-law decays, with exponents ranging
between −3 and −3.5. With time (about a week), these exponents consistently
converged towards and remained between −3.48 and −3.50 regardless of the
initial conditions. This range of values corresponds to df = 2.48− 2.50, in good
agreement with reported Apollonian df .

6 Structure factor of Apollonian emulsion

Finally, we measured the average correlation of oil droplet positions, using Small
Angle X-ray Scattering. This average correlation was characterized by an exper-
imental structure factor, S(q), which is the ratio of the intensity I(q) scattered
by the HIPE, to the intensity P (q) scattered by the same droplets in a diluted
HIPE (dilution ratio 1/40)[32].

Structures factor, S(q), of our surfactant-poor HIPEs are presented in Fig.4.
Compared with the S(q) reported in the literature for nearly monodisperse col-
loidal systems, which have strong short-range order (main peak height Smax ≃
2− 3, and continue to oscillate at higher q values, they are strikingly different:
in our HIPEs, the main peak had collapsed to Smax = 1.1, implying almost
complete positional disorder among neighboring droplets.

We also compared the average structure factor ⟨S(q)⟩ from these HIPEs with
that of numerically simulated spheres packed at similar volume fraction accord-
ing to a 3D Osculatory Random Apollonian Packing (ORAP) algorithm[33]. A
3D ORAP is built by sequentially adding the largest sphere compatible with
the remaining voids, with the condition of gentle tangency with neighbouring
spheres delimiting the void. An example of an ORAP system is shown in Fig.5.
The excellent agreement between the experimental and numerical structure fac-
tors indicates convincingly that the droplets in surfactant-poor HIPEs are indeed
organized like a Random Apollonian Packing.
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Figure 3: Droplet-diameter distribution of three surfactant-poor HIPEs at ϕ =
95%, made at 200 rpm (blue dotted line), 500 rpm (green dot-dashed line)
and 1000 rpm (red dashed line) measured by Dynamic Light Scattering. The
open circles represent the averaged values of the three samples. The solid line
representing a theoretical slope of −3.47 (corresponding to the fractal dimension
df = 2.47) is drawn as a guide.
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Figure 4: Averaged structure factor over three independent experimental
surfactant-poor HIPEs, ϕ ≃ 95%, measured by SAXS (data are shown as cercles
; the error bars are the standard-deviations for each value of q). The black dots
are the calculated S(q) of a numerical simulation of a 3D Osculatory Random
Apollonian Packing system at the same volume fraction (part of the system is
shown for illustration on the Fig.5).

7 How is an Apollonian emulsion formed from
a surfactant-poor HIPE?

Generally, the processes that occur during emulsion aging at rest are the fusion
of droplets (coalescence), their fission (fragmentation), and the exchange of oil
molecules between neighbours in contact[34]. In a common dilute emulsion,
these processes take place spontaneously if they minimize the total free energy,
of which the main contribution is the Helfrich curvature free energy integrated
over the interface area of each droplet; coalescence and ripening contribute to the
reduction of total interfacial area and lead eventually to macroscopic separation
of oil and water. In a surfactant-poor HIPE, however, the main contribution to
the total free energy is rather the elastic interaction energy in this overcrowded
network. We have found two pieces of evidence that demonstrate this claim –
firstly, all the droplets in a surfactant-poor HIPE are spherical in shape (Fig.1);
secondly, we found an increase in the total interfacial area as the HIPE aged
at rest, a direct inference from the asymptotic Porod’s limit of the HIPE’s
measured SAXS intensity (Fig.6 bottom).

This increase is indicative of the creation of small droplets as the HIPE
evolves. Accordingly, we argue that the processes causing two droplets to recom-
bine in a surfactant-poor, highly crowded HIPE result in the formation of many
spherical droplets, some larger, some smaller than the parent droplets. Repeti-
tive evolution according to this coalescence-fragmentation mechanism then pro-
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Figure 5: Cut through a simulated ORAP system of 30,000 spheres, at ϕ = 92%.
The structure factor S(q) shown as the solid curve on the Fig.4 was obtained
from this system.
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Figure 6: (top) P (q) of surfactant-poor HIPEs measured by SAXS at different
ages: freshly made (blue), 1-week-old (red), 1 month-old (green). The solid
black line represents Porod’s law; (bottom) the scaling factor, found by fitting
the experimental data to Porod’s law, is directly proportional to the total surface
area of the matter scattering the X rays. The major part of the error bars comes
from background substraction. The dashed line is a guide for eyes. This plot
evidences the regular increase of the total surface area of a same system over a
month of time.

duces an Apollonian structure as the smaller spherical droplets created occupy
cavities in the vicinity of the coalescence event, minimizing the free energy of
the HIPE by matching exactly the size of the of the cavity (condition of gentle
tagency). We may then conclude that the main driving force of surfactant-
poor HIPEs evolving towards an Apollonian state is the minimization of elastic
energy in these crowded structures by preserving sphericity. This mechanism
differs from droplet coalescence in dilute emulsions where the process is not spa-
tially constrained, allowing for a change in droplet shape and concluding with
a reduction in surface area and the subsequent expulsion of excess surfactant.
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Figure 7: (left) an Apollonian emulsion at ϕ = 92%made from a polymer-solvent
mixture as the internal phase, and 0.02% ionic surfactant as the continuous
phase ; (right) as the solvent evaporated, the polymer solidified, preserving the
space-filling Apollonian structure in the solid material obtained.

8 Possible extensions of the study

We made a cursory attempt to exploit the space-filling property of Apollonian
emulsions by fabricating a solid material with little porosity and composed en-
tirely with spheres. We used a polymer-solvent mixture of polycaprolactone
and dichloromethane as the internal phase, and 0.02% ionic surfactant solution
as the continuous phase. Applying our dropwise emulsification protocol, we at-
tained ϕ = 92% and found an Apollonian packing of spherical liquid droplets
(Fig.7, top). As the solvent evaporated, the polymer began to solidify[35]. We
could therefore preserve the spherical geometry. However, non-uniform solvent
evaporation from each Apollonian emulsion droplet resulted in somewhat im-
perfect sphericity in the final solidified material (Fig.7, bottom). Nonetheless,
this demonstrates the first steps towards the use of Apollonian emulsions for
optimal fabrication of extremely porous or extremely dense solid materials.

It is worth noting that solidification of the aqueous phase of an Apollonian
emulsion would lead to an extremely porous material in the form of a solid
structure of definite fractal dimension, df ≃ 2.47.

9 Conclusion

We have found a reproducible way to materialize an Apollonian packing of
spheres by exploring surfactant-poor High Internal-Phase-Ratio Emulsions. It
has remarkably taken over 2000 years since Apollonius of Perga defined the
problem to discover a simple practicable condition that leads to such a fasci-
nating structure in the real world. Our experimental observations show that
droplets in such emulsions are spherical despite the very high internal-phase
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volume fraction, and their size distributions follow a power law consistent with
the Apollonian fractal dimension. The droplets in these special HIPEs yield
structure factors matching that of a numerically simulated Osculatory Random
Apollonian Packing. Such a kind of droplet organization has resulted in macro-
scopic behaviors differing from typical emulsions, for example, Newtonian flow,
and the propensity to fill in the inner voids with tiny spherical droplets in spite
of on-going coalescence.
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