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Abstract

Intercalation of alkali atoms within the lamellar transition metal dichalcogenides

is a possible route toward a new generation of batteries. It is also a way to induce

structural phase transitions authorizing the realization of optical and electrical switches

in this class of materials. The process of intercalation has been mostly studied in

three-dimensional dichalcogenide films. Here, we address the case of a single-layer of

molybdenum disulfide (MoS2), deposited on a gold substrate, and intercalated with

cesium (Cs) in ultra-clean conditions (ultrahigh vacuum). We show that intercalation

decouples MoS2 from its substrate. We reveal electron transfer from Cs to MoS2,

relative changes in the energy of the valence band maxima, and electronic disorder

induced by structural disorder in the intercalated Cs layer. Besides, we find an abnormal

lattice expansion of MoS2, which we relate to immediate vicinity of Cs. Intercalation is

thermally activated, and so is the reverse process of de-intercalation. Our work opens

the route to a microscopic understanding of a process of relevance in several possible

future technologies, and shows a way to manipulate the properties of two-dimensional

dichalcogenides by "under-cover" functionalization.

Introduction

The interest for transition metal dichalcogenide single-layers, initially spurred by the bright

light emission found in molybdenum disulfide (MoS2)1,2 and the achievement of electrostatic

switching of electrical conduction in MoS2,3 has revived activities devoted to the synthesis

of these materials. Efforts to elaborate them with a structural quality similar to the one

obtained in mechanically exfoliated samples with bottom-up approaches – chemical vapour

deposition,4–7 chalcogenation of metal surfaces,8–10 or molecular beam epitaxy, standard11 or

reactive under H2S atmosphere12–14 – are ongoing. Both chalcogenation and reactive molec-

ular beam epitaxy usually require a metallic substrate. As-prepared samples are hence not

suited to the study of some of the key properties of the material, e.g. those related to exci-
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tons which become very short-lived due to the immediate vicinity of a metallic (substrate)

charge reservoir, and electrical transport properties which are shunt by the conductive sub-

strate. Besides, in the prototypical case of Au(111) as a substrate, MoS2 does not retain the

properties of the isolated material. Significant interaction between the electronic bands of

MoS2 and Au(111) was indeed detected15 and the existence of a moiré pattern was found to

induce a nanometer-scale modulation of this interaction.16

One way to alter this interaction is to "lift" MoS2 from its surface. Actually, such lifting

occurs spontaneously, across regions spanning typically a nanometer, when MoS2 overhangs

on Ångström-deep vacancy islands of the substrate.17 Effective lifting may be achieved using

an alternative strategy, namely by intercalating a layer of a species decoupling MoS2 from its

substrate. This strategy, which allowed to obtain quasi-free-standing graphene18,19 (another

two-dimensional material), has been explored recently with single-layer WS2,20 but not with

single-layer MoS2 so far, to our knowledge.

On the contrary, intercalation of thicker transition metal dichalcogenides has been thor-

oughly investigated. Much like with graphite, a rich variety of systems with modulated struc-

ture in the direction perpendicular to the basal plane can be formed this way.21 Using layers

of alkali atoms, molecules, or transition metals as intercalants, unique properties including

superconductivity and (anti)ferromagnetism have been found.21 The ability to store (release)

alkali atoms by intercalation (de-intercalation) also makes transition metal dichalcogenides

possible electrode materials, both as cathode22 and anode,23–25 for Li-ion batteries. Electro-

donor intercalants promote a structural phase transition from a semiconducting phase to a

metallic one,26–35 with potential applications in data storage and reconfigurable electrical

circuitry.

Here, we report on the intercalation and de-intercalation of the alkali cesium (Cs) atoms.

Unlike all works addressing in-solution intercalation of bulk-like transition metal dichalco-

genide layers, the focus of our work is on single-layer MoS2 flakes, prepared on Au(111), and

(de)intercalated under ultrahigh vacuum conditions. We find that the process of intercala-
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tion is thermally activated, being completed after few tens of minutes at a temperature of

550 K. Above 850 K, deintercalation is efficient and completed within a few tens of minutes.

Intercalated cesium forms a a Cs monolayer with an ill-ordered structure compatible with

a (
√

3×
√

3)R30◦ reconstruction with respect to Au(111). We reveal electron transfer from

Cs to MoS2, modifications of the relative positions of the valence band maxima in MoS2,

and electronic disorder induced by structural disorder in the intercalated layer. Upon in-

tercalation, MoS2 is lifted, and adopts an unusually large lattice parameter. Our analysis

combines scanning tunneling microscopy (STM), reflection high-energy electron diffraction

(RHEED), grazing incidence X-ray diffraction (GIXRD), reflectivity (XRR), X-ray photo-

electron spectroscopy (XPS), and angle-resolved photoemission spectroscopy (ARPES) all

performed under ultrahigh vacuum, in some cases in operando during intercalation. Further

insights are brought by density functional theory (DFT) calculations.

Methods

Three ultrahigh vacuum systems were used for our experiments. A first one is coupled to

the X-ray synchrotron beam delivered at the BM32 beamline of the ESRF. It has a base

pressure of 3×10−10 mbar and is equipped with a quartz micro-balance and a RHEED appa-

ratus. The second one, at Institut Néel (Grenoble), with a base pressure of 2×10−10 mbar,

is part of a larger ultrahigh vacuum system comprising a STM, a RHEED apparatus, and a

quartz microbalance. The samples were prepared in each system before being investigated

by RHEED, STM, GIXRD, and XRR. Temperatures were measured with a pyrometer in

both systems. Note that the pyrometers and the chamber configurations are different in

the two systems, which implies a plausible variability (∼50 K) in the measurements, and

suggests caution when comparing these measurements. The third ultrahigh vacuum sys-

tem is installed at the SGM-3 endstation36 of the ASTRID2 synchrotron radiation source

(Aarhus); it includes one chamber (base pressure 10−10 mbar) devoted to ARPES and XPS
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measurements, and two other chambers (base pressures, 4×10−10 mbar) comprising a STM.

All three ultrahigh vacuum systems are equipped with a Cs evaporator. MoS2/Au(111) was

prepared in Grenoble and transported in atmospheric conditions to Aarhus where it was

degassed in ultrahigh vacuum at 500 K. There, temperatures were measured using a K type

thermocouple fixed on the rear side of the Au (111) crystal. The cleanliness of the surface

was confirmed with STM and photoelectron spectroscopy.

Single-crystals bought from Surface Preparation Laboratory and Mateck were prepared

under ultrahigh vacuum by repeated cycles of room temperature sputtering with 0.8-1 keV

Ar+ ions and annealing to 900 K. Surface cleanliness was checked with STM imaging and

RHEED, both revealing a well-developped herringbone reconstruction. Molybdenum was

evaporated using a high-purity rod heated by electron-beam bombardment, at a rate of

0.02 monolayer/min in the ultrahigh vacuum chamber coupled to the X-ray beam and in the

ultrahigh vacuum chamber coupled to the STM, respectively (one monolayer referring to the

surface coverage of a single-layer MoS2 on Au(111)). This rate was determined with both a

quartz microbalance and STM. For introduction of H2S in the ultrahigh vacuum chambers,

we used an automatic injection system by VEGATEC that supplies H2S via pneumatic valves

(chamber coupled to the X-ray beam), and a leak-valve (chamber coupled to the STM). The

latter system comprises large copper parts. Their surface was saturated by maintaining a

pressure of 10−6 mbar of H2S for 30 min. Without this treatment, residual gas analysis

revealed that H2S was prominently decomposed before even reaching the sample surface,

which prevented MoS2 growth.

Cesium was deposited under ultrahigh vacuum by resistive heating of a high purity Cs

dispenser (SAES Getter). Assessing the deposited Cs dose is not a straightforward task.

Cesium dose measurements, using a quartz microbalance for instance, are seldom reported.

Exceptions include low temperature measurements;37 in contrast, our room temperature

measurements were inconclusive. Alternative calibration methods were hence needed. In the

ultrahigh vacuum system where STM imaging was performed, graphene growth on Ir(111) is
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operative. Cesium deposition in this system leads to its intercalation between graphene and

Ir(111) in a sequence of well-crystallized phases readily detected with electron diffraction.38

At fixed current flowing the Cs dispenser (6.5 A) we hence determined the deposition time

required for the onset of a (
√

3×
√

3)R30◦ Cs reconstruction relative to the graphene lattice,

which corresponds to a well-defined Cs density. Using this calibration, we deposited Cs in

two steps, each at room temperature followed by a 500 K annealing, with a total nominal Cs

quantity equivalent to 0.7 Cs atoms per Au atom on the surface. In the ultrahigh vacuum

system were XPS and ARPES data were acquired, a second calibration method was used.

Cesium was deposited (5.7 A current) for a given time at room temperature onto Au(111),

and the Cs density was assessed by comparing the area under the Cs peaks and Au surface

4f components in XPS, assuming that Cs is in the form of a flat sub-monolayer deposit.

With this calibration at hand, we then deposited Cs in two steps, each at room temperature

followed by 550 K annealing, corresponding nominally to 0.3 and 0.6 Cs atoms per Au atom

on the surface. In the third ultrahigh vacuum system, installed at the BM32 beamline, we

could not use any of these two methods. We hence decided to deposit a large excess of Cs,

using a high current flowing the Cs dispenser (7.2 A) and large deposition times, each of

30 min. There also we deposited Cs sequentially, in three steps, each at room temperature

followed by a 500 K annealing.

Diffraction measurements were performed at European Synchrotron Radiation Facility

using a z-axis diffractometer installed at the BM32 CRG/IF beamline and optimized for

grazing incidence surface X-ray diffraction. The experimental energy was set at 11.8 keV,

below the Au LIII absorption edge. The incident angle was set to 0.24◦, slightly below the

critical angle for total external reflection, to enhance the signal from MoS2 while minimizing

the background. The diffraction signal was acquired with a Maxipix two-dimensional detector

(256×1288 pixels, each of size 55 µm).

The XRR spectra were processed with PyRod (home-made software for surface diffraction

2D data treatment). Data were integrated in reciprocal space and the profiles were extracted
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as a function of the modulus of the scattering vector perpendicular to the surface (Q⊥).

Corrections to this integrated intensity were applied for beam polarization, surface active

area and gaussian beam profile. Correction for beam refraction at interfaces were used to

calculate Q⊥ inside the sample. The ANA-ROD software39 was used for modeling the surface

structure of the samples and fitting the XRR data.

The STM data we show were acquired in Grenoble with an Omicron STM-1 apparatus,

at room temperature under ultrahigh vacuum, in a dedicated chamber with a base pressure

of 5×10−11 mbar. At the SGM-3 endstation, an Aarhus STM was used to check the sample

quality after Cs deposition, which gave consistent results with those obtained in Grenoble.

ARPES and XPS measurements were performed at the SGM-3 end station of the ASTRID2

synchrotron radiation source.36 The ARPES and XPS data were collected at room tempera-

ture at photon energies of 49 eV and 130 eV respectively. The energy and angular resolutions

were better than 20 meV and 0.2◦ respectively.

Structural relaxations as well as electronic structure determination have been performed

using DFT. The DFT localized-orbital molecular-dynamics code as implemented in Fireball40–42

has been used to optimize the MoS2/Au(111) and the MoS2/Cs/Au(111) structures or to de-

termine their corresponding electronic properties. Standard previously used basis sets have

been considered for Mo, S and Au,43 and an sp basis set with cut-off radii of 6.8 (in atomic

units), has been considered for Cs. A hexagonal slab of 7×7 Au atoms with five layers in the

xy plane, and a topmost 6×6 MoS2 have been used to model the MoS2/Au(111) interface.

This configuration has been optimized until the forces become less than 0.1 eV/Å. The bot-

tom two Au layers were fixed to simulate the Au bulk for the MoS2/Au(111) interface. The

MoS2/Cs/Au(111) system, with a (
√

3×
√

3)R30◦ Cs reconstruction on Au(111) requires a

large supercell to be treated. In this systems, the atomic positions were fixed to the average

values derived from the analysis of the XRR data. We have used a set of 32 k-points in the

plane for self-consistency and density of states calculations.
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Results and Discussion

Single-layer MoS2 flakes were grown following the procedure described by Grønborg et al.44 In

short, the clean Au(111) surface was exposed to a partial pressure of H2S (PH2S) introduced in

the ultrahigh vacuum systems, then molybdenum was deposited on the surface in presence

of H2S, and the sample was annealed to 900 K without the Mo atomic beam but still in

presence of H2S. This sequence was repeated several times to adjust the surface coverage

with MoS2. In the two ultrahigh vacuum chambers where MoS2 was grown, we used PH2S

= 10−5 and 10−6 mbar respectively. Figure 1a-d shows the typical diffraction patterns and

morphology of the surface after growth. The MoS2 flakes exhibit straight edges,45 have an

extension of the order of several 10 nm; in between the flakes the herringbone reconstruction

of the bare Au(111) is visible. The fraction of the surface covered with MoS2 was 70±15%,

28±5%, and 25±15% (as determined from the nominal amount of Mo deposited on the

surface, or with STM whenever possible) for the samples studied with GIXRD/XRR, STM,

and XPS/ARPES, respectively. Our STM observations are consistent with those in previous

reports.13,44

Structure of MoS2 single-layer islands on Au(111). A pronounced pattern, with

3.17±0.01 nm periodicity, is visible on the MoS2 flakes presented in Figure 1c,d. This pattern

arises from the lattice mismatch between MoS2 and the substrate, and is described with an

analogy to the optical moiré effect.13 Careful analysis of atomically-resolved STM images

and their Fourier transform (Figure 1b) allows to determine the size of the moiré unit cell.

For the example shown in Figure 1, we find that the highest symmetry Au(111) and MoS2

crystallographic directions are precisely aligned, and that the unit cell corresponds to the

coincidence of 10 MoS2 unit cells onto 11 Au(111) unit cells (10×11), consistent with a recent

report.14

This moiré unit cell is varying from one MoS2 island to another. The average reciprocal

space lattice vector associated to the moiré is directly inferred from RHEED (Figure 1a) and

GIXRD (Figure 1e,f) data by measuring the relative positions of the moiré or MoS2 peaks
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Figure 1: Single layer MoS2 islands prepared on Au(111). (a) RHEED diffractogram (17 keV)
along the [11̄0] azimuth. On either side of the most intense central specular streak, MoS2 and
moiré streaks are observed, the latter ones corresponding to the shortest vertical distances on
the pattern. (b) Fast Fourier transform of an atomically resolved STM image (the contrast
and brightness below and above the dotted line, at the vicinity of the MoS2 spots, have been
enhanced). The reciprocal space vectors corresponding to the Au(111) and MoS2 lattices
are highlighted with two arrows, whose length ratio is 11/10. (c) Three-dimensional view
of a STM topograph (2 nA, -2 V) of single-layer MoS2 islands formed on Au(111), with the
herringbone reconstruction of the latter visible. Defects in the moiré appear as high bumps.
(d) Three-dimensional view of an atomically-resolved STM topograph (0.81 nA, -1.93 V) of
the moiré lattice between Au(111) and MoS2. (e) In-plane cut of the reciprocal lattice, as
measured with X-rays. Top right: higher-resolution measurement of the area marked with a
dotted frame. (f ) Radial scan of the X-ray scattered intensity in the direction shown with
a dotted arrow in e, as a function of the modulus of the in-plane scattering vector Q‖ for
Au(111) with and without single-layer MoS2 islands on top.

with respect to the Au(111) peaks, to be 1.884 ± 0.001 nm−1.

The full-width at half maximum of the MoS2 peaks in a radial direction (Figure 1f)
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increases from 0.32 ± 0.05 nm−1 to 0.51 ± 0.05 nm−1 from first to third order. This corre-

sponds to a domain size of about 20 nm and a distribution of in-plane lattice parameter of

typically 0.6%.46 Strikingly, the domain size is here smaller than the value of several 10 nm

corresponding to the flake size that we determined by visual inspection of STM images. This

difference simply shows that the flakes are not single-crystal, and actually consist each of

(smaller) single-crystal grains. As discussed in the Supporting Information (SI), we indeed

frequently observe linear defects within the flakes, at the boundary between laterally-shifted

domains within the flake (see Figure S1). Our interpretation is that at each of the several

steps of the MoS2 cyclic preparation, new MoS2 islands nucleate, grow, and coalesce with

pre-existing ones – no lattice re-organisation occurs that would eliminate the linear defect

(so-called out-of-phase grain boundaries) to yield large single-crystal flakes.

To model the structure of MoS2 and learn more about the out-of-plane structure of the

material, we use DFT calculations taking van der Waals interactions into account. For

that purpose, we choose an unsheared moiré unit cell with 6 MoS2 units matching 7 Au(111)

surface units. This (6×7) coincidence lattice is not the (10×11) observed experimentally. Our

choice is however legitimate since in our DFT calculations, the lattice structure optimization

are performed at 0 K (while the measurements are performed at 300 K), a temperature

at which the lattice parameters of bulk Au(111) (0.2883 nm) and MoS2 (0.3293 nm) are

in a different ratio (1.14, i.e. close to 7/6) than those measured for bulk compounds at

room temperature (0.2884 nm and 0.3167 nm, ratio = 1.10 = 11/10, see Ref. 47). The

DFT commensurate structure is a realistic approximant of the experimental unit cell and

we expect to capture the physics of interaction. This structure is also computationally more

demanding than the (1×1) and (
√

13 ×
√

13)R13.9◦ commensurate approximants used so

far.15

Figure 2a shows a top-view sof the minimum-energy structure of MoS2 on Au(111) that

has been optimised with the DFT calculations. Periodic lattice distorsions are found in both

MoS2 and Au(111). The in-plane projection of the distorsions of the topmost Au(111) layer
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Figure 2: Nature of the bonding for MoS2 onto Au(111). (a) Top-view of the optimized
geometry found with DFT calculations. The Mo (S) atoms are sketched with gray (yellow)
balls, whose shade codes the variation of height. The rhombus highlights the commensurate
(6×7) moiré unit cell employed for the calculations. (b) Cross-section of the charge trans-
ferred between atoms, along an edge of the rhombus, and of the atomic structure, along
the long diagonal of the rhombus (of length indicated with a double arrow), calculated with
DFT. The different layers of the Au(111) substrate are coloured according to the sequence of
ABC planes in a fcc stack. (c) Experimental structure factor F modulus (XRR, blue dots)
as function of the modulus of the out-of-plane scattering vector Q⊥, and best fit to the ex-
perimental data (red curve). Inset: Electronic density profile versus out-of-plane coordinate
(z), corresponding to the best fit.

and of the Mo layer are better visualised in Figure S2, where they have been amplified.

They range from typically 1 to 8 pm (Au), and 1 to 4 pm (Mo). In another epitaxial two-
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dimensional material, graphene, smaller (∼1 pm) and larger (∼20 pm) distorsions have been

reported on Ir(111) (Ref. 48) and Ru(0001) (Ref. 49) substrates. In the former system no or

very weak moiré peaks were observed while they were clearly observed in the latter.50 Our

observation of intense moiré diffraction peaks in MoS2/Au(111), and the fact that among

these peaks, those located closer to the Au(111) diffraction peaks are those with higher

intensity (Figure 1f), are consistent with significant distorsions in the Au lattice.

Regarding the out-of-plane structure (Figure 2b), according to the DFT calculations the

average distance between the topmost Au plane and the closest S plane, dAu−S, amounts

0.252 nm, while the average distance between the Mo and top (bottom) S planes is dMo−S

= 0.153 nm (0.156 nm). The dAu−S interlayer value is smaller than the 0.312 nm interlayer

distance value found in our DFT calculations for an infinite multilayer of 2H-MoS2, where

the interplanar interactions are of van der Waals type. We note that the dMo−S values, on

the contrary, are very similar to the one obtained with multilayer of 2H-MoS2. The values

of dAu−S and dMo−S are modulated along the moiré pattern, by only few 10 pm and few

1 pm respectively. This suggests that the apparent height modulations of typically 100 pm

observed with STM in relation with the moiré pattern, are essentially of electronic nature.

Figure 3: Electronic density of states derived from DFT calculations for free-standing MoS2,
MoS2 on Au(111) in a (6×7) coincidence lattice, and MoS2 on Au(111) with an intercalated
(
√

3×
√

3)R30◦ Cs layer.
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The short dAu−S values shows that strong Au-S bonds exist in the system, and this is

confirmed by the DFT analysis of the charge transfer at the interface between MoS2 and

Au(111) (Figure 2b). Within the unit cell, a spatial modulation of the charge held by the S

atoms in the bottom layer and by the Au top layers is observed. This is a signature of a spa-

tially varying interaction between MoS2 and Au(111), which is expected when hybridization

between the electronic orbitals of MoS2 and Au(111) occurs locally within the moiré, where

the atoms belonging to each material are positioned properly. The bottom S layers has a

deficit of electrons (blue shades in Figure 2b), while the Mo and top S layers rather have

an excess of electrons (green to light-green shades in Figure 2b). This is consistent with the

electronic density of states, also calculated with DFT, which shows that the bottom of the

conduction band is down-shifted by about 160 meV compared to the case of free-standing

MoS2 (Figure 3, see also discussion in the SI and Figure S3). Overall the DFT analysis

indicates that the MoS2 single layer on Au(111) is slight electron-doped.

We now confront the DFT analysis to the experimental analysis of the out-of-plane

structure via XRR. The modulus of the Fourier transform of the total electronic density of

the system along the out-of-plane direction (Figure 2c) is obtained by taking the square root

of the XRR data. In between the (000) and (111) crystallographic reflections of Au(111)

(modulus of the out-of-plane scattering vector Q⊥, 0 nm−1 and 26.68 nm−1), we observe a

bump in the reflectivity. Qualitatively, the local reflectivity minima correspond to destructive

interferences between the X-ray waves scattered by the Au(111) lattice and by the MoS2 layer,

perpendicular to the surface. The distance between the minima is related to the distances

between the layers (it decreases when the interlayer distance increases, and vice versa).

We performed a more quantitative analysis by calculating the structure factor of an

atomic model of MoS2/Au(111), and refining the values of the free structural parameters to fit

the calculation to the experimental data, using the ANA-ROD code.39 In short (see Figure S4a

and Table S1 for details), we assume two regions that scatter incoherently, one with the

bare Au(111) surface, the other with MoS2/Au(111), consistent with the partial coverage
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of the surface with MoS2. We disregard the above-discussed (weak) periodic distorsion, to

limit the number of free parameters and thus to ensure a reliable fit. The topmost Au (111)

atomic plane is let free to move in the z direction, to account for surface relaxation. The

above-defined dAu−S and dMo−S distances are also free parameters for the fit. Finally, the

roughness of the surface is modeled within the so-called β model,51 with β as another free

parameter. We obtain a very good fit to the experimental data (Figure 2c) for the electronic

density profile shown in the inset of Figure 2c, that yields refined values of dAu−S = 0.243

± 0.025 nm and dMo−S = 0.153 ± 0.022 nm. These values are in very good agreement with

the outcome of the DFT calculations.

Cesium deposition and intercalation of Cs underneath MoS2. STM was per-

formed after the nominal deposition of 0.7 Cs per Au surface atom and 500 K annealing.

On MoS2-free regions Cs atoms form a pattern of ∼5 nm-long nanosticks, some bunching

across several 1 nm to several 10 nm, and having different orientations on the surface, also

detected in the Fourier transform of the images (Figure 4a,b). The strong structural disorder

evident on the STM image explains the absence of a Cs-related diffraction signature at room

temperature in RHEED and GIXRD. Considering the observed local periodicity, we propose

two possible atomic structures for the Cs nanosticks (Figure 4c).

We observe two kinds of MoS2-covered regions (Figure 4a,d,e). Part of the MoS2 has

a similar height as the Cs-covered Au(111) surface, and exhibits a moiré pattern. The

majority (∼85%) of MoS2 islands however has a higher apparent height and exhibits no

moiré pattern. A reasonable interpretation is that the latter islands are intercalated with a

Cs layer, while the former islands are not. This intercalated layer is not directly accessible

to STM measurements. We observe a nanoscale pattern of lines oriented along the three

highest-symmetry directions of Au(111) and MoS2 (120◦ orientations). This pattern may be

related to that observed in another intercalated two-dimensional-material-on-metal system,

graphene/Bi/Ir(111).52 There, the pattern was interpreted as a network of dislocations in the

intercalant’s lattice, the lines corresponding to the boundaries between intercalated domains
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Figure 4: Structural changes in MoS2 upon Cs intercalation. (a) STM view (0.2 nA, -
2 V) revealing Cs nanosticks on Au(111) after deposition (nominally 0.7 Cs atoms per Au
surface atom) at room temperature and annealing to 500 K. (b) Fast Fourier transform of
a region with nanosticks. (c) Cartoons of the possible structures for the Cs nanosticks and
of the (

√
3 ×
√

3)R30◦ Cs phase intercalated under MoS2. (d) Three-dimensional view of
a STM topograph (0.65 nA, -0.5 V) showing MoS2 islands with and without intercalated
Cs. (e) Close-up STM view (0.2 nA, -2 V) of a MoS2 island revealing a pattern of lines.
(f ) In-plane reciprocal map measured with X-rays after the deposition of three excess Cs
doses and 550 K annealing. Top-right: high-resolution measurement in the area marked
with a red-dashed frame. (g) Radial scan of the X-ray scattered intensity versus the in-plane
momentum transfer Q‖. The bottom four scans have been measured each after the additional
deposition of an excess Cs dose and subsequent annealing at 550 K, while the top scan has
been measured after the final Cs deposit/annealing followed by an annealing at 900 K. For
the largest dose the two components (green areas) used to fit the MoS2 peak are shown.

being shifted by a fraction of the lattice vector(s) of the intercalant’s lattice (Figure 4c).

The disappearance of the moiré pattern observed in STM is corroborated by GIXRD

measurements. After three cycles of deposition of a large Cs excess followed by 550 K
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annealing, the reciprocal space lattice of the sample shows no discernable moiré signals

(compare Figures 4f,1e). In fact, the reduction of the moiré signals rather occurs after than

before each 550 K annealing (Figure 4g). The process is hence thermally-activated, indicative

of kinetically limitations.

Concomitantly to the vanishing of the moiré signal, the GIXRD data reveal that the

diffraction signal associated to MoS2 progressively shows two components, the one at lower

scattering vector modulus corresponding to an expansion of the lattice (Figure 4g). The

latter component may be assigned to intercalated islands, while the other corresponds to

pristine, still-unintercalated MoS2 islands on Au. This suggests that intercalation proceeds

sequentially, island by island. In other words, the limiting kinetic step in the intercalation

process corresponds to the opening of an intercalation channel, for instance a point defect or

the unbinding of (part of) the flake edges from the substrate. Once this channel is opened,

mass transport underneath the flake is presumably very efficient at the several-10 nm-scale

considered here. At the end of the three deposition+annealing cycles, close to 100% of the

islands are intercalated (note that the intensity scale in Figure 4g is logarithmic).

The GIXRD data show a decrease in intensity and an angular broadening of the diffraction

peaks as the Cs dose increases (compare Figures 4f,1e), which both point to increased disorder

in the form of in-plane strains and mosaic spread. Conversely, we observe a resurgence of

the diffraction signals of the Au reconstruction (Figure 4g), suggesting that the Au-MoS2

interaction has been suppressed.

Strain induced by intercalation. In the absence of a significant hybridization be-

tween MoS2 and Au orbitals, the MoS2 is no more strongly pinned on the substrate lattice.

Consistent with this view, the in-plane lattice parameter of MoS2 is found to change (the

MoS2 diffraction peak is shifted to lower momentum transfer values, Figure 4g), i.e. the

MoS2 lattice is no longer strained by its substrate. More precisely, a 0.9% lattice expansion

is observed at 300 K compared to the value found in bulk MoS2.47

Several effects may explain this expansion. First, MoS2 is grown at 900 K, a temperature
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at which the ratio of lattice parameters for MoS2 and Au(111) is expected to be precisely

1.10,47,53,54 i.e. precisely the 11/10 ratio determined experimentally after the sample is cooled

down to room temperature. This is yet another indication that prior to intercalation MoS2

is strongly bond on its substrate, with an epitaxial relationship that is unchanged between

growth temperature and room temperature. In the opposite extreme case, if during cool

down MoS2 were free to compress according to its own natural thermal compression (and

not that of the Au(111) substrate, which is slightly larger), the lattice parameter of MoS2

would be slightly larger, by ∼0.2%.47,53,54 This is the maximum expansion we expect due to

the suppression of the strong bonding between MoS2 and Au upon intercalation. This effect

hence only accounts for a small fraction of the observed 0.9% expansion.

What is the origin of the remaining ∼0.7% expansion? A structural phase transition

(1H to 1T or 1T’) is expected upon electron doping,55 and Cs, a well-known electro-donor

species, might indeed donate the required amount of charges to MoS2. The 1T phase is

not expected to have a significantly different lattice constant (a marginally shorter lattice

constant has even been predicted56) while the 1T’ phase should.57 However our diffraction

measurements do not detect a doubling of the MoS2 unit cell that would be expected for this

phase. There is another reason why an increasing amount of alkali atoms in the vicinity of

MoS2 could actually lead to an increased lattice constant. In the related system of potassium

inserted in between MoS2 layers, DFT calculations predicted a significant lattice expansion.

There, the role of the increased charge density within the Mo-S bonds was invoked.58 Our

own DFT calculations with free-standing MoS2 (this is a rough, yet reasonable description

of MoS2 decoupled from Au(111) by intercalation) predict that adding about 0.1 electrons

per MoS2 unit cell (to mimik the charge transfer associated to intercalation) yields a lattice

expansion by typically several 0.1%.

We again examine the structure of the sample perpendicular to the surface. While for

pristine MoS2/Au(111), the XRR spectrum exhibited essentially one intensity rebound (Fig-

ure 2c), after Cs deposition and annealing at least four rebounds (∼ 8, 16, 22, 35 nm−1) are
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Figure 5: Nature of the structure and bonding after Cs intercalation. (a) Experimental struc-
ture factor F modulus (XRR, blue dots) as function of Q⊥ after three deposits of an excess
Cs + 550 K annealing, and best simulation to the experimental data (green curve). Inset:
Corresponding electronic density profile along z. (b) Top-view of the geometry optimized
from the XRR analysis and used for DFT calculations. The Mo (S) atoms are sketched with
gray (yellow) balls, whose shade codes the variation of height. The Cs atoms are sketched
with cyan balls. The rhombus highlights the commensurate (6×7) (

√
30×

√
30)R30◦ moiré

unit cell. Within the area of the rhombus, we do not show the MoS2 atoms to display the
underlying (

√
30 ×

√
30)R30◦ Cs layer. (c) Cross-section, along the long diagonal of the

rhombus, of the atomic structure, along the long diagonal of the rhombus, deduced from the
analysis of the XRR data. The Au(111) layers are coloured according to the fcc sequence
of ABC planes.

observed (Figure 5a). The distance between the extrema decreasing with increasing interpla-

nar distances, this new observation is consistent with an increased dAu−S distance, compared
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to the case of MoS2/Au(111). This is precisely what is expected if a Cs layer is intercalated

between MoS2 and Au(111). To test this interpretation, we have adjusted dAu−S (and the

distance dAu−Cs between the Cs layer and the Au topmost plane; see SI for further details).

Given the large atomic radius of Cs, we expect a low-density Cs phase. Our STM analysis

directly confirms that on MoS2-free regions (Figure 4a-c), the shortest Cs-Cs distances are

indeed large, matching the second nearest neighbour Au-Au distance on the surface, i.e.

0.499 nm. Two-dimensional materials tend to alter the organisation of intercalant as shown

in the case of graphene,59 hence an even lower density in the intercalated Cs layer, as e.g.

in a (2 × 2) phase, cannot be excluded a priori. However our simulations agree less with

the XRR data in the case of such a low-density phase, suggesting that a denser phase, for

instance a (
√

3×
√

3)R30◦ reconstruction, provides a more realistic description of the system.

The best match of our model to the experimental data is obtained for dAu−S = 0.551 nm

and dAu−Cs = 0.389 nm (see Table S2 for details). The dAu−S value is increased by about

0.308 nm compared to the case without intercalated Cs. The increase is close, but 0.07 nm

less than that observed in Cs-intercalated multilayer MoS2.60

Figure 5a obviously shows that this model is too simple to faithfully reproduce all the

features in the experimental XRR data. In particular, between 15 nm−1 and 25 nm−1, the

model only accounts for the baseline of the experimental spectrum, and does not produce

the two marked intensity rebounds. As discussed more into details in the SI (see Figure S5

and Table S3 for another simulation with a more advanced model), what is not captured by

our simple model is the multilayer thickness of the Cs layer on bare Au(111) (unlike under

MoS2, where it is intercalated as a single-layer). Multilayer Cs is expected there because

we chose to deposit a large excess of Cs on the surface for the samples characterized with

XRR (and GIXRD), due to the lack of reliable calibration of the Cs deposition rate in the

corresponding ultrahigh vacuum chamber (see Methods). On MoS2, long-ranged Cs surface

diffusion and Cs desorption are instead expected already at room temperature to result in

(i) low-surface-density Cs clusters, and (ii) mass transport of Cs out of the MoS2 surface,
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towards MoS2-free regions and vacuum. 550 K annealing will further promote this tendency,

and strongly reduce the Cs cluster density on MoS2.

Thermal de-intercalation. As already mentionned, increasing the temperature pro-

motes intercalation of Cs underneath the MoS2 flakes, which points to a kinetic barrier to

intercalation (e.g. for passing through defects and/or for creating defects later acting as

intercalation pathways). To further improve the efficiency of intercalation it is tempting to

further increase temperature. Above about 800 K however, another key process is activated:

the moiré signal re-appears in GIXRD, the MoS2 peak shifts back to its initial position (Fig-

ure 4g), and the XRR spectrum strongly resembles that of as-deposited MoS2/Au(111). In

fact, after 900 K annealing, the reciprocal lattice of the sample is very similar to that of the

pristine sample, i.e. Cs has been de-intercalated. How is this occurring? An XPS analysis

(see SI) reveals that a fraction of Cs adatoms penetrates the Au crystal already at room

temperature, even more so at 550 K (Figure S6) and at 850 K. In addition to this process,

at 850 K Cs atoms may have a non-negligible probability to cross the energy barrier for

diffusing outside the MoS2 islands, and to subsequently desorb to vacuum.

Electronic effects of Cs intercalation. We expect that intercalation of Cs has strong

influence on the electronic properties of MoS2. We start with experimental measurements,

with ARPES, of energy-momentum cuts in the electronic band structure along KΓKM in

reciprocal space, first with the case of as-grown MoS2/Au(111). The valence band of MoS2

(whose maxima are highlighted with horizontal lines in Figure 6), with a characteristic

130 meV spin-orbit splitting at K point, is clearly seen (Figure 6a). Its maxima at Γ and K

points lie 1.67 eV and 1.35 eV respectively below the Fermi level, while the conduction band

minimum is above the Fermi level, consistent with a previous report.15

After the deposition of nominally 0.3 Cs atom per surface Au atom, and thermally-

induced intercalation the ARPES energy-momentum cuts (Figure 6b) and energy distribu-

tion curves (EDCs, Figure S7) show that the MoS2 valence band maximum at the Γ and K

points shift down, by 20 meV. No additional electronic band is observed that would corre-

20



Figure 6: Electronic modifications upon intercalation. Photoemission intensity along high-
symmetry reciprocal space directions (MΓKM, see inset), with a 49 eV photon energy, for
(a) pristine MoS2/Au(111), and (b,c) the same sample exposed to an increasing Cs dose
+0.3 and +0.6 Cs atoms per Au surface atom (followed by 550 K annealing), and (d)
eventually annealed to 850 K. The black lines mark the positions of the valence band extrema
before/after Cs intercalation.

spond to Cs. Tripling the Cs dose yields stronger changes in the electronic band structure of

MoS2 (Figures 6c,S7): the MoS2 valence band maximum at Γ point further shifts down, by

as much as 280 meV. The photoemission signal corresponding to the MoS2 valence band at

the vicinity of the K point becomes weaker and broader.Inspection of the EDCs (Figure S7)

is required to detect a down-shift, of about 100 meV.

The Au(111) surface state at the Γ point, close to the Fermi level, is observed before and

all along the Cs deposition/annealing procedure (Figure 6). The signature of this surface

state is naturally related to the occurence of the Au(111) herringbone reconstruction observed

in STM in between MoS2 islands (Figure 1c) and with GIXRD after Cs deposition/annealing

(Figure 4g). This indicates that Cs is weakly adsorbed on Au, hence not altering the sensitive
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Au(111) reconstruction/surface state. We note that as the Cs dose increases, the surface

state shifts down in binding energy (Figure 6a-c). Shifts of this kind have been observed for

Na adsorbed on Cu(111),61 and have been explained by a polarization-induced filling of the

surface state.62

These observations are reminiscent of a previous study that explored charge transfers

induced by potassium (K) atoms in MoS2/Au(111).63 In the two studies, the most prominent

effects seem to be a non-rigid down-shift of the electronic band structure, with different

magnitude at Γ and K points. The shifts are of the same order of magnitude with potassium

and cesium, suggesting charge transfers (the Fermi level is changed) in the same range.

The origin of the shifts can be qualitatively rationalised by inspecting the projection of the

electronic states on the different orbitals in the system, which has been calculated by DFT

for a (1×1) approximate model for MoS2 on Au(111).15 The spin-orbit-split MoS2 valence

band close to K point is expected to be primarily of Mo dx2−y2 + dxy character and the

fact that it is not significantly shifted upon intercalation suggests that it is not related to

a possible hybridization with the substrate’s electronic band (the hybridization would be

strongly affected by intercalation), which seems reasonable for these in-plane MoS2 orbitals.

In the energy range explored in Figure 6, at Γ point the stronger contribution to the valence

band stems from Mo dz2 +dyz+dxz out-of-plane orbitals, and these bands are indeed expected

to be involved in the hybridization and charge transfers with the substrate or the alkali atoms,

consistent with our observations (Figure 6).

The broadening of the valence band at K point after Cs intercalation points to a signif-

icant disorder in the system. This is consistent with our STM observations of a disordered

nanoscaled pattern for Cs in this case (Figure 4c,e). Strikingly, annealing the sample to

850 K allows to recover a well-defined valence band at K point (compare Figure 6a,d), con-

sistent with the deintercalation process also evident in GIXRD (Figure 4g) and XRR, which

we interpret as a consequence of Cs diffusion into bulk Au or Cs desorption from the surface.

This is also an indication that the source of electronic disorder was indeed extrinsic to the
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MoS2, i.e. due to the intercalant, and not intrinsic to MoS2, i.e. due to the creation of

defects in the dichalcogenide single-layer.

Our ARPES observation can be rationalised in the framework of a simplified DFT cal-

culation scheme. Minimising the structure of the MoS2/Cs(
√

3×
√

3)R30◦/Au(111) system

would require to consider a large commensurate calculation supercell comprising about 1,100

atoms (in a (
√

3×
√

3)R30◦, and not a (1×1), moiré unit cell), among which high-Z number

ones. This is computationally prohibitive, and we prefer, instead, to analyse the electronic

density of states for the values of dAu−Cs = 0.389 nm and dAu−S = 0.551 nm (see structural

model represented in Figures 5b,c) which we derived from the analysis of the XRR data.

Keeping in mind the limitations of the latter analysis, we also considered another set of

dAu−Cs and dAu−S values, for which the Cs layer is further from (closer to) the MoS2 layer

(Au(111) surface), see SI for details.

Figure 3 compares the electronic density of states in the presence of the intercalated

layer (dAu−Cs = 0.389 nm, dAu−S = 0.551 nm) to the case of MoS2/Au(111) and the case

of isolated MoS2. The bottom of the conduction band is further down-shifted, by about

320 meV, relative to the case of MoS2/Au(111), which is indicative of a strong electron

doping of MoS2, consistent with our ARPES observations. This tendency is robust and is

also predicted for different dAu−Cs and dAu−S values (Figure S3). The level of electronic

doping seems comparable to the one that we expect for an isolated MoS2 layer, with three

Cs atoms adsorbed per (10× 10) MoS2 unit cells (Figure S3).

Except for one marked peak (-330 meV) that we ascribe to an interfacial Au/Cs state,

within about 600 meV below the bottom of the conduction band, the DFT calculations

predict few in-gap states than for MoS2/Au(111). Below this energy range more in-gap states

are predicted, at least for dAu−Cs = 0.389 nm and dAu−S = 0.551 nm. Their occurrence is

however highly dependent on the distance between the bottom S layer and the Cs layer, as

shown for a calculation performed with another set of dAu−Cs and dAu−S values (Figure S3).
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Conclusions

We showed that starting from MoS2 flakes strongly coupled to the Au(111) substrate, with

a short spacing and a substantial nanorippling, Cs intercalation lifts the flakes and flatens

them. The process is thermally activated. De-intercalation is also thermally activated, but

at higher temperatures. We found that Cs, which is intercalated in the form of a atomic layer

whose density is consistent with a (
√

3×
√

3)R30◦ reconstruction on Au(111), substantially

dopes MoS2 with electrons, and that this doping is a possible origin for a ∼1% expansion

of the atomic lattice of MoS2 parallel to the surface. The interaction with the Cs layer is

associated with relative changes in the energy of the valence band maxima and to electronic

disorder presumably related to the structural disorder in Cs.

Our work opens new perspectives towards the manipulation of two-dimensional transition

metal dichalcogenides. Similarly to in-solution strategies,29 intercalation could be exploited

on MoS2/Au(111) to facilitate the exfoliation of nanoscale flakes12 or full layers.14 Demon-

strating further control on electronic or hole doping of MoS2 with intercalated electro-donor

or electro-acceptor species is another exciting goal. A number of species, to be intercalated

with varying doses, are relevant here, among the vast catalog of alkali atoms, transition met-

als, and molecules. Finally, as extensively demonstrated with bulk compounds in the past,

intercalation opens new doors to achieve a variety of two-dimensional phases, structural ones,

magnetic ones, and even superconducting ones.
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