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Marc de Visme

Ecole Normale Supérieure de Paris, France

Abstract

In a distributed game we imagine a team Player engaging a team
Opponent in a distributed fashion. Such games and thetegies
have been formalised in concurrent games based on event stru
tures. However there are limitations in founding strategie tradi-
tional event structures. Sometimes a probabilistic distad strat-

egy relies on certain benign races where, intuitively, sv@em-

bers of team Player may race each other to make a common move
Although there are event structures which support suchllipbra
causes, in which an event is enabled in several compatibys,wa
they do not support an operation of hiding central to the com-
position of strategies; nor do they support probabilitycaddely.

An extension of traditional event structures is devisedcivtgup-
ports parallel causes and hiding, as well as the mix of pritibab
and nondeterminism needed to account for probabilisticidiged
strategies. The extension is tested in the constructionbitate-
gory of probabilistic distributed strategies with parbtlauses. The
bicategory is rich in operations relevant to probabilisticwell as
deterministic parallel programming.

1. Introduction

This article considers probabilistic distributed gamesveen two
teams, Player and Opponent. To set the scene, imagine aesimpl
distributed game in which team Opponent can perform two sove
called 1 and 2, far apart from each other, and that team Péayer
just make one move, 3. Suppose that for Player to win they must
make their move iff Opponent makes one or more of their moves.
Informally Player can win by assigning two members of theam,
one to watch out for the Opponent move 1 and the other Opponent
move 2. When either watcher sees their respective Opponaré m
they run back and make the Player move 3. Opponent could-possi
bly play both 1 and 2 in which case both watchers would run back
and could make their move together. Provided the watchersear
fectly reliable this provides a winning strategy for Playéo matter
how Opponent chooses to play or not play their moves, Plaiter w
win; if Opponent is completely inactive the watchers waitef@r
but then Player does win, eventually.

We can imagine variations in which the watchers are only reli
able with certain probabilities with a consequent redurciio the
probability of Player winning against Opponent strategiesuch
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a probabilistic strategy Player can only determine prdhggs of
their moves conditionally on those of Opponent. BecausgePla
has no say in the probabilities of Opponent moves beyoncdethos
determined by causal dependencies of the strategy we ate &d
Limited Markov Conditionof the kind discussed inl[8]:

(LMC) In a situationz in which both a Player move and
an Opponent move could occur individually, if the Player

- move and the Opponent move are causally independent,
then they are probabilistically independent; in a strafegy
Player,Prob(® | z,©) = Prob(e | z).

The LMC is borne out in the game of “matching pennies” where
Player and Opponent in isolation, so independent from etwr,0
each make their choice of head or tails. Note we do not expect
that in all strategies for Player that two causally indegemdPlayer
moves are necessarily probabilistically independentaat, flook-

ing ahead, because composition of strategies involvendidter-

nal moves such a property would not generally be preserved by
composition.

Let us try to describe the informal strategy above in terms of
event structures. In ‘prime’ event structures in which edlyde-
pendency is expressed a partial order, an event is causgisnd
dent on a unique set of eventgz. those events below it in the
partial order. For this reason within prime event strucuse are
forced to split the Player move into two events one for eadiche
making the move, one1 dependent on Opponent move 1 and the
otherw2 on Opponent move 2. The two moves of the two watchers
stand for the same move in the game. Because of this they are in
conflict (or inconsistent) with each other.We end up withekent
structure drawn below:

o o

The polarities + and- signify moves of Player and Opponent, re-
spectively. The arrows represent the (immediate) caugedraien-
cies and the wiggly line conflict. As far as purely nondeteristic
behaviour goes, we have expressed the informal strategpmea
ably well: no matter how Opponent makes or doesn’t make their
moves any maximal play of Player is assured to win. However co
sider assigning conditional probabilities to the watcheves. Sup-
pose the probability ofv1 conditional on 1 i+, i.e. Prob(wl |

1) = Prob(w1,1 | 1) = p; and that similarly forv1 its conditional
probability Prob(w2 | 2) = p»2. Given that movev1 of Player and
move2 of Opponent are causally independent, from (LMC) we ex-
pect thatw1 is probabilistically independent of moZei.e.

Prob(wl |1,2) = Prob(wl |1) =p1;

wl w2

whether Opponent chooses to make move 2 or not should have no
influence on the watcher of move 1. Similarly,

Prob(w2 | 1,2) = Prob(w2|2) =p2.
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But w1 andw?2 are in conflict, so mutually exclusive, and can each
occur individually when 1 and 2 have occurred ensuring that

pr+p2<1

—we haven't insisted on one or the other occurring, the measo
why we have not written equality. The best Player can do igass
p1 = p2 = 1/2. Against a counter-strategy with Opponent playing
one of their two moves with probability 1/2 this strategy yonl
wins half the time. We have clearly failed to express therimial
winning strategy accurately!

Present notions of “concurrent strategies,” the most gerodr
which are presented in_[[14], are or can be expressed usingepri
event structures. If we are to be able to express the intstrategy
which wins with certainty we need to develop distributedbaro
bilistic strategies which alloyarallel causesn which an event can
be enabled in distinct but compatible ways. ‘General’ exanic-
tures are one such model [13]. In the informal strategy dlesdr
in the previous section both Opponent moves would indivigiua
enable the Player move, with all events being consistéuastiated

below:
®
[(or\
e e

But as we shall see general event structures do not suppag-an
propriate operation of hiding central to the compositiorswate-
gies. Nor is it clear how within general event structures coeld
express the variant of the strategy above in which the twalvesis
succeed in reporting with different probabilities.

It has been necessary to develop a new modslent structures
with disjunctive causegedc’s)—which support hiding and prob-
ability adequately, and into which both prime and generanéev
structures embed. The new model provides a foundation oohwhi
to build a theory and rich language of probabilistic disitéd
strategies with parallel causes. Without probability, ibides a
new bicategory of deterministic parallel strategies whigtudes,
for example, a deterministic strategy for computing “pletadr"—
Sectior 7.B.

Full proofs can be found inl[16]. Appendix A summarises
the simple instances of concepts we borrow from enricheé- cat
gories [5] and 2-categories [9].

2. Event structures

Event structures describe a process, or system, in ternts pds$-
sible event occurrences, their causal dependencies asistty.
The simplest form, ‘prime’ event structures, are a conaurrer
distributed, analogue of trees; though in such an eventtsireithe
individual ‘branches’ are no longer necessarily sequebhaebave
the shape of a partial order of events.

2.1 Prime event structures

A (prime) event structureomprises(E, <,Con), consisting of
a setE of events(really event occurrences) which are partially
ordered by<, the causal dependency relatipmnd a nonempty
consistency relatiorCon consisting of finite subsets of. The
relation e’ < e expresses that evemt causally depends on the
previous occurrence of eveat. That a finite subset of events is
consistent conveys that its events can occur together bg stage

in the evolution of the process. Together the relationsiedieveral
axioms:

[e] =aet {€ | €’ < e}isfinite foralle e E,

{e} eConforallee FE,

Y ¢ X € Con impliesY € Con, and

X eCon & e<e € X impliesX u {e} € Con.

Given this understanding of an event structure, there isaara-
panying notion of state, or history, those events that mayoop
to some stage in the behaviour of the process describednfigu-
ration is a, possibly infinite, set of evenisc E which is

consistentX ¢ z and X is finite impliesX € Con, and
down-closede’ < e € z impliese’ € x.

A configuration inherits a partial order from the ambient reve
structure, and represents a possible partial-order kistor

Two eventse, e’ are considered to be causally independent,
and calledconcurrentif the set{e,e’} is in Con and neither
event is causally dependent on the other. The relatiomofediate
dependency — ¢’ meanse ande’ are distinct withe < e’ and no
event in between. Writ€> (E) for the configurations o and
C(FE) for its finite configurations. For configurationsy, we use
r-cy to meany coversz, i.e. x c y with nothing in between, and
z—cyto meanz U {e} =y for an event ¢ z. We sometimes use
r—c, expressing that eventis enabled at configuratian, when
z——cy for somey.

It will be very useful to relate event structures by mapsnap
of event structureg : £ — E' is a partial functionf from E to E’
such that the image of a configuratiens a configurationfz and
any event offz arises as the image of a unique event:oMaps
compose as partial functions. Wrifefor the ensuing category.

Amapf: E — E’ reflects causal dependency locally, in the
sense that ik, e’ are events in a configuration of E for which
f(e") < f(e) in E', thene’ < e also in E; the event structuré
inherits causal dependencies from the event struckiirgia the
map f. Consequently, @ map preserves concurrency: if two events
are concurrent, then their images if defined are also coeaurr
In general a map of event structures need not preserve causal
dependency; when it does and is total we say/itgl.

2.2 General event structures

A general event structurfd1,13] is a structuré E, Con, ) where
E'is a set of event occurrences, the consistency reldtianis a
non-empty collection of finite subsets Bfsatisfying

XcYeCon = X e Con
and theenabling relation-c Con x E satisfies
YeComn&Yo2X&Xtre — Yte.
A configurationis a subset of2 which is
consistentX c5, * = X € Con and
securedYe € x3e1, -, en € x.en = e&Vi<n.{er, -, eis1} - €.

Again we writeC* (E) for the configurations off and C(E) for
its finite configurations.

The notion of secured has been expressed through the exdsten
of a securing chain to express an enabling of an event witket a
which is a complete enabling in the sense that everythindnén t
securing chain is itself enabled by earlier members of thench
One can imagine more refined ways in which to express complete
enablings which are rather like proofs. Later the idea thatplete
enablings are consistent partial orders of events in wHidvants
are enabled by earlier events in the order—“causal realissit—
will play an important role in generalising general evenastures
to structures supporting hiding and parallel causes.

A mapf : (E,Con,+) — (E',Con’,+") of general event
structures is a partial functiofi: £ — E’ such that

X eCon = fX eCon’ &
Ver,ez2 € X. f(e1) = f(e2) = e1 =ez and

X +e& f(e) isdefined = fX +' f(e).



Maps compose as partial functions with identity maps beilem4
tity functions. WriteG for the category of general event structures.

We can characterise those families of configurations arisin
from a general event structure. fAmily of configurationsvhich
comprises a familyF of sets such that

if X c Fis finitely compatible inF thenJ X ¢ F’; and

if e € x € F then there exists a securing chain---,e, = e in
x such that{ey, -, e; } € F forall i < n.

The latter condition is equivalent to saying (i) that whesrev €
x € F there is a finitery € F such thate € zo € F and (ii)
that if e,e’ € = ande # €' then there isy ¢ F with y ¢ =
st.eecy < €' #y. The elements of the underlying sgtF
are itseventsSuch a family istablewhen for any compatible non-
empty subseX of F its intersection X is a member ofF.

A configurationz € F is irreducible iff there is a necessarily
uniquee € x such thatVy € F. e € y € z impliesy = z. Irre-
ducibles coincide with complete join irreducibles w.rttetorder
of inclusion. It is tempting to think of irreducibles as repent-
ing minimal complete enablings. But, as sets, irreducibleh (1)
lack sufficient structure: in the formulation we are led tonghi-
mal complete enabling as prime causal realisations, depenae
realisations can have the same irreducible as their uridgrbet;
and (2) are not general enough: there are prime realisatibnse
underlying set is not an irreducible.

A map between families of configurations froffi to G is a
partial functionf : UF — UG between their events such that
foranyx € F itsimagefz € G and

Vei,ez €x. f(e1) = f(e2) = e1=e2.

Maps between general event structures satisfy this propdeps
of families compose as partial functions.

The forgetful functor taking a general event structuresdatn-
ily of configurations has a left adjoint, which constructsaman-
ical general event structure from a family: giveh a family of
configurations with underlying events, construct a general event
structure( A, Con, ) with

X e Con iff X cay, y, for somey € A, and
Xraiffae A, X eCon&eecyc Xu{a}, for somey e A.

The above yields a coreflection of families of configuratiams
general event structures. It cuts down to an equivalencsdeet
families of configurations antepletegeneral event structures. A
general event structule”, Con, +-) is repleteiff

Vee F3X € Con. X + e,
VX € Condz e C(E). X czand
Xre = JzeC(E).ecz&krzcXue}.
The last condition is equivalent to stipulating that eacimimal

enablingX + e, whereX is a minimal consistent set enabliag
corresponds to an irreducible configurati&nu {e}.

2.3 Onrelating prime and general event structures

Clearly a prime event structufeP, <, Con) can be identified with
a (replete) general event struct®, -, Con) by taking

X +piff X eCon & [p]c X u{p}.

Indeed under this identification there is a full and faithéatbed-
ding of £ in G. However (contrary to the claim in_[13]) there is
no adjoint to this embedding. This leaves open the issue @f pr
viding a canonical way to describe a general event strucsre
prime event structure. This issue has arisen as a centrialepno
in reversible computation/[3] and now more recently in thespnt
limitation of concurrent strategies described in the idtrction. A

corollary of our work will be that the embedding of prime irgen-
eral event structures does havpseudaright adjoint, at the slight
cost of enriching prime event structures with equivalerations.

3. Problems with general event structures

Why not settle for general event structures as a foundatiodis-
tributed strategies? Because they don’t support hidingegposi-
tion of strategies; nor do they support probability gergrahough.

3.1 Probability and parallel causes

We return to the general-event-structure description ef dtrat-
egy in the Introduction. To turn this into a probabilisticasegy for
Player we should assign probabilities to configurationsit@mal

on Opponent moves.The watcher of 1 is causally independent o
Opponent move 2. Given this we might expect that the proibgbil
of the watcher of 1 making the Player move 3 should be proisabil
tically independent of move 2; after all, both moves 3 and 2 ca
occur concurrently from configuratiofi }. Applying LMC naively
would yield

Prob(1,3|1) = Prob(1,2,3]1,2).

But similarly, Prob(2,3 | 2) = Prob(1,2,3 | 1,2), which forces
Prob(1,3 | 1) = Prob(2,3 | 2), i.e. that the conditional proba-
bilities of the two watchers succeeding are the same! Inribigir
the distinct ways in which move 3 can be caused we have oliscure
causal independence which has led us to identify possilstyndi
probabilities.

3.2 Hiding

With one exception, all the operations used in buildingtegigs
and, in particular, the bicategory of concurrent stratedid)] ex-
tend to general event structures. The one exception, thatlfg,
is crucial in ensuring composition of strategies yieldsaatggory.

Consider a general event structure wéventsa, b, c,d ande;
enabling(1) b, ¢ + e and (2)d + e, with all events other thanbeing
enabled by the empty set; andnsistencyn which all subsets are
consistent unless they contain the evenasidb —the events and
b are in conflict.

Any configuration will satisfy the assertion

(ane) = d

because it has occurred it has to have been enabled by (1) or (2)
and if a has occurred its conflict with has prevented the enabling
(1), soe can only have occurred via enabling (2).

Now imagine the eveni is hidden, so allowed to occur invisi-
bly in the background. The configurations after hiding aceséhob-
tained by hiding i¢e. removing) the invisible everitfrom the con-
figurations of the original event structure. The assertioove will
still hold of the configurations after hiding. There isn’'t angral
event structure with events c¢,d ande, and configurations those
which result when we hide (remové)from the configurations of
the original event structure. One way to see this is to olestrat
amongst the configurations after hiding we have

{c}-<{c, e} and{c}—<{a,c}

where both{c, e} and{a, ¢} have upper boundla, ¢, d, e}, and yet
{a,c,e} is not a configuration after hiding as it fails to satisfy the
assertion. (In configurations of a general event strucfuredy and
r—cz andy andz are bounded above, thg z is a configuration.)
Precisely the same problem can arise in the compositiorh (wit
hiding) of strategies based on general event structures.

To obtain a bicategory of strategies with disjunctive cause
need to support hiding. We need to look for structures moneige
than general event structures. The example above givegathki



inconsistency should be one of inconsistency between fnaihi
complete) enablings rather than events.

4. Adding disjunctive causes

To cope with disjunctive causes and hiding we must go beyene g
eral event structures. We introduce structures in whiclobyectify
cause; a minimal complete enabling is no longer an instahee o
relation but a structure that realises that instaméea(judgement
of theorem-hood in contrast to a proof). This is in order tpress
inconsistency between minimal complete enablings, iresgible
as inconsistencies on events, that can arise when hiding.

Fortunately we can do this while staying close to prime event
structures. The twist is to regard “disjunctive events” @sprising
subsets of events of a prime event structure, the eventsiohwahe
now to be thought of as representing “prime causes” staniding
minimal complete enablings. Technically, we do this by egtag
prime event structures with an equivalence relation ontsven

In detail, anevent structure with equivalen¢an ese) is a struc-
ture

(P,<,Con, =)

where(P, <, Con) satisfies the axioms of a (prime) event structure
and= is an equivalence relation dn.

An ese dissociates the two roles of enabling and atomicractio
conflated in the events of a prime event structures. Thetioters
that the eventg of P, or really their corresponding down-closures
[p], describe minimal complete enablingsime causeswhile the
=-equivalence classes 6frepresentlisjunctive events is a prime
cause of the disjunctive evefip}_. Notice there may be several
prime causes of the same event and that these mayatslel

Hiding is associated with a factorisation of partial mapst L
f:(P,<p,Conp,=p) - (Q,<g,Cong,=q)
be a partial map between two ese’s. Let
V =det {€ € E| f(e) is defined .
Then f factors into the composition

fo f1

P

PV Q

of fo, a partial map of ese’s taking ¢ P to itself if p ¢ V' and
undefined otherwise, anfl, a total map of ese’s acting likg on
V. We call f; the defined partof the partial mapf. Because=-
equivalent maps share the same domain of definitieequivalent
maps will determine the same projection andquivalent defined
parts. The factorisation is characterised to within isgsh@am
by the following universal characterisation: for any fatgation

p—2.p 2o @ wheregy is partial andy; is total there is
a (necessarily total) unique map PV — P; such that

Pi>P¢VL>Q
|

90 N
Py

h
g1

commutes.
The category¥- of ese’s supports hiding in the sense above. We
next show how replete general event structures embed is.ese’

5. A pseudo adjunction
The (pseudo) functor frong to £- is quite subtle but arises as a

causesin the sense that they are consistent with each other and right adjoint to a more obvious functor frof: to G.

not related in the ordeg.

A configurationof the ese is a configuration ¢P, <, Con) and
we shall use the notation of earlier on event structu¢&y(P)
andC(P) for its configurations, respectively finite configurations.
However, we modify the relation of concurrency a little aray s
p1,p2 € P areconcurrentand writepico po iff p1 # pe and
{p1,p2} € Con and neithep; < p2 norps < p.

When the equivalence relatienof an ese is the identity it is
essentially a prime event structure. This view is reinfdrgeour
choice of maps. A map from ege”,=p) to (Q,=¢) is a partial
function f : P — Q which preservess, i.e. if p1 =p p2 then
either bothf(p1) and f(p2) are undefined or both defined with
f(p1) =¢ f(p2)), such that for all: € C(P)

(i) the directimagefz € C(Q), and
(i) Vp1,p2 €. f(p1) =@ f(p2) = p1=pp2.

Maps compose as partial functions with the usual identities

It is not true that such maps preserve concurrency in general
they only do so locally w.r.tunambiguougonfigurations in which
no two distinct elements areequivalent.

We regard two map$i, f- : P — Q as equivalent, and write
f1 = fo, iff they are equi-defined and yield equivalent resdilts,

if f1(p) is defined then so ig: (p) and f1(p) =¢ f2(p), and

if f2(p) is defined then so ig: (p) and f1(p) =¢ f2(p).

Composition respects: if fi, f2 : P - Q with f; = f» and
g1,92 : Q@ — R with g1 = g2, theng: f1 = g2 fo. Write E- for
the category of ese’s; it isnrichedin the category of sets with
equivalence relations—see Appendix A.

Ese’s support a hiding operation. L{®, <, Con p, =) be an ese.
Let V c P be a=-closed subset of ‘visible’ events. Define the
projectionof P onV, to beP|V =g4e (V, <y, Cony,=yv ), where
v<y v iff v<ov &v,v" e VandX e Cony iff X € Con & X ¢
Vandv=y v iff v=0 &v,0" e V.

Given an esé P, <, Con, =) we can construct a (replete) general
event structurges(P) =q4et (E,Cong,+) by taking

FE = P-, the equivalence classes under

X e Cong iff 3Y € Con. X =YZ; and

Xtreiff XeCon&keecFE&

IpeP.e={p}_ & [pl- c X u{e}.

The construction extends to a functges : &< — G as maps
between ese’s preserwe the functor takes amap : P - Q of
ese’'s tothe mapes(f) : ges(P) — ges(Q) obtained as the partial
function induced on equivalence classes. Less obviousiglikre
is a (pseudo) right adjoint tges. Its construction relies on extremal
causal realisations which provide us with an appropriatonof
minimal complete enabling of events in a general event 8irac

5.1 Causal realisations

Let. A be a family of configurations with underlying sdt
A (causal) realisatiorof .A comprises a partial order

(E,<),

its carrier, such that the sefte’ € E | ¢’ < e} is finite for all events
e € E, together with a functiop : E — A for which the image
pz € Awhenz is a down-closed subset &f.

A map between realisatior{¥, <), p and(E’,<"), o' is a par-
tial surjective functionf : E — E’ which preserves down-closed
subsets and satisfigge) = p'(f(e)) when f(e) is defined. It is
convenient to write such a map as=’ p’. Occasionally we shall
write p > p’, or the converse’ < p, to mean there is a map of
realisations fronp to p'.

Such a map factors into a “projection” followed by a total map

p=l" pozg o

wherep, stands for the realisatiofFo, <o), po Where
Eo={reR| f(r)isdefined,



the domain of definition off, with <, the restriction ok, and f;
is the inverse relation to the inclusidiy € FE, and f is the total
function f» : £y - E’. We are using:; andx» to signify the two
kinds of maps. Notice that;-maps are reverse inclusions. Notice
too that>2-maps are exactly the total maps of realisations. Total
mapsp zg o' are precisely those functionfsfrom the carrier ofp
to the carrier ofp” which preserve down-closed subsets and satisfy
p=pf.

We shall say a realisationis extremalwhenp zg o' implies f
is an isomorphism, for any realisatiph

In the special case wheré is the family of configurations of a
prime event structure, it is easy to show that an extremébegin
p forms a bijection with a configuration of the event structanel
that the order on the carrier coincides with causal deperydtere.

The construction is more interesting whehis the family of
configurations of a general event structure. In generafetieat
most one map between extremal realisations. Hence extnamal
alisations of A under < form a preorder. Therder of extremal

realisationshas as elements isomorphism classes of extremal re-

alisations ordered according to the existence of a map lestwep-
resentatives of isomorphism classes. As we shall see, tiez of
extremal realisations forms a prime-algebraic domain [i#f) @aom-
plete primes represented by those extremal realisatioichvave
a top element—a direct corollary of Propositionl 5.4 in thetisec-
tion. (We say a realisation has a top element when its caroey
tains an element which dominates all other elements in tireec
We provide examples illustrating the nature of extremal-rea
isations. In the examples it is convenient to describe famibf
configurations by general event structures, taking adganté the
economic representation they provide.

Example 5.1. This and the following example shows that extremal
realisations with a top do not correspond to irreduciblefigoma-
tions. Below, on the right we show a general event structlitle w
irreducible configuratioda, b, ¢, d}. On the left we show two ex-
tremals with topsi; andds which both have the same irreducible
configuration{a, b, ¢, d} as their image. The lettering indicates the
functions associated with the realisatioagy.eventsd; andds in
the partial orders map t@in the general event structure.

Example 5.2. On the other hand there are extremal realisations
with top of which the image is not an irreducible configuratio
Below the extremal with top on the left describes a situatitvere

d is enabled byb and ¢ being enabled by:. It has image the
configuration{a, b, ¢,d} which is not irreducible, being the union
of the two configurationga} and{b,c,d}.

Example 5.3. It is also possible to have extremal realisations in
which an event depends on an event of the family having been en
abled in two distinct ways, as in the following extremal reation

with top on the left.

@ ®

The extremal describes the eveghibeing enabled by ande where
they are in turn enabled by different ways of enablingSuch
phenomena will be disallowed in edc’s.)

5.2 Aright adjointto ges

The right adjointer : G — £- is defined on objects as follows. Let
A be ageneral event structure. Defin€ A) = (P,Conp,<p,=p)
where

* P consists of a choice from within each isomorphism class of
those extremalp of C=(A) with a top element—we write
topa(p) for the image of the top element ib;

* Causal dependengyp is < on P;

* X € Conp iff X cgn P andtopa[X]eC™(A) —the sef X]
is the<p-downwards closure ok

* p1 =p p2 iff p1,p2 € P andtopa(p:) = topa(pz).

Proposition 5.4. The configurations of?, ordered by inclusion,
are order-isomorphic to the order of extremal realisationf
C* (A): an extremal realisatiop corresponds, up to isomorphism,
to the configuration(p € P | p < p} of P; conversely, a configura-
tion z of P corresponds to an extremal realisatidops : z — A
with carrier (z, <), the restriction of the order aP to x.

From the above proposition we see that the eventsr¢f)
correspond to completely-prime extremal realisations lHgnce-
forth we shall use the term ‘prime extremal’ instead of thextdier
‘extremal with top element.’

The component of the counit of the adjunctiondats given by
the functiontopa which determines a magpp, : ges(er(A)) —
A of general event structures.

Theorem 5.5. Let A € G. For all f : ges(Q) - Ain G, thereis a
maph : Q — er(A) in & such thatf = topa o ges(h) i.e. so the
diagram
A £Ages(er(A))
A
ges(h)
ges(Q)

commutes. Moreover, i : Q — er(A) is a map in€- such that
f =topa o ges(h'), thenh’ = h.

f

The theorem does not quite exhibit a standard adjunction, be
cause the usual cofreeness condition specifying an adpnist
weakened to only having uniqueness ugstddowever the condi-
tion it describes does specify an exceedingly simple capsaido
adjunctionbetween 2-categories—a set together with an equiva-
lence relation is a very simple example of a category (see Ap-
pendix A). As a consequence, whereas with the usual cofssene
condition allows us to extend the right adjoint to arrowspbtain-

ing a functor, in this case following that same line will onlield

a pseudo functoer as right adjoint: thus extendedry will only
necessarily preserve composition and identities up to



The pseudo adjunction frok to G cuts down to a reflection  Define D =g4er {(a,b) € Ax B| f(a) =¢ g(b)} with projections
(i.e. the counit is a natural isomorphism) when we restrict to the m; andn to the left and right components. Qn, taked =p d’
subcategory of where all general event structures are replete. Its iff w1 (d) =4 m1(d") andn2(d) =5 m2(d'). Define a family of

right adjoint provides a pseudo functor embedding repleteetal configurations of th@seudo pullbacko consist ofz € D iff z € D
event structures (and so families of configurations) insese’ such thatrix € A & mex € B, and

Example 5.6. On the right we show a general event structure and Vdex3dy, -, dp€x.dn=d&

on its left the ese which it gives rise to under. Vi<n. m{d,di} e A& maf{di, di} € B.

The ef D with mapsn; and . is the pseudo pullback of andg.
It would coincide with pullback i~ were the identity.
But unfortunately (pseudo) pullbacks ifum= don't provide
us with (pseudo) pullbacks 6= because the right adjoint is only
a pseudo functor; in general it will only carry pseudo putks
to bipullbacks. While€- does have bipullbacks (in which com-
mutations and uniqueness are only up to the equivalenca
6. EDC'S maps) it doesn’t always have pseudo pullbacks or pullbacks—
. . ) ) . Appendix B. Whereas pseudo pullbacks and pullbacks are char
Our major motivation in developing and exploring ese’'s Was i 4cterised up to isomorphism, bipullbacks are only charisete up

order to extend strategies with parallel causes while raaiirtg to a weaker equivalence, that induced on objects by the elguive

the central operation of hiding. What about the other ojmmetey on maps.While we could develop strategies with paralleseatin

to the composition of strategiesiz. pullback? the broad context of ese’s in general, doing so would mean tha
_Itis well-known to be hard to construct limits such as putha  he composition of strategies that ensued was not definealisp-t

within prime event structures, so that we often rely on fiastying morphism. This in turn would weaken our intended definitiod a

out the constructions in stable families. It is sensible éeksan characterisation of such strategies as those maps intosgahieh

analogous way to construct pullbacks or pseudo pullbacKs.in are stable under composition with copycat.

6.1 Equivalence families 62 Edc's defined
Fortunately there is a subcategory &f which supports hiding,
pullbacks and pseudo pullbacks. DeffffeC to be the subcategory
of &= with objects ese’s satisfying

In fact, the pseudo adjunction froL to G factors through a
more basic pseudo adjunction to families of configuratiohgchy
also bear an equivalence relation on their underlying s&ts.
equivalence-familyef) is a family of configurations4 with an

equivalence relatior 4 on its underlying set) A. We can iden- pr,p2<p&pi=ps = p1=ps.

tify a family of configurations.A with the ef (A,=), taking ] ) o ]

the equivalence to be simply equality on the underlying set. ~ We call such objectevent structures with disjunctive causes
map f : (A,=4) — (B,=p) between ef’s is a partial function ~ (edc’s). In an edc an event can't causally depend on twondisti

f: A —~ B between their underlying sets which preserves that prime causes of a common disjunctive event, and so rulesalit r
~ ~ sations such as that illustrated in Exaniplé 5.3. In generitdin £-
reA = freB&Vai,azex. f(ar) =p f(az) = a1 =4 az. we lose the local injectivity property that we're used toisgeor
Composition is composition of partial functions. We regana maps of event structures; the maps of event structures jaxtive
maps from configurations, when defined. However ##C we recover
local injectivity w.r.t. prime configurations: if : P is a ma|
il (A=a) > (B.=p) e ey Wt P 9 repP=Q P
as equivalent, and writ§, = f», iff they are equidefined and yield
equivalent results. Composition respestsThis yields a category p1,p2<pp& f(p1) = f(p2) = p1=p2.

of equivalence familieFam-= enriched in the category of sets with
equivalence relations.

Clearly we can regard an e$é =p) as an ef(C*(P),=p)
and a function which is a map of ese’'s as a map between the
associated ef’s, and this operation forms a functor. Thetfurhas
a pseudo right adjoint built from causal realisations ingy gémilar
manner toer. The configurations of a general event structure form
an ef with the identity relation as its equivalence. Thisragien is

The factorisation property associated with hidinginis inherited
by £DC.

As regards (pseudo) pullbacks, we are fortunate in that the
complicated pseudo adjunction between ese’s and ef'siatsstr
down to a much simpler adjunction, in fact a coreflectionwesn
edc’s andstable ef's. In an equivalence family{.A4,=4) say a
configurationz e A is unambiguousff

functorial and has a left adjoint which collapses an ef to rregal Yai,a2 €T.a1 =4 a2 = a1 =az.
event structure in a similar way fges; the adjunction is enriched . . B . .
in equivalence relations. In summary, the pseudo adjumctio An equivalence family(.A, =), with underlying set of eventd,
is stableiff it satisfies
<7 g Vr,y,z € A. x,y € z & zis unambiguous= x ny e Aand
Sc~— 7 . .
ges Vae Ajxe A.aex = Iz € A. zis unambiguous& a € z € x.
factors into a pseudo adjunction followed by an adjunction In effect a stable equivalence family contains a stablezulh§ of

unambiguous configurations out of which all other configoret
are obtainable as unions. Local to any unambiguous configara
x there is a partial order on its events: eacha € « determines a
prime configuration

. N1
Fam= has pullbacks and pseudo pullbacks which are easy to
construct. For example, let : A -~ C andg : B — C be total

maps of ef’'s. Assumed and B have underlying setsl and B. [a)s =aet (J{yeAlacycua},



the minimum set of events on whiehdepends withinz; taking
a <z biff [a]. ¢ [b]. defines causal dependency betweebie .
Write SFam-= for the subcategory of stable ef’s.

(Pseudo) pullbacks in stable ef’s are obtained from thosé'sn
simply by restricting to those configurations which are usiof
unambiguous configurations.

The configurations of an edc with its equivalence are easily
seen to form a stable ef providing a full and faithful embeddi
of EDC in SFam=. The embedding has a right adjoiBt. It is
built out of prime extremals but we can take advantage of aoe f
that in a stable ef unambiguous prime extremals have thelsimp
form of prime configurations. From a stable &f, = 4 ) we produce
an edcPr(A,=4) =4et (P,Con, <, =) in which P comprises the
prime configurations with

[a]e = [a]e iffa=ad,
ZeConiff Zc P& | JZe¢F and
p<piff pp’ e P&pcyp’.
The adjunction is enriched in the sense that its naturattige
preserves and reflects the equivalence on maps:
Pr
ere < srum-

We can now obtain a (pseudo) pullback in edc’s by first forming

the (pseudo) pullback of the stable ef’s obtained as theifigora-

tions and then taking its image under the right adjéintWe now
have the constructions we need to support strategies bassttis.

6.3 Coreflective subcategories of edc’s

EIXC is a coreflective subcategory 6£; the right adjoint simply
cuts down to those events satisfying the edc property. m&mc
has a coreflective subcategafy comprising those edc’s which
satisfy
{p1,p2} eCon& p1 =p2 = p1=p2.

Consequently its maps are traditional maps of event strestu
which preserve the equivalence. We derive adjunctions

er

Qe T et o

ges
Note the last is only a pseudo adjunction. Consequently we&iob
a pseudo adjunction frof, the a category of prime event struc-
tures with equivalence relations and general event strestuthis
makes good the promise of Sectjon|2.3. Inspecting the coitepafs
the last two adjunctions, we also obtain the sense in whiglete
general event structures embed via a reflection in edc’s.

There is an obvious ‘inclusion’ functor from the category of
prime event structures to the categonfIC; it extends an event
structure with the identity equivalence. Regard#1gC as a plain
category, so dropping the enrichment by equivalence ogigtithe
‘inclusion’ functor

&= EDC
has a right adjointviz.the forgetful functor which given an ede =
(P, <,Con, =) produces an event structuf® = (P,<,Con’) by
dropplng the equivalenceand modifying the consistency relation
to

X € Con' iff X ¢ P& X € Con & p1 # p2, forall p1,p2 € X .

The configurations of?, are the unambiguous configurations of
P. The adjunction is a coreflection because the inclusiontéurns
full. Of course it is not the case that the adjunction is dredt the
natural bijection of the adjunction cannot respect the \sdence
on maps; it cannot compose with the pseudo adjunction #6th

to G to yield a pseudo adjunction frogto G.

Despite this the adjunction froghto ELC has many useful prop-
erties. Of importance for us is that the functor forgettingiga-
lence will preserve all limits and especially pullbacksislthelp-
ful in relating composition of edc-strategies to the conipms of
strategies based on prime event structures_inh [10]. In cempgo
strategies in edc’s we shall only be involved with pseuddbaicks
of mapsf : A - C andg : B - C in which C is essentially an
event structurei,e. an edc in which the equivalence is the identity
relation. The construction of such pseudo pullbacks cdegivith
that of pullbacks. While this does not entail that compositof
strategies is preserved by the forgetful functor—becauséarget-
ful functor does not commute with hiding—it will give us aatg
relationship, expressed as a map, between compositiore dfvit
kinds of strategies (based on edc’s and based on prime dvect s
tures) after and before applying the forgetful functor.sTts been
extremely useful in some proofs, in importing results fra][

7. Strategies based on edc’s

We develop strategies in edc’s in a similar way to that oftegies

in [10], viz. as certain maps stable under composition with copycat.
But what is copycat on an edc? If games are edc’s, shouldnit co
position be based on pseudo pullback rather than pullbagls® -
arate concerns and, at least initially, avoid such issueassame
that games are (the edc’s of) prime event structures, emnsthat

in our uses of pullbacks they will coincide with pseudo patlks.

An edc with polaritycomprises(P, =, pol), an edc(P,=) in
which each element € P carries a polaritypol(p) which is+ or
—, according as it represents a move of Player or Opponent, and
where the equivalence relatierrespects polarity.

A mapof edc’s with polarity is a map of the underlying edc’s
which preserves polarity when defined. The adjunctions ef th
previous chapter are undisturbed by the addition of pglarit

There are two fundamentally important operations on twdypa
games. One is that of forming the dual game in which the mokes o
Player and Opponent are reversed. On an edc with poldrityis
amounts to reversing the polarities of events to producedtta
A*. The other operation is a simple parallel composition of ggam
achieved on edc’s with polaritd and B by simply juxtaposing
them, ensuring a finite subset of events is consistent ifviéslaps
with the two games are individually consistent, to foA#B.

A game is represented by an edc with polarity in which the edc
is that of a prime event structure.ge-strategyin edc’s, or aredc
pre-strategy in a gameA is a total maps : S - A of edc’s. A
pre-strategy from a gamé to a gameB is a pre-strategy in the
gameA*|| B. We shall shortly refine the notion of pre-strategy to
strategy. By a strategy in a game we will mean a strategy fyed?]

A strategy for Opponent, or a counter-strategy, in a gzimll be
identified with a strategy im*. Amap f : o = o’ of edc pre-
strategiesr : S - Aando’: S' - Aisamapf: S — S’ of edc’s
with polarity such that = ¢’ f; in the standard way this determines
isomorphisms of edc pre-strategies, important for us in enerd.

7.1 Copycat

An important example of a strategy is tkepycatstrategy for a
gameA. This is a strategy in the gamé* || A which, following
the spirit of a copycat, has Player moves copy the correspgnd
Opponent moves in the other component. In more detalil, thg-co
cat strategy comprisess : (C4 — A'||A where(C 4 is obtained
by adding extra causal dependenciesitd| A so that any Player
move in either component causally depends on its copy, a-Opp
nent move, in the other [10]. This generates a partial orfleawsal
dependency. A finite set is taken to be consistent if its dolesure
w.r.t. the order generated is consistentdih|| A; the mapy. is the
identity function on events. We illustrate the constructan the
simple game comprising a Player move causally dependent on a



single Opponent move:

o—— >0
At T Ca T A
®

<+ --9©

In characterising the configurations of the copycat styatey
important partial order on configurations is revealed. @yeeon-
figurations of a gamed are ordered by inclusioa. For configu-
rationsz andy, write x ¢~ y andz c* y when all the additional
events of the inclusion are purely Opponent, respectivligyer
moves. A configuration: of (C 4 is also a configuration ofi* || A
and as such splits into two configuratians on the left andrz on
the right. The extra causal constraints of copycat enswaettie
configurations of C 4 are precisely those configurations 4f || A
for which it holds that

T2 E4 21, definedascz 2" z1 N2 ¥ 2y .

Because it generalises the pointwise order of domain théutiy
ated by Dana Scott, we have called the Scott order

7.2 Composing edc pre-strategies

In composing two edc pre-strategies ena A*|| B and another

in B*| C one firstly instantiates the Opponent moves in component
B by Player moves iB* andvice versaand then secondly hides
the resulting internal moves ovér. The first step is achieved effi-
ciently via pullback. Temporarily ignoring polarities etfpullback

in edc’s

AT A
T T
/ \
TeS> A|B|C
o™~

S|C

“synchronises” matching moves & and T over the gameB.
But we require a strategy over the gamé||C' and the pullback
T & S has internal moves over the garBe We achieve this via the
projection ofT" @ S to its moves overd andC. We make use of
the partial map fromA || B||C to A||C which acts as the identity
function onA andC and is undefined o®. The composite partial
map

alr
NN
TeSs A|BC—=A|C
o™~ T
S| C

has defined part, yielding the composition
700 :TeS - A*|C

once we reinstate polarities. The composition of edc grase oo

is a form of synchronised composition of processes follobsethe
hiding of internal moves, a view promulgated by Abramskyhiwit
traditional game semantics of programs.

7.3 Edc strategies

The article|[10] characterises through the propertiesraidcence”
and “receptivity” those pre-strategies based on eventistres
which are stable under composition with the copycat styatége
characterisation becomes the definition of concurrentegfyaWe
imitate [10] and provide necessary and sufficient conditifor a
pre-strategy in edc’s to be stable up to isomorphism undepoe
sition with copycat. Fortunately we can inherit a great deain

the proof of [10] via the coreflection of event structuresdi’s of
Sectior 6.B.

An edc pre-strategy : S — A is anedc strategyf it satisfies
the following axioms:
innocences (s) — o(s') if s — s" & pol(s) = + or pol(s') = -.
3-receptivity:if cz— in C(A) with pol 4 (a) = — thenz—c &
o(s) = a, for somes € S. (Unlike “receptivity” of [10] we do not
have uniqueness.)
+-consistency:X € Cong if 0X € Cona and[X]" ¢ Cong,
whereX cq, S. (The sef X]* comprises the +ve elements in the
downwards closure aX'.)
non-redundancys; = sz if [s1) = [s2) & s1 =5 s2 & polg(s1) =
polg(s2) =—.
=-saturation:s; =g s2 if o(s1) = o(s2) .

Theorem 7.1. Leto : S — A be an edc pre-strategy. Then,
o 2 v400 iff o satisfies the axioms above.

Corollary 7.2. Leto : S - B*||C be an edc pre-strategy. Then,
o 2 vc®oovyg iff o satisfies the axioms above.

We obtain a bicategory in which the objects are games, the
arrowso : A—= B are edc strategies from A to B and 2-
cells are total maps of pre-strategies with vertical cortjpwstheir
usual composition. Horizontal composition is given by casifion
®, which extends to a functor on 2-cells via the universality o
pullback and the factorisation property of hiding. An edatggy
o : A—~ B corresponds to its dual* : B* —= A", yielding (a
bicategorical variant of) compact-closure though this e&aken
to x-autonomy with the addition of extra structure such as wigni
conditions or pay-off.

An edc strategy : S — A is deterministidf S is deterministic
as an edc with polarity:

VX Can S. [X] € Cong = X € Cong,

where[ X ] is all the Opponent moves in the down-clos{i’]; in
other words, consistent behaviour of Opponent implies isters
behaviour.S being deterministic is equivalent to

e & a— & pol(s1) =+ = xz U {s1,s2} € C(5).
forallz €C(S),s1,s2 € S. Copycat strategiegs are deterministic

iff the game A is race-free:if z—< andz—— in C(A) with a
anda’ of opposing polarities, theau {a,a’} € C(A). We obtain
a sub-bicategory of deterministic edc strategies betwaee-free
games|[10].

Such parallel deterministic strategies include the sises&etched
informally in the Introduction in which Player makes a moftfe i
Opponent makes one or more of their moves:

F71
o o
Along the same lines there is a parallel deterministic styafor
computing “parallel or.”

o
—

®
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8. Probabilistic edc strategies
8.1 Probabilistic event structures

A probabilistic event structure essentially compriseswamestruc-
ture together with a continuous valuation on the Scott-cyea of
its domain of configuratior$.The continuous valuation assigns a

1A Scott-opersubset of configurations is upwards-closed w.r.t. inclusio
and such that if it contains the union of a directed subsaftconfigurations
then it contains an element &f. A continuous valuations a functionw



probability to each open set and can then be extended to a-prob
bility measure on the Borel seis [4]. However open sets arerake
levels removed from the events of an event structure, andaix-e
alent but more workable definition is obtained by considgtime
probabilities of sub-basic open sets, generated by singte fion-
figurations; for each finite configurationthis specifiesProb(x)
the probability of obtaining events, so as result a configuration
which extends the finite configuratian Such valuations on config-
uration determine the continuous valuations from whicly tuése,
and can be characterised through the device of “drop fumgtio
which measure the drop in probability across certain gdiserhin-
tervals. The characterisation yields a workable generfaitlen of
probabilistic event structure as event structures wathfiguration-
valuations viz. functions from finite configurations to the unit in-
terval for which the drop functions are always nonnegaih4.[

In detail, aprobabilistic event structureomprises an event
structureF with a configuration-valuationa functionv from the
finite configurations of to the unit interval which is

(normalized)v(@) = 1 and has

(non-ve drop)d,[y; 1, zn] > 0 wheny < x1,--, z, for
finite configurationsy, x1, -+, z,, of F,

where the “drop” across the generalized interval starting and
ending at one of the,---, z,, is given by

doly; 1, 20] =aer v(y) = 2 (-D (U i)
I el

—the index/ ranges over nonempty ¢ {1,---,n} such that the
unionU,.; x; is a configuration. The “dropd, [y; z1, -, » ] gives
the probability of the result being a configuration whichlies
the configuratiorny and does not include any of the configurations
L1,y Tn-

If z ¢ yin C(E), thenProb(y | x) = v(y)/v(z); this is the
probability that the resulting configuration includes thermsy
conditional on it including the events

8.2 Probability with an Opponent

This prepares the ground for a general definition of distatu
probabilistic strategies, based on edc’s. Firstly thowgh,should
restrict to race-free games, in particular because witlsopycat
being deterministic there would be no probabilistic idgnsirate-
gies. A probabilistic edc strategy in a gareis an edc strategy
o : S — Ain which we endowsS with probability, while taking
account of the fact that in the strategy Player can't be awhtiee
probabilities assigned by Opponent. We do this throughnebing
the definition of configuration-valuation via an axiom (Inveich
implies the Limited Markov Condition, LMC, of the Introduch.

Precisely, aconfiguration-valuatioris now a functionv, from
finite configurations of to the unit interval, which is

(normalizedv(2) = 1, satisfies

(Imc)v(z) = v(y) whenz < y for finite configurationse, y
of S, and the

(+ve drop condition)l, [y; 1, -, Tn ] > OWheny c* z1, -, =,
for finite configurations of.

Whenz c* y in C(S), we can still expres®rob(y | z), the
conditional probability of Player making the movgs. x givenz,
asv(y)/v(x). In fact all such conditional probabilities determine
v via normalisation and Imc. Ad is race-free it followsS is also

from the Scott-open subsets 6f°(E) to [0, 1] which is (normalized)
w(C®(FE)) = 1; (stricty w(z) = 0; (monotone) U ¢ V =—
w(U) <w(V); (modular) w(UuV)+w(UnV) =w(U)+w(V); and
(continuous) w(U;er Us) = sup,c;w(U;), for directedunions. The idea:
w(U) is the probability of a result in open sit

race-free. Hence it is a finite configuration at whick—2c and

2—c thenz U {®, e} is also a configuration, and both moves are
@, © are causally independent (or concurrent). From Imc we obtai
LMC directly: Prob(® | ) = Prob(z,® | z) =
v(zu{e})/v(z) =v(zu{e,e})/v(zu{e}) =
Prob(z,®,0 | x,0) = Prob(e | z,0).
A dual form of LMC will hold of a counterstrategy, a strategy f
Opponent; the LMCs for Player and Opponent will togetheuens
the probabilistic independence of Player and Opponent sooen
a common configuration.
A probabilistic edc strategyn race-free gamel comprises an
edc strategy : S — A with a configuration-valuation for S.
A probabilistic edc strategypetween race-free gametsto B is
a probabilistic edc strategy iA*|| B. Note that the configuration-
valuation of an edc doesn’'t necessarily respect the eguival of
the edc; different prime causes of a common disjunctive tavety
well be associated with different probabilities.

Example 8.1. Recall the game of the Introduction. In the edc
strategy wl @ = @ w2 of Sectior 2B individual success of

e e
the two watchers may be associated with probabiliies [0,1]
andp; € [0, 1], respectively, and their joint success witla [0, 1]
provided they form a configuration valuatian In other words,
v(x) = p1 if z containsw1 and notw?2; v(z) = ps if = contains
w2 and notwl; andv(z) = ¢ if x contains bothwl and w2;
v(z) = 1 otherwise; ang: + p2 — ¢ < 1, in order to satisfy the
+-drop condition. O

We extend the usual composition of edc strategies to proba-
bilistic edc strategies. Assume probabilistic edc stiateg: S —
A*|| B, with configuration-valuatiows, andr : T — B*|C with
vr. Their composition is defined to heoo : TeS — A*||C with
a configuration-valuatiom given by

v(z) = v () vr (73 )

for z a finite configuration of’®S. The configurationt{ z is the
component inC(.S) of the projectionmiz € C(S|C) from the
pullback defined in Sectidn 1.2; similaryf = is theT-component
of mox. The proof thav is indeed a configuration-valuation is quite
subtle and relies heavily on properties of “drop” functions

8.3 A bicategory of probabilistic edc strategies

We obtain a bicategory of probabilistic edc strategies irictvh
objects are race-free games. Maps are probabilistic edtegtes.
Identities are given by copycat strategies, which for fiee-games
are deterministic, so permit configuration-valuations alihare
constantly 1. Generally, a probabilistic edc strategyeierministic
if its configuration-valuation assigns 1 to all finite configtions;
its underlying edc strategy is then necessarily determiirtiso.
The 2-cells of the bicategory require consideration. Wasee
can always “push forward” a probability measure from the diom
to the codomain of a measurable function this is not true igdiye
for configuration-valuations involving Opponent moveswdéger:

Theorem 8.2. Let f : ¢ = o' be a 2-cell between edc strate-
gieso : S - Aando’ : S - A which is a rigid map of
event structures. Lei be a configuration-valuation of. Taking
V'(Y) =det Laipaey v(x) fory e C(S’), defines a configuration-
valuation, writtenfv, on.S’.

A 2-cell fromo,v too’,v" is a 2-cellf : o = o’ of edc strate-

gies in whichf : S - S’ is a rigid map of event structures and for
which the “push-forward’fv satisfies(fv)(z') < v'(z"), for all



configurationse’ € C(S"). Rigid 2-cells include rigid embeddings
giving the machinery to define probabilistic strategiesirsively.

9. Constructions on probabilistic edc strategies

Following |2,115], race-free games play the role of types smpo-
port operations of forming the dudl*, simple parallel composition
A| B, sumX;r A; and recursively-defined games. Terms have typ-
ings

T1: Al Tm tAm -t Ay Bl yn  Bn

where all the variables are distinct, and denote probaibibsic strate-
gies from the game{ = A, ||---|| A to the gameB = B; |-+ Bn.
We can think of the termt as a box with input wires1,---, 2
and output wiregy1, -, y». The termt denotes a probabilistic edc
strategyS — A*|| B with configuration valuations and describes
witnesses, finite configurations &f, to a relation between finite
configurationsi of A and§ of B, together with their conditional
probabilities. The following constructions, first deseskfor (prob-
abilistic) concurrent strategies in |2,/ 15], extend to {abilistic)
edc strategies, though note that duplication now becontesmim-
istic as an edc strategy for a broader class of games.
CompositionT' - JA. [t || u] “Hif '+t -4 AandA +u < H.
Probabilistic sum I + X;cpit; 4+ AT+~ ¢; 4 Afori eI,
assumed countable, and a sub-probability distribytion e 1. The
empty sum denotes, the minimum strategy in the ganfie || A.
Conjunction T" + t1 Ata - A is given by pullback of - ¢; 4 A
andI + t2 —+ A from the gamd™ | A.
Copycat termsof the formz : A ~ gjcc fZ - §: B, where
f:A - Candg: B — C are (affine) maps of event structures
preserving polarity. Such terms introduce new “causalngitiand
subsume copycat, injections and projections associatédswims,
and prefix operations and can achieve the effegt-abstraction on
strategies||2]. With composition they allow us to expredsaae
operationThey denote deterministic edc strategies—so a proba-
bilistic edc strategy with configuration-valuation comgta one—
provided f reflects—-compatibility andg reflects+-compatibility.
The mapg reflects +-compatibility if wheneverz <* z; and
x ¢ x5 in the configurations o3 and fz, U fx2 is a configu-
ration, then so ig:; U z2. Reflecting--compatibility is analogous.
Duplication Duplications of arguments is essential if we are to sup-
port the recursive definition of strategies. We duplicatuarents
through an edc stratedgy, : A —= A|| A. Intuitively it behaves like
the copycat strategy but where a Player move in the left comento
may be caused in parallel by either of its corresponding @ppb
moves from the two components on the right. We skiowwhen
A consists of a single Player mow and, respectively, a single
Opponent move:

52

A=,
0"

A=o, #<4—o0o
1l

\A@ ®<+— o
The general definition is in Appendix C. In general, duplmat
J 4 is deterministic iff A is deterministic for Opponent.e. A* is
deterministic as an edc with polarity. Théa extends directly to a
probabilistic edc strategy and is a comonoid. (When theidatabn
strategy is based on prime event structures, the duplicatiat-
egy is not deterministic unless the game consists purelyayfeP
moves, making associativity fail with the introduction gbpabil-
ity [15].)
RecursionOnce we have duplication strategies we can treat recur-
sion using standard machinery [12]; recall that 2-cells, tiraps
between probabilistic strategies, include rigid embegslirso an
approximation ordeg of rigid inclusions. The order forms a ‘large
complete partial order’ with a bottom element the minimunatst
egyL.Givenz: AT+t —+y: A theterml' - pz:A.t—Hy: A

denotes thes-least fixed point amongst probabilistic strategiées
in T*|| A of the g- continuous operatiof’ (X ) = t@(idr || X )@dr.
This requires the gamdsare deterministic for Opponent.

9.1 Special cases and extensions

The constructions yieldleterministicedc strategies if we avoid
probabilistic sums.

If we drop probability, we can drop race-freeness on games,
the determinacy conditions on copycat terms and paramefers
recursions, and replace probabilistic by nondetermmistim, to
obtain constructions fanondeterministi@dc strategies.

Even without probability, we obtain an interesting bicateg
if we restrict to games in which all moves are those of Player.
Duplication is now expressible in event structures. If wetfer
restrict to strategies described with event structureshisaconcur-
rent strategies of [10]) we obtain a monoidal-closed bupaitg with
simple parallel composition as tensor. With the additiopmiba-
bility we obtain a framework for probabilistic dataflow. Mothat
probability distributions o®.g.domains of infinite streams induced
by configuration-valuations can well be continuous on thegxi-
mal elements. Given all this the much richer types and laggad
the previous section should support a useful style of priibib
programming based on probabilistic strategies.

In general, games can be extended to games imitherfect
informationandpay-offas in [14]; then they, and the probabilistic
concurrent games cof [14], include Blackwell games [6].

There is an alternative method for introduciparallel causes
via symmetrythrough a pseudo monadn games; an edc strategy
in a gameA corresponds to a strategy T; the monad? intro-
duces multiple symmetric parallel causes to Player movestiL
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A. Equiv-enriched categories c @
Here we explain in more detail what we mean when we say
“enriched in the category of of sets with equivalence refsf and ®

employ terms such as “enriched adjunction,
and “pseudo pullback.”
Equiv is the category oéquivalence relationdts objects are G)
(A,=4) comprising a setd on which there is an equivalence
relation=4. Its mapsf : (A,=4) — (B,=p) are total functions
f:+ A - B which preserve equivalence. @ ®
We shall use some basic notions from enriched category
theory [5]. We shall be concerned with categories enricmed i
Equiv, calledEquiv-enriched categories, in which the homsets
possess the structure of equivalence relations, respésted
composition. This is the sense in which we say categories are A E
enriched in (the category of) equivalence relations. Welaity
borrow the concept of aRquiv-enriched functor betweefquiv-
enriched categories which preserve equivalence in acting o @@
homsets. AnEquiv-enriched adjunction is a usual adjunction
in which the natural bijection preserves and reflects edprivz.
Because an object iiquiv can be regarded as a (very simple) @@
category, we can regarfquiv-enriched categories as a (very
simple) 2-categories to which notions from 2-categorigd\afg]. @ @
A pseudo functobetweenEquiv-enriched categories is like @ ©
a functor but the usual laws only need hold up to equivaleAce.
pseudo adjunctioffor biadjunction) between 2-categories permits  with the obvious mapg : A — C andg : B — C (given by the
a weakening of the usual natural isomorphism between hemset lettering). In fact,A and B are edc’s.

pseudo adjont

with A and B being respectively

®

)

now also categories, to a natural equivalence of categdries The pullback in edc’€DC does exist and is given by
the special case of a pseudo adjunction betweemiv-enriched
categories the equivalence of homset categories amouatpdo P

of =-preserving functions whose compositions arequivalent to
the identity function. With traditional adjunctions by sifging

the action of one adjoint solely on objects we determine 4 as
functor; with pseudo adjunctions we can only determine iaas
pseudo functor—in general a pseudo adjunction relates $eogo
functors. Pseudo adjunctions compose in the expected way. A
Equiv-enriched adjunction is a special case of a 2-adjunction
between 2-categories and a very special case of pseudactidjun
In this article there are many cases in which we compose an
Equiv-enriched adjunction with a pseudo adjunction to obtain a
new pseudo adjunction.

Similarly we can specialise the notions pseudo pullbacks an
bipullbacks from 2-categories #©quiv-enriched categories. Let
f:A—> Candg: B — C be two maps in afEquiv-enriched
category. Apseudo pullbaclof f andg is an objectD and maps
p:D — Aandq: D — B such thatf o p = g o ¢ which satisfy
the further property that for anp’ and mapg’ : D’ - A and N
¢ : D' - B such thatf o p’ = g o ¢, there is a unique map @@
h: D' — D suchthatp’ = pohandq = ¢ o h. There is an
obvious weakening of pseudo pullbacks to the situation iickwvh _
the uniqueness is replaced by uniqueness upaiod the equalities @@
by =—these are simple special cases of bilimits cabigulllbacks

Right adjoints in a 2-adjunction preserve pseudo pullbacks
whereas right adjoints in a pseudo adjunction are only asistar @ ©
preserve bipullbacks.

with the obvious projection maps. However this is not a @dlo
in £&-. Consider the ese

D

Zx ZX

with the obvious total maps td and B; they form a commuting
) square withf andg. This cannot factor througl: eventb2 has

B.  On (pseudo) pullbacks of ese’s to be mapped td2 in P, but thenal cannot be mapped @l (it

We show that the enriched category of es&'sdoes not always wouldn't yield a map) nor ta2 (it would violate commutation
have pullbacks and pseudo pullbacks of mgpsA — C and required of a pullback).



There is a bipullback got by applying the pseudo funetoto
the pullback in ef’s:

But this is not a pullback because in the ésb&elow the required
mediating map is not unique in that can go to eitheal or al’:

@

In fact, there is no pullback of andg. To show this we use an
additional ese:

Suppose&) with projection maps tod and B were a pullback
of f andg in £-. Consider the three esel3, E and F’ with their
obvious maps tod and B; in each case they form a commuting
square withf andg. There are three unique maps : D — Q,
hg : E - Q,andhr : F — Q such that the corresponding
pullback diagrams commute. We remark that there are alsoabv
mapskp : E - D andkr : E — F (given by the lettering)
which commute with the maps to the componeAtsind B. By
uniqueness, we havep o kp = hg = hr o kr, SO We have
hp(al) = hp(al). From the definition of the maps, the event
hp(al) = hr(al) has at most ong-predecessor id) which is
sent tob in C (asD only has one). Because of the projectiomp
it has at least one (aB has one). So the evehip (al) = hr(al)
has exactly one predecessor which is sert terom the definition
of maps, this event i&p (b2) which equalshz (b1). But hp (b2)
cannot equah (b1) as they go to two different events df —a
contradiction. Hence there can be no pullbackfaindg in &-.
(By adding intermediary events, we would encounter esainti
the same example in the composition, before hiding, ofexgias
if they were to be developed within the broader category ekes

C. The edc duplication strategy

We present the general definition of the atlplicationstrategy
04 : A—> A| A for arace-free gamd.

For each tripl€x, y1,y2), wherer € C(A*) andyi, y» € C(A),
which isbalancedi.e.

Va ey Uys2. poly(a) =+ = acxand

Vaex. poly,(a)=+ = acyiOfacys,
andchoicefunctionx : z* — {1,2}, from the positive events
of z denoted byz*, such thaty(a) =1 == a € y and
x(a) =2 = a €y, the orderg(z,y1,y2; x) is defined to have

underlying sef0} xz U {1} xy1 U {2} x y» with order generated
by that inherited fromA* || A|| A together with

{((0,a), (1,a)) [a eyr & pol4(a) = +} U
{((0,a),(2,a)) [acyz & pol4(a) = +} U
{((x(a),a), (0,a)) |a ez & pol 5. (a) = +}.

Now we can defingfs : D4 — A'| A|A. The edcD4
compriseg D 4, <, Con, =, pol) with

eventsD 4 consisting of alld = q(z,y1,y2;x), for balanced
(x,y1,y2) and choice functiony, which have a top element
5A(d);

causal dependengy< d' iff there is a rigid inclusion map from
dinto d’ (regarded as event structures);

consistencyX € Con iff X cs, D4 and the image of its-
down-closured 4[ X ], is consistent imd* || A| A;

equivalencel = d' iff §4(d) = 64(d’), i.e.they have the same
top element inA*|| A|| 4; and

with the polarity of eventsD 4 inherited from the polarity of
their top elements,e. pol(d) = pol ,(6a(d)) ford e D 4.

We obtain an edc strategys : A—= A|lA in which d4 :

D4 — A*||A|| A sends a prime to its top element. The edc strategy

0 4 forms a comonoid with counit : A —= .
The duplication strategy is deterministic iff no Opponent

moves inA are in immediate conflici,e. if z—c andz—c in
C(A) andpol 4(a1) = pol4(az2) = —thenz U {a1,a2} € C(A).
Given thatA is race-freed 4 is deterministic iffA* is deterministic
as an edc with polarity—a condition we caléterministic for
Opponent Under the condition thati* is deterministic, ag 4 is
a deterministic edc strategy it extends directly to a prdisaic
edc strategy with configuration-valuation having constaitie
1. Then the probabilstic edc stratedy forms a comonoid with
counitL : A—=g.
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