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Strategies with Parallel Causes

In a distributed game we imagine a team Player engaging a team Opponent in a distributed fashion. Such games and their strategies have been formalised in concurrent games based on event structures. However there are limitations in founding strategies on traditional event structures. Sometimes a probabilistic distributed strategy relies on certain benign races where, intuitively, several members of team Player may race each other to make a common move. Although there are event structures which support such parallel causes, in which an event is enabled in several compatible ways, they do not support an operation of hiding central to the composition of strategies; nor do they support probability adequately. An extension of traditional event structures is devised which supports parallel causes and hiding, as well as the mix of probability and nondeterminism needed to account for probabilistic distributed strategies. The extension is tested in the construction of a bicategory of probabilistic distributed strategies with parallel causes. The bicategory is rich in operations relevant to probabilistic as well as deterministic parallel programming.

Introduction

This article considers probabilistic distributed games between two teams, Player and Opponent. To set the scene, imagine a simple distributed game in which team Opponent can perform two moves, called 1 and 2, far apart from each other, and that team Player can just make one move, 3. Suppose that for Player to win they must make their move iff Opponent makes one or more of their moves. Informally Player can win by assigning two members of their team, one to watch out for the Opponent move 1 and the other Opponent move 2. When either watcher sees their respective Opponent move they run back and make the Player move 3. Opponent could possibly play both 1 and 2 in which case both watchers would run back and could make their move together. Provided the watchers are perfectly reliable this provides a winning strategy for Player. No matter how Opponent chooses to play or not play their moves, Player will win; if Opponent is completely inactive the watchers wait forever but then Player does win, eventually.

We can imagine variations in which the watchers are only reliable with certain probabilities with a consequent reduction in the probability of Player winning against Opponent strategies. In such a probabilistic strategy Player can only determine probabilities of their moves conditionally on those of Opponent. Because Player has no say in the probabilities of Opponent moves beyond those determined by causal dependencies of the strategy we are led to a Limited Markov Condition, of the kind discussed in [START_REF] Pearl | Causality[END_REF]:

(LMC) In a situation x in which both a Player move ⊕ and an Opponent move ⊖ could occur individually, if the Player move and the Opponent move are causally independent, then they are probabilistically independent; in a strategy for Player, Prob(⊕ x, ⊖) = Prob(⊕ x).

The LMC is borne out in the game of "matching pennies" where Player and Opponent in isolation, so independent from each other, each make their choice of head or tails. Note we do not expect that in all strategies for Player that two causally independent Player moves are necessarily probabilistically independent; in fact, looking ahead, because composition of strategies involves hiding internal moves such a property would not generally be preserved by composition.

Let us try to describe the informal strategy above in terms of event structures. In 'prime' event structures in which causally dependency is expressed a partial order, an event is causally dependent on a unique set of events, viz. those events below it in the partial order. For this reason within prime event structures we are forced to split the Player move into two events one for each watcher making the move, one w1 dependent on Opponent move 1 and the other w2 on Opponent move 2. The two moves of the two watchers stand for the same move in the game. Because of this they are in conflict (or inconsistent) with each other.We end up with the event structure drawn below:

w1 ⊕ / o / o ⊕ ⊖ ❴ L L R ⊖ ❴ L L R w2
The polarities + andsignify moves of Player and Opponent, respectively. The arrows represent the (immediate) causal dependencies and the wiggly line conflict. As far as purely nondeterministic behaviour goes, we have expressed the informal strategy reasonably well: no matter how Opponent makes or doesn't make their moves any maximal play of Player is assured to win. However consider assigning conditional probabilities to the watcher moves. Suppose the probability of w1 conditional on 1 is p1, i.e. Prob(w1 1) = Prob(w1, 1 1) = p1 and that similarly for w1 its conditional probability Prob(w2 2) = p2. Given that move w1 of Player and move 2 of Opponent are causally independent, from (LMC) we expect that w1 is probabilistically independent of move 2, i.e.

Prob(w1 1, 2) = Prob(w1 1) = p1 ; whether Opponent chooses to make move 2 or not should have no influence on the watcher of move 1. Similarly, Prob(w2 1, 2) = Prob(w2 2) = p2 .

But w1 and w2 are in conflict, so mutually exclusive, and can each occur individually when 1 and 2 have occurred ensuring that p1 + p2 ≤ 1 -we haven't insisted on one or the other occurring, the reason why we have not written equality. The best Player can do is assign p1 = p2 = 1 2. Against a counter-strategy with Opponent playing one of their two moves with probability 1/2 this strategy only wins half the time. We have clearly failed to express the informal winning strategy accurately! Present notions of "concurrent strategies," the most general of which are presented in [START_REF] Winskel | Distributed probabilistic and quantum strategies[END_REF], are or can be expressed using prime event structures. If we are to be able to express the intuitive strategy which wins with certainty we need to develop distributed probabilistic strategies which allow parallel causes in which an event can be enabled in distinct but compatible ways. 'General' event structures are one such model [START_REF] Winskel | Event structures[END_REF]. In the informal strategy described in the previous section both Opponent moves would individually enable the Player move, with all events being consistent, illustrated below:
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But as we shall see general event structures do not support an appropriate operation of hiding central to the composition of strategies. Nor is it clear how within general event structures one could express the variant of the strategy above in which the two watchers succeed in reporting with different probabilities.

It has been necessary to develop a new model-event structures with disjunctive causes (edc's)-which support hiding and probability adequately, and into which both prime and general event structures embed. The new model provides a foundation on which to build a theory and rich language of probabilistic distributed strategies with parallel causes. Without probability, it provides a new bicategory of deterministic parallel strategies which includes, for example, a deterministic strategy for computing "parallel or"-Section 7. [START_REF] Cristescu | Operational and denotational semantics for the reversible pi-calculus[END_REF].

Full proofs can be found in [START_REF] Winskel | Event Structures, Stable Families and Concurrent Games[END_REF]. Appendix A summarises the simple instances of concepts we borrow from enriched categories [START_REF] Kelly | Basic concepts of enriched category theory[END_REF] and 2-categories [START_REF] Power | 2-categories[END_REF].

Event structures

Event structures describe a process, or system, in terms of its possible event occurrences, their causal dependencies and consistency. The simplest form, 'prime' event structures, are a concurrent, or distributed, analogue of trees; though in such an event structure the individual 'branches' are no longer necessarily sequences but have the shape of a partial order of events.

Prime event structures

A (prime) event structure comprises (E, ≤, Con), consisting of a set E of events (really event occurrences) which are partially ordered by ≤, the causal dependency relation, and a nonempty consistency relation Con consisting of finite subsets of E. The relation e ′ ≤ e expresses that event e causally depends on the previous occurrence of event e ′ . That a finite subset of events is consistent conveys that its events can occur together by some stage in the evolution of the process. Together the relations satisfy several axioms:

[e] = def {e ′ e ′ ≤ e} is finite for all e ∈ E, {e} ∈ Con for all e ∈ E, Y ⊆ X ∈ Con implies Y ∈ Con, and

X ∈ Con & e ≤ e ′ ∈ X implies X ∪ {e} ∈ Con.
Given this understanding of an event structure, there is an accompanying notion of state, or history, those events that may occur up to some stage in the behaviour of the process described. A configuration is a, possibly infinite, set of events x ⊆ E which is consistent: X ⊆ x and X is finite implies X ∈ Con , and down-closed: e ′ ≤ e ∈ x implies e ′ ∈ x.

A configuration inherits a partial order from the ambient event structure, and represents a possible partial-order history.

Two events e, e ′ are considered to be causally independent, and called concurrent if the set {e, e ′ } is in Con and neither event is causally dependent on the other. The relation of immediate dependency e e ′ means e and e ′ are distinct with e ≤ e ′ and no event in between. Write C ∞ (E) for the configurations of E and C(E) for its finite configurations. For configurations x, y, we use x-⊂y to mean y covers x, i.e. x ⊂ y with nothing in between, and x e -⊂ y to mean x ∪ {e} = y for an event e ∉ x. We sometimes use x e -⊂ , expressing that event e is enabled at configuration x, when x e -⊂ y for some y.

It will be very useful to relate event structures by maps. A map of event structures f ∶ E → E ′ is a partial function f from E to E ′ such that the image of a configuration x is a configuration f x and any event of f x arises as the image of a unique event of x. Maps compose as partial functions. Write E for the ensuing category.

A map f ∶ E → E ′ reflects causal dependency locally, in the sense that if e, e ′ are events in a configuration x of E for which f (e ′ ) ≤ f (e) in E ′ , then e ′ ≤ e also in E; the event structure E inherits causal dependencies from the event structure E ′ via the map f . Consequently, a map preserves concurrency: if two events are concurrent, then their images if defined are also concurrent. In general a map of event structures need not preserve causal dependency; when it does and is total we say it is rigid.

General event structures

A general event structure [START_REF] Winskel | Events in computation[END_REF][START_REF] Winskel | Event structures[END_REF] is a structure (E, Con, ⊢) where E is a set of event occurrences, the consistency relation Con is a non-empty collection of finite subsets of E satisfying

X ⊆ Y ∈ Con ⇒ X ∈ Con and the enabling relation ⊢⊆ Con × E satisfies Y ∈ Con & Y ⊇ X & X ⊢ e ⇒ Y ⊢ e . A configuration is a subset of E which is consistent: X ⊆ fin x ⇒ X ∈ Con and secured:∀e ∈ x∃e1, ⋯, en ∈ x. en = e &∀i ≤ n.{e1, ⋯, ei-1} ⊢ ei.
Again we write C ∞ (E) for the configurations of E and C(E) for its finite configurations.

The notion of secured has been expressed through the existence of a securing chain to express an enabling of an event within a set which is a complete enabling in the sense that everything in the securing chain is itself enabled by earlier members of the chain. One can imagine more refined ways in which to express complete enablings which are rather like proofs. Later the idea that complete enablings are consistent partial orders of events in which all events are enabled by earlier events in the order-"causal realisations"will play an important role in generalising general event structures to structures supporting hiding and parallel causes.

A

map f ∶ (E, Con, ⊢) → (E ′ , Con ′ , ⊢ ′ ) of general event structures is a partial function f ∶ E ⇀ E ′ such that X ∈ Con ⇒ f X ∈ Con ′ & ∀e1, e2 ∈ X. f (e1) = f (e2) ⇒ e1 = e2 and X ⊢ e & f (e) is defined ⇒ f X ⊢ ′ f (e) .
Maps compose as partial functions with identity maps being identity functions. Write G for the category of general event structures. We can characterise those families of configurations arising from a general event structure. A family of configurations which comprises a family F of sets such that if X ⊆ F is finitely compatible in F then ⋃ X ∈ F ; and if e ∈ x ∈ F then there exists a securing chain e1, ⋯, en = e in x such that {e1, ⋯, ei} ∈ F for all i ≤ n.

The latter condition is equivalent to saying (i) that whenever e ∈ x ∈ F there is a finite x0 ∈ F such that e ∈ x0 ∈ F and (ii) that if e, e ′ ∈ x and e ≠ e ′ then there is y ∈ F with y ⊆ x s.t. e ∈ y ⇐⇒ e ′ ≠ y. The elements of the underlying set ⋃ F are its events. Such a family is stable when for any compatible nonempty subset X of F its intersection ⋂ X is a member of F.

A configuration x ∈ F is irreducible iff there is a necessarily unique e ∈ x such that ∀y ∈ F. e ∈ y ⊆ x implies y = x. Irreducibles coincide with complete join irreducibles w.r.t. the order of inclusion. It is tempting to think of irreducibles as representing minimal complete enablings. But, as sets, irreducibles both (1) lack sufficient structure: in the formulation we are led to of minimal complete enabling as prime causal realisations, several prime realisations can have the same irreducible as their underlying set; and (2) are not general enough: there are prime realisations whose underlying set is not an irreducible.

A map between families of configurations from F to G is a partial function f ∶ ⋃ F ⇀ ⋃ G between their events such that for any x ∈ F its image f x ∈ G and

∀e1, e2 ∈ x. f (e1) = f (e2) ⇒ e1 = e2 .
Maps between general event structures satisfy this property. Maps of families compose as partial functions.

The forgetful functor taking a general event structure to its family of configurations has a left adjoint, which constructs a canonical general event structure from a family: given A, a family of configurations with underlying events A, construct a general event structure (A, Con, ⊢) with X ∈ Con iff X ⊆ fin y, for some y ∈ A, and

X ⊢ a iff a ∈ A, X ∈ Con & e ∈ y ⊆ X ∪ {a}, for some y ∈ A.
The above yields a coreflection of families of configurations in general event structures. It cuts down to an equivalence between families of configurations and replete general event structures. A general event structure (E, Con, ⊢) is replete iff

∀e ∈ E∃X ∈ Con. X ⊢ e , ∀X ∈ Con∃x ∈ C(E). X ⊆ x and X ⊢ e ⇒ ∃x ∈ C(E). e ∈ x & x ⊆ X ∪ {e} .
The last condition is equivalent to stipulating that each minimal enabling X ⊢ e, where X is a minimal consistent set enabling e, corresponds to an irreducible configuration X ∪ {e}.

On relating prime and general event structures

Clearly a prime event structure (P, ≤, Con) can be identified with a (replete) general event structure (P, ⊢, Con) by taking

X ⊢ p iff X ∈ Con & [p] ⊆ X ∪ {p} .
Indeed under this identification there is a full and faithful embedding of E in G. However (contrary to the claim in [START_REF] Winskel | Event structures[END_REF]) there is no adjoint to this embedding. This leaves open the issue of providing a canonical way to describe a general event structure as a prime event structure. This issue has arisen as a central problem in reversible computation [START_REF] Cristescu | Operational and denotational semantics for the reversible pi-calculus[END_REF] and now more recently in the present limitation of concurrent strategies described in the introduction. A corollary of our work will be that the embedding of prime into general event structures does have a pseudo right adjoint, at the slight cost of enriching prime event structures with equivalence relations.

Problems with general event structures

Why not settle for general event structures as a foundation for distributed strategies? Because they don't support hiding so composition of strategies; nor do they support probability generally enough.

Probability and parallel causes

We return to the general-event-structure description of the strategy in the Introduction. To turn this into a probabilistic strategy for Player we should assign probabilities to configurations conditional on Opponent moves.The watcher of 1 is causally independent of Opponent move 2. Given this we might expect that the probability of the watcher of 1 making the Player move 3 should be probabilistically independent of move 2; after all, both moves 3 and 2 can occur concurrently from configuration {1}. Applying LMC naively would yield

Prob(1, 3 1) = Prob(1, 2, 3 1, 2) .
But similarly, Prob(2, 3 2) = Prob(1, 2, 3 1, 2), which forces Prob(1, 3 1) = Prob(2, 3 2), i.e. that the conditional probabilities of the two watchers succeeding are the same! In blurring the distinct ways in which move 3 can be caused we have obscured causal independence which has led us to identify possibly distinct probabilities.

Hiding

With one exception, all the operations used in building strategies and, in particular, the bicategory of concurrent strategies [START_REF] Rideau | Concurrent strategies[END_REF] extend to general event structures. The one exception, that of hiding, is crucial in ensuring composition of strategies yields a bicategory.

Consider a general event structure with events a, b, c, d and e; enabling (1) b, c ⊢ e and (2) d ⊢ e, with all events other than e being enabled by the empty set; and consistency in which all subsets are consistent unless they contain the events a and b -the events a and b are in conflict.

Any configuration will satisfy the assertion

(a ∧ e) ⇒ d
because if e has occurred it has to have been enabled by [START_REF] Castellan | Symmetry in concurrent games[END_REF] or [START_REF] Castellan | Strategies as concurrent processes[END_REF] and if a has occurred its conflict with b has prevented the enabling [START_REF] Castellan | Symmetry in concurrent games[END_REF], so e can only have occurred via enabling [START_REF] Castellan | Strategies as concurrent processes[END_REF]. Now imagine the event b is hidden, so allowed to occur invisibly in the background. The configurations after hiding are those obtained by hiding (i.e. removing) the invisible event b from the configurations of the original event structure. The assertion above will still hold of the configurations after hiding. There isn't a general event structure with events a, c, d and e, and configurations those which result when we hide (remove) b from the configurations of the original event structure. One way to see this is to observe that amongst the configurations after hiding we have {c}-⊂{c, e} and {c}-⊂{a, c} where both {c, e} and {a, c} have upper bound {a, c, d, e}, and yet {a, c, e} is not a configuration after hiding as it fails to satisfy the assertion. (In configurations of a general event structure if x-⊂y and x-⊂z and y and z are bounded above, then y ∪ z is a configuration.) Precisely the same problem can arise in the composition (with hiding) of strategies based on general event structures.

To obtain a bicategory of strategies with disjunctive causes we need to support hiding. We need to look for structures more general than general event structures. The example above gives a clue: the inconsistency should be one of inconsistency between (minimal complete) enablings rather than events.

Adding disjunctive causes

To cope with disjunctive causes and hiding we must go beyond general event structures. We introduce structures in which we objectify cause; a minimal complete enabling is no longer an instance of a relation but a structure that realises that instance (cf. a judgement of theorem-hood in contrast to a proof). This is in order to express inconsistency between minimal complete enablings, inexpressible as inconsistencies on events, that can arise when hiding.

Fortunately we can do this while staying close to prime event structures. The twist is to regard "disjunctive events" as comprising subsets of events of a prime event structure, the events of which are now to be thought of as representing "prime causes" standing for minimal complete enablings. Technically, we do this by extending prime event structures with an equivalence relation on events.

In detail, an event structure with equivalence (an ese) is a structure (P, ≤, Con, ≡)

where (P, ≤, Con) satisfies the axioms of a (prime) event structure and ≡ is an equivalence relation on P . An ese dissociates the two roles of enabling and atomic action conflated in the events of a prime event structures. The intention is that the events p of P , or really their corresponding down-closures [p], describe minimal complete enablings, prime causes, while the ≡-equivalence classes of P represent disjunctive events: p is a prime cause of the disjunctive event {p} ≡ . Notice there may be several prime causes of the same event and that these may be parallel causes in the sense that they are consistent with each other and not related in the order ≤.

A configuration of the ese is a configuration of (P, ≤, Con) and we shall use the notation of earlier on event structures C ∞ (P ) and C(P ) for its configurations, respectively finite configurations. However, we modify the relation of concurrency a little and say p1, p2 ∈ P are concurrent and write p1co p2 iff p1 ≡ p2 and {p1, p2} ∈ Con and neither p1 ≤ p2 nor p2 ≤ p1.

When the equivalence relation ≡ of an ese is the identity it is essentially a prime event structure. This view is reinforced in our choice of maps. A map from ese (P, ≡ P ) to (Q, ≡ Q ) is a partial function f ∶ P ⇀ Q which preserves ≡, i.e. if p1 ≡ P p2 then either both f (p1) and f (p2) are undefined or both defined with f (p1) ≡ Q f (p2)), such that for all x ∈ C(P )

(i) the direct image f x ∈ C(Q), and (ii) ∀p1, p2 ∈ x. f (p1) ≡ Q f (p2) ⇒ p1 ≡ P p2 .
Maps compose as partial functions with the usual identities.

It is not true that such maps preserve concurrency in general; they only do so locally w.r.t. unambiguous configurations in which no two distinct elements are ≡-equivalent.

We regard two maps f1, f2 ∶ P → Q as equivalent, and write f1 ≡ f2, iff they are equi-defined and yield equivalent results, i.e. if f1(p) is defined then so is f2(p) and f1(p) ≡ Q f2(p), and if f2(p) is defined then so is f1(p) and f1(p) ≡ Q f2(p).

Composition respects ≡: if f1, f2 ∶ P → Q with f1 ≡ f2 and g1, g2 ∶ Q → R with g1 ≡ g2, then g1f1 ≡ g2f2. Write E≡ for the category of ese's; it is enriched in the category of sets with equivalence relations-see Appendix A.

Ese's support a hiding operation. Let (P, ≤, Con P , ≡) be an ese. Let V ⊆ P be a ≡-closed subset of 'visible' events. Define the projection of P on V , to be

P ↓V = def (V, ≤ V , Con V , ≡ V ), where v ≤ V v ′ iff v ≤ v ′ & v, v ′ ∈ V and X ∈ Con V iff X ∈ Con & X ⊆ V and v ≡ V v ′ iff v ≡ v ′ & v, v ′ ∈ V .
Hiding is associated with a factorisation of partial maps. Let

f ∶ (P, ≤ P , Con P , ≡ P ) → (Q, ≤ Q , Con Q , ≡ Q ) be a partial map between two ese's. Let V = def {e ∈ E f (e) is defined} .
Then f factors into the composition

P f 0 / / P ↓V f 1 / / Q of f0
, a partial map of ese's taking p ∈ P to itself if p ∈ V and undefined otherwise, and f1, a total map of ese's acting like f on V . We call f1 the defined part of the partial map f . Because ≡equivalent maps share the same domain of definition, ≡-equivalent maps will determine the same projection and ≡-equivalent defined parts. The factorisation is characterised to within isomorphism by the following universal characterisation: for any factorisation

P g 0 / / P1 g 1 / / Q
where g0 is partial and g1 is total there is a (necessarily total) unique map h ∶ P ↓V → P1 such that

P f 0 / / g 0 % % ❏ ❏ ❏ ❏ ❏ ❏ P ↓V h ✤ ✤ f 1 / / Q P 1 g 1 9 9 t t t t t t commutes.
The category E≡ of ese's supports hiding in the sense above. We next show how replete general event structures embed in ese's.

A pseudo adjunction

The (pseudo) functor from G to E≡ is quite subtle but arises as a right adjoint to a more obvious functor from E≡ to G.

Given an ese (P, ≤, Con, ≡) we can construct a (replete) general event structure ges(P ) = def (E, Con E , ⊢) by taking E = P≡, the equivalence classes under ≡;

X ∈ Con E iff ∃Y ∈ Con. X = Y≡; and X ⊢ e iff X ∈ Con & e ∈ E & ∃p ∈ P. e = {p} ≡ & [p]≡ ⊆ X ∪ {e}.
The construction extends to a functor ges ∶ E≡ → G as maps between ese's preserve ≡; the functor takes a map f ∶ P → Q of ese's to the map ges(f ) ∶ ges(P ) → ges(Q) obtained as the partial function induced on equivalence classes. Less obvious is that there is a (pseudo) right adjoint to ges. Its construction relies on extremal causal realisations which provide us with an appropriate notion of minimal complete enabling of events in a general event structure.

Causal realisations

Let A be a family of configurations with underlying set A.

A (causal) realisation of A comprises a partial order (E, ≤) , its carrier, such that the set {e ′ ∈ E e ′ ≤ e} is finite for all events e ∈ E, together with a function ρ ∶ E → A for which the image ρx ∈ A when x is a down-closed subset of E.

A map between realisations (E, ≤), ρ and (E ′ , ≤ ′ ), ρ ′ is a partial surjective function f ∶ E ⇀ E ′ which preserves down-closed subsets and satisfies ρ(e) = ρ ′ (f (e)) when f (e) is defined. It is convenient to write such a map as ρ ⪰ f ρ ′ . Occasionally we shall write ρ ⪰ ρ ′ , or the converse ρ ′ ⪯ ρ, to mean there is a map of realisations from ρ to ρ ′ . Such a map factors into a "projection" followed by a total map

ρ ⪰ f 1 1 ρ0 ⪰ f 2 2
ρ ′ where ρ0 stands for the realisation (E0, ≤0), ρ0 where

E0 = {r ∈ R f (r) is defined} ,
the domain of definition of f , with ≤0 the restriction of ≤, and f1 is the inverse relation to the inclusion E0 ⊆ E, and f2 is the total function f2 ∶ E0 → E ′ . We are using ⪰1 and ⪰2 to signify the two kinds of maps. Notice that ⪰1-maps are reverse inclusions. Notice too that ⪰2-maps are exactly the total maps of realisations. Total maps ρ ⪰ f 2 ρ ′ are precisely those functions f from the carrier of ρ to the carrier of ρ ′ which preserve down-closed subsets and satisfy ρ = ρ ′ f . We shall say a realisation ρ is extremal when ρ ⪰ f 2 ρ ′ implies f is an isomorphism, for any realisation ρ ′ .

In the special case where A is the family of configurations of a prime event structure, it is easy to show that an extremal realisation ρ forms a bijection with a configuration of the event structure and that the order on the carrier coincides with causal dependency there.

The construction is more interesting when A is the family of configurations of a general event structure. In general, there is at most one map between extremal realisations. Hence extremal realisations of A under ⪯ form a preorder. The order of extremal realisations has as elements isomorphism classes of extremal realisations ordered according to the existence of a map between representatives of isomorphism classes. As we shall see, the order of extremal realisations forms a prime-algebraic domain [START_REF] Nielsen | Petri nets, event structures and domains[END_REF] with complete primes represented by those extremal realisations which have a top element-a direct corollary of Proposition 5.4 in the next section. (We say a realisation has a top element when its carrier contains an element which dominates all other elements in the carrier.)

We provide examples illustrating the nature of extremal realisations. In the examples it is convenient to describe families of configurations by general event structures, taking advantage of the economic representation they provide.

Example 5.1. This and the following example shows that extremal realisations with a top do not correspond to irreducible configurations. Below, on the right we show a general event structure with irreducible configuration {a, b, c, d}. On the left we show two extremals with tops d1 and d2 which both have the same irreducible configuration {a, b, c, d} as their image. The lettering indicates the functions associated with the realisations, e.g. events d1 and d2 in the partial orders map to d in the general event structure. 
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It is also possible to have extremal realisations in which an event depends on an event of the family having been enabled in two distinct ways, as in the following extremal realisation with top on the left.
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The extremal describes the event f being enabled by d and e where they are in turn enabled by different ways of enabling c. (Such phenomena will be disallowed in edc's.)

A right adjoint to ges

The right adjoint er ∶ G → E≡ is defined on objects as follows. Let A be a general event structure. Define er (A) = (P , ConP , ≤P , ≡P ) where

• P consists of a choice from within each isomorphism class of those extremals p of C ∞ (A) with a top element-we write topA(p) for the image of the top element in A;

• Causal dependency ≤ P is ⪯ on P ;

• X ∈ Con P iff X ⊆ fin P and topA[X ] ∈ C ∞ (A) -the set [X]
is the ≤ P -downwards closure of X;

• p1 ≡ P p2 iff p1, p2 ∈ P and topA(p1 ) = topA(p2 ).

Proposition 5.4. The configurations of P , ordered by inclusion, are order-isomorphic to the order of extremal realisations of C ∞ (A): an extremal realisation ρ corresponds, up to isomorphism, to the configuration {p ∈ P p ⪯ ρ} of P ; conversely, a configuration x of P corresponds to an extremal realisation topA ∶ x → A with carrier (x, ⪯), the restriction of the order of P to x.

From the above proposition we see that the events of er (A) correspond to completely-prime extremal realisations [START_REF] Nielsen | Petri nets, event structures and domains[END_REF]. Henceforth we shall use the term 'prime extremal' instead of the clumsier 'extremal with top element.'

The component of the counit of the adjunction at A is given by the function topA which determines a map topA ∶ ges(er (A)) → A of general event structures.

Theorem 5.5. Let

A ∈ G. For all f ∶ ges(Q) → A in G, there is a map h ∶ Q → er (A) in E≡ such that f = topA ○ ges(h) i.e. so the diagram A ges(er (A)) top A o o ges(Q) f d d ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ges(h) O O commutes. Moreover, if h ′ ∶ Q → er (A) is a map in E≡ such that f = topA ○ ges(h ′ ), then h ′ ≡ h.
The theorem does not quite exhibit a standard adjunction, because the usual cofreeness condition specifying an adjunction is weakened to only having uniqueness up to ≡. However the condition it describes does specify an exceedingly simple case of pseudo adjunction between 2-categories-a set together with an equivalence relation is a very simple example of a category (see Appendix A). As a consequence, whereas with the usual cofreeness condition allows us to extend the right adjoint to arrows, so obtaining a functor, in this case following that same line will only yield a pseudo functor er as right adjoint: thus extended, er will only necessarily preserve composition and identities up to ≡.

The pseudo adjunction from E≡ to G cuts down to a reflection (i.e. the counit is a natural isomorphism) when we restrict to the subcategory of G where all general event structures are replete. Its right adjoint provides a pseudo functor embedding replete general event structures (and so families of configurations) in ese's.

Example 5.6. On the right we show a general event structure and on its left the ese which it gives rise to under er :
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EDC'S

Our major motivation in developing and exploring ese's was in order to extend strategies with parallel causes while maintaining the central operation of hiding. What about the other operation key to the composition of strategies, viz. pullback? It is well-known to be hard to construct limits such as pullback within prime event structures, so that we often rely on first carrying out the constructions in stable families. It is sensible to seek an analogous way to construct pullbacks or pseudo pullbacks in E≡.

Equivalence families

In fact, the pseudo adjunction from E≡ to G factors through a more basic pseudo adjunction to families of configurations which also bear an equivalence relation on their underlying sets. An equivalence-family (ef) is a family of configurations A with an equivalence relation ≡ A on its underlying set ⋃ A. We can identify a family of configurations A with the ef (A, =), taking the equivalence to be simply equality on the underlying set. A map f ∶ (A, ≡ A ) → (B, ≡ B ) between ef's is a partial function f ∶ A ⇀ B between their underlying sets which preserves ≡ so that

x ∈ A ⇒ f x ∈ B & ∀a1, a2 ∈ x. f (a1) ≡ B f (a2) ⇒ a1 ≡ A a2 .
Composition is composition of partial functions. We regard two maps f1, f2 ∶ (A, ≡ A ) → (B, ≡ B ) as equivalent, and write f1 ≡ f2, iff they are equidefined and yield equivalent results. Composition respects ≡. This yields a category of equivalence families Fam≡ enriched in the category of sets with equivalence relations.

Clearly we can regard an ese (P, ≡ P ) as an ef ( C ∞ (P ), ≡ P ) and a function which is a map of ese's as a map between the associated ef's, and this operation forms a functor. The functor has a pseudo right adjoint built from causal realisations in a very similar manner to er . The configurations of a general event structure form an ef with the identity relation as its equivalence. This operation is functorial and has a left adjoint which collapses an ef to a general event structure in a similar way to ges; the adjunction is enriched in equivalence relations. In summary, the pseudo adjunction 

∀d ∈ x∃d1, ⋯, dn ∈ x. dn = d & ∀i ≤ n. π1{d1, ⋯, di} ∈ A & π2{d1, ⋯, di} ∈ B .
The ef D with maps π1 and π2 is the pseudo pullback of f and g. It would coincide with pullback if ≡ C were the identity.

But unfortunately (pseudo) pullbacks in Fam≡ don't provide us with (pseudo) pullbacks in E≡ because the right adjoint is only a pseudo functor; in general it will only carry pseudo pullbacks to bipullbacks. While E≡ does have bipullbacks (in which commutations and uniqueness are only up to the equivalence ≡ on maps) it doesn't always have pseudo pullbacks or pullbacks-Appendix B. Whereas pseudo pullbacks and pullbacks are characterised up to isomorphism, bipullbacks are only characterised up to a weaker equivalence, that induced on objects by the equivalence on maps.While we could develop strategies with parallel causes in the broad context of ese's in general, doing so would mean that the composition of strategies that ensued was not defined up to isomorphism. This in turn would weaken our intended definition and characterisation of such strategies as those maps into games which are stable under composition with copycat.

Edc's defined

Fortunately there is a subcategory of E≡ which supports hiding, pullbacks and pseudo pullbacks. Define EDC to be the subcategory of E≡ with objects ese's satisfying

p1, p2 ≤ p & p1 ≡ p2 ⇒ p1 = p2 .
We call such objects event structures with disjunctive causes (edc's). In an edc an event can't causally depend on two distinct prime causes of a common disjunctive event, and so rules out realisations such as that illustrated in Example 5.3. In general, within E≡ we lose the local injectivity property that we're used to seeing for maps of event structures; the maps of event structures are injective from configurations, when defined. However for EDC we recover local injectivity w.r.t. prime configurations: if

f ∶ P → Q is a map in EDC, then p1, p2 ≤ P p & f (p1) = f (p2) ⇒ p1 = p2 .
The factorisation property associated with hiding in E≡ is inherited by EDC.

As regards (pseudo) pullbacks, we are fortunate in that the complicated pseudo adjunction between ese's and ef's restricts down to a much simpler adjunction, in fact a coreflection, between edc's and stable ef's. In an equivalence family (A, ≡ A ) say a configuration x ∈ A is unambiguous iff ∀a1, a2 ∈ x. a1 ≡ A a2 ⇒ a1 = a2 .

An equivalence family (A, ≡

A ), with underlying set of events A, is stable iff it satisfies ∀x, y, z ∈ A. x, y ⊆ z & z is unambiguous ⇒ x ∩ y ∈ A and ∀a ∈ A, x ∈ A. a ∈ x ⇒ ∃z ∈ A. z is unambiguous & a ∈ z ⊆ x .
In effect a stable equivalence family contains a stable subfamily of unambiguous configurations out of which all other configurations are obtainable as unions. Local to any unambiguous configuration x there is a partial order on its events ≤x: each a ∈ x determines a prime configuration

[a]x = def ⋂ {y ∈ A a ∈ y ⊆ x} ,
the minimum set of events on which a depends within x; taking a ≤x b iff [a]x ⊆ [b]x defines causal dependency between a, b ∈ x. Write SFam≡ for the subcategory of stable ef's.

(Pseudo) pullbacks in stable ef's are obtained from those in ef's simply by restricting to those configurations which are unions of unambiguous configurations.

The configurations of an edc with its equivalence are easily seen to form a stable ef providing a full and faithful embedding of EDC in SFam≡. The embedding has a right adjoint Pr. It is built out of prime extremals but we can take advantage of the fact that in a stable ef unambiguous prime extremals have the simple form of prime configurations. From a stable ef(A, ≡ A ) we produce an edc Pr(A, ≡ A ) = def (P, Con, ≤, ≡) in which P comprises the prime configurations with

[a]x ≡ [a ′ ] x ′ iff a ≡ A a ′ , Z ∈ Con iff Z ⊆ P & ⋃ Z ∈ F and, p ≤ p ′ iff p, p ′ ∈ P & p ⊆ p ′ .
The adjunction is enriched in the sense that its natural bijection preserves and reflects the equivalence on maps:

EDC ⊺ 2 2 SFam≡ Pr r r
We can now obtain a (pseudo) pullback in edc's by first forming the (pseudo) pullback of the stable ef's obtained as their configurations and then taking its image under the right adjoint Pr. We now have the constructions we need to support strategies based on edc's.

Coreflective subcategories of edc's

EDC is a coreflective subcategory of E≡; the right adjoint simply cuts down to those events satisfying the edc property. In turn EDC has a coreflective subcategory E 0 ≡ comprising those edc's which satisfy {p1, p2} ∈ Con & p1 ≡ p2 ⇒ p1 = p2 .

Consequently its maps are traditional maps of event structures which preserve the equivalence. We derive adjunctions

E 0 ≡ ⊺ 3 3 EDC ⊺ 3 3 s s E≡ ges ⊺ 3 3 s s G . er s s
Note the last is only a pseudo adjunction. Consequently we obtain a pseudo adjunction from E 0 ≡ , the a category of prime event structures with equivalence relations and general event structures-this makes good the promise of Section 2.3. Inspecting the composite of the last two adjunctions, we also obtain the sense in which replete general event structures embed via a reflection in edc's.

There is an obvious 'inclusion' functor from the category of prime event structures E to the category EDC; it extends an event structure with the identity equivalence. Regarding EDC as a plain category, so dropping the enrichment by equivalence relations, the 'inclusion' functor E ↪ EDC has a right adjoint, viz. the forgetful functor which given an edc P = (P, ≤, Con, ≡) produces an event structure P0 = (P, ≤, Con ′ ) by dropping the equivalence ≡ and modifying the consistency relation to

X ∈ Con ′ iff X ⊆ P & X ∈ Con & p1 ≡ p2, for all p1, p2 ∈ X .
The configurations of P0 are the unambiguous configurations of P . The adjunction is a coreflection because the inclusion functor is full. Of course it is not the case that the adjunction is enriched: the natural bijection of the adjunction cannot respect the equivalence on maps; it cannot compose with the pseudo adjunction from EDC to G to yield a pseudo adjunction from E to G.

Despite this the adjunction from E to EDC has many useful properties. Of importance for us is that the functor forgetting equivalence will preserve all limits and especially pullbacks. It is helpful in relating composition of edc-strategies to the composition of strategies based on prime event structures in [START_REF] Rideau | Concurrent strategies[END_REF]. In composing strategies in edc's we shall only be involved with pseudo pullbacks of maps f ∶ A → C and g ∶ B → C in which C is essentially an event structure, i.e. an edc in which the equivalence is the identity relation. The construction of such pseudo pullbacks coincides with that of pullbacks. While this does not entail that composition of strategies is preserved by the forgetful functor-because the forgetful functor does not commute with hiding-it will give us a strong relationship, expressed as a map, between composition of the two kinds of strategies (based on edc's and based on prime event structures) after and before applying the forgetful functor. This has been extremely useful in some proofs, in importing results from [START_REF] Rideau | Concurrent strategies[END_REF].

Strategies based on edc's

We develop strategies in edc's in a similar way to that of strategies in [START_REF] Rideau | Concurrent strategies[END_REF], viz. as certain maps stable under composition with copycat. But what is copycat on an edc? If games are edc's, shouldn't composition be based on pseudo pullback rather than pullback? To separate concerns and, at least initially, avoid such issues we assume that games are (the edc's of) prime event structures, ensuring that in our uses of pullbacks they will coincide with pseudo pullbacks.

An edc with polarity comprises (P, ≡, pol ), an edc (P, ≡) in which each element p ∈ P carries a polarity pol (p) which is + or -, according as it represents a move of Player or Opponent, and where the equivalence relation ≡ respects polarity.

A map of edc's with polarity is a map of the underlying edc's which preserves polarity when defined. The adjunctions of the previous chapter are undisturbed by the addition of polarity.

There are two fundamentally important operations on two-party games. One is that of forming the dual game in which the moves of Player and Opponent are reversed. On an edc with polarity A this amounts to reversing the polarities of events to produce the dual A ⊥ . The other operation is a simple parallel composition of games, achieved on edc's with polarity A and B by simply juxtaposing them, ensuring a finite subset of events is consistent if its overlaps with the two games are individually consistent, to form A∥B.

A game is represented by an edc with polarity in which the edc is that of a prime event structure. A pre-strategy in edc's, or an edc pre-strategy, in a game A is a total map σ ∶ S → A of edc's. A pre-strategy from a game A to a game B is a pre-strategy in the game A ⊥ ∥B. We shall shortly refine the notion of pre-strategy to strategy. By a strategy in a game we will mean a strategy for Player. A strategy for Opponent, or a counter-strategy, in a game A will be identified with a strategy in

A ⊥ . A map f ∶ σ ⇒ σ ′ of edc pre- strategies σ ∶ S → A and σ ′ ∶ S ′ → A is a map f ∶ S → S ′
of edc's with polarity such that σ = σ ′ f ; in the standard way this determines isomorphisms of edc pre-strategies, important for us in a moment.

Copycat

An important example of a strategy is the copycat strategy for a game A. This is a strategy in the game A ⊥ ∥A which, following the spirit of a copycat, has Player moves copy the corresponding Opponent moves in the other component. In more detail, the copycat strategy comprises γ A ∶ C C A → A ⊥ ∥A where C C A is obtained by adding extra causal dependencies to A ⊥ ∥A so that any Player move in either component causally depends on its copy, an Opponent move, in the other [START_REF] Rideau | Concurrent strategies[END_REF]. This generates a partial order of causal dependency. A finite set is taken to be consistent if its down-closure w.r.t. the order generated is consistent in A ⊥ ∥A; the map γ A is the identity function on events. We illustrate the construction on the simple game comprising a Player move causally dependent on a single Opponent move:

⊖ ✤ , , 2 ❴ ❴ ❴ ⊕ A ⊥ C C A A ⊕ ❴ L L R ⊖ ❴ L L R ✤ l l r ❴ ❴ ❴
In characterising the configurations of the copycat strategy an important partial order on configurations is revealed. Clearly configurations of a game A are ordered by inclusion ⊆. For configurations x and y, write x ⊆ -y and x ⊆ + y when all the additional events of the inclusion are purely Opponent, respectively, Player moves. A configuration x of C C A is also a configuration of A ⊥ ∥A and as such splits into two configurations x1 on the left and x2 on the right. The extra causal constraints of copycat ensure that the configurations of C C A are precisely those configurations of A ⊥ ∥A for which it holds that

x2 ⊑ A x1 , defined as x2 ⊇ -x1 ∩ x2 ⊆ + x1 .
Because it generalises the pointwise order of domain theory, initiated by Dana Scott, we have called ⊑ A the Scott order.

Composing edc pre-strategies

In composing two edc pre-strategies one σ in A ⊥ ∥B and another τ in B ⊥ ∥C one firstly instantiates the Opponent moves in component B by Player moves in B ⊥ and vice versa, and then secondly hides the resulting internal moves over B. The first step is achieved efficiently via pullback. Temporarily ignoring polarities, the pullback in edc's

A ∥ T A∥τ ' ' ❖ ❖ ❖ ❖ ❖ T ⊛ S π 2 9 9 r r r r r π 1 % % ▲ ▲ ▲ ▲ ▲ ⑧ ❄ A ∥ B ∥ C S ∥ C σ∥C 7 7 ♣ ♣ ♣ ♣ ♣
"synchronises" matching moves of S and T over the game B.

But we require a strategy over the game A ⊥ ∥C and the pullback T ⊛ S has internal moves over the game B. We achieve this via the projection of T ⊛ S to its moves over A and C. We make use of the partial map from A∥B∥C to A∥C which acts as the identity function on A and C and is undefined on B. The composite partial map

A ∥ T A∥τ ' ' ❖ ❖ ❖ ❖ ❖ T ⊛ S π 2 9 9 r r r r r π 1 % % ▲ ▲ ▲ ▲ ▲ ⑧ ❄ A ∥ B ∥ C / / A ∥ C S ∥ C σ∥C 7 7 ♣ ♣ ♣ ♣ ♣
has defined part, yielding the composition

τ ⊙σ ∶ T ⊙S → A ⊥ ∥C
once we reinstate polarities. The composition of edc strategies τ ⊙σ is a form of synchronised composition of processes followed by the hiding of internal moves, a view promulgated by Abramsky within traditional game semantics of programs.

Edc strategies

The article [START_REF] Rideau | Concurrent strategies[END_REF] characterises through the properties of "innocence" and "receptivity" those pre-strategies based on event structures which are stable under composition with the copycat strategy; the characterisation becomes the definition of concurrent strategy. We imitate [START_REF] Rideau | Concurrent strategies[END_REF] and provide necessary and sufficient conditions for a pre-strategy in edc's to be stable up to isomorphism under composition with copycat. Fortunately we can inherit a great deal from the proof of [START_REF] Rideau | Concurrent strategies[END_REF] via the coreflection of event structures in edc's of Section 6.3. An edc pre-strategy σ ∶ S → A is an edc strategy if it satisfies the following axioms:

innocence: σ(s) σ(s ′ ) if s s ′ & pol (s) = + or pol(s ′ ) = -. ∃-receptivity: if σx a -⊂ in C(A) with pol A (a) = -then x s -⊂ & σ(s) = a,
for some s ∈ S . (Unlike "receptivity" of [START_REF] Rideau | Concurrent strategies[END_REF] we do not have uniqueness.) +-consistency: X ∈ Con S if σX ∈ Con A and [X] + ∈ Con S , where X ⊆ fin S. (The set [X] + comprises the +ve elements in the downwards closure of X.) non-redundancy: We obtain a bicategory in which the objects are games, the arrows σ ∶ A + / / B are edc strategies σ from A to B and 2- cells are total maps of pre-strategies with vertical composition their usual composition. Horizontal composition is given by composition ⊙, which extends to a functor on 2-cells via the universality of pullback and the factorisation property of hiding. An edc strategy σ ∶ A + / / B corresponds to its dual σ ⊥ ∶ B ⊥ + / / A ⊥ , yielding (a bicategorical variant of) compact-closure though this can weaken to * -autonomy with the addition of extra structure such as winning conditions or pay-off.

s1 = s2 if [s1) = [s2) & s1 ≡ S s2 & pol S (s1) = pol S (s2) = -. ≡-saturation: s1 ≡ S s2 if σ(s1) = σ(s2) .
An edc strategy σ ∶ S → A is deterministic if S is deterministic as an edc with polarity:

∀X ⊆ fin S. [X] -∈ Con S ⇒ X ∈ Con S ,
where [X] -is all the Opponent moves in the down-closure [X]; in other words, consistent behaviour of Opponent implies consistent behaviour. S being deterministic is equivalent to

x s 1 -⊂ & x s 2 -⊂ & pol (s1) = + ⇒ x ∪ {s1, s2} ∈ C(S) .
for all x ∈ C(S), s1, s2 ∈ S. Copycat strategies γ A are deterministic iff the game A is race-free: if x a -⊂ and x a ′ -⊂ in C(A) with a and a ′ of opposing polarities, then x ∪ {a, a ′ } ∈ C(A). We obtain a sub-bicategory of deterministic edc strategies between race-free games [START_REF] Rideau | Concurrent strategies[END_REF].

Such parallel deterministic strategies include the strategy sketched informally in the Introduction in which Player makes a move iff Opponent makes one or more of their moves:

⊕ ≡ ⊕ ⊖ ❴ L L R ⊖ ❴ L L R σ → ⊕ ⊖ ⊖
Along the same lines there is a parallel deterministic strategy for computing "parallel or."

Probabilistic edc strategies 8.1 Probabilistic event structures

A probabilistic event structure essentially comprises an event structure together with a continuous valuation on the Scott-open sets of its domain of configurations. 1 The continuous valuation assigns a probability to each open set and can then be extended to a probability measure on the Borel sets [START_REF] Jones | A probabilistic powerdomain of valuations[END_REF]. However open sets are several levels removed from the events of an event structure, and an equivalent but more workable definition is obtained by considering the probabilities of sub-basic open sets, generated by single finite configurations; for each finite configuration x this specifies Prob(x) the probability of obtaining events x, so as result a configuration which extends the finite configuration x. Such valuations on configuration determine the continuous valuations from which they arise, and can be characterised through the device of "drop functions" which measure the drop in probability across certain generalised intervals. The characterisation yields a workable general definition of probabilistic event structure as event structures with configurationvaluations, viz. functions from finite configurations to the unit interval for which the drop functions are always nonnegative [START_REF] Winskel | Distributed probabilistic and quantum strategies[END_REF].

In detail, a probabilistic event structure comprises an event structure E with a configuration-valuation, a function v from the finite configurations of E to the unit interval which is

(normalized) v(∅) = 1 and has (non -ve drop) dv[y; x1, ⋯, xn] ≥ 0 when y ⊆ x1, ⋯, xn for finite configurations y, x1, ⋯, xn of E,
where the "drop" across the generalized interval starting at y and ending at one of the x1, ⋯, xn is given by

dv[y; x1, ⋯, xn] = def v(y) - I (-1) I +1 v(⋃ i∈I xi)
-the index I ranges over nonempty I ⊆ {1, ⋯, n} such that the union ⋃ i∈I xi is a configuration. The "drop" dv[y; x1, ⋯, xn] gives the probability of the result being a configuration which includes the configuration y and does not include any of the configurations x1, ⋯, xn.

If x ⊆ y in C(E), then Prob(y x) = v(y) v(x); this is the probability that the resulting configuration includes the events y conditional on it including the events x.

Probability with an Opponent

This prepares the ground for a general definition of distributed probabilistic strategies, based on edc's. Firstly though, we should restrict to race-free games, in particular because without copycat being deterministic there would be no probabilistic identity strategies. A probabilistic edc strategy in a game A, is an edc strategy σ ∶ S → A in which we endow S with probability, while taking account of the fact that in the strategy Player can't be aware of the probabilities assigned by Opponent. We do this through extending the definition of configuration-valuation via an axiom (lmc) which implies the Limited Markov Condition, LMC, of the Introduction.

Precisely, a configuration-valuation is now a function v, from finite configurations of S to the unit interval, which is When x ⊆ + y in C(S), we can still express Prob(y x), the conditional probability of Player making the moves y ∖ x given x, as v(y) v(x). In fact all such conditional probabilities determine v via normalisation and lmc. As A is race-free it follows S is also race-free. Hence if x is a finite configuration at which x ⊕ -⊂ and x ⊖ -⊂ then x ∪ {⊕, ⊖} is also a configuration, and both moves are ⊕, ⊖ are causally independent (or concurrent). From lmc we obtain LMC directly:

(normalized) v(∅) = 1, satisfies (lmc) v(x) = v(
from the Scott-open subsets of C ∞ (E) to [0, 1] which is (normalized) w( C ∞ (E)) = 1; (strict) w(∅) = 0; (monotone) U ⊆ V ⇒ w(U ) ≤ w(V ); (modular) w(U ∪ V ) + w(U ∩ V ) = w(U ) + w(V ); and (continuous) w(⋃ i∈I U i ) = sup i∈I w(U i ), for directed unions.
Prob(⊕ x) = Prob(x, ⊕ x) = v(x ∪ {⊕}) v(x) = v(x ∪ {⊕, ⊖}) v(x ∪ {⊖}) = Prob(x, ⊕, ⊖ x, ⊖) = Prob(⊕ x, ⊖) .
A dual form of LMC will hold of a counterstrategy, a strategy for Opponent; the LMCs for Player and Opponent will together ensure the probabilistic independence of Player and Opponent moves from a common configuration.

A probabilistic edc strategy in race-free game A comprises an edc strategy σ ∶ S → A with a configuration-valuation v for S. A probabilistic edc strategy between race-free games A to B is a probabilistic edc strategy in A ⊥ ∥B. Note that the configurationvaluation of an edc doesn't necessarily respect the equivalence of the edc; different prime causes of a common disjunctive event may well be associated with different probabilities. the two watchers may be associated with probabilities p1 ∈ [0, 1] and p2 ∈ [0, 1], respectively, and their joint success with q ∈ [0, 1] provided they form a configuration valuation v. In other words, v(x) = p1 if x contains w1 and not w2; v(x) = p2 if x contains w2 and not w1; and v(x) = q if x contains both w1 and w2; v(x) = 1 otherwise; and p1 + p2q ≤ 1, in order to satisfy the +-drop condition. ◻

We extend the usual composition of edc strategies to probabilistic edc strategies. Assume probabilistic edc strategies σ ∶ S → A ⊥ ∥B, with configuration-valuation v S , and τ ∶ T → B ⊥ ∥C with v T . Their composition is defined to be τ ⊙σ ∶ T ⊙S → A ⊥ ∥C with a configuration-valuation v given by

v(x) = v S (π S 1 x).v T (π T 2 x)
for x a finite configuration of T ⊙S. The configuration π S 1 x is the component in C(S) of the projection π1x ∈ C(S∥C) from the pullback defined in Section 7.2; similarly π T 2 x is the T -component of π2x. The proof that v is indeed a configuration-valuation is quite subtle and relies heavily on properties of "drop" functions.

A bicategory of probabilistic edc strategies

We obtain a bicategory of probabilistic edc strategies in which objects are race-free games. Maps are probabilistic edc strategies. Identities are given by copycat strategies, which for race-free games are deterministic, so permit configuration-valuations which are constantly 1. Generally, a probabilistic edc strategy is deterministic if its configuration-valuation assigns 1 to all finite configurations; its underlying edc strategy is then necessarily deterministic too.

The 2-cells of the bicategory require consideration. Whereas we can always "push forward" a probability measure from the domain to the codomain of a measurable function this is not true generally for configuration-valuations involving Opponent moves. However: Theorem 8.2. Let f ∶ σ ⇒ σ ′ be a 2-cell between edc strategies σ ∶ S → A and σ ′ ∶ S ′ → A which is a rigid map of event structures. Let v be a configuration-valuation on S. Taking v ′ (y) = def ∑ x∶f x=y v(x) for y ∈ C(S ′ ), defines a configurationvaluation, written f v, on S ′ . A 2-cell from σ, v to σ ′ , v ′ is a 2-cell f ∶ σ ⇒ σ ′ of edc strategies in which f ∶ S → S ′ is a rigid map of event structures and for which the "push-forward" f v satisfies (f v)(x ′ ) ≤ v ′ (x ′ ) , for all configurations x ′ ∈ C(S ′ ). Rigid 2-cells include rigid embeddings giving the machinery to define probabilistic strategies recursively.

Constructions on probabilistic edc strategies

Following [START_REF] Castellan | Strategies as concurrent processes[END_REF][START_REF] Winskel | On probabilistic distributed strategies[END_REF], race-free games play the role of types and support operations of forming the dual A ⊥ , simple parallel composition A∥B, sum Σ i∈I Ai and recursively-defined games. Terms have typ-

ings x1 ∶ A1, ⋯, xm ∶ Am ⊢ t ⊣ y1 ∶ B1, ⋯, yn ∶ Bn ,
where all the variables are distinct, and denote probabilistic edc strategies from the game ⃗ A = A1∥⋯∥Am to the game ⃗ B = B1∥⋯∥Bn. We can think of the term t as a box with input wires x1, ⋯, xm and output wires y1, ⋯, yn. The term t denotes a probabilistic edc strategy S → ⃗ A ⊥ ∥ ⃗ B with configuration valuation v and describes witnesses, finite configurations of S, to a relation between finite configurations ⃗

x of ⃗ A and ⃗ y of ⃗ B, together with their conditional probabilities. The following constructions, first described for (probabilistic) concurrent strategies in [START_REF] Castellan | Strategies as concurrent processes[END_REF][START_REF] Winskel | On probabilistic distributed strategies[END_REF], extend to (probabilistic) edc strategies, though note that duplication now becomes deterministic as an edc strategy for a broader class of games.

Composition Γ ⊢ ∃∆. [ t ∥ u ] ⊣ H if Γ ⊢ t ⊣ ∆ and ∆ ⊢ u ⊣ H. Probabilistic sum Γ ⊢ Σ i∈I piti ⊣ ∆ if Γ ⊢ ti ⊣ ∆ for i ∈ I,
assumed countable, and a sub-probability distribution pi, i ∈ I. The empty sum denotes , the minimum strategy in the game Γ ⊥ ∥∆.

Conjunction Γ ⊢ t1 ∧ t2 ⊣ ∆ is given by pullback of Γ ⊢ t1 ⊣ ∆ and Γ ⊢ t2 ⊣ ∆ from the game Γ ⊥ ∥∆. Copycat terms of the form ⃗ x ∶ ⃗ A ⊢ g ⃗ y ⊑ C f ⃗ x ⊣ ⃗ y ∶ ⃗ B , where f ∶ ⃗
A → C and g ∶ ⃗ B → C are (affine) maps of event structures preserving polarity. Such terms introduce new "causal wiring" and subsume copycat, injections and projections associated with sums, and prefix operations and can achieve the effect of λ-abstraction on strategies [START_REF] Castellan | Strategies as concurrent processes[END_REF]. With composition they allow us to express a trace operation.They denote deterministic edc strategies-so a probabilistic edc strategy with configuration-valuation constantly oneprovided f reflects --compatibility and g reflects +-compatibility. The map g reflects +-compatibility if whenever x ⊆ + x1 and x ⊆ + x2 in the configurations of ⃗ B and f x1 ∪ f x2 is a configuration, then so is x1 ∪ x2. Reflecting --compatibility is analogous. Duplication Duplications of arguments is essential if we are to support the recursive definition of strategies. We duplicate arguments through an edc strategy δ A ∶ A + / / A∥A. Intuitively it behaves like the copycat strategy but where a Player move in the left component may be caused in parallel by either of its corresponding Opponent moves from the two components on the right. We show δ A when A consists of a single Player move ⊕ and, respectively, a single Opponent move ⊖:

A = ⊕, ⊕ ⊖ ✳ 3 3 ; ♥ ♥ ♥ ✏ # # + ⊕ A = ⊖, ⊕ ≡ ⊖ ✤ l l r ⊕ ⊖ ✤ l l r
The general definition is in Appendix C. In general, duplication δ A is deterministic iff A is deterministic for Opponent, i.e. A ⊥ is deterministic as an edc with polarity. Then δ A extends directly to a probabilistic edc strategy and is a comonoid. (When the duplication strategy is based on prime event structures, the duplication strategy is not deterministic unless the game consists purely of Player moves, making associativity fail with the introduction of probability [START_REF] Winskel | On probabilistic distributed strategies[END_REF].) Recursion Once we have duplication strategies we can treat recursion using standard machinery [START_REF] Winskel | Event structure semantics for CCS and related languages[END_REF]; recall that 2-cells, the maps between probabilistic strategies, include rigid embeddings, so an approximation order ⊴ of rigid inclusions. The order forms a 'large complete partial order' with a bottom element the minimum strategy . Given

x ∶ A, Γ ⊢ t ⊣ y ∶ A, the term Γ ⊢ µ x ∶ A. t ⊣ y ∶ A denotes the ⊴-least fixed point amongst probabilistic strategies X in Γ ⊥ ∥A of the ⊴-continuous operation F (X) = t⊙(id Γ ∥X)⊙δ Γ .
This requires the games Γ are deterministic for Opponent.

Special cases and extensions

The constructions yield deterministic edc strategies if we avoid probabilistic sums.

If we drop probability, we can drop race-freeness on games, the determinacy conditions on copycat terms and parameters of recursions, and replace probabilistic by nondeterministic sum, to obtain constructions for nondeterministic edc strategies.

Even without probability, we obtain an interesting bicategory if we restrict to games in which all moves are those of Player. Duplication is now expressible in event structures. If we further restrict to strategies described with event structures (so the concurrent strategies of [START_REF] Rideau | Concurrent strategies[END_REF]) we obtain a monoidal-closed bicategory with simple parallel composition as tensor. With the addition of probability we obtain a framework for probabilistic dataflow. Note that probability distributions on e.g. domains of infinite streams induced by configuration-valuations can well be continuous on their maximal elements. Given all this the much richer types and language of the previous section should support a useful style of probabilistic programming based on probabilistic strategies.

In general, games can be extended to games with imperfect information and pay-off as in [START_REF] Winskel | Distributed probabilistic and quantum strategies[END_REF]; then they, and the probabilistic concurrent games of [START_REF] Winskel | Distributed probabilistic and quantum strategies[END_REF], include Blackwell games [START_REF] Martin | The determinacy of Blackwell games[END_REF].

There is an alternative method for introducing parallel causes via symmetry, through a pseudo monad ? on games; an edc strategy in a game A corresponds to a strategy in ?A; the monad ? introduces multiple symmetric parallel causes to Player moves [START_REF] Castellan | Symmetry in concurrent games[END_REF][START_REF] Winskel | Event Structures, Stable Families and Concurrent Games[END_REF].

A. Equiv-enriched categories

Here we explain in more detail what we mean when we say "enriched in the category of of sets with equivalence relations" and employ terms such as "enriched adjunction," "pseudo adjunction" and "pseudo pullback."

Equiv is the category of equivalence relations. Its objects are (A, ≡ A ) comprising a set A on which there is an equivalence relation

≡ A . Its maps f ∶ (A, ≡ A ) → (B, ≡ B ) are total functions f ∶ A → B which preserve equivalence.
We shall use some basic notions from enriched category theory [START_REF] Kelly | Basic concepts of enriched category theory[END_REF]. We shall be concerned with categories enriched in Equiv, called Equiv-enriched categories, in which the homsets possess the structure of equivalence relations, respected by composition. This is the sense in which we say categories are enriched in (the category of) equivalence relations. We similarly borrow the concept of an Equiv-enriched functor between Equivenriched categories which preserve equivalence in acting on homsets. An Equiv-enriched adjunction is a usual adjunction in which the natural bijection preserves and reflects equivalence.

Because an object in Equiv can be regarded as a (very simple) category, we can regard Equiv-enriched categories as a (very simple) 2-categories to which notions from 2-categories apply [START_REF] Power | 2-categories[END_REF].

A pseudo functor between Equiv-enriched categories is like a functor but the usual laws only need hold up to equivalence. A pseudo adjunction (or biadjunction) between 2-categories permits a weakening of the usual natural isomorphism between homsets, now also categories, to a natural equivalence of categories. In the special case of a pseudo adjunction between Equiv-enriched categories the equivalence of homset categories amounts to a pair of ≡-preserving functions whose compositions are ≡-equivalent to the identity function. With traditional adjunctions by specifying the action of one adjoint solely on objects we determine it as a functor; with pseudo adjunctions we can only determine it as a pseudo functor-in general a pseudo adjunction relates two pseudo functors. Pseudo adjunctions compose in the expected way. An Equiv-enriched adjunction is a special case of a 2-adjunction between 2-categories and a very special case of pseudo adjunction. In this article there are many cases in which we compose an Equiv-enriched adjunction with a pseudo adjunction to obtain a new pseudo adjunction.

Similarly we can specialise the notions pseudo pullbacks and bipullbacks from 2-categories to Equiv-enriched categories. Let f ∶ A → C and g ∶ B → C be two maps in an Equiv-enriched category. A pseudo pullback of f and g is an object D and maps p ∶ D → A and q ∶ D → B such that f ○ p ≡ g ○ q which satisfy the further property that for any D ′ and maps p ′ ∶ D ′ → A and q ′ ∶ D ′ → B such that f ○ p ′ ≡ g ○ q ′ , there is a unique map h ∶ D ′ → D such that p ′ = p ○ h and q ′ = q ○ h. There is an obvious weakening of pseudo pullbacks to the situation in which the uniqueness is replaced by uniqueness up to ≡ and the equalities by ≡-these are simple special cases of bilimits called bipullbacks.

Right adjoints in a 2-adjunction preserve pseudo pullbacks whereas right adjoints in a pseudo adjunction are only assured to preserve bipullbacks.

B. On (pseudo) pullbacks of ese's

We show that the enriched category of ese's E≡ does not always have pullbacks and pseudo pullbacks of maps f ∶ A → C and g ∶ B → C, the reason why we use the subcategory EDC, which does, as a foundation on which to develop strategies with parallel causes. It suffices to exhibit the lack of pullbacks when C is an (ese of an) event structure as then pullbacks and pseudo pullbacks coincide. Take C to be with the obvious total maps to A and B; they form a commuting square with f and g. This cannot factor through P : event b2 has to be mapped to b2 in P , but then a1 cannot be mapped to a1 (it wouldn't yield a map) nor to a2 (it would violate commutation required of a pullback).

There is a bipullback got by applying the pseudo functor er to the pullback in ef's: Suppose Q with projection maps to A and B were a pullback of f and g in E≡. Consider the three ese's D, E and F with their obvious maps to A and B; in each case they form a commuting square with f and g. There are three unique maps h D ∶ D → Q, h E ∶ E → Q, and h F ∶ F → Q such that the corresponding pullback diagrams commute. We remark that there are also obvious maps k D ∶ E → D and k F ∶ E → F (given by the lettering) which commute with the maps to the components A and B. By uniqueness, we have h D ○ k D = h E = h F ○ k F , so we have h D (a1) = h F (a1). From the definition of the maps, the event h D (a1) = h F (a1) has at most one ≤-predecessor in Q which is sent to b in C (as D only has one). Because of the projection to B, it has at least one (as B has one). So the event h D (a1) = h F (a1) has exactly one predecessor which is sent to b. From the definition of maps, this event is h D (b2) which equals h F (b1). But h D (b2) cannot equal h F (b1) as they go to two different events of A -a contradiction. Hence there can be no pullback of f and g in E≡.

(By adding intermediary events, we would encounter essentially the same example in the composition, before hiding, of strategies if they were to be developed within the broader category of ese's.)

C. The edc duplication strategy

We present the general definition of the edc duplication strategy δ A ∶ A + / / A∥A for a race-free game A.

For each triple (x, y1, y2), where x ∈ C(A ⊥ ) and y1, y2 ∈ C(A), which is balanced, i.e. ∀a ∈ y1 ∪ y2. pol A (a) = + ⇒ a ∈ x and ∀a ∈ x. pol A ⊥ (a) = + ⇒ a ∈ y1 or a ∈ y2 , and choice function χ ∶ x + → {1, 2} , from the positive events of x denoted by x + , such that χ(a) = 1 ⇒ a ∈ y1 and χ(a) = 2 ⇒ a ∈ y2, the order q(x, y1, y2; χ) is defined to have underlying set {0} × x ∪ {1} × y1 ∪ {2} × y2 with order generated by that inherited from A ⊥ ∥A∥A together with Given that A is race-free, δ A is deterministic iff A ⊥ is deterministic as an edc with polarity-a condition we call deterministic for Opponent. Under the condition that A ⊥ is deterministic, as δ A is a deterministic edc strategy it extends directly to a probabilistic edc strategy with configuration-valuation having constant value 1. Then the probabilstic edc strategy δ A forms a comonoid with counit ∶ A + / / ∅.

Example 5 . 2 .

 52 On the other hand there are extremal realisations with top of which the image is not an irreducible configuration. Below the extremal with top on the left describes a situation where d is enabled by b and c being enabled by a. It has image the configuration {a, b, c, d} which is not irreducible, being the union of the two configurations {a} and {b, c, d}.
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 22 into a pseudo adjunction followed by an adjunction E≡ ⊺ Fam≡ s s ⊺ 3 3 G . r r Fam≡ has pullbacks and pseudo pullbacks which are easy to construct. For example, let f ∶ A → C and g ∶ B → C be total maps of ef's. Assume A and B have underlying sets A and B. Define D = def {(a, b) ∈ A × B f (a) ≡ C g(b)} with projections π1 and π2 to the left and right components. On D, take d ≡ D d ′ iff π1(d) ≡ A π1(d ′ ) and π2(d) ≡ B π2(d ′ ). Define a family of configurations of the pseudo pullback to consist of x ∈ D iff x ⊆ D such that π1x ∈ A & π2x ∈ B , and

Theorem 7 . 1 .Corollary 7 . 2 .

 7172 Let σ ∶ S → A be an edc pre-strategy. Then, σ ≅ γ A ⊙σ iff σ satisfies the axioms above. Let σ ∶ S → B ⊥ ∥C be an edc pre-strategy. Then, σ ≅ γ C ⊙σ⊙γ B iff σ satisfies the axioms above.

  y) when x ⊆ -y for finite configurations x, y of S, and the (+ve drop condition) dv[y; x1, ⋯, xn] ≥ 0 when y ⊆ + x1, ⋯, xn for finite configurations of S.

  The idea: w(U ) is the probability of a result in open set U .

Example 8 . 1 .

 81 Recall the game of the Introduction. In the edc strategy w1⊕ ≡ ⊕ ⊖ ❴ L L R ⊖ ❴ L L R w2 of Section 7.3 individual success of

C'

  &%$ !"# a '&%$ !"# b c '&%$ !"# d '&%$ !"# e with A and B being respectively A /.-, ()*+ a1 /.-, ()*+ a2 /.-, ()*+ b1 /.-, ()*+ b2 /.-, ()*+ c1❴ L L R ✽ 7 7 A /.-, ()*+ c2 ❴ L L R ✝ ] ] g '&%$ !"# d ❴ L L R '&%$ !"# e ❴ L L R '&%$ !"# a '&%$ !"# b ❴ L L R c '&%$ !"# d '&%$ !"# e Bwith the obvious maps f ∶ A → C and g ∶ B → C (given by the lettering). In fact, A and B are edc's. The pullback in edc's EDC does exist and is given by P /.-, ()*+ a1 /.-, ()*+ a2 /.-, ()*+ b1 ❴ L L R /.-, ()*+ b2 ❴ L L R /.-, ()*+ c1 ❴ L L R /.-, ()*+ c2❴ L L R '&%$ !"# d ❴ L L R '&%$ !"# e ❴ L L Rwith the obvious projection maps. However this is not a pullback in E≡. Consider the ese D

❴F

  ✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷ ✷ '&%$ !"# d ❴ L L R '&%$ !"# e ❴ L L RBut this is not a pullback because in the ese E below the required mediating map is not unique in that a1 can go to either a1 or a1′ : L L R /.-, ()*+ b2 ✂ [ [ e ❇ ❇ ❇ ❇ ❇ ❇ /.-, ()*+ c1 ❴ L L R /.-, ()*+ c2 ❴ L L R '&%$ !"# d ❴ L L R '&%$ !"# e ❴ L L RIn fact, there is no pullback of f and g. To show this we use an additional ese:

1 -⊂ and x a 2 -

 12 {((0, a), (1, a)) a ∈ y1 & pol A (a) = +} ∪ {((0, a), (2, a)) a ∈ y2 & pol A (a) = +} ∪ {((χ(a), a), (0, a)) a ∈ x & pol A ⊥ (a) = +} .Now we can define δA ∶ D A → A ⊥ ∥A∥A. The edc D A comprises (D A , ≤, Con, ≡, pol ) withevents D A consisting of all d = q(x, y1, y2; χ), for balanced (x, y1, y2) and choice function χ, which have a top element δ A (d);causal dependency d ≤ d ′ iff there is a rigid inclusion map from d into d ′ (regarded as event structures); consistency X ∈ Con iff X ⊆ fin D A and the image of its ≤down-closure, δ A [X], is consistent in A ⊥ ∥A∥A; equivalence d ≡ d ′ iff δ A (d) = δ A (d ′ ), i.e.they have the same top element in A ⊥ ∥A∥A; and with the polarity of events D A inherited from the polarity of their top elements, i.e. pol (d) = pol A (δ A (d)) for d ∈ D A .We obtain an edc strategy δA ∶ A + / / A∥A in which δ A ∶ D A → A ⊥ ∥A∥Asends a prime to its top element. The edc strategy δ A forms a comonoid with counit ∶ A + / / ∅. The duplication strategy δ A is deterministic iff no Opponent moves in A are in immediate conflict, i.e. if x a ⊂ in C(A) and pol A (a1) = pol A (a2) =then x ∪ {a1, a2} ∈ C(A).

A Scott-open subset of configurations is upwards-closed w.r.t. inclusion and such that if it contains the union of a directed subset S of configurations then it contains an element of S. A continuous valuation is a function w
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