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Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by boundary data. Part II: some inverse problems

1 Introduction and main results

Introduction

We investigate the so called quantitative thermoacoustic tomography process (e.g. [START_REF] Akhouayri | Quantitative thermoacoustic tomography with microwaves sources[END_REF][START_REF] Cox | Modeling photoacoustic propagation in tissue using k-space techniques[END_REF][START_REF] Patch | Guest editors' introduction: Photo-and thermo-acoustic imaging Inverse Problems[END_REF][START_REF] Stefanov | Thermoacoustic tomography with variable sound speed[END_REF] and their references). According to [START_REF] Cox | Modeling photoacoustic propagation in tissue using k-space techniques[END_REF], assuming that the variations in temperature and pressure are weak and neglecting the nonlinear effects, we obtain the system

       ∂ 2 t p -ρv 2 s div 1 ρ ∇p -Γ∂ t {div (κ∇θ)} = Γ∂ t Π a , ∂ t θ - 1 ρC p div (κ∇θ) - θ 0 ς ρC p ∂ t p = Π a ρC p , in Q, (1.1) 
for the temperature rise θ and the pressure perturbation p from the equilibrium steady state depending on (x, t) = (x 1 , • • • , x n , t) ∈ Q Ω × (0, T ). Here n ∈ N * and Ω is a bounded domain in R n with the boundary ∂Ω ∈ C 3 . Throughout this paper, we set

∂ j = ∂ ∂x j , ∂ t = ∂ ∂t , ∂ 2 j = ∂ 2 ∂x 2 j , ∂ j ∂ k = ∂ 2 ∂x j ∂x k , = n j=1 ∂ 2 ∂x 2 j , ∂ 2 t = ∂ 2 ∂t 2 , 1 ≤ j, k ≤ n.
We assume that the mass density at steady state ρ, the acoustic wave velocity v s and the isobar specific heat capacity C p are given strictly positive functions of x and independent of t, the Grüneisen parameter Γ, the background temperature θ 0 and the volume thermal expansivity ς are given non-negative functions of x and independent of t. Finally, the absorbed energy Π a is an unknown function of x and t which can be written in the form: Π a (x, t) = µ a (x)R(x, t) with µ a (x, t) corresponds to the absorption coefficient and R(x, t) is the fluence and the thermal conductivity κ is an unknown strictly positive functions of x and independent of t.

We set Θ(x, t) = ∂ t θ(x, t) (1.2)

Differentiating the second equation in (1.1) with respect to t, we obtain

       ∂ 2 t p -ρv 2 s div 1 ρ ∇p -Γdiv (κ∇Θ) = Γ(x)∂ t Π a , ∂ t Θ - 1 ρC p div (κ∇Θ) - θ 0 ς ρC p ∂ 2 t p = 1 ρC p ∂ t Π a , in Q.
(1.3)

We will assume that Θ and p satisfy initial and boundary conditions Θ(x, 0) = Θ 0 (x), p(x, 0) = p 0 (x), ∂ t p(x, 0) = p 1 (x), x ∈ Ω (1.4) and Θ(x, t) = b(x, t), p(x, t) = h(x, t), (x, t) ∈ Σ ∂Ω × (0, T ).

(1.5)

The methodology used in this paper is based on Carleman estimates. Bugkheim and Klibanov [START_REF] Bugkheim | Global uniqueness of class of multidimentional inverse problems[END_REF] have initiated the use of Carleman estimates for proving the uniqueness in several inverse coefficient problems. For the development of this approach, there are many works. We refer to some of them (e.g., [START_REF] Bellassoued | Inverse problem of determining the density and two Lame coefficients by boundary data[END_REF], [START_REF] Bellassoued | Carleman Estimates and Applications to Inverse Problems for Hyperbolic Systems[END_REF], [START_REF] Imanuvilov | An inverse problem for the dynamical Lamé system with two sets of boundary data[END_REF], [START_REF] Imanuvilov | Lipschitz stability in inverse parabolic problems by the Carleman estimate[END_REF], [START_REF] Imanuvilov | Global Lipschitz stability in an inverse hyperbolic problem by interior observations[END_REF], [START_REF] Imanuvilov | Determination of a coefficient in an acoustic equation with single measurement[END_REF], [START_REF] Isakov | Inverse problems for partial differential equations Berlin[END_REF], [START_REF] Klibanov | Inverse problems in the large and Carleman bounds Differ[END_REF], [START_REF] Klibanov | Inverse problems and Carleman estimates Inverse Problems[END_REF], [START_REF] Klibanov | Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems[END_REF], [START_REF] Klibanov | Lipschitz stability of an inverse problem for an acoustic equation[END_REF], [START_REF] Shang | An inverse problem for Maxwell's equations in a uniaxially anisotropic medium[END_REF]). The main advantages of this approach concern the finite number of observations required, the obtention of stability inequalities between the coefficient to be reconstructed and the observation data. Nevertheless, some drawback concerns the case of parabolic models: indeed, we need the additive observation of the solution of the problem on all the domain at one strictly positive time. The case of system of operators with respect to the scalar case is less addressed and the case of hybrid problem involving strong coupling between the second order terms in the two equations induces technical difficulties. We are interested in the so-called Thermo-Acoustic-Tomography (TAT in short) and as we aim to solve our different inverse problems using the observation of only one component, the pressure P or the temperature θ, we need to develop specific Carleman estimates (see Lemma 1.1). The TAT model answers to the current focuses of interests towards achieving better contrasted image with higher spectral resolution (e.g. functional imaging in medical applications). This is why multiwaves or hybrid systems are proposed as models. As already mentioned, mathematically, solving these inverse problems is even more complicated because they require a hard coupling between PDE of different nature : parabolic and hyperbolic. The system (1.1) propose a model where the thermal effects are fully kept. Indeed, the TAT approach provides a complete model coupling heat transfer and pressure equations. The outline of this paper is the following. In the Section 2 we prove two key Carleman estimates involving the observation of only one component. The section 3 is concerned by the proof of the reconstruction Theorem 1.1 and the reconstruction Theorem 1.2.

Settings and hypothesis

Therefore, in a first part of this paper, we are going to derive two Carleman estimates for the following strongly coupled hyperbolic-parabolic system involving the observation of only one component.

∂ 2 t p(x, t) -a 1 (x)∆p(x, t) -a 2 (x)∆Θ(x, t) = f (x, t), ∂ t Θ(x, t) -a 3 (x)∆Θ(x, t) -a 4 (x)∂ 2 t p(x, t) = g(x, t), in Q, (1.6) where f (x, t), g(x, t) ∈ L 2 (Q), a j (x) ∈ C 2 (Ω) (j = 1, 2, 3, 4
) are real-valued functions. We will assume that Θ and p satisfy initial condition (1.4) and boundary conditions (1.5).

Let (x • x ) denote the scalar product in R n . Let ν = ν(x) = (ν 1 (x), • • • , ν n (x)
) denote the outward unit normal vector to ∂Ω at x. We assume that ω ⊂ Ω is a subdomain of Ω satisfy

∂Ω \ ∂ω ⊂ x ∈ ∂Ω ((x -x 0 ) • ν(x)) < 0 (1.7)
with some

x 0 = (x 1 0 , x 2 0 , • • • , x n 0 ) ∈ R n \ Ω.
Let T > 0 be given. Denote t 0 = T 2 . We introduce two sets which are concerned with the coefficients a j (x), j = 1, 2, 3, 4:

U = U σ 0 ,σ 1 ,M 0 ,M 1 ,M 2 = a 1 (x), a 2 (x), a 3 (x), a 4 (x) ∈ C 2 (Ω) 4 a 1 (x) ≥ σ 1 , a 3 (x) ≥ σ 1 , a 2 (x) ≥ 0, a 4 (x) ≥ 0, ∀x ∈ Ω, a j C(Ω) ≤ M 0 , a j C 1 (Ω) ≤ M 1 , a j C 2 (Ω) ≤ M 2 , j = 1, 2, 3, 4, 3a 1 -2 ((x -x 0 ) • ∇a 1 ) + a 1 (1 + a 2 a 4 a 3 ) 2(x -x 0 ) • ∇ a 2 a 4 a 3 ≥ σ 0 (1.8)
where the constants

M 0 > 1, M 1 > 0, M 2 > 0, σ 0 > 0, M 0 > σ 1 > 0 are given. Denote m = inf x∈Ω |x -x 0 | 2 , M = sup x∈Ω |x -x 0 | 2 , and D = √ M -m. (1.9) 
We assume that a 1 (x), a 2 (x),

a 3 (x), a 4 (x) ∈ U = U σ 0 ,σ 1 ,M 0 ,M 1 ,M 2 . Denote α 1 =228nM 3 0 M 1 M 1 2 + 20M 4 0 -8σ 2 1 , α 2 = 132nM 1 M 1 2 + 16M 0 M 3 0 , α 3 = min    σ 0 σ 1 2M 4 0 α 1 σ 2 1 + α 2 , σ 1 8M , σ 4 1 16M 8 0    , α 4 =6M 2 0 α 3 + 2M 2 0 σ 1 , α 5 = 2M 2 0 α 3 + 2 1 + M 2 0 σ 1 + 3M 3 0 σ 2 1 M 1 + 2M 2 0 σ 1 , α 6 = 4M 3 0 α 3 σ 1 + 2 1 + M 2 0 σ 1 + 3M 3 0 σ 2 1 nM 1 , α 7 = 16M 8 0 σ 7 1 1 + M 2 0 σ 1 2 , α 8 = 2 1 + M 2 0 σ 1 2 , α 9 = -Dα 6 + D 2 α 2 6 + σ 1 (D 2 α 7 + α 8 ) 4 (D 2 α 7 + α 8 )
.

(1.10)

We choose β > 0 such that

0 < β < min α 2 9 , α 2 1 α 2 3 16α 2 4 D 2 , σ 2 0 σ 2 1 16α 2 5 D 2 , m 2 σ 3 1 2M 0 (σ 1 + M 2 0 ) D 2 .
(1.11)

We will prove two Carleman estimate for (1.6) with the exponential weight function e 2sϕ where ϕ(x, t) = e λψ(x,t) , ψ(x, t) = |x -

x 0 | 2 -β (t -t 0 ) 2 + βt 2 0 , ∀(x, t) ∈ Q, (1.12)
and λ > 0 is a suitably large constant.

We set 2 , and so on. L 2 (Q), H 2 (Ω), etc. denote usual Sobolev spaces. We further set

∇ = (∂ 1 , • • • , ∂ n ), ∇ x,t = (∂ 1 , • • • , ∂ n , ∂ t ), |∇w| 2 = n k=1 |∂ k w| 2 , |∇ x,t w| 2 = |∇w| 2 + |∂ t w|
H 2,1 (Q) = u ∈ L 2 (Q); ∂ j u, ∂ 2 j u, ∂ j ∂ k u, ∂ t u ∈ L 2 (Q), j, k = 1, • • • , n , H 2,2 (Q) = u ∈ L 2 (Q); ∂ j u, ∂ 2 j u, ∂ j ∂ k u, ∂ t u, ∂ 2 t u ∈ L 2 (Q), j, k = 1, • • • , n ,
and

W = H 2,1 (Q) × H 2,2 (Q).

Main results

A first serie of results concerning new Carleman estimates for (1. 

Θ(x, t) = 0, p(x, t) = 0, (x, t) ∈ Σ ∂Ω × (0, T ) (1.13) Θ(x, 0) = Θ(x, T ) = 0, ∂ j t p(x, 0) = ∂ j t p(x, T ) = 0, x ∈ Ω, j = 0, 1. (1.14)
We assume that a 1 , a 2 , a 3 , a 4 ∈ U, and that (1.11) holds. Moreover, we assume that exists a constant σ 2 > 0 such that a 2 ≥ σ 2 on Ω. Then there exists a constant η(β) > 0 such that for any T ∈ 0, 2(D+η) √ β , there exists a constant λ 0 > 0 such that for all λ > λ 0 , there exist constants s 0 (λ) > 0 and

K 1 = K 1 (s 0 , λ 0 , β, Ω, T , m, M , M 0 , M 1 , M 2 , σ 0 , σ 1 , σ 2 ) > 0 such that Q s 3 λ 4 ϕ 3 Θ 2 + 1 sϕ |∂ t Θ| 2 + sλϕ|∇Θ| 2 + s 3 λ 4 ϕ 3 p 2 + sλϕ|∇ x,t p| 2 e 2sϕ dxdt ≤ K 1 Q f 2 + g 2 e 2sϕ dxdt + K 1 s 3 λ 4 Φ 3 (λ)e 2sΦ(λ) Qω f 2 + g 2 + 2 j=0 |∂ j t p| 2 + | p| 2 dxdt, (1.15) 
for all s ≥ s 0 , where Φ(λ) = e λ(M 2 +βt 2 0 ) , and Q ω ω × (0, T ). Besides, if there exists a constant σ 3 > 0 such that a 4 ≥ σ 3 on Ω, then there exists

K 2 = K 2 (s 0 , λ 0 , β, Ω, T , m, M , M 0 , M 1 , M 2 , σ 0 , σ 1 , σ 3 ) > 0 such that Q s 3 λ 4 ϕ 3 Θ 2 + 1 sϕ |∂ t Θ| 2 + sλϕ|∇Θ| 2 + s 3 λ 4 ϕ 3 p 2 + sλϕ|∇ x,t p| 2 e 2sϕ dxdt ≤ K 2 Q f 2 + g 2 e 2sϕ dxdt + K 2 s 3 λ 4 Φ 3 (λ)e 2sΦ(λ) Qω g 2 + Θ 2 + |∂ t Θ| 2 + | Θ| 2 dxdt, (1.16) 
for all s ≥ s 0 .

Then, we will consider different inverse coefficient problems. We are interested to recover the unknown coefficient(s) using as less as possible of observation and we focus on the observation of only one component of the system (1.1). We are able to use for each case the observation of the temperature θ(x, t) (or the pressure p(x, t)) as well as the observation of the pressure p(x, t) (or the temperature θ(x, t)). We refer to [START_REF] Akhouayri | Quantitative thermoacoustic tomography with microwaves sources[END_REF] for the choice of the coefficients of interest to be reconstructed. Among all the coefficients appearing in the model (1.1), the absorption coefficient µ a (x) is one of the most studied. Then due to the existing relations between a lot of coefficients, the reconstruction of the thermal conductivity κ(x) seems to be relevant.

First, we address the inverse source problem of determining µ a = µ a (x), x ∈ Ω from the interior measurement Θ(x, t 0 ),

x ∈ Ω, and the measurement in a partial subboundary layer

Θ(x, t), (x, t) ∈ Q ω .
We assume that

∂ t Π a (x, t) = µ a (x)R(x, t)
where µ a (x) is an unknown function of x and independent of t and R(x, t) and κ(x) are given functions. We rewrite accordingly the system (1.3)

       ∂ 2 t p -ρv 2 s div 1 ρ ∇p -Γdiv (κ∇Θ) = µ a (x)R 1 (x, t), ∂ t Θ - 1 ρC p div (κ∇Θ) - θ 0 ς ρC p ∂ 2 t p = µ a (x)R 2 (x, t), in Q.
(1.17

)
where [START_REF] Stefanov | Thermoacoustic tomography with variable sound speed[END_REF] and (1.19). We further assume that exists a constant σ 3 > 0 such that θ 0 ς ρCp ≥ σ 3 on Ω. Then there exists a constant β = β(σ 0 , σ 1 , M 0 , M 1 , M 2 ) > 0 such that for any T > 2D √ β , there exist constants C > 0 and τ ∈ (0, 1) such that

R 1 (x, t) = Γ(x)R(x, t) and R 2 (x, t) = 1 ρ(x)Cp(x) R(x, t). Assume v s , ρ, Γ, κ, C p , θ 0 , ς ∈ C 2 (Ω), v s > √ σ 1 > 0, ρ > 0, C p > 0, κ > 0, Γ ≥ 0, θ 0 ς ≥ 0 on Ω, ( 1 
satisfy initial condition (3.2). Assume that Θ, Θ, p, p ∈ W 5,∞ (Q), R 1 , R 2 ∈ W 3,∞ (Q) and ∂ t R 2 (x, t 0 ) = 0 for all x ∈ Ω. Assume v s , Γ, C p , θ 0 , ς satisfy (1.
µ a -μa L 2 (Ω) ≤ CF τ , (1.20)
for all µ a , μa satisfying

µ a = μa = η 0 on ω, (1.21) 
where

F = ∂ t (Θ -Θ)(•, t 0 ) H 2 (Ω) + 4 k=0 ∂ k t (Θ -Θ) L 2 ((0,T ),H 2 (ω)) . (1.22)
Then, we address the inverse problem of determining κ = κ(x), x ∈ Ω from the interior measurement p(x, t 0 ), x ∈ Ω, and the measurement in a subboundary layer

p(x, t), (x, t) ∈ Q ω ω × (0, T ),
assuming that µ a (x) is known and we consider an arbitrarily fixed function

η 1 (x) ∈ C 2 (Ω).
Theorem 1.2. Let (Θ, p) satisfy (1.3), let ( Θ, p) satisfy (1.3) where κ is replaced by κ, let (Θ, p) and ( Θ, p) satisfy the same boundary condition (1.5) and let (Θ, p) satisfy initial conditions (1.4) and let ( Θ, p) satisfy initial condition (3.9). Assume that Θ, Θ, p, p ∈ W 5,∞ (Q) and

∇ θ x, T 2 • (x -x 0 ) = 0 for all x ∈ Ω. (1.23)
Assume v s , Γ, C p , θ 0 , ς satisfy (1.18) and (1.19). We further assume that exists a constant σ 2 > 0 such that Γκ ≥ σ 2 on Ω. Then there exists a constant

β = β(σ 0 , σ 1 , M 0 , M 1 , M 2 ) > 0 such that for any T > 2D √ β , there exist constants C > 0 and τ ∈ (0, 1) such that κ -κ H 1 (Ω) ≤ CF τ 1 , (1.24) 
for all κ, κ satisfying

κ = κ = η 1 and ∇κ = ∇κ = ∇η 1 on ω ∪ ∂Ω, (1.25) 
where

F 1 = G 1 + p -p H 5 (Qω) , with G 2 1 = ∂ t (p -p)(•, t 0 ) 2 H 3 (Ω) + Y (•, t 0 ) 2 H 5 (Ω) where Y (x, t) = t 0 (p -p)(x, t )dt .

Carleman estimates for thermoacoustic system

Recall the following result established in [START_REF] Li | Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by boundary data. Part I: Carleman estimates[END_REF] by Li and Shang.

Theorem 2.1. Let (Θ, p) ∈ W satisfy (1.6) and

Θ(x, t) = 0, p(x, t) = 0, (x, t) ∈ Σ ∂Ω × (0, T ) Θ(x, 0) = Θ(x, T ) = 0, ∂ j t p(x, 0) = ∂ j t p(x, T ) = 0, x ∈ Ω, j = 0, 1.
We assume that a 1 , a 2 , a 3 , a 4 ∈ U, and that (1.11) holds. Then there exists a constant η(β) > 0 such that for any T ∈ 0, 2(D+η) √ β , there exists a constant λ 0 > 0 such that for all λ > λ 0 , there exist constants s 0 (λ) > 0 and

K = K(s 0 , λ 0 , β, Ω, T , m, M , M 0 , M 1 , M 2 , σ 0 , σ 1 ) > 0 such that Q s 3 λ 4 ϕ 3 Θ 2 + 1 sϕ |∂ t Θ| 2 + sλϕ|∇Θ| 2 + s 3 λ 4 ϕ 3 p 2 + sλϕ|∇ x,t p| 2 e 2sϕ dxdt ≤ K Q f 2 + g 2 e 2sϕ dxdt + C Qω s 3 λ 4 ϕ 3 Θ 2 + p 2 + 1 sϕ |∂ t Θ| 2 + s 3 λ 3 ϕ 3 |∂ t p| 2 e 2sϕ dxdt, (2.1) 
for all s ≥ s 0 .

By Theorem 2.1, we prove Lemma 1.1.

Proof. By (2.1), we have

Q s 3 λ 4 ϕ 3 Θ 2 + 1 sϕ |∂ t Θ| 2 + sλϕ|∇Θ| 2 + s 3 λ 4 ϕ 3 p 2 + sλϕ|∇ x,t p| 2 e 2sϕ dxdt ≤ K Q f 2 + g 2 e 2sϕ dxdt + Cs 3 λ 4 Φ 3 (λ)e 2sΦ(λ) Qω Θ 2 + p 2 + |∂ t Θ| 2 + |∂ t p| 2 dxdt, (2.2) 
for all s ≥ s 0 , where Φ(λ) = e λ(M 2 +βt 2 0 ) . Here and henceforth, C denotes generic positive constants which are dependent on n, Ω, T , β, m, M , M j (j = 0, 1, 2), σ 0 , σ 1 , σ 2 , σ 3 , s 0 , λ 0 , but independent of s and λ. By a usual density argument, we can assume that (Θ, p)

∈ C ∞ (Q) × C ∞ (Q).
We assume that there exists a constant σ 2 > 0 such that a 2 (x) ≥ σ 2 for all x ∈ Ω and prove (1.15). By (1.6), we have (see [START_REF] Li | Carleman estimates and some inverse problems for the coupled quantitative thermoacoustic equations by boundary data. Part I: Carleman estimates[END_REF])

a 7 ∂ 2 t p -a 1 ∆p -a 8 ∂ t Θ = f -a 8 g, (2.3) 
where

a 7 = 1 + a 2 a 4 a 3 and a 8 = a 2 a 3 . (2.4) 
By a 1 , a 2 , a 3 , a 4 ∈ U and a 2 (x) ≥ σ 2 for all x ∈ Ω, we have a 8 (x) ≥ σ 2 M 0 for all x ∈ Ω. Therefore, by (2.3), we have

Qω |∂ t Θ| 2 dxdt ≤ C Qω f 2 + g 2 + ∂ 2 t p 2 + | p| 2 dxdt, (2.5) 
for all s ≥ s 0 . Furthermore, by (1.14) and Poincarés inequality, we have

T 0 Θ 2 dt ≤ C T 0 |∂ t Θ| 2 dt, for all s ≥ s 0 .
Integrating it over ω and using (2.5), we obtain 

Qω Θ 2 dxdt ≤ C Qω |∂ t Θ| 2 dxdt ≤ C Qω f 2 + g 2 + ∂ 2 t p 2 + | p| 2 dxdt

Inverse problems

In this section, we shall prove Theorem 1.1 and 1.2 for inverse problems. We recall

t 0 = T 2 , ϕ(x, t) = e λψ(x,t) , ψ(x, t) = |x -x 0 | 2 -β (t -t 0 ) 2 + βt 2 0 , D = √ M -m, T > 2D √ β . We have ϕ (x, t 0 ) ≥ e λ(inf x∈Ω |x-x 0 | 2 +βt 2 0 ) ≥ d e λ(inf x∈Ω |x-x 0 | 2 +D 2 ) , x ∈ Ω, and 
ϕ (x, T ) = ϕ (x, 0) < e λ sup x∈Ω |x-x 0 | 2 = d, x ∈ Ω.
For any given sufficiently small ε 0 > 0, ∃δ = δ(ε 0 ) > 0, such that

ϕ (x, t) ≤ d -ε 0 , (x, t) ∈ Ω × ([0, 2δ] ∪ [T -2δ, T ]) .
We take a cut-off function

χ(t) ∈ C ∞ (R) satisfying 0 ≤ χ ≤ 1 with χ(t) = 0, t ∈ [0, δ] ∪ [T -δ, T ], 1, t ∈ [2δ, T -2δ]. (3.1)

Inverse source problem of determining the absorption coefficient

In this part, we aim to determine the absorption coefficient µ a from a single measurement of Θ(x, t) and we are going to detail the proof of Theorem 1.1.

Proof. Let (Θ(x, t), p(x, t)) satisfy (1.17), (1.4)-(1.5) and ( Θ(x, t), p(x, t)) satisfy (1.17) in which the coefficient µ a is replaced by μa . We will assume that Θ and p satisfy initial conditions

Θ(x, 0) = Θ0 (x), p(x, 0) = p0 (x), ∂ t p(x, 0) = p1 (x), x ∈ Ω (3.2)
and the boundary conditions (1.5). Now let y = p -p, z = Θ -Θ and note m a = µ a -μa . We get from (1.17)

       ∂ 2 t y -ρv 2 s div 1 ρ ∇y -Γdiv (κ∇z) = m a (x)R 1 (x, t), ∂ t z - 1 ρC p div (κ∇z) - θ 0 ς ρC p ∂ 2 t y = m a (x)R 2 (x, t), in Q, (3.3)
with boundary conditions: y(x, t) = 0, z(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ).

Set

u 1 = χ∂ 2 t y, u 2 = χ∂ 3 t y, v 1 = χ∂ 2 t z, v 2 = χ∂ 3 t z.
Then, taking the time derivative of system (3.3) and multiplying by χ we get (1.16) in Lemma 1.1 and noting the definition of χ, we can obtain, for k = 1, 2,

                                 ∂ 2 t u k -v 2 s ∆u k -Γκ∆v k = χ m a (x)∂ k+1 t R 1 + Υ (∇u k , ∇v k ) + ∂ 2 t χ ∂ k+1 t y + 2 (∂ t χ) ∂ k+2 t y , ∂ t v k - κ ρC p ∆v k - Θ 0 ς ρC p ∂ 2 t u k = χ m a (x)∂ k+1 t R 2 + (∇κ • ∇v k ) + (∂ t χ) ∂ k+1 t z - Θ 0 ς ρC p ∂ 2 t χ ∂ k+1 t y + 2 (∂ t χ) ∂ k+2 t y , in Q, u k (x, t) = 0, v k (x, t) = 0, (x, t) ∈ ∂Ω × (0, T ), u k (x, 0) = v k (x, 0) = ∂ t u k (x, 0) = ∂ t v k (x, 0) = u k (x, T ) = v k (x, T ) = ∂ t u k (x, T ) = ∂ t v k (x, T ) = 0, x ∈ Ω, for k = 1, 2, where Υ (∇y, ∇z) = ρv 2 s ∇ 1 ρ • ∇y + Γ (∇κ • ∇z). Fixing λ > 1 large, applying
Q χ 2 s 3 |∂ k+1 t z| 2 + |∂ k+1 t y| 2 + s |∇ ∂ k+1 t z | 2 + |∇ x,t ∂ k+1 t y | 2 e 2sϕ dxdt ≤ C Q s 3 v 2 k + u 2 k + s |∇v k | 2 + |∇ x,t u k | 2 + | (∂ t χ) ∂ k+1 t y| 2 e 2sϕ dxdt ≤ C Q s 3 v 2 k + u 2 k + s |∇v k | 2 + |∇ x,t u k | 2 e 2sϕ dxdt + CsM 3 e 2s(d-ε 0 ) ≤ CsM 3 e 2s(d-ε 0 ) + C Q χ 2 m 2 a e 2sϕ dxdt + C Q |∇v k | 2 + |∇u k | 2 e 2sϕ dxdt + Ce Cs Qω m 2 a + 3 j=2 ∂ j t ∇z 2 + |∂ t χ| 2 3 j=2 ∂ j t z 2 + 4 j=3 ∂ j t y 2 + ∂ 2 t χ 2 3 j=2 ∂ j t y 2 + 4 j=2 ∂ j t z 2 + 3 j=2 ∂ j t ∆z 2 dxdt, (3.4) 
for all large s > s 0 , with

M 3 = 4 j=2 Q ∂ j t p 2 + ∂ j t p 2 dxdt + 3 j=2 Q ∂ j t Θ 2 + ∂ j t Θ 2 dxdt.
Taking s 0 > 0 large enough, the third term in the right hand side of (3.4) can be absorbed by the left hand side. By the second equation in (3.3) and the hypothesis of Theorem 1.1, we have,

∂ k+2 t y = ρC p θ 0 ς ∂ k+1 t z - 1 ρC p div κ∇∂ k t z -m a (x)∂ k t R 2 (x, t) , in Q, k = 0, 1, 2.
Therefore, we have

Qω |∂ t χ| 2 4 j=3 |∂ j t y| 2 + ∂ 2 t χ 2 3 j=2 |∂ j t y| 2 dxdt ≤ C Qω m 2 a + 3 j=1 ∂ j t z 2 + 2 j=0 ∇∂ j t z 2 + j=0 ∆∂ j t z 2 dxdt. (3.5) Let t 0 = T 2 . m a (x)∂ t R 2 (•, t 0 ) = ∂ 2 t z(•, t 0 ) - Θ 0 ς ρC p ∂ 3 t y(•, t 0 ) - κ ρC p ∆∂ t z(•, t 0 ) -(∇κ • ∇∂ t z(•, t 0 )) , on Ω.
Integrating in space after multiplication by e 2sϕ(x,t 0 ) we get:

Ω |m a (x)∂ t R 2 (x, t 0 )| 2 e 2sϕ(x,t 0 ) dx ≤ C Ω ∂ 2 t z(x, t 0 ) 2 + ∂ 3 t y(x, t 0 ) 2 e 2sϕ(x,t 0 ) dx + Ce Cs ∂ t z(•, t 0 ) 2 H 2 (Ω) ,
for all s > s 0 . Then by integration in time and after introducing χ(t), we have

Ω |m a (x)∂ t R 2 (x, t 0 )| 2 e 2sϕ(x,t 0 ) dx ≤ C t 0 0 Ω ∂ t χ∂ 2 t z 2 + χ∂ 3 t y 2 e 2sϕ dxdt + Ce Cs ∂ t z(•, t 0 ) 2 H 2 (Ω) ≤ C Q s χ∂ 2 t z 2 + χ∂ 3 t y 2 e 2sϕ dxdt + C s Q χ∂ 3 t z 2 + χ∂ 4 t y 2 e 2sϕ dxdt + CM 3 e 2s(d-ε 0 ) + Ce Cs ∂ t z(•, t 0 ) 2 H 2 (Ω) , s > s 0 . Then thanks to (3.4) and (1.21) we obtain Ω |m a (x)∂ t R 2 (x, t 0 )| 2 e 2sϕ(x,t 0 ) dx ≤ CM 3 e 2s(d-ε 0 ) + C s 2 Q χ 2 m 2 a e 2sϕ dxdt + Ce Cs F 2 ≤ CM 3 e 2s(d-ε 0 ) + CT s 2 Ω m 2 a e 2sϕ(x,t 0 ) dx + Ce Cs F 2 , (3.6) 
for all large s > s 0 with

F = ∂ t z(•, t 0 ) 2 H 2 (Ω) + Qω 4 j=1 ∂ j t z 2 + 3 j=0 |∇∂ j t z| 2 + 3 j=0 ∆∂ j t z 2 dxdt.
For the second inequality in (3.6), we have used

ϕ (x, t) ≤ ϕ (x, t 0 ) for all (x, t) ∈ Q. ( 3.7) 
By the hypothesis of Theorem 1.1, the second term in the right hand side can be absorbed by the left hand side in (3.6) for all s > s 0 large enough. Hence, taking s 1 > s 0 large enough and since ϕ (x, t 0 ) ≥ d on Ω, for all s > s 1 , we obtain

Ω |m a (x)| 2 dx ≤ Ce -2sd Ω |m a (x)∂ t R 2 (x, t 0 )| 2 e 2sϕ(x,t 0 ) dx ≤ CM 3 e -2sε 0 +Ce Cs F 2 .
Therefore, we have Ω |m a (x)| 2 dx ≤ Ce Cs 1 M 3 e -2sε 0 + e Cs F 2 , for all s > 0.

Assume F = 0. Choosing s > 0 such that M 3 e -2sε 0 = e Cs F 2 , we get the desired result.

Remark 3.1. Following equation (2.12) in [START_REF] Akhouayri | Quantitative thermoacoustic tomography with microwaves sources[END_REF] the knowledge of µ a allows us to recover the conductivity σ(x) via its Fourier transform.

Remark 3.2. A similar estimate using the observation of only the component p could be established.

Inverse problem of determining the thermal conductivity

In this part, we aim to determine the thermal conductivity κ(x) from a single measurement of p(x, t) and we are going to detail the proof of Theorem 1.2.

Proof. First, we rewrite the system (1.3)

       ∂ 2 t p -ρv 2 s div 1 ρ ∇p -Γdiv (κ∇Θ) = F 1 (x, t), ∂ t Θ - 1 ρC p div (κ∇Θ) - θ 0 ς ρC p ∂ 2 t p = F 2 (x, t), in Q, (3.8) 
where F 1 (x, t) = Γ(x)∂ t Π a and F 2 (x, t) = 1 ρCp ∂ t Π a are assumed to be known. Let (Θ(x, t), p(x, t)) satisfy (3.8) and ( Θ(x, t), p(x, t)) satisfy (3.8) in which the coefficient κ is replaced by κ. We will assume that Θ and p satisfy initial conditions Θ(x, 0) = Θ 0 (x), p(x, 0) = p0 (x), ∂ t p(x, 0) = p 1 (x),

x ∈ Ω (3.9)

and the boundary conditions (1.5). Now let y = p -p, z = Θ -Θ and note K = κ -κ. We get from (3.8)

         ∂ 2 t y -v 2 s ∆y -Γκ∆z = Υ (∇y, ∇z) + Γdiv K∇ Θ , ρC p ∂ t z -κ∆z -θ 0 ς∂ 2 t y = (∇κ • ∇z) + div K∇ Θ , in Q, y(x, t) = 0, z(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ), (3.10) 
where Υ (∇y, ∇z) = ρv 2 s ∇ 1 ρ • ∇y + Γ (∇κ • ∇z). Let χ(t) be the same as in §3.1. Setting as previously u 1 = χ∂ t y, u 2 = χ∂ 2 t y, u 3 = χ∂ 3 t y, v 1 = χ∂ t z, v 2 = χ∂ 2 t z, v 3 = χ∂ 3 t z, then taking the time derivative of system (3.10) and multiplying by χ we get

                                   ∂ 2 t u k -v 2 s ∆u k -Γκ∆v k = ∂ 2 t χ ∂ k t y + 2 (∂ t χ) ∂ k+1 t y + Υ (∇u k , ∇v k ) + χΓdiv K∇∂ k t Θ , ∂ t v k - κ ρC p ∆v k - Θ 0 ς ρC p ∂ 2 t u k = (∂ t χ) ∂ k t z - Θ 0 ς ρC p ∂ 2 t χ ∂ k t y + 2 (∂ t χ) ∂ k+1 t y + 1 ρC p (∇κ • ∇v k ) + 1 ρC p χdiv K∇∂ k t Θ , in Q, u k (x, t) = 0, v k (x, t) = 0, (x, t) ∈ ∂Ω × (0, T ), u k (x, 0) = v k (x, 0) = ∂ t u k (x, 0) = ∂ t v k (x, 0) = u k (x, T ) = v k (x, T ) = ∂ t u k (x, T ) = ∂ t v k (x, T ) = 0, x ∈ Ω, for k = 1, 2, 3.
Fixing λ > 1 large, applying (1.15) in Lemma 1.1 and noting the definition of χ, we can obtain, for k = 1, 2, 3,

Q χ 2 s 3 |∂ k t z| 2 + |∂ k t y| 2 + s |∇ ∂ k t z | 2 + |∇ ∂ k t y | 2 e 2sϕ dxdt = Q s 3 v 2 k + u 2 k + s |∇v k | 2 + |∇u k | 2 e 2sϕ dxdt ≤ Q s 3 v 2 k + u 2 k + s |∇v k | 2 + |∇ x,t u k | 2 e 2sϕ dxdt ≤ CM 4 e 2s(d-ε 0 ) + C Q χ 2 K 2 + |∇K| 2 e 2sϕ dxdt + C Q |∇v k | 2 + |∇u k | 2 e 2sϕ dxdt + Ce Cs Qω K 2 + |∇K| 2 + 5 j=1 |∂ j t y| 2 + 3 j=1 |∂ j t ∆y| 2 dxdt + Ce Cs Qω 3 j=1 |∇∂ j t y| 2 + 3 j=1 ∂ 2 t χ ∂ j t y 2 + 3 j=1 (∂ t χ) ∂ j+1 t y 2 dxdt + Ce Cs Qω 3 j=1 |∇∂ j t z| 2 + 3 j=1 (∂ t χ) ∂ j t z 2 dxdt, (3.11) 
for all large s > s 0 , with

M 4 = 4 j=1 ∂ j t p 2 L 2 (Q) + ∂ j t p 2 L 2 (Q) + 3 j=1 ∂ j t Θ 2 L 2 (Q) + ∂ j t Θ 2 L 2 (Q)
.

Taking s 0 > 0 large enough, the third term in the right hand side of (3.4) can be absorbed by the left hand side. Let t 0 = T 2 . From system (3.10), we can write

div K∇ Θ (•, t 0 ) = ρC p ∂ t z(•, t 0 ) -Θ 0 ς∂ 2 t y(•, t 0 ) -κ∆z(•, t 0 ) -(∇κ • ∇z(•, t 0 )) , on Ω,
To get rid of the term in ∆z(•, t 0 ), we come back to the system (3.10) and we eliminate the terms in κ and in ∆z to obtain:

ΓρC p ∂ t z = ∂ 2 t y -v 2 s ∆y + Γθ 0 ς∂ 2 t y -ρv 2 s ∇ 1 ρ • ∇y , in Q. (3.12)
By (1.4) and (3.9), we have z(x, 0) = ∂ t y(x, 0) = 0. Setting Y (x, t) = t 0 y(x, t )dt , integrating (3.12) with respect to t from 0 to t, and noting the hypothesis of Theorem 1.2 we have 

z = 1 + Γθ 0 ς ΓρC p ∂ t y - v 2 s ΓρC p ∆Y - v 2 s ΓC p ∇ 1 ρ • ∇Y . ( 3 
where

M 5 = ∂ 2 t p 2 H 1 (Q) + ∂ 2 t p 2 H 1 (Q) + ∂ t Θ 2 H 1 (Q) + ∂ t Θ 2 H 1 (Q)
.

Moreover, by (3.13), we can obtain |∂ k ∂ l ∂ j t y| 2 dxdt, for all large s > s 0 .

We recall the hypothesis (1.25) on κ. Noting (1.23), applying Lemma 6.2 by Yamamoto [START_REF] Yamamoto | Carleman estimates for parabolic equations and applications[END_REF], and using (3.7), we have |∂ k ∂ l ∂ j t y| 2 dxdt, for all large s > s 0 .

Then taking s 2 > s 0 large enough and since ϕ (x, t 0 ) ≥ d on Ω, we get

Ω K 2 + |∇K| 2 dx ≤ s 2 -CT e -2sd
Ω K 2 + |∇K| 2 e 2sϕ(x,t 0 ) dx ≤ C (M 4 + M 5 ) e -2sε 0 + Ce Cs F 2 1 , for all s > s 2 .

We end the proof mimicking the end of the proof of Theorem 1.1.

Lemma 1 . 1 .

 11 6) involving the observation of only one component of the system (1.6) is proved in Lemma 1.1. More precisely the Carleman estimate (1.15) involves only the observation of the pressure and the Carleman estimate (1.16) involves only the observation of the temperature. The proofs are based on the results established in the paper [15] by Li and Shang. Let (Θ, p) ∈ W satisfy (1.6) and

s 2 ΩK 2 + 2 + 2 eK 2 + 2 1

 222222 |∇K| 2 e 2sϕ(x,t 0 ) dx ≤ Ω div K∇ Θ (x, t 0 ) ∇div K∇ Θ (x, t 0 ) 2sϕ(x,t 0 ) dx ≤ C (M 4 + M 5 ) e 2s(d-ε 0 ) + CT Ω |∇K| 2 e 2sϕ(x,t 0 ) dx + Ce Cs G

  assume that there exists a constant σ 3 > 0 such that a 4 ≥ σ 3 on Ω and prove(1.16). We have (2.2) and then stimate Qω p 2 + |∂ t p| 2 dxdt. We multiply the second equation in(1.6) by (∂ t p) e 2t and integrate it over Q ω . Integrating by parts and using (1.14), we have

	Substituting (2.7) into (2.2), we obtain (1.16).
	The proof of Lemma 1.1 is complete.
						,	for all s ≥ s 0 .	(2.6)
	Substituting (2.5) and (2.6) into (2.2), we obtain (1.15).
	Besides, we Qω g (∂ t p) e 2t dxdt
	=		Qω	(∂ t Θ -a 3 Θ) (∂ t p) e 2t dxdt -	1 2 Qω	a 4 ∂ t (∂ t p) 2 e 2t dxdt
	-	1 2	σ 3	
	≥ -	σ 3 8 Qω	|∂ σ 3 2 Qω	|∂ t p| 2 + p 2 e 2t dxdt
	≥ |∂ Therefore, we have 3σ 3 8 Qω
		σ 3 8 Qω	|∂ t p| 2 + p 2 dxdt ≤	σ 3 8 Qω	|∂ t p| 2 + p 2 e 2t dxdt
						≤ C	g 2 + |∂ t Θ| 2 + | Θ| 2 e 2t dxdt
						Qω
						≤ Ce 2T	g 2 + |∂ t Θ| 2 + | Θ| 2 dxdt, for all s ≥ s 0 .	(2.7)
						Qω

Qω ∂ t p 2 e 2t dxdt + σ 3 Qω p (∂ t p) e 2t dxdt = Qω (∂ t Θ -a 3 Θ) (∂ t p) e 2t dxdt

+ Qω a 4 |∂ t p| 2 e 2t dxdt + σ 3 Qω p 2 e 2t dxdt + σ 3 Qω p (∂ t p) e 2t dxdt t p| 2 e 2t dxdt -C Qω |∂ t Θ| 2 + | Θ| 2 e 2t dxdt + σ 3 Qω |∂ t p| 2 + p 2 e 2t dxdtt p| 2 + p 2 e 2t dxdt -C Qω |∂ t Θ| 2 + | Θ| 2 e 2t dxdt, Qω g (∂ t p) e 2t dxdt ≤ σ 3 4 Qω |∂ t p| 2 e 2t dxdt + C Qω g 2 e 2t dxdt, for all s ≥ s 0 .

  .13) Therefore, we get estimates of ∆z(•, t 0 ) 2 L 2 (Ω) and of ∇∆z(•, t 0 ) 2 L 2 (Ω) in terms of norms of ∂ t y(•, t 0 ) and Y (•, t 0 ) in the form ∆z(•, t 0 ) 2 L 2 (Ω) ≤ C ∆∂ t y(•, t 0 ) 2 L 2 (Ω) + Y (•, t 0 ) 2 H 4 (Ω) , and ∇∆z(•, t 0 ) 2 L 2 (Ω) ≤ C ∆∂ t y(•, t 0 ) 2 H 1 (Ω) + Y (•, t 0 ) 2 H 5 (Ω), and we set∂ t y(•, t 0 ) 2 H 3 (Ω) + Y (•, t 0 ) 2 H 5 (Ω) = G 2 1and G 1 ≥ 0.By (3.13), we further have(∇κ • ∇z(•, t 0 )) 2 L 2 (Ω) + ∇ (∇κ • ∇z(•, t 0 )) 2 L 2 (Ω) ≤ CG 2 1 . ∇∂ 2 t y(x, t 0 ) 2 e 2sϕ(x,t 0 ) dx + Ce Cs G 2 1 .∂ t |χ∂ t z| 2 + χ∂ 2 t y 2 + |χ∇∂ t z| 2 + χ∇∂ 2

	Then we deduce						
	≤ C	t 0							t y	2 e 2sϕ dxdt
	0	Ω					
	+ Ce Cs G 2 1					
	≤ C						t y	2 e 2sϕ dxdt
	+ C	Q	1 s	χ∂ 2 t z	2 + χ∂ 3 t y	2 + χ∇∂ 2 t z	2 + χ∇∂ 3 t y	2 e 2sϕ dxdt
	+ CM 5 e 2s(d-ε 0 ) + Ce Cs G 2 1 ,	s > s 0 ,		

Ω div K∇ Θ (x, t 0 ) 2 + ∇div K∇ Θ (x, t 0 ) 2 e 2sϕ(x,t 0 ) dx ≤ C Ω |∂ t z(x, t 0 )| 2 + ∂ 2 t y(x, t 0 ) 2 e 2sϕ(x,t 0 ) dx + C Ω |∇∂ t z(x, t 0 )| 2 + Q s |χ∂ t z| 2 + χ∂ 2 t y 2 + |χ∇∂ t z| 2 + χ∇∂ 2

  |∂ k ∂ l ∂ j t y| 2 dxdt,for all s > s 0 . From this last inequality and from (3.11) and (3.14) we deduce 2sϕ(x,t 0 ) dx≤ C (M 4 + M 5 ) e 2s(d-ε 0 ) + C Q χ 2 K 2 + |∇K| 2 e 2sϕ dxdt + Ce Cs G 2 1 + Ce Cs Qω K 2 + |∇K| 2 +

			4	2			4	2	n
	≤ C		|∇∂ j t y| 2 +	|∇∆∂ j t y| 2 +	|∂ j t y| 2 +
		Qω	j=0	j=0			j=2	j=0	k,l=1
							4	2
							|∇∂ j t y| 2 +	|∇∆∂ j t y| 2
							j=0	j=0
			5		3	n
			+	|∂ j t y| 2 +		
			j=1		j=0	k,l=1
		3		3		
			|∇∂ j t z| 2 +	(∂ t χ) ∂ j t z	2	dxdt
	Qω	j=1		j=1		

Ω div K∇ Θ (x, t 0 ) 2 + ∇div K∇ Θ (x, t 0 ) 2 e