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State estimation in pairwise Markov models with improved robustness

using unbiased FIR filtering

Frederic Lehmann∗,a, Wojciech Pieczynskia

aTélécom SudParis, Institut Polytechnique de Paris, 9 rue Charles Fourier 91011 EVRY Cedex France.

Abstract

We propose a novel estimation procedure for linear time-varying pairwise Markov models (PMM), that

is robust to system parameter uncertainties occurring in real-world applications. In order to cope with

mismodeling errors and ignorance of noise/initial state statistics, we solve a finite-horizon state estimation

problem. The resulting unbiased finite impulse response filter for PMMs (PMM-UFIR) is first derived in

batch form and then converted to a recursive Kalman-like form for the sake of complexity reduction. Closed

forms for the error covariance matrix of the state estimate are also provided for analytical performance

assessment.

Numerical results illustrate the effectiveness of the proposed estimation method over Gaussian processes,

by showing that the PMM-UFIR is nearly as accurate as (resp. more robust than) optimal filtering under

perfect (resp. uncertain) system parameters after tuning the horizon size.

Key words: Pairwise Markov models, optimal filtering, Kalman filter, unbiased finite impulse response

filter, robustness.

1. Introduction

Many problems in signal processing can be described as discrete-time stochastic systems that generate

observable outputs [1]. A problem of fundamental interest in estimation theory is the choice of a suitable

signal model. The model should be flexible enough to deal with various application contexts, while remaining

simple enough to lead to tractable estimators in some optimality sense. Linear Gaussian hidden Markov

models (HMM) have had a great success in modeling signals as Markovian states, where each observation

is a noisy function of the current state. This is mainly due to the seminal paper [2] deriving the optimal

filter for HMMs in the minimum mean square error (MMSE) sense, the Kalman filter (HMM-KF). The

HMM-KF is a standard approach in many engineering fields such as tracking, navigation [3], control [4],
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econometrics [5] communication theory [6], speech processing [7], graph signal processing [8] and machine

learning [9], to name a few. Many important disciplines (such as engineering, physics, chemistry, biology,

economics and data processing, etc) involve a noisy observation function, whose arguments include the

previous observation and/or the previous state (see [10], [11], [12] and [13], respectively for examples in time

series analysis, biochemistry, inertial navigation and system identification). The standard way to handle such

situations within the HMM framework is via state-augmentation, i.e. by appending the previous observation

to the state [5]. This is necessary in this context, since HMMs break the symmetry between the state and

observation processes, letting the state account for the entire system dynamics, while the observation is

merely a noisy function of the state. A more concise framework avoiding state augmentation is provided by

the pairwise Markov model (PMM) framework, introduced in [14]. Interestingly, an optimal filter (in the

MMSE sense) exists for linear Gaussian PMMs, which we shall refer to as the PMM Kalman filter (PMM-

KF) [15]-[17]. We will see that an alternative derivation of the PMM-KF can be obtained by converting a

Gaussian PMM to a state-augmented HMM (SA HMM). Note that the PMM-KF has found applications in

signal and image restoration [18]-[20], multi-object tracking [21]-[23] and financial data analysis [24].

Regarding the HMM, the Kalman filter has also known pitfalls in real-world contexts, due to its infinite

impulse response (IIR) filter structure [25]. In particular, conditioning the estimate on the distant past is

responsible for potential numerical instability with respect to (wrt) roundoff errors [26], lack of robustness

wrt imprecisely known dynamics [25] and dependence on initial state statistics, for which little more than a

guess is usually available. A well-known solution to this problem is to build estimators with finite impulse

response (FIR) structure [25], thus limiting the memory to a finite-horizon corresponding to the N most

recent observations. Optimal (MMSE) FIR (HMM-OFIR) estimators ignoring the initial state but with

prior knowledge of the noise statistics, were developed in [27] and [28], from a Bayesian and a receding-

horizon perspective, respectively. For the case when noise statistics are also unavailable, a FIR estimator

satisfying the unbiasedness condition (HMM-UFIR) has been derived in batch form in [29]-[31]. However,

these FIR estimators have their own limitations, especially in terms of computational burden. Therefore, fast

Kalman-like recursive versions of the OFIR and UFIR have been derived in [32] and [33]-[34], respectively.

Furthemore, it is desirable to tune the horizon size in order to maximize the filter performance [35].

In this paper, we focus on state estimation in linear Gaussian PMMs for applications, where issues such

as mismodeling and unknown (or uncertain) noise/initial state statistics matter [36]. Therefore, we propose
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an estimator with FIR structure and whose gain matrix ignores the noise statistics. We derive the presented

estimator as a UFIR filter adapted to the context of PMMs, which we shall refer to as the PMM-UFIR.

However, the derivation of the PMM-UFIR is not as straightforward as its HMM counterpart. This comes

from the fact that by construction, in a PMM, both the state and observation process are noise-driven

and observation-driven [15]. Consequently, a linear Gaussian PMM lacks the direct input/output form that

was exploited to derive the HMM-UFIR [33]. Reformulating the dependence of a state wrt to observations

backward in time and taking observation feedback into account, the new PMM-UFIR processing the N

most recent observations is obtained in batch form. In addition, we show that this FIR filter can also be

transformed to a Kalman-like iterative form, for the sake of fast computation.

The main contributions of this work are:

• A state estimator for linear Gaussian PMMs agnostic to the noise and initial state statistics, in batch

FIR form (batch PMM-UFIR);

• A fast implementation of the FIR estimator, processing each observation at a time in Kalman-like

form (Kalman-like PMM-UFIR);

• An analysis of the estimation error, useful for theoretical performance evaluation

• Extensive numerical simulations showing that the PMM-UFIR outperforms its SA HMM counterpart

over a wide range of applications.

Throughout the paper, bold letters indicate vectors and matrices while 0m×n (resp. Im) is the m × n

all-zero (resp. the m×m identity) matrix and diag(a) is the (block) diagonal matrix, whose diagonal entries

are stored in a and whose off-diagonal entries are zero. The superscript T denotes the transpose of a matrix.

N (m,C) denotes a Gaussian distribution with mean m and covariance matrix C. ID(m,C) stands for

independently distributed with mean m and covariance matrix C.

Let yn be the n-th observation, a set of observations from time 0 up to time n is denoted by y0:n.

This paper is organized as follows. First, in Sec. 2 we formulate the state estimation problem under

the linear Gaussian pairwise Markov model (PMM). In Sec. 3 we develop our unbiased FIR solution first in

batch form, then in iterative Kalman-like form. Sec. 4, provides an analysis of the estimation error. Finally,

in Sec. 5, the performances of the proposed algorithm are assessed for realistic applications.
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2. Problem Formulation

We first introduce pairwise Markov models (PMMs) as a class of models with interesting features such

as treating states and observations in a unified manner, that generalize hidden Markov models (HMMs).

Considering the linear Gaussian case, we briefly recall the optimal infinite-horizon state estimator, referred

to as the PMM-KF. Then, for the sake of finding an estimator in FIR form, we write the PMM over an

horizon of N most recent time instants.

2.1. Pairwise Markov Model (PMM)

Let xn ∈ R
K and yn ∈ R

M denote the state and observation vectors at instant n, respectively. We

consider a class of discrete time-varying pairwise Markov models (PMMs), where the pairwise process

{xn,yn}n≥0 is Markovian [14]. For the linear Gaussian case, a PMM can be described as the following

discrete-time linear stochastic system




xn

yn



 =




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(1)
n A

(2)
n

A
(3)
n A

(4)
n









xn−1

yn−1



+





B
(1)
n B

(2)
n

B
(3)
n B

(4)
n









wn

vn



 , (1)

where the initial state x0 ∼ N (x̂0,P0) is independent from the zero-mean white Gaussian noise process

zn = [wT
n ,v

T
n ]

T , ∀n ≥ 0. The noise covariance is defined by Qn = E{wnw
T
n}, Rn = E{vnv

T
n } and

Mn = E{wnv
T
n }. Using an infinite horizon approach, the predictive and posterior distributions

p(xn,yn|y0:n−1) = N









x̂−
n

ŷ−
n



 ,





P−
n Σ−

n

Σ−
n
T L−

n









p(xn|y0:n) = N (x̂n,Pn) .

are obtained through the Kalman-like recursions given by Algorithm 1, that we will refer to as the PMM-KF

in the sequel. Although a demonstration is provided in [19] and [20] for particular pairwise Markov chains

and trees, respectively, for the sake of completeness we provide a derivation for the considered general case

in Appendix A.

Remark 2.1. Note that a classical HMM of the form

xn = Fnxn−1 +Bnwn

yn = Hnxn +Dnvn

(2)

is a particular PMM obtained by selecting
[

A(1)
n A(2)

n

A(3)
n A(4)

n

]

=

[

Fn 0K×M

HnFn 0M×M

]

,

[

B(1)
n B(2)

n

B(3)
n B(4)

n

]

=

[

Bn 0

HnBn Dn

]

.

In this case, the PMM-KF boils down to the classical Kalman filter (HMM-KF) for correlated process and

measurement noise [37, p. 187].
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Algorithm 1 PMM-KF algorithm

Require: yn, x̂0, P0, Qn, Rn, Mn

for n = 1, 2, . . . do
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n
T

return x̂n, Pn

end for

Remark 2.2. Conversely, a PMM can be converted to the following state-augmented HMM (SA HMM)

form

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

(3)

Interestingly, it is straightforward to show that applying the standard HMM-KF [2] to the SA HMM (3),

results in an estimation method (SA HMM-KF) that is formally equivalent to Algorithm 1. Although this

idea is widely used in the literature [5], the SA HMM is somewhat counterintuitive (since the very name of

HMM embodies the idea that the hidden states are not observed), therefore we argue that the original PMM

is a more concise framework from which the optimal filter in the MMSE sense can be derived directly.

2.2. Extended pairwise Markov Model (e-PMM)

For the sake of finding an estimator in FIR form, a simple approach familiar in system identification [38],

is to construct an extended model over the horizon [m = n−N + 1, n] of N most recent time instants. Let

us assume that the matrix A
(1)
n is invertible [39]. Starting from xn, we can compute the backward-in-time

solution of the state in (1) for i = m+ 1, . . . , n as

xi−1 = Ā
(1)
i:nxn −

n
∑

k=i

Ā
(1)
i:k (A

(2)
k yk−1 +B

(1)
k wk +B

(2)
k vk), (4)
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where the backward-in-time state transition matrix is defined as

Ā
(1)
i:n =

n
∏

k=i

(A
(1)
k )−1. (5)

Consequently, we obtain the solution for the observation in (1) for i = m+ 1, . . . , n as

yi = A
(4)
i yi−1 +B

(3)
i wi +B

(4)
i vi+

A
(3)
i

[

Ā
(1)
i:nxn −

n
∑

k=i

Ā
(1)
i:k (A

(2)
k yk−1 +B

(1)
k wk +B

(2)
k vk)

]

.
(6)

Let us introduce the extended state Xk,l ∈ R
(k−l+1)K (resp. observation Yk,l ∈ R

(k−l+1)M ) vector over the

horizon [l, k]

Xk,l = [xT
k ,x

T
k−1, . . . ,x

T
l ]

T

Yk,l = [yT
k ,y

T
k−1, . . . ,y

T
l ]

T .

(7)

Similarly, defining the extended noise vectors
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T
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T ,

(8)

the e-PMM is obtained by writing (4) and (6) in equivalent matrix form
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(1)
n−1:n−1A

(2)
n−1 . . . 0

...
...

. . .
...

Ā
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Jn,m+1 is the upper bidiagonal block matrix expressed as

Jn,m+1 =


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. . .
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Using the notation A
(3)
n,m+1 = diag(A

(3)
n ,A

(3)
n−1, . . . ,A

(3)
m+1) the remaining matrices are defined by

J′
n,m+1 = [0(N−1)M×M |A(3)

n,m+1A
(2)
n,m+1]

Hn,m+1 = A
(3)
n,m+1Ā

(1)
n,m+1

D
(3)
n,m+1 = A

(3)
n,m+1G

(1)
n,m+1 + diag(B(3)

n ,B
(3)
n−1, . . . ,B

(3)
m+1)

D
(4)
n,m+1 = A

(3)
n,m+1G

(2)
n,m+1 + diag(B(4)

n ,B
(4)
n−1, . . . ,B

(4)
m+1).

(15)

3. PMM Unbiased FIR Estimator

A FIR estimator has the form of a discrete-time convolution of the N most recent observations. In

the absence of prior information on the initial state and noise statistics, an FIR estimator, satisfying the

constraint that the expected value of the estimator equals that of the state (UFIR), is of interest. For a

linear Gaussian HMM, the derivation of the HMM-UFIR relies on the fact that the extended model is in

classical input/output form [34], i.e. Yn,m is a linear combination of the desired state xn and a linear

anticausal transformation of noise terms. However, for a linear Gaussian PMM, the corresponding extended

model obtained in (9) does not satisfy this property anymore. Thus, there is a need to find a new UFIR

filter valid for PMMs (PMM-UFIR) in batch form. Then, we will show that the batch form also admits an

iterative Kalman-like form. Importantly, the proposed PMM-UFIR applied to the PMM in (1) needs only

the matrix A
(1)
n to be invertible. However, the UFIR in [34] applied to the equivalent SA HMM model in

(3) (referred to as the SA HMM-UFIR) requires the whole PMM transition matrix to be invertible. Thus,

from a theoretical point of view, the PMM-UFIR works under weaker hypotheses than its SA HMM-UFIR

counterpart.

7



3.1. Batch UFIR Estimator

Let the batch UFIR estimator take the form of a linear combination of the transformed observations

appearing in the second line of the e-PMM (9)

x̂n = H̄n,m+1(Jn,m+1 + J′
n,m+1)Yn,m, (16)

where H̄n,m+1 is a K × (N − 1)M -dimensional gain matrix of the filter. A UFIR filter [34] satisfies the

constraint

E{x̂n} = E{xn}, ∀E{xn}, (17)

which means that the expected value of the estimator is guaranteed to be that of the state. Using the fact

that the noise terms are zero-mean in the second line of the e-PMM (9), (17) becomes

H̄n,m+1Hn,m+1 = IK . (18)

Moreover, the effect of noise and uncertainties on the estimator can be reduced by minimizing the Frobenius

norm of the filter gain matrix H̄n,m+1.

When rank(Hn,m+1) = K (which is analog to the observability condition for HMMs), minimizing the

Frobenius norm of H̄n,m+1 of under the constraint (18) admits a unique solution [40, pp. 85-86]

H̄n,m+1 = (HT
n,m+1Hn,m+1)

−1HT
n,m+1. (19)

We also introduce the generalized noise power gain (GNPG) as

Gn = (HT
n,m+1Hn,m+1)

−1 = H̄n,m+1H̄T
n,m+1, (20)

which is a quantity related to the noise reduction factor of the filter [33]-[34]. Importantly, note that

unlike the Kalman filter, the PMM-UFIR performs state estimation without prior knowledge on the noise

covariances and/or the initial condition. Only the horizon size N is needed.

Remark 3.1. Considering the particular PMM in Remark 2.1 corresponding to the classical HMM (2), we

obtain

(Jn,m+1 + J′
n,m+1)Yn,m = Yn,m+1

Hn,m+1 = [(Hn)
T , (Hn−1F̄n:n)

T , . . . , (Hm+1F̄m+2:n)
T ]T .

It follows that (16) reduces to the classical batch HMM-UFIR estimate over the horizon [m + 1, n], unlike

the horizon [m,n] in [34]. Note that this slight difference in the horizon size comes from the fact that the
8



extended PMM does not reduce to the extended HMM when the PMM reduces to a classical HMM. In other

words, the principle of the derivation of the PMM-UFIR is different from its HMM-UFIR counterpart.

3.2. Kalman-like UFIR Estimator

The PMM-UFIR in Sec. 3.1 has the drawbacks of any batch processor, i.e. a high computational

complexity per time instant, especially when the horizon size N is large. For the sake of fast computation,

we now seek a recursive form for (16), that processes each new observation one at a time, similarly to the

Kalman filter.

As a starting point, we compute the batch estimator over the horizon [m, s], by selecting s = m+K to

make sure that rank(Hs,m+1) = K is satisfied.

We now show that for any n > s, x̂n can be written as a linear combination of x̂n−1 and the new

observation yn. The prediction stage computes the predicted state and observation estimates as

x̂−
n = A(1)

n x̂n−1 +A(2)
n yn−1

ŷ−
n = A(3)

n x̂n−1 +A(4)
n yn−1.

(21)

Let us introduce the notation

H̃n = A(3)
n (A(1)

n )−1. (22)

The update stage first updates the GNPG as

Gn = [H̃T
nH̃n + (A(1)

n Gn−1A
(1)
n

T )−1]−1 (23)

then computes a bias correction gain (different from the Kalman gain) as

Kn = GnH̃
T
n , (24)

and finally refines the state estimate as

x̂n = x̂−
n +Kn(yn − ŷ−

n ). (25)

The demonstration is postponed to Appendix B.

The iterative Kalman-like procedure for computing the PMM-UFIR estimate is summarized in Algo-

rithm 2.

Remark 3.2. Considering again the particular PMM in Remark 2.1 corresponding to the classical HMM

9



(2), we obtain

x̂−
n = Fnx̂n−1

ŷ−
n = HnFnx̂n−1

Gn = [HT
nHn + (FnGn−1F

T
n )

−1]−1

Kn = GnH
T
n

x̂n = x̂−
n +Kn(yn − ŷ−

n ).

It follows that (25) reduces to the classical Kalman-like HMM-UFIR update rule [33]-[34].

Algorithm 2 Kalman-like PMM-UFIR algorithm

Require: yn, N

for n = N , N + 1, . . . do

m = n−N + 1, s = m+K

Gs = (HT
s,m+1Hs,m+1)

−1

x̂s = H̄s,m+1(Js,m+1 + J′
s,m+1)Ys,m

for l = s+ 1 : n do

x̂−
l = A

(1)
l x̂l−1 +A

(2)
l yl−1

ŷ−
l = A

(3)
l x̂l−1 +A

(4)
l yl−1

Gl = [H̃T
l H̃l + (A

(1)
l Gl−1A

(1)
l

T )−1]−1

Kl = GlH̃
T
l

x̂l = x̂−
l +Kl(yl − ŷ−

l )

end for

return x̂n

end for

4. Performance Analysis

We analyse the performance of the proposed PMM-UFIR in terms of mean square error (MSE), based on

the error covariance matrix. We will show that the error covariance matrix can be computed directly from the

expression of the batch PMM-UFIR (see Sec. 4.1), but also in a computationally efficient iterative way using

the Kalman-like form (see Sec. 4.2). Note that unlike the PMM-KF, the PMM-UFIR in iterative Kalman-

like form does not need the error covariance matrix for the sake of state estimation. However, the resulting

MSE will be instrumental in specifying the optimal horizon size (see Sec. 4.3) and we give indications of

how this optimization can done in practice. Finally, we discuss complexity issues (see Sec. 4.4).

10



4.1. Direct Computation of the Error Covariance Matrix

Let us define the estimation error as ǫn = xn − x̂n, then the corresponding error covariance matrix is

Pn = E{ǫnǫTn}. (26)

From the second equation in (9), the PMM-UFIR estimate (16) becomes

x̂n = xn + H̄n,m+1(D
(3)
n,m+1Wn,m+1 +D

(4)
n,m+1Vn,m+1). (27)

Consequently, we have

Pn = H̄n,m+1

×
[

D
(3)
n,m+1 diag(Qn,Qn−1, . . . ,Qm+1)D

(3)
n,m+1

T+

D
(4)
n,m+1 diag(Rn,Rn−1, . . . ,Rm+1)D

(4)
n,m+1

T+

D
(3)
n,m+1 diag(Mn,Mn−1, . . . ,Mm+1)D

(4)
n,m+1

T+

D
(4)
n,m+1 diag(Mn,Mn−1, . . . ,Mm+1)

TD
(3)
n,m+1

T
]

× H̄T
n,m+1.

(28)

The demonstration proceeds from (27) and the fact that the noise zn = [wT
n ,v

T
n ]

T is white and zero-mean

in the PMM defined in Sec. 2.1.

4.2. Iterative Computation of the Error Covariance Matrix

For the sake of fast computation, we now seek a recursive form for (28). Starting from (1), we have the

expression of xn as

xn = A(1)
n xn−1 +A(2)

n yn−1 +B(1)
n wn +B(2)

n vn. (29)

Then, combining (1) with (21) and (25), we have the expression of its PMM-UFIR estimate as

x̂n =A(1)
n x̂n−1 +A(2)

n yn−1+

Kn(A
(3)
n xn−1 +A(4)

n yn−1 +B(3)
n wn +B(4)

n vn

−A(3)
n x̂n−1 −A(4)

n yn−1).

(30)

Substracting (30) from (29), the estimation error becomes

ǫn =(A(1)
n −KnA

(3)
n )ǫn−1+

(B(1)
n −KnB

(3)
n )wn + (B(2)

n −KnB
(4)
n )vn.

(31)

11



Now, using the fact that the noise zn = [wT
n ,v

T
n ]

T is white and zero-mean in the PMM defined in Sec. 2.1,

we obtain the desired recursion

Pn =(A(1)
n −KnA

(3)
n )Pn−1(A

(1)
n −KnA

(3)
n )T+

(B(1)
n −KnB

(3)
n )Qn(B

(1)
n −KnB

(3)
n )T+

(B(2)
n −KnB

(4)
n )Rn(B

(2)
n −KnB

(4)
n )T+

(B(1)
n −KnB

(3)
n )Mn(B

(2)
n −KnB

(4)
n )T+

(B(2)
n −KnB

(4)
n )MT

n (B
(1)
n −KnB

(3)
n )T .

(32)

4.3. Optimal Horizon Selection

The PMM-UFIR has a degree of freedom that has not been exploited yet, namely the choice of the

horizon size N [34]-[35]. Let us define the state estimation MSE for the PMM-UFIR over the horizon [m,n]

as trace(Pn). Obviously, this quantity depends on the horizon size since N = n − m + 1 (see Sec. 2.2).

Therefore, a reasonable choice for tuning N to its optimum value Nopt consists in selecting

Nopt = argmin
N

trace(Pn). (33)

In applications, we typically notice that N < Nopt is the regime where the noise dominates the MSE (noise

reduction is not optimal), while N > Nopt corresponds to the regime where the estimate bias dominates [35].

This is a direct consequence of the fact that the estimator ignores the noise contributions over the horizon

[m+ 1, n] (see Sec. 3.1).

Note that in practical applications, obtaining the optimal horizon size according to (33), would require:

• either an approximation of the of the noise/initial state covariance matrices

• or the availability of a test (training) sequence for the states, in order to compute the empirical

estimator of the error covariance matrix as a function of the horizon size N [34]. In this case, the

training sequence should be sufficiently large and smoothing of the objective function may also be

desirable.

Alternatively, blind estimation of the optimal horizon size, relying on the measurements only, has been

introduced in [35].

4.4. Complexity evaluation

We now focus on the worst-case time complexity, which is an important performance criterion. For

all aforementioned algorithms, we evaluate the asymptotic computational complexity to generate a single
12



estimate at a given time instant n:

• the PMM-KF (see Algorithm 1) is O(M3 + 3K2M + 2KM2 + 2K3)

• the batch PMM-UFIR (see Sec. 3.1) O(N2KM2)

• for the Kalman-like PMM-UFIR (see Algorithm 2) is O(N(2K2M + 3K3)).

As expected, the Kalman-like PMM-UFIR solves the computational inefficiency problem of the batch PMM-

UFIR. Note that the complexity of the Kalman-like PMM-UFIR still grows linearly with the horizon size N ,

unlike the PMM-KF. Consequently, the price to be paid in order to get a robust estimate that is agnostic to

initial state/noise covariances is an increase in computation time. This result for PMMs is not surprising,

since it is in line with a similar complexity comparison for HMMs in [41].

5. Numerical Results

In this section, we first evaluate the performance of the proposed PMM-UFIR algorithm on synthetic

data by avoiding state-augmentation in solving the following problems:

• the drift estimation problem in time series analysis/forecasting [5]

• the correlated measurement noise problem in tracking [37]

• estimation in a stochastic volatility model for financial time series.

In all simulations, the optimal horizon size, Nopt, is obtained offline through (33) using a grid search.

5.1. Random Walk With Drift

Many problems in time series analysis can be described by a simple random walk with drift model

(see [5], [42], [43], [44] and [45], respectively for examples in econometrics, odometry, global temperature

analysis, oil production forecasting and biology).

Let xn be the stochastic drift at instant n, modeled by a stationary autoregressive process of order-1

(AR(1))

xn = ρxn−1 +
√

1− ρ2wn, (34)

where 0 < ρ < 1 sets the time correlation of the drift and un ∼ N (0, Q) is the white Gaussian driving noise.

The observed level of the time series of interest is modeled by a random walk with drift of the form

yn = xn−1 + yn−1 + vn, (35)
13



Table 1: Nopt for the SA HMM-UFIR/PMM-UFIR applied to drift estimation with Q = 1 and R = 1.

ρ 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89

Nopt 4 4 4 4 4 4 4 4 5 5

ρ 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Nopt 5 5 5 6 6 6 7 8 10 13

where vn ∼ N (0, R) is white Gaussian noise.

The linear Gaussian PMM (1) corresponding to this problem has the following parameters





A
(1)
n A

(2)
n

A
(3)
n A

(4)
n



 =





ρ 0

1 1



 ,





B
(1)
n B

(2)
n

B
(3)
n B

(4)
n



 =





√

1− ρ2 0

0 1



 . (36)

Assuming that wn and vn are independent, we also have Qn = Q, Rn = R and Mn = 0, ∀n ≥ 0. Note

that both the state and the observation are one-dimensional (i.e. K = M = 1), so that as scalar version of

the PMM-KF (Algorithm 1) and the PMM-UFIR (Algorithm 2) are in order for drift estimation. Setting

Q = 1 and R = 1 and the range of the parameter ρ ∈ [0.8, 0.99], the optimal horizon size for the PMM-

UFIR is calculated using (33) and shown in Table I. As expected, the smaller the value of ρ, the lower

the time-correlation of the drift and therefore the fewer the number of observations to build a meaningful

PMM-UFIR estimate.

An SA HMM corresponding to the same problem, can be obtained by appending yn to an augmented-

state at time n, ζn = [xn, yn]
T , as proposed in [5]. The state-space representation (2) is obtained by

selecting

Fn =





ρ 0

1 1



 ,Bn =





√

1− ρ2 0

0 1



 ,Hn = [0, 1],Dn = 0. (37)

and wn ∼ N
(

[0, 0]T , diag(Q,R)
)

. The SA HMM-UFIR optimal horizon size was found to be identical to

the one found for the PMM-UFIR.

Let us describe our simulation setup. The exact values of the true noise variances Q and R are used

to simulate the trajectories of (34)-(35). However, in practical applications, the exact noise variances are

difficult to determine exactly. Therefore, we assume that the SA HMM-KF and the PMM-KF algorithms

have perfect knowledge of the initial condition, but employ p2Q and q2R instead of Q and R, with p > 0

and q > 0 in order to take noise covariance errors into account. The SA HMM-UFIR and the PMM-UFIR

use the optimal horizon size in Table I.

We also run the SA HMM-KF/PMM-KF after expectation-maximization (EM) system parameter iden-

tification [43]. Note that for the PMM, EM estimates eight coefficients. EM is initialized with the correct
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Figure 1: RMSE in drift estimation as a function of ρ, with Q = 1 and R = 1.

values of the unknown model parameters, so as to avoid being trapped in a local maximum of the log-

likelihood. At each iteration, EM uses fixed-interval smoothing over the first 100 consecutive observations.

A stopping criterion is met whenever the log-likelihood changes by less then 0.1 percent [43]. We refer to the

Kalman algorithms using the system parameters obtained after EM convergence as the SA HMM-KF-EM

and the PMM-KF-EM. Due to the very slow convergence of EM (tens of iterations), EM system identifica-

tion is much longer than the subsequent SA HMM-KF-EM and the PMM-KF-EM over several thousands

of observations. This method is also not robust, since any changes in the system parameters would require

to run the computationally demanding EM again. Consequently, we merely consider the SA HMM-KF-EM

and PMM-KF-EM as a reference method (i.e. the best Kalman filter under unknown system parameters),

not as a real-time alternative to SA HMM-UFIR/PMM-UFIR.

Fig. 1 plots the root MSE (RMSE) for drift estimation using the aforementioned algorithms as a function

of ρ. We observe that the PMM-KF reaches the same performances as the SA HMM-KF with the same

complexity. Similarly, the PMM-UFIR has almost the same performances as its SA HMM counterpart at

lower complexity. Also, by setting the horizon size to its optimal value, we observe that the RMSE of the

PMM-UFIR is close the the RMSE of the PMM-KF with perfect knowledge of the noise variances (i.e.

p = q = 1). However, the PMM-UFIR is insensitive to noise variance errors, while the SA HMM-KF and

the PMM-KF are not, as exemplified by their deteriorated performances for p = 0.5 and q = 2.

In order to study the effect of the signal-to-noise ratio, we now set Q = 1, ρ = 0.99 and the range

of the parameter R ∈ [1, 10]. The optimal horizon size for the PMM-UFIR is recalculated and shown in

Table II, and is again the same as for the SA HMM-UFIR. As expected, the larger the value of R, the
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Figure 2: RMSE in drift estimation as a function of R, with Q = 1 and ρ = 0.99.

Table 2: Nopt for the SA HMM-UFIR/PMM-UFIR applied to drift estimation with Q = 1 and ρ = 0.99.

R 1 2 3 4 5 6 7 8 9 10

Nopt 13 18 22 25 28 31 33 36 38 40

higher the number of observations needed for noise averaging in the PMM-UFIR estimate. Fig. 2 plots the

root MSE (RMSE) for drift estimation using the aforementioned algorithms as a function of R. Comparing

all considered algorithms again, conclusions similar to the setting in Fig. 1 can be drawn. As expected,

increasing the variance of the measurement noise R induces a moderate increase in the suboptimality of the

PMM-UFIR wrt the SA HMM-KF/PMM-KF estimate with perfect knowledge of the noise variances (p = 1,

q = 1). Note also, that the proposed PMM-UFIR outperforms the standard SA HMM-UFIR over the entire

range of R.

5.2. Tracking with Colored Measurement Noise

Let us modify the discrete-time linear stochastic system (2), so that the white measurement noise is

replaced by a Markovian measurement noise ηn [37], [46]

xn = Fnxn−1 +Bnwn

ηn = Ψnηn−1 + vn,

yn = Hnxn + ηn,

(38)

where the initial state x0 ∼ N (x̂0,P0) is independent from the zero-mean white Gaussian noise process

zn = [wT
n ,v

T
n ]

T , ∀n ≥ 0. The noise covariance is defined by Qn = E{wnw
T
n }, Rn = E{vnv

T
n } and Mn = 0.

The standard way to convert (38) back to a linear Gaussian HMM without state-augmentation, consists in
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applying noise whitening by introducing the time-differenced measurement [46]

y′
n = yn −Ψnyn−1

= (HnFn −ΨnHn−1)xn−1 +HnBnwn + vn,

(39)

where the auxiliary measurement y′
n now depends on xn−1. Note that in order to take into account this lag

by one time step in the time-differenced measurements, the HMM-KF needs to be generalized [46, Sec. IV

and Appendix], [37, p. 191-192], [3, p. 329] and a similar generalization for the HMM-UFIR would also

be needed. Therefore, in order to circumvent this problem, we introduce a general solution based on a

PMM. Considering (39), it follows that (38) is equivalent to the linear Gaussian PMM (1) with the following

parameters




A
(1)
n A

(2)
n

A
(3)
n A

(4)
n



 =





Fn 0

HnFn −ΨnHn−1 Ψn



 ,





B
(1)
n B

(2)
n

B
(3)
n B

(4)
n



 =





Bn 0

HnBn I



 ,

(40)

and the PMM white driving noise distribution is given by





wn

vn



 ∼ N









0

0



 ,





Qn 0

0 Rn







 .

Interestingly, it follows that both the PMM-KF in Algorithm 1 and the PMM-UFIR in Algorithm 2 are

directly applicable on the raw measurements (i.e. without time-differencing), for the sake of state estimation.

Finding efficient estimation methods in the presence of colored measurement noise has been a long-

standing problem in tracking [3] and navigation [47]. As an example, we consider the following discrete-time

kinematic model for target tracking, where the state vector at instant n contains the position, velocity and

acceleration, xn = [pn, vn, an]
T . Let us adopt a classical Wiener process acceleration model [3, p. 274], so

that the first line in (38) is parameterized by

Fn =











1 T T2

2

0 1 T

0 0 1











,Bn =











T2

2

T

1











,wn ∼ N (0, Q), (41)

where T is the sampling period and the physical meaning of wn is that of a scalar white acceleration

increment. Assume that only position measurements are available [3, p. 277] under AR(1) colored noise at

instant n, then the two last lines in (38) are parameterized by

Ψn = Ψ,Rn = R,Hn = [1, 0, 0], (42)

where 0 < Ψ < 1 and R > 0 are the measurement noise coloration parameter and the measurement driving

noise variance, respectively.
17



Ψ

0 0.2 0.4 0.6 0.8 1

R
M

S
E

0.2

0.4

0.6

0.8

1

1.2

1.4

PMM-KF, Generalized HMM-KF

 (p=1, q=1)

PMM-KF, Generalized HMM-KF

 (p=0.5, q=2)

PMM-UFIR

SA HMM-UFIR

Figure 3: RMSE in tracking as a function of Ψ, with T = 0.05 s, Q = 1 (m/s2)2 and R = 202 m2.

Table 3: Nopt for the PMM-UFIR applied to tracking with T = 0.05 s, Q = 1 (m/s2)2 and R = 202 m2.

Ψ 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Nopt 98 99 101 103 105 108 110 113 116 120

Ψ 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

Nopt 124 128 134 140 148 157 170 187 215 273

Table 4: Nopt for the PMM-UFIR applied to tracking with T = 0.05 s, Ψ = 0.5 and R = 202 m2.

Q 1 2 3 4 5 6 7 8 9 10

Nopt 124 110 102 98 94 91 89 87 85 83

Let us describe our simulation setup for T = 0.05 s. The exact values of the true noise variances are

selected as Q = 1 (m/s2)2 and R = 202 m2 and used to simulate the trajectories of (38) using the parameters

(41) and (42). Again, we assume that the generalized HMM-KF [46, Sec. IV and Appendix], [37, p. 191-

192], [3, p. 329] and the PMM-KF algorithms have perfect knowledge of the initial condition, but employ

p2Q and q2R instead of Q and R, with p > 0 and q > 0 in order to take noise covariance errors into account.

The PMM-UFIR uses the optimal horizon size (33), reported in Table III as a function of the measurement

noise coloration parameter Ψ. As expected, the higher the measurement noise correlation, the larger the

horizon size needed to get a meaningful PMM-UFIR estimate. We also consider the SA HMM-UFIR with

optimized horizon size for reference.

We adopt as a performance measure the RMSE of the dimensionless state vector x̃n = [pn, T vn, T
2an]

T /σm

introduced in [48], where σ2
m = R/(1−Ψ2) is the measurement noise variance.

Fig. 3 plots the RMSE for the dimensionless state vector in the tracking problem as a function of Ψ, using

the PMM-KF and the PMM-UFIR on raw measurements or the generalized HMM-KF on time-differenced
18
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Figure 4: RMSE in tracking as a function of Q in (m/s2)2, with T = 0.05 s, Ψ = 0.5 and R = 202 m2.

measurements. We observe that the PMM-KF reaches the same performances as the generalized HMM-KF,

which is due to the fact that they both aim to minimize the MMSE criterion. Also, since the PMM-KF and

the generalized HMM-KF are exempt of state-augmentation, both filters have the same dimensionality wrt

the state and observation vectors, and thus have similar computational complexity. We note that by setting

the horizon size to its optimal value, the RMSE of the PMM-UFIR is close the the RMSE of the PMM-KF

with perfect knowledge of the noise variances (i.e. p = q = 1). Again, the PMM-UFIR is insensitive to

noise variance errors, while the generalized HMM-KF and the PMM-KF are not, as exemplified by their

deteriorated performances for p = 0.5 and q = 2. Interestingly, the proposed PMM-UFIR outperforms the

SA HMM-UFIR with optimized horizon, over the entire range of Ψ. The SA HMM-UFIR even becomes

numerically unstable for small values of Ψ, because the state transition matrix for in the SA HMM (given

by the first line of (40)) becomes ill-conditioned.

In order to study the effect of the process noise variance, we now set Ψ = 0.5, R = 202 m2 and the range

of the parameter Q ∈ [1, 10] (m/s2)2. The optimal horizon size for the PMM-UFIR is recalculated and

shown in Table IV. The respective performance of all considered algorithms are shown in Fig. 4. Increasing

the variance of the process noise Q induces a very slight increase in the suboptimality of the PMM-UFIR wrt

the generalized HMM-KF/PMM-KF estimate with perfect knowledge of the noise variances (p = 1, q = 1).

Again the proposed PMM-UFIR outperforms the standard SA HMM-UFIR over the entire range of Q.

19



5.3. Stochastic Volatility

Stochastic volatility models are widely used for analyzing financial time series. An example of such

models is provided in [49]-[50] as

rn = σǫne
hn/2

hn+1 = φhn + ηn,

(43)

where rn is the observed mean adjusted return on an asset and the hidden variable hn is such that V (rn|hn) =

σ2ehn , at time instant n. The disturbances (ǫn, ηn) are independently distributed according to [50]




ǫn

ηn



 ∼ N









0

0



 ,





1 ρση

ρση σ2
η







 . (44)

By squaring the observations in (43) and taking logarithms,

log(r2n) = ω + hn + ζn,

where ω = log(σ2) + E[log(ǫ2n)] and ζn ∼ ID(0, σ2
ζ ). Using (44), ω = log(σ2) − log(2) − γ and σ2

ζ = π2/2,

where γ is the Euler constant.

Let sn = sign(rn) ∈ {−1,+1} denote the sign of the n-th observation, we introduce the quantities

µ∗ = E[ηn|sn = 1], and γ∗ = E[ηnζn|sn = 1]. From (44)

µ∗ =

√
2√
π
ρση

γ∗ =

√
2√
π
ρση

(

γ

2
+

3

2
log(2)

)

.

Considering the state xn = [hn, µ
∗]T , and the transformed observations yn = log(r2n) − ω, a HMM

conditional on the signs of the original observations was obtained in [49, Eq. (6)] as

xn = Fn(sn−1)xn−1 +Bnwn

yn = Hnxn +Dnvn,

(45)

parameterized by

Fn(sn−1) =





φ sn−1

0 1



 ,Bn =





1

0



 ,Hn = [1, 0],Dn = [1]. (46)

and the non-Gaussian disturbance verifies




wn+1

vn





∣

∣

∣sn ∼ ID









0

0



 ,





σ2
η − (µ∗)2 γ∗sn

γ∗sn σ2
ζ







 . (47)

The best minimum mean square error linear estimator is obtained by applying the noise decorrelating

Kalman filter in [3, p. 324-325], but needs accurate knowledge of the disturbance covariance. The HMM-

UFIR on the contrary, relies only on the hypothesis that the non-Gaussian disturbance conditional on the

original observation sign is zero-mean.
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Table 5: Nopt for the HMM-UFIR applied to the stochastic volatility model with σ = 1, ρ = −0.9 and ση = 2
√

1− φ2.

φ 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89

Nopt 16 15 13 10 11 11 11 11 13 13

ρ 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Nopt 13 14 14 15 17 17 21 24 26 41

Table 6: Nopt for the PMM-UFIR applied to the stochastic volatility model with σ = 1, ρ = −0.9 and ση = 2
√

1− φ2.

φ 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89

Nopt 54 52 49 45 43 42 40 36 30 29

ρ 0.90 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Nopt 25 22 20 21 21 23 25 31 37 56

Interestingly, (43) is also naturally modeled by a PMM conditional on the signs of the original observa-

tions in [49, Eq. (7)]





xn

yn



 =


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A
(1)
n A

(2)
n

A
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n A

(4)
n
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(3)
n B

(4)
n
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w̃n

ṽn



 , (48)

parameterized by


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,

(49)

and the non-Gaussian disturbance verifies
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w̃n

ṽn


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∣

∣

∣sn−1 ∼ ID
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)2 0

0 σ2
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 . (50)

The best minimum mean square error linear estimator is obtained by applying the PMM-KF, which again

needs accurate knowledge of the disturbance covariance. The PMM-UFIR on the contrary, relies only on

the hypothesis that the non-Gaussian disturbance conditional on the original observation sign is zero-mean.

Note that the standard SA HMM-UFIR [34] is not even applicable, since the complete PMM system matrix

in the first line of (49) is singular.

Let us describe our simulation setup. We simulate trajectories of (43), with σ = 1, ρ = −0.9. For any

φ ∈ [0.8, 0.99], ση = 2
√

1− φ2 in order to normalize E[h2
n] to 4. The optimal horizon for the HMM-UFIR

applied to (45) and the PMM-UFIR applied to (48) are given in Tab. V and VI, respectively.

Fig. 5 plots the RMSE for the hidden variable hn in the stochastic volatility problem as a function of
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Figure 5: RMSE in the stochastic volatility problem as a function of φ, with σ = 1, ρ = −0.9 and ση = 2
√

1− φ2.

φ, for the decorrelating HMM-KF and the PMM-KF with perfect knowledge of the disturbance covariance.

We observe that the PMM-KF reaches the same performances as the decorrelating HMM-KF, which is

due to the fact that they both correspond to the best minimum mean square error linear estimator. In

the absence of information about the disturbance covariance, the HMM-UFIR and the PMM-UFIR are

interesting alternatives. The PMM-UFIR benefits from a higher optimal horizon and thus outperforms its

HMM-UFIR couterpart over the entire range of φ, by allowing better noise averaging. Note also, that the

performance degradation of the PMM-UFIR wrt the Kalman filters is not severe.

6. Conclusion

This paper considered the estimation problem in linear Gaussian pairwise Markov models (PMMs) for

real-world applications in engineering, natural sciences or econometrics, where the initial state and/or the

noise statistics are either unknown or difficult to estimate. The proposed solution has the form of a FIR

estimator (PMM-UFIR). Since the implementation of the latter is typically too complex in batch form, we

have derived a recursive form that is both computationally efficient and in intuitive Kalman-like form. The

performance in terms of MSE of the proposed algorithm was analyzed and we also recovered the standard

UFIR for HMMs as a special case (with a slight difference in the horizon size, though).

Numerical results gave valuable insights about the properties of the considered approach. In particular,

the proposed UFIR is close to the MMSE-optimal Kalman filter (PMM-KF) in terms of estimation accuracy

in a linear Gaussian PMM, provided that the horizon size is tuned to its optimal value. The considered

examples have confirmed the improved robustness of the PMM-UFIR wrt the PMM-KF. Moreover, compar-
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ing to the standard SA HMM-UFIR approach, our numerical results have demonstrated that the proposed

PMM-UFIR not only has better performances over a wide range of applications, but also that it can be

applicable in situations were the standard method fails completely.

Our results can be extended in several directions. For instance, the extended PMM used to derive the

PMM-UFIR can be generalized to other structures depending on the retained matrix invertibility hypothesis.

This may lead to other versions of the PMM-UFIR, that may perform even closer to the ideal PMM-KF in

some applications, while retaining the inbuilt robustness properties. As another extension, tuning adaptively

the horizon size to the operating conditions by controling the quality of estimation based on measurements

only, would be worth investigating [51].
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A. Derivation of the PMM-KF

The predictive distribution can be written as

p(xn,yn|y0:n−1) =

∫

p(xn,yn,xn−1|y0:n−1)dxn−1

=

∫

p(xn,yn|xn−1,yn−1)p(xn−1|y0:n−1)dxn−1.

(A.1)

Now (1) implies,

p(xn,yn|xn−1,yn−1) =

N
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 .

Since at instant n− 1, the posterior distribution has the form

p(xn−1|y0:n−1) = N (x̂n−1,Pn−1) ,

(A.1) is also a Gaussian distribution whose mean is given by

[

x̂−

n

ŷ−

n

]
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,

which is the desired result. Similarly, the covariance of the Gaussian (A.1) is obtained as
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Again (1) implies
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Now the fact that zn = [wT
n ,v

T
n ] is white, yields
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which is the result in Algorithm 1 after expansion.

Finally, obtaining the posterior distribution at instant n

p(xn|y0:n) = N (x̂n,Pn) ,

with the mean and covariance in Algorithm 1, proceeds from a straightforward application of the Gaussian

conditioning formula [3, p. 52-54] to (A.1).
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B. Derivation of the PMM-UFIR in iterative Kalman-like form

Let us rewrite Hn,m+1 in (15) in block matrix form using (10)

Hn,m+1 =




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



A
(3)
n

Hn−1,m+1


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(A(1)
n )−1, (B.1)

it follows that the inverse of the GNPG (20) can be written as
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n
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n )−1.

(B.2)

Taking the inverse of the previous expression proves the recursion (23).

Now, isolating the first line of Jn,m+1 in (14) and J′
n,m+1 in (15), we obtain
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(B.3)

From the definition of the PMM-UFIR estimate in batch form (16) and the GNPG (20), we have

G−1
n x̂n = HT

n,m+1(Jn,m+1 + J′
n,m+1)Yn,m. (B.4)

Now, injecting (B.1) and (B.3) into (B.4) yields
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Using the fact that by definition G−1
n−1x̂n−1 = HT

n−1,m+1(Jn−1,m+1 + J′
n−1,m+1)Yn−1,m, (B.5) can be

rearranged as
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which in turn becomes

Gn
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using (B.2). Finally, multiplying both sides of (B.7) by Gn completes the proof of (21)-(25).
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