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Abstract— The Transport Layer Security (TLS) protocol aims 
to provide confidentiality and integrity of data. It is based on 
X.509 Certificates. Our previous research showed that popular 
Web Browsers exhibit non-standardized behaviour with respect 
to the certificate validation process [1]. This paper extends that 
work by examining their handling of OCSP Stapling. We also 
examine several popular HTTPS interception products, including 
proxies and anti-virus tools, regarding their certificate validation 
processes. We analyse and compare their behaviour to that 
described in the relative standards. 
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I. INTRODUCTION  
The TLS Protocol is designed to provide confidentiality and 
integrity of end-to-end communications [2]. However, the end-
to-end protection provided by TLS is incompatible with other 
security products that need to retain visibility into network 
traffic, such as anti-virus tools. To retain visibility into 
network traffic, HTTPS interception products interpose in the 
middle of the communication between the client application 
and the web server and operate as a man-in-the-middle 
(MITM). As a consequence, these products transform the end-
to-end communications into two TLS communications: 
Client<->HTTPS interception product and HTTPS 
interception product<->web server (Figure 1). 

 

 
Figure 1 The End-to-End HTTPS Communication / Intercepted HTTPS 

Communication 

Each HTTPS communication is based on X.509 
Certificates. Therefore, the HTTPS interception product acts 
as a TLS server for the client application by presenting its own 
certificate. Similarly, the web server authenticates itself to the 
interception product by presenting its own certificate when the 
client initiates a TLS connection. 

Different legitimate reasons necessitate the interception of 
HTTPS communications, such as enforcing a usage policy 
inside an enterprise (e.g. employees are not allowed to access 
streaming websites), Malware detection and Crypto 
compliance to use strong cipher suites, etc. 

Theoretically, things are relatively simple. But in practice, 
things are much more complicated: the HTTPS interception 
product establishes the second HTTPS connection after the 
validation of the web server certificate. The client application 
has no visibility of the web server’s identity; it delegates the 
server’s certificate validation to the interception product, and 
simply accepts the decision of the HTTPS interception 
product.  

Problems in the X.509 certificate validation process such as 
accepting revoked, untrusted or invalid certificates can cause 
dangerous consequences paving the way for attacks that may 
weaken the client’s communications security. 

In 2009, we highlighted the different behaviours of several 
web browsers (Internet Explorer (IE), Opera and Firefox) 
when validating certificates [8]. We explained that the reasons 
for these differences were either due to violation of the 
standards by the browsers, or ambiguity in the standards 
themselves. 

In 2017, we performed an increased set of tests [1], and 
covered a greater number of web browsers (IE, Edge, Opera, 
Firefox, Safari and Chrome), as well as covering the newest 
standards. Our work described the quality of X.509 certificate 
validation implemented by these web browsers, as well as 
showing their evolution since 2009. Also, we produced new 
tests for analysing how web browsers implement the OCSP 
protocol.  

In this paper, we complete our work by: 
1. Applying the same set of tests to different HTTPS 

interception products. We tested anti-virus and proxy 
software in order to highlight their behaviours when 
they were confronted with chosen test values in 
specific certificate fields. The results were then 
analysed and compared to the expected behaviour 
described in the respective standards.  

2. As in our 2017 study [1], we applied the same set of 
tests at two different dates between 2017 and 2019, in 
order to show any evolution in the behaviour of the 
interception products. This helps to show whether 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3000595, IEEE
Transactions on Dependable and Secure Computing

they have improved their behaviour with regards to 
the related standards or not. 

3. Analysing the behaviour of web browsers and web 
servers with regards to OCSP Stapling. We also show 
the results of a survey that we performed on two 
different dates between 2018 and 2019 in order to 
show the evolution of the deployment of OCSP 
Stapling. 

Since 2014, several different works have been published 
about certificate validation errors detected in TLS clients. For 
example, Brubaker et al [14] proposed a tool that can generate 
a set of test certificates whose values are random. Detecting 
different behaviour between at least two TLS clients is 
considered an indication of a certificate validation error. Our 
work adopts a different test strategy in order to detect cases 
where all TLS clients behave badly with regards to a specific 
test certificate. In addition, our test certificates don’t include 
random values; instead we present well-crafted test certificates 
for TLS clients. Carnavalet et al [7] have performed different 
tests on TLS interception products, but their tests covered 
mostly known issues in the TLS protocol (e.g. FREAK, 
CRIME, BEAST, etc.) rather than focusing on validation 
issues of X.509 certificates. Finally, both research studies 
didn’t show the evolution of validation behaviour by TLS 
products and didn’t handle the revocation-checking behaviour 
as we do in this work. The revocation problem is an important 
one because many of the studied TLS products can lead web 
users to accept revoked certificates. Our study shows, perhaps 
not unsurprisingly, that TLS interception products are not the 
only ones responsible for not correctly checking the revocation 
status of certificates, because even the major web browsers 
don’t have a consistent approach to this. Worse still, we find 
that things are not necessarily improving over time. Finally, 
our study analyses the reasons behind certificate revocation 
failings and we give a suggestion for improving this in the 
conclusions.  

The rest of this paper is structured as follows. Section 2 
overviews the base set of standards related to X.509 
certificates. Section 3 exposes and analyses the results of tests 
executed on six TLS interception products. In this section, we 
show how the behaviour of these products is inconsistent. Our 
study also shows the evolution of these products’ behaviour 
between 2017 and 2019. In section 3.C we focus on the 
revocation problem and present the different revocation 
techniques. We show how web browsers and interception 
products implement them. We also show the deployment trend 
between 2018 and 2019 for the latest revocation checking 
technique, called OCSP Stapling. Finally, in section 4 we 
discuss our findings and give our conclusions in section 5. 

II. WHAT IS AN X.509 CERTIFICATE 
The contents and processing of X.509 public key certificates 
(PKCs) are regulated through numerous standards documents, 
first officially described in the ISO/ITU-T X.509 standard [3]. 
X.509 provides the general framework for public key 
infrastructures (PKIs), the syntax of PKCs and revocation lists, 
and how PKCs can be extended (by literally anyone). Each 
standard certificate field has its own syntax and semantics as 

well as constraints on its possible values. In many cases a field 
can have different syntax choices. These fields provide 
information about the certificate version number, the subject 
of the certificate, the public key, the way the key can be used, 
and the certificate life cycle management process (Figure 2).  

 

 
Figure 2. Certificate contents (inspired by [9]) 

Three kinds of field exist: mandatory fields, optional fields 
and extensions (which are all optional). When a field is 
mandatory, Certificate Authorities (CAs) must fill it and 
Relying Parties (RPs) must check it when validating 
certificates. Extensions can be marked as critical or not. If 
present and marked critical, the RP must obey its contents or 
reject the certificate. If marked not critical, the RP can ignore 
the extension if it does not recognize it, but must obey it 
otherwise i.e. it should not ignore a non-critical extension that 
it supports.  

The complexity of the X.509 standard, in terms of fields 
that are mandatory, optional, choices, and extensions, means 
that it is almost impossible for two different implementers to 
produce fully interworking code. A PKC produced by one 
implementer cannot always be fully validated by another, and 
vice versa. 

Consequently, the IETF PKIX group developed an X.509 
standard profile (RFC 5280) to address the specific needs for 
using PKIs on the Internet. Especially, the profile eliminates 
most options, make choices where several are available, and 
specifies which extensions should be used. However, due to 
the large constituency of the IETF, many different authors 
proposed many different extensions and ways of using X.509 
certificates, so that by now, over 50 PKIX specified RFCs 
exist. One can easily see why it is still not a trivial task to 
implement a fully conformant web browser. 

Among all the certificate extensions defined in X.509 and 
RFC 5280, Internet applications (such as web browsers) must 
at least be able to recognize: basic constraints, certificate 
policies, policy constraints, subject alternative name, key 
usage, name constraints, extended key usage and inhibit any-
policy extensions; but do not need to recognize: authority and 
subject key identifiers, and policy mapping extensions [4]. 

Starting from 2007, a new consortium of implementors of 
CAs, web browsers and OSs was established to improve the 
quality of certificate issuance and management, known as the 
CA/Browser Forum [13]. In the beginning, the consortium 
issued a set of guidelines for a new kind of certificate called an 
Extended Validation (EV) certificate. In 2011, CA/Browser 
forum issued “Baseline requirements” for any kind of public 
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key certificate. Both standards are now globally adopted by the 
majority of CAs on the Internet.   

Other important standards related to X.509 PKCs are: 

• RFC 6125: this explains the rules that must be 
followed in representing and verifying the identity of 
servers identified in the PKCs, 

• RFC 6960: this specifies the OCSP protocol used for 
checking a PKC’s status.  

• RFC 5019:  this addresses the scalability issues related 
to the deployment of OCSP servers in high-volume 
environments. It also specifies the rules to follow for 
caching OCSP responses. 

Other standards will be mentioned in the rest of the paper 
at the appropriate point. 

III. ANALYSIS OF TLS INTERCEPTION PRODUCTS’ BEHAVIOR 
In this section, we provide the results of our tests with 

several HTTPS interception products when they validate web 
server certificates. We focus our tests on the fields related to 
the subject, the key usage and the certificate status.  

Our objective is not to show the quality of certificate 
validation for every existing HTTPS interception product. 
Rather we selected a sample from the most popular ones. We 
didn’t limit the study to license-free products. We also tested 
trial versions of commercial products. Prior to testing, we 
reviewed the products’ specifications to ensure that they 
supported HTTPS interception, and we configured their 
settings to enable interception if a product did not do it by 
default. The list of tested products includes 4 anti-virus and 4 
proxies (see Table 1). 
 

TABLE 1.  LIST OF TESTED PRODUCTS  
 

Product Version (Test Date) 

Avast Antivirus Gratuit 17.4.2294 (2017), 
19.5.2378 (2019) 

Kaspersky Total security 17.0.0.611 (2017), 
19.0.0.1088 (2019) 

AVG Internet Security 17.4.3014 (2017), 
19.5.3093 (2019) 

ESET Internet Security 10.1.210.2 (2017), 
12.1.34.0 (2019) 

Squid 3.3.8 (2017), 4.6(2019) 
Charles Web debugging Proxy 4.1.2 (2017), 4.2.8 

(2019) 
Mitmproxy 0.9.2 (2017), 4.0.4 

(2019) 
Telerik Fiddler 4.6.20171.14978 

(2017), 
5.0.20192.25091(2019) 

 
With regards to the validation, we found three different 

strategies followed by HTTPS interception products: 
• Full validation (fV): in this case, the product handles the 

validation of certificates itself. It shows personalized error 
messages that are different from those of the web 
browsers. Kaspersky, Mitm, Fiddler and Squid proxies are 
in this category. 

• Delegated validation (dV): in this case, the interception 
product delegates the validation of certificates to the web 
browsers, except for revocation checking, which it 
performs itself. The product copies the certificate’s 
contents into a new PKC issued by itself and passes this to 
the browser for validation. The product is in effect 
becoming the issuing CA of all received certificates. 
Revocation checking cannot be delegated because the 
browsers receive the certificates generated by the 
interception product and not the original certificates 
generated by the web servers’ CAs. Avast, AVG and 
ESET fall into this category.  

• Incorrect Validation (iV): In this case, the interception 
product delegates validation to the browsers, as in the dV 
case, but doesn’t handle the revocation checking itself. 
The Charles proxy falls into this category. 

With regards to the products that fall under the fV category, 
we found three possible responses when the HTTPS 
interception product handles a certificate, denoted as follows:  

• A: accept the certificate without any intervention by 
the user,  

• W: warn the user about the existence of a problem by 
showing a warning message and asking him/her to 
make an accept/refuse decision, 

• R: refuse the certificate and prohibit access to the 
web server without any intervention by the user. 

To easily identify the evolution of TLS interception 
products’ behaviour compared to 2017, we use the symbol è 
to show any change in the product’s behavior with regards to a 
test case scenario. The result on the left side of the arrow 
represents the result obtained in 2017, and the result on the 
right side of the arrow represents the result obtained in 2019. In 
addition, we highlight the results that are not conformant to 
standards by colouring them in red. The evolution in behaviour 
of a TLS interpection product is considered as a regression 
when the table shows a change in the cell from a non-coloured 
result to a red coloured result (e.g. WèA). The evolution is 
considered as an improvement when there is change from a 
red-coloured result to a non-coloured result (e.g A èW). 

A. TLS Certificate Subject 
The TLS certificate subject represents the web server. The 

identity of the server may be either a Fully Qualified Domain 
Name (FQDN) or an IP address or both. FQDNs and IP 
addresses are different types of name (called name forms in the 
standards). A web server could hold many FQDNs that all 
point to the same IP address and conversely, one FQDN may 
point to different IP addresses. 

1) What do the standards state about the subject ? 
The X.509 standard [3] states that the subject field identifies 

the entity associated with the public-key found in the subject 
public key field. An entity could have one or more alternative 
names, of different types (or forms), held in the 
subjectAltName extension. According to the X.509 standard, 
an implementation that supports this extension is not required 
to process all the name types. If the extension is flagged 
critical, at least one of the name types that is present must be 
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recognized and processed, otherwise the certificate must be 
considered invalid.  

RFC 5280 states that the subject name may be carried in the 
subject field and/or the subjectAltName extension. If the 
subject naming information is present only in the 
subjectAltName extension, then the subject name should be 
empty and the subjectAltName extension must be critical. 
According to this statement a TLS certificate can hold multiple 
names in a combination of the Subject field (commonName 
(CN) component) and the Subject Alternative Name 
(subjectAltName) extension. These names must all refer to the 
same entity, although a browser need not recognize all the 
different name types. 

According to the baseline requirements (BR) of the 
CA/Browser forum, CAs are discouraged from issuing 
certificates that have a commonName (CN) component in the 
subject field [16], however this is not prohibited. BR states 
that if the CN component is present, it MUST contain a single 
IP address or Fully-Qualified Domain Name that should be 
one of the values contained in the certificate’s subjectAltName 
extension. However, the CA/Browser forum requires the 
presence of the subjectAltName extension in all certificates, 
and this may have a dNSName (i.e. DNS name) or an 
iPAddress value. Finally, since October 2016 the CA/Browser 
forum has prohibited the practice of inserting a reserved 
(private) IP address in the subjectAlternativeName extension 
or in the Subject commonName. This is because these 
addresses are typically local addresses, and consequently refer 
to thousands of internal servers, many of which are not be 
accessible from the Internet [25]. 

2) Tests and Results 
The identity of a server could be represented by a FQDN 

value or by an IP address or both. We have performed 

experiments to test certificates holding the two types of name 
separately as well as both types together. 

In the first set of experiments (TABLE 2), we tested how the 
HTTPS interception products reacted when the certificate 
contains zero, one or more FQDN names. We configured our 
web server to respond to requests sent to either sana1.fr or 
sana1dns.fr. As the names could be mentioned in either or 
both of the Subject Name - Common Name (SCN) and 
SubjectAltName - DNS Name (SAN-DNS) fields, we tested 
the following different combinations of names in our web 
server certificate:  

i. SCN=sana1.fr, SAN-DNS=sana1dns.fr 
ii. SCN=null, SAN-DNS= sana1dns.fr 

iii. SCN= sana1.fr, no SAN-DNS field  
iv. SCN=null, no SAN-DNS field  
v. SCN=null, SAN-DNS = sana1.fr and sana1dns.fr.  
For each combination, we recorded the reaction of each 

HTTPS interception product when accessing sana1.fr and 
sana1dns.fr. We also state whether the certificate is Valid (V) 
or Invalid (I) according to the X.509 standards.  

In the second set of experiments (Table 3), our server was 
located at 192.168.133.149 and in some cases it was 
configured with the DNS name sanal.fr. We tested how the 
HTTPS interception products reacted when the certificate 
contains a combination of IP address and FQDN as follows: 

vi. SCN=null,  no SAN-DNS field, SAN-IP = 
192.168.133.149 

vii.  SCN= sana1.fr, no SAN-DNS field, SAN-IP = 
192.168.133.149 

viii. SCN= null, SAN-DNS= sana1.fr , SAN-IP = 
192.168.133.149 

ix. SCN=null,  SAN-DNS = sana1.fr , no SAN-IP field 
x. SCN=null, SAN-DNS = null , no SAN-IP field 

xi. SCN =null, SAN-DNS = null , SAN-IP = 
192.168.133.149

TABLE 2 MULTIPLE FQDN WEB SERVER IDENTITIES

 
 Antivirus Proxies  

Avast Kaspersky AVG ESET Squid Charles Mitm Fiddler Standards 

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 

i) SCN= sana1.fr, SAN-DNS=sana1dns.fr dV dV W A dV dV dV dV W A iV iV W
è 
R 

A W A I V 

ii) SCN= null, SAN-DNS=sana1dns.fr dV dV W A dV dV dV dV R A iV iV W
è
R 

A W A I V 

iii) SCN= sana1.fr , no SAN-DNS 
 

dV dV A W dV dV dV dV A
è 
W 

R iV iV A W
è
R 

A W ? I 

iv) SCN=null, no SAN-DNS dV dV W W dV dV dV dV R R iV iV W
è
R 

W 
è
R 

W W I I 

v) SCN=null, SAN-DNS=sana1.fr , 
sana1dns.fr    

dV dV A A dV dV dV dV A A iV iV A A A A V V 

Where : S1 = sana1.fr,  S2 = sana1dns.fr, dV= delegated Validation, iV=incorrect Validation, A=Accept, W=Warn, R=Refuse, I=Invalid certificate w.r.t standard, 
V=valid certificate w.r.t standard 
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TABLE 3. IP ADDRESS SERVER AND/OR FQDN IDENTITIES  
 

 Antivirus Proxies  

Avast Kaspersky AVG ESET Squid Charles Mitm Fiddler Standards 

S1 IP S1 IP S1 IP S1 IP S1 IP S1 IP S1 IP S1 IP S1 IP 

vi) SCN= null , SAN-IP=192.168.133.149 dV dV W A dV dV dV dV R R iV iV W
è
R 

W
è
R 

W W
è
A 

I I 

vii) SCN= sana1.fr ,SAN-
IP=192.168.133.149 

dV dV A A dV dV dV dV W R iV iV A W
è
R 

A W
è
A 

V I 

viii) SCN= null, SAN-IP=192.168.133.149 
SAN-DNS=sana1.fr 

dV dV A A dV dV dV dV A R iV iV W
è
A 

W
è
R 
 

A W
è
A 

 

V I 

ix) SCN= null ,No SAN-IP ,SAN-
DNS=sana1.fr 

dV dV A W dV dV dV dV A R iV iV A W
è
R 

A W V I 

x) SCN= null ,No SAN-IP ,SAN-DNS=null 
 

dV dV W W dV dV dV dV R R iV iV W
è
R 

W
è
R 

W W I I 

xi) SCN= null , SAN-DNS=null , SAN-
IP=192.168.133.149 

dV dV W A dV dV dV dV R R iV iV W W W W
è
A 

I I 

xii) SCN= null , SAN-IP=141.115.26.43 dV dV ?  
è 
W 

?  
è
A 

dV dV dV dV ?  
è
R 

?  
è
R 

iV iV ?  
è
R 

?  
è
R 

?  
è
R 

?  
è
A 

I V 

xiii) SCN= dane.irit.fr ,SAN-
IP=141.115.26.43 

dV dV ?  
è 
A 

?  
è
A 

dV dV dV dV ?  
è
W 

?  
è
R 

iV iV ?  
è
A 

?  
è
R 

?  
è
A 

?  
è
A 

V V 

xiv) SCN= null ,SAN-IP=141.115.26.43 
SAN-DNS=dane.irit.fr 

dV dV ?  
è 
A 

?  
è
A 

dV dV dV dV ?  
è
A 

?  
è
R 

iV iV ?  
è
A 

?  
è
R 

?  
è
A 

?  
è
A 

V V 

xv) SCN= null , SAN-DNS =null, SAN-
IP=141.115.26.43 

dV dV ?  
è 
W 

?  
è
A 

dV dV dV dV ?  
è
R 

?  
è
R 

iV iV ?  
è
R 

?  
è
R 

?  
è
W 

?  
è
A 

I V 

Where : S1 = sana1.fr or dane.irit.fr,  IP = 192.168.133.149 or 141.115.26.43, Na= not applicable, dV= delegated Validation, iV=incorrect Validation, A=Accept, 
W=Warn, R=Refuse, I=Invalid certificate w.r.t standard, V=valid certificate w.r.t standard, ? è=means that we didn’t make this specific test in 2017 

3) Analysis of the Results
The Primary objective of an X.509 PKC is to bind an 

identity to a public key. In the case of a web server, the 
identity is either a FQDN name or an IP address. 

When the identity of the server is null (test iv, test x) the 
HTTPS interception product cannot authenticate the server, 
and therefore the TLS certificate is invalid. In 2017, the Squid 
proxy was the only product that refused the certificate. In 
2019, the Mitm proxy has aligned its behaviour with Squid by 
rejecting this kind of certificate. All the other products under 
fV category keep the same behaviour as in 2017 by showing a 
warning to the user and asking him to take the right decision. 
Whether a certificate validation entity should immediately 
refuse an invalid certificate (R) or ask the user what to do (W) 
is partly a usability issue and partly a security issue. But it is 
not a standard’s issue. The standards will only give guidance 
on whether a certificate is invalid or not, but will not advise a 
relying party what to do with it. 

From a security perspective, if the HTTPS interception 
product cannot authenticate the web server, the certificate 
should be rejected (R). From a usability perspective the user 
could be given a choice (W), although in practice most users 

simply click OK to all the pop-up windows so invalid 
certificates end up being accepted. 

In the case when the identity of the server is contained in 
only the SCN field without having the subjectAltName 
extension to hold the identity of the server (test iii), most of 
the interception products accept this certificate except the 
Squid Proxy. It is difficult to decide the validity of these 
certificates because on the one hand, the certificate is valid 
because the baseline requirements (BR) of CA/Browser forum 
don’t prohibit the use of the SCN field to hold the identity of a 
server. On the other hand, the certificate is not valid because it 
doesn’t have the subjectAltName extension, which is 
mandatory according to the BR requirements. This may 
explain the divergence in the behaviours of different products. 

When the identity of the server is defined by the SAN-DNS 
field to hold its DNS name and the SAN-IP component to 
match its IP address (test viii), the Mitm proxy presented a 
warning message with the DNS name in 2017 although the 
certificate is valid. This behaviour was probably due to poor 
implementation of the Subject-Alt-Name Extension. In 2019, 
this behaviour was modified to accept the valid certificate. 
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When the identity of the server is defined by the SCN field 
to hold the DNS name and the SAN-IP component to match a 
reserved IP address (test vii), a diversity of behaviour is 
recorded with S1 access. The server’s certificate is accepted by 
all the tested products of fV category except Squid, which 
presents a warning message. We obtained the same behaviour 
in 2017 and 2019. The related standards imply that such a 
certificate is valid because they don’t prohibit the SCN field 
from containing a dNSName, and they mandate the existence 
of the subjectAltName extension, which is the case in our test. 
With an IP access, the same certificate is invalid because it 
contains a reserved IP address. All the products under the fV 
category, except Squid and Mitm proxies, are not conformant 
to the standards as they accept this certificate with IP access 
(similarly, certificates in tests vi, vii, viii and xi are considered 
as invalid with a reserved IP address). 

At first glance, the Mitm and Squid proxies look to be the 
only conformant products with regards to certificates with a 
reserved IP address. However, their behaviour can be 
interpreted differently i.e. they may not support SAN-IP. 
According to X.509 standard "An implementation is not 
required to be able to process all name forms". So no HTTPS 
interception products have to support SAN-IP. 

To understand the exact reason for the rejection of IP values 
by the Mitm and Squid proxies, we decided to add a new 
series of tests that include certificates with public IP addresses 
(xii, xiii, xiv, xv). The objective is to know whether the 
interception products give special treatment to reserved IP 
addresses or whether they support this kind of name form. The 
results of these tests show that all products show exactly the 
same behaviour whether the IP address is reserved or public. 

With regards to the Mitm proxy, we have always obtained 
the same error message that indicates the absence of the SNI 
(Server Name Indication) extension in the TLS protocol, 
whenever a certificate has an IP value in its subjectAltName 
extension and we access the server using an IP address. SNI is 
a TLS extension in the Client Hello message sent by the client 
to inform the server which hostname it is attempting to access. 
The presence of SNI values in the new protocol of TLS is 
fundamental to proxies in order to be able to intercept TLS 1.3 
communications [18]. Indeed, according to the specification of 
TLS 1.3 [2], the client hello message is the only message that 
will be sent in the clear. 

With regards to the Squid proxy, the rejection of certificates 
with IP addresses is due to a bad implementation. Every time a 
certificate is used with a URL containing an IP address, we 
obtain the same error message, which indicates a mismatch 
between the hostname of the server and the value contained in 
the subjectAltName (Figure 3). By inspecting the certificates 
generated by the Squid proxy, we can see that these 
certificates don’t match the certificates of the tested server. In 
fact, as Figure 4 shows, the Squid proxy’s certificate sets the 
IP value in the DNS field of the subjectAltName extension 
instead of setting it in the IP field of this extension. This 
explains why we always get the same error message for every 
certificate with an IP address value. 

Another quite confusing behaviour is that of Avast and 
AVG with regards to public domains and public IPs. When we 
executed our tests with our public domain dane.irit.fr, we 
realized that Avast and AVG don’t intercept the 
communication with our public domain. However, when we 
tested with another public domain such as www.amazon.com, 
Avast and AVG have intercepted the TLS communications 
with these websites (Figure 5). More strangely, the decision to 
intercept a TLS communication by Avast and AVG changes 
according to the type of web browser used by the user. For 
example, when the web user uses the Edge browser, Avast and 
AVG intercept the communication with amazon.com. When 
the web user uses Firefox, Opera or Chrome, Avast and AVG 
don’t intercept the communication with amazon.com (Figure 
6). Further research is needed to determine the interception 
strategy of Avast and AVG. Kaspersky and ESET have more 
consistent behaviour as they intercept all public domains and 
public IP servers. 

 
FIGURE 3.ERROR MESSAGE FROM SQUID PROXY 
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FIGURE 4.ORIGINAL SERVER CERTIFICATE AND CORRESPONDING SQUID 
GENERATED CERTIFICATE 

 

 
 

FIGURE 5.THIS FIGURE SHOWS HOW AVAST HAS INTERCEPTED THE 
COMMUNICAITON WITH THE DOMAIN AMAZON.COM AND NOT WITH 

DANE.IRIT.FR 
 

 
FIGURE 6. THIS FIGURE SHOWS HOW AVAST DIDN'T INTERCEPT 

COMMUNICATION WITH AMAZON.COM WHEN THE WEB USER USES CHROME 

B. Key usage, extended key usage 
Key usage and extended key usage are used to determine 

the purpose of the public key contained in the certificate. A 
TLS server certificate could have a key usage extension or not. 

1) What do the standards state about the Key usage and 
Extended Key Usage ? 

The X.509 standard [3] states that if either the extended key 
usage or key usage extensions are recognized by the relying 
party then the certificate must be used only for one of the 
purposes stated in the both fields. The key usage and the 
extended key usage must be treated separately but they must 
have consistent values. If there is no purpose consistent with 
both fields, then the certificate shall not be used for any 
purpose [3].  

RFC 5280 states that the key usage extension, when it 
appears, should be a critical extension. For a TLS certificate, 
RFC 5280 recommends that the key usage, when it is defined, 
should have the value of “digital signature, key encipherment 
and/or key agreement” and the consistent value of the 
extended key usage should be “Server Authentication”. 

2) Tests and Results 
The value needed in the key usage extension depends on the 

encryption algorithms used for generating the certificate's keys 
(RSA, DSA, DH, etc.) and on the cipher suite applied in the 
TLS communication between the HTTPS interception product 
and the web server. A cipher suite consists of a key exchange 
scheme, a signature algorithm, a block cipher algorithm, and a 
hashing algorithm for computing the authentication key. 
They’re usually identified in a string [23] viz: 

 
 [SSL/TLS]_[key exchange]_[signature 

algorithm]_WITH_[block cipher]_[authentication hash] 
 
We generated our test certificates using the RSA algorithm. 

In this case, two types of cipher-suites are possible: 
- TLS_ECDHE_RSA*: in this case, the key exchange 

algorithm is ECDHE (Elliptc Curve with ephemeral 
Diffie-Hellman). This means that the RSA private key of 
the server’s certificate will be used for signing the 
ECDHE public key and the associated parameters. The 
appropriate value of the key usage extension is 
digitalSignature. 

- TLS_RSA_*: in this case the key exchange algorithm is 
RSA. This means that the HTTPS interception product 
will use the RSA public key of the server’s certificate for 
encrypting the random value chosen by the client. The 
appropriate value of the key usage is keyEncipherment. 

Since RSA keys can lead to different key usages, we first 
check the cipher suites agreed between our web server and the 
HTTPS interception product by looking at the Hello server 
message in the TLS protocol. Table 4 shows the cipher-suites 
chosen by the HTTPS interception product and the appropriate 
key usage value for each product. 

We tested how the HTTPS interception product reacted 
when it validated a certificate, which conveyed an RSA public 
key and had a key usage value different from the correct value 
digitalSignature or keyEncipherment according to the cipher-
suites used. 

TABLE 4. CHOSEN CIPHER SUITES 
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where: cipher suite written in red to indicate the change of cipher suite for the same product between 2017 and 2019, AA=refers to products that should have 
digitalSignature value in their key usage extension, BB=refers to products that should have keyEncipherment value in their key usage extension, GCM= Galois 

Counter Mode, CBC= Cipher Block Chaining 
 

TABLE 5. KEY USAGE TEST 
 

Key Usage Standard 
Validity  

Avast Kaspersky AVG ESET Squid Charles Mitm Fiddler 

key usage extension = KA 
No Extended key usage extension  

I dV A dV dV R 
è 
A 

iV A A 

key usage extension = DE 
No Extended key usage extension 

I dV A dV dV R iV A 
è 
R 

A 

key usage extension = KE 
No Extended key usage extension 

I (AA Products) 
V(BB Products) 

dV A dV dV A iV A 
è 
A 

A 
è 
A 

key usage extension = DS 
No Extended key usage extension 

I (BB Products) 
V(AA Products) 

dV A dV dV A iV A 
è 
A 

A 
è 
A 

key usage extension = KA 
key Extended usage extension 

=SA 

I dV A dV dV R 
è 
A 

iV A A 

key usage extension = DE 
key Extended usage extension 

=SA 

I dV A dV dV R iV A 
è 
R 

A 

key usage extension = KE 
key Extended usage extension 

=SA 

I (AA Products) 
V(BB Products) 

dV A dV dV A iV A 
è 
A 

A 
è 
A 

key usage extension = DS  
key Extended usage extension 

=SA 

I (BB Products) 
V(AA Products) 

dV A dV dV A iV A 
è 
A 

A 
è 
A 

No key usage extension 
key Extended usage extension 

=CA 

I dV W dV dV R iV A 
è 
R 

A 
è 
W 

key usage extension = DS 
key Extended usage extension 

=CA 

I dV W dV dV R iV A 
è 
R 

A 
è 
W 

Where: CA=clientAuthentication, DE=dataEncipherment, DS=digitalSignature, KA=keyAgreement, KE=keyEncipherment,  dV= delegated Validation, 
iV=incorrect Validation,  SA=serverAuthentication, I=invalid w.r.t standard, V=valid w.r.t standard, A=Accept, W=Warn, R=Refuse, I (AA Products)=means the 

certificate is invalid for AA products, V(AA Products)= means the certificate is valid for AA products 
3) Analysis of the Results 
Here, the diversity of the HTTPS interception products’ 

behaviour is due to violations of the standards when the key 
usage and/or the extended key usage extension contain wrong 
values. Those certificates that should have been treated as 
invalid were treated as acceptable by most of the tested 
products. 

In 2017, Squid accepted certificates when the key usage had 
wrong values of keyEncipherment instead of digitalSignature. 
For all others test cases, its behaviour was correct. Squid 
rejected invalid certificates without asking the user. In 2019, 
Squid gives the same behaviour with regards to the same 
wrong certificate. In addition, Squid now incorrectly accepts 

 Kaspersky  AVG & Avast ESET Squid Charles Mitm Fiddler 
Chosen 

cipher suite 
in 2017 

TLS_ECDHE_R 
SA_WITH_AES_ 

256_GCM_SHA384 
 

TLS_RSA_W 
ITH_AES_128_ 
CBC_SHA256 

 

TLS_RSA_W 
ITH_AES_128_ 
CBC_SHA256 

 

TLS_ECDHE_R 
SA_WITH_AES_ 

256_GCM_SHA384 

TLS_ECDHE_R 
SA_WITH_AES_ 

256_CBC_SHA256 

TLS_ECDHE_R 
SA_WITH_AES_ 

256_CBC_SHA256 
 

TLS_RSA_W 
ITH_AES_128_ 

SHA256 
 

Valid key 
usage 

extension 
value for 

2017 cipher 
suite 

digitalSignature  
AA 

keyEncipherment 
BB  

keyEncipherment 
BB  

digitalSignature 
AA  

digitalSignature 
AA  

digitalSignature  
AA 

keyEncipherment 
BB  

Chosen 
cipher suite 

in 2019 

TLS_ECDHE_RSA 
_WITH_AES_128 
_GCM_SHA256 

TLS_ECDHE_RSA 
_WITH_AES_128 
_GCM_SHA256 

TLS_RSA_W 
ITH_AES_128_ 
GCM_SHA256 

TLS_ECDHE_R 
SA_WITH_AES_ 

256_GCM_SHA384 

TLS_ECDHE_R 
SA_WITH_AES_ 

256_CBC_SHA256 

TLS_RSA_W 
ITH_AES_128_ 
GCM_SHA256 

TLS_ECDHE_RSA_W 
ITH_AES_256_GCM_ 

SHA384 
Valid key 

usage 
extension 
value for 

2019 cipher 
suite 

digitalSignature  
AA 

digitalSignature 
AA 

keyEncipherment 
BB  

digitalSignature 
AA  

digitalSignature 
AA  

keyEncipherment 
BB 

digitalSignature 
AA 
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certificates that were correctly rejected in 2017, such as the 
certificate that has the wrong value of keyAgreement.  

In 2017, all others products accepted certificates when the 
key usage had wrong values of dataEncipherment or 
keyAgreement instead of digitalSignature or 
keyEncipherment. In 2019, we obtain similar results, except 
for the Mitm proxy which changes its behaviour to reject 
invalid certificate whose key usage field is dataEncipherment. 

In 2017, when the extended key usage had the wrong value 
of clientAuthentication instead of serverAuthentication, 
Kaspersky and Squid proxy rejected the certificate whilst 
Fiddler and Mitmproxy treated the certificate as valid and 
accepted access to the website. By 2019, the Fiddler and Mitm 
proxies had changed their behaviour to conform to the relevant 
standards.  

It should be noted that in many cases, we have obtained the 
same results when presenting a test certificate to two different 
versions of the same product. For example, when presenting 
an invalid certificate to the Mitm product, the certificate was 
accepted in 2017 and 2019. However, in 2017 Mitm was using 
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA256  and in 
2019 Mitm uses a different cipher suite. As a consequence, the 
(A)ccept behaviour in 2017 for a certificate that has KE in its 
Key usage was considered non-conformant to the standard, but 
in 2019 the same behaviour was considered conformant 
(AèA). 

C. Revocation 
Certificate revocation is one of the many challenges faced 

by PKIs. It is the action of declaring a certificate as invalid and 
no longer trusted before its scheduled expiration date.  

The security of the PKI depends on our ability to revoke 
lost, stolen, or compromised certificates from circulation as 
quickly as possible. This is usually done by asking the relying 
party to check the certificate’s status before accepting it. 
Consequently, CAs must make all revocation information 
available. They can revoke a PKC by publishing its serial 
number in a Certificate Revocation List (CRL) that can be 
downloaded from a repository. However, CRLs might become 
very large, resulting in an unacceptable latency. The second 
approach is the Online Certificate Status Protocol (OCSP). A 
CA can indicate that a PKC has been revoked by running an 
OCSP server to which a client submits an OCSP request. The 
server responds with the status of the PKC. 

OCSP has some limitations, such as the privacy of clients, 
as it gives the OCSP server a lot of information about which 
PKCs are being used where. Another severe problem is the 
availability of the OCSP server for under resourced CA 
infrastructures. High traffic websites can result in a large 
number of requests being sent to the OCSP servers. As a 
consequence, some clients are not able to make contact and 
obtain an OCSP response, and so no PKC revocation 
information is delivered. 

In this case and from a security point of view, such a PKC 
should be considered as invalid. However, practically all 
clients implement OCSP in soft fail mode, meaning that if the 
client receives no positive response (good or revoked), then 
the PKC will be considered as good and the client will allow 

access to the associated web content. This problem makes the 
whole OCSP concept vulnerable: if an attacker tries to use a 
revoked certificate it can simply block connections to the 
OCSP server (e.g. a DDOS attack). 

CrlDistributionPoints (CDP) and AuthorityInfoAccess 
(AIA) extensions are used to hold the CRL and the OCSP 
indicators respectively in a PKC. They tell the RP where it can 
fetch CRLs or OCSP responses from, respectively. 

OCSP Stapling and Must-Staple are new alternatives to 
OCSP for checking a PKC’s status. For this reason, we start by 
giving a brief description of them. OCSP Stapling is described 
in RFC 6066 (for checking the status for server certificates) 
and RFC 6961 (for checking the status of every certificate on 
the chain). Must Staple is described in RFC 7633. 

OCSP Stapling eliminates the need for the client to request 
an OCSP response directly from the CA’s server. As shown in 
Figure 7, the web server makes the OCSP request and then 
caches the response. This allows the web server to staple the 
OCSP response within the TLS handshake via the Certificate 
Status Request extension. 

This approach offers three main advantages. First, it reduces 
the costs for CAs because the number of OCSP request is 
significantly reduced, coming only from web sites. Secondly, 
it improves the privacy of clients because CAs cannot identify 
the web sites that users are visiting and thirdly, it improves the 
performance of clients as a second connection to an OCSP 
server does not need to be established. However, this approach 
does not resolve the problem of single point of failure and 
DDOS attacks. An attacker can still attack the OCSP servers 
of a CA to prevent web servers from fetching new OCSP 
responses. As a consequence, access to these web sites would 
be authorized with a soft-fail policy. 

A new certificate extension called Must Staple has been 
defined to require OCSP Stapling in the TLS handshake. CAs 
issue certificates to web servers with this new extension, and 
this requires the web server to send a cached OCSP response 
along with its server certificate to the client (RP). Clients 
should ensure this stapled OCSP response is present otherwise 
they should hard-fail the TLS connection.  
 

 
FIGURE 7. THE OCSP STAPLING APPROACH 

 
1) What do the standards state about the CRL Distribution 

Points, Authority Info Access and The TLS Status_Request 
extensions? 

The X.509 standard states that the CDP extension can be, 
at the option of the certificate issuer, critical or not; but it 
recommends it to be non-critical for interoperability reasons. 
When it is a critical extension, a certificate-using system shall 
not use the certificate without first retrieving and checking the 
certificate against the downloaded CRL [3]. However, when 
the extension is not critical a certificate-using system can use 
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the certificate only if the revocation checking is not required 
by a local policy or it is accomplished by other means [3]. 

According to RFC 5280, the CDP and AIA extensions 
should be non-critical extensions, but it recommends 
supporting these extensions by CAs and applications [4]. 

Starting from 1 January 2013, the CA/Browser forum 
imposed the use of the OCSP protocol. However, the 
CA/Browser forum also allowed the use of other checking 
methods such as CRLs and OCSP stapling. With regards to 
OCSP stapling, BR states “If the Subscriber Certificate is for a 
high-traffic FQDN, the CA MAY rely on stapling, in 
accordance with [RFC4366], to distribute its OCSP 
responses. In this case, the CA SHALL ensure that the 
Subscriber “staples” the OCSP response for the Certificate in 
its TLS handshake. The CA SHALL enforce this requirement 
on the Subscriber either contractually, through the Subscriber 
Agreement or Terms of Use, or by technical review measures 
implemented by the CA.”.  Note that RFC4366 has been 
obsoleted by RFC 6066. According to RFCs 6961, 6066 and 
7633, the only TLS feature extensions that are relevant to the 
revocation status are the Certificate Status Request extension 
(status_request) and the Multiple Certificate Status Extension 
(status_request_v2). These extensions should not be marked 
critical. Marking the TLS feature extension critical breaks 
backward compatibility and is not recommended unless this is 
the desired behavior. 

2) OCSP-Stapling Survey  
In 2013, Netcraft [5] performed a survey that indicated that 

around 22% of certificates were served with a stapled OCSP 
response. However, to the best of our knowledge there has 
been no survey since then. So we decided to undertake our 
own to see whether there has been any change since 2013. 

a) Dataset and methodology 
We implemented a Java program in order to detect whether 

a web server supports OCSP Stapling or not. The program 
doesn’t check all available web domains. Instead it checks the 
top one million websites that we obtained from alexa.com. For 
each domain, the program establishes a TLS connection and 
notifies the server that an OCSP Stapling response is needed 
(by adding the TLS certificate status request extension during 
the Handshake phase). Our objective is to know whether the 
server supports: OCSP-Stapling, Must-Staple via a certificate 
extension or Must-Staple via the HTTP header. 

We ran our program two times: the first time was on March 
3, 2018 and the second time was on May 28, 2019. This can be 
useful to understand the evolution of OCSP-Stapling adoption. 
Our program ran on a 32-cores architecture (2 Intel Xeon 
processors with 64GB RAM). It used all the cores to run the 
tests. The total duration of the 2018 survey to process all the 
999,950 websites was 24 hours, 29 minutes and 15 seconds 
whereas the total duration of the 2019 survey was 22 hours, 59 
minutes and 54 seconds. 

b) Survey Results 
In 2018, our program was able to test only 735,320 web 

domains from the 999,950 websites whereas in 2019, our 
program was able to test 828,777 web domains from the 
999,950 websites. We were not able to test all domains 

because of different types of errors. For example, some errors 
were due to bad configuration of TLS.  TABLE 6 shows the 
division of error types in the 2018 and 2019 surveys. 
Unreachable means the server did not answer any request 
(either from OpenSSL or the HTTP client). This means that 
either the website is no longer online, or the server does not 
listen to port 443. Rejected means the server answered back, 
but rejected the TCP connection and sent an ICMP message. 
Finally, TLS Error means that the server answered back on 
port 443 but the TLS handshake failed. This study does not 
detail the reasons for the handshake failure, but for instance, 
some of the servers were serving HTTP rather than HTTPS on 
port 443, whilst others were using a deprecated version of 
SSL, and others provided invalid certificates, etc.  

 
TABLE 6.ERROR TYPES 

 SSL Error Rejected Unreachable 
2018 26% 27% 46% 
2019 39% 24% 37% 

 
Of the 735,320 tested web domains in 2018, we found that 

only 141,541 (19.25%) supported OCSP-Stapling. However, 
in 2019 we found that 221733 of the 828777 tested web 
domains (26.75%) supported OCSP-Stapling.  

 
TABLE 7. OCSP STAPLE AND MUST-STAPLE SUPPORT 

 OCSP 
Stapling 
support 

Must-Staple 
certificate 
extension 
support 

Must-Staple 
HTTP Header 

Support 

2018 19% 0,04% 
(58 websites) 

1 website 

2019 27% 0% 1 website 
 
TABLE 7 shows that the proportion of OCSP-Stapling servers 

that support Must-Staple (by adding the Must-Staple extension 
into their X.509 PKC) was tiny in 2018, but no website is 
supporting the Must-Staple option in 2019. 

The third columns of TABLE 7 shows that the proportion of 
OCSP-Stapling servers that support the Must-Staple HTTP 
Header is even smaller (only 0.00007%), but we got the same 
results in 2018 and 2019. 

Our analysis shows a significant rise in the use of OCSP-
Stapling by Cloudflare (Content Delivery Network provider) 
where in 2018 only 23% of Cloudflare responses were 
supporting OCSP-Stapling, while in 2019 >80% of Cloudflare 
responses supported OCSP-stapling. 
 

3) Tests and Results 
We performed two sets of experiments. The first set related 

to OCSP-Stapling support in web browsers. We checked if the 
OCSP Stapling and Must Staple approaches were supported, 
and if they were automatically implemented or not. In 2017, 
we tested the popular web browsers: Internet Explorer 
11(IE11), Firefox 52 (FF52), Opera 44 (OP44), Microsoft 
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Edge 25 (ED25), Google Chrome 57 (GC57). In 2019, we 
tested Firefox 68 (FF68), Chrome 75 (GC75), Edge 44 
(ED44), Opera 62 (OP62) and Internet Explorer 11 (IE11). 
The first step was to enable and configure OCSP Stapling in 
our Apache web server, which has been supported since 
Apache HTTPD Server 2.3.3+. 

In tests i) and ii) in Table 8, we show the reaction of web 
browsers when the server’s stapled OCSP response indicates 
that the server’s certificate status is good or revoked, and in 
test iii) when the stapled OCSP response is not present. We 
obtained exactly the same results in 2017 and in 2019. Table 
10 shows the browsers that support Must Staple. The results 
that we obtain in test iii in Table 8 are the same whether Must 
Staple is activated or not.  

In the second set of experiments, we tested the HTTPS 
interception products. We first determined the revocation 
methods supported by each product, and whether they were 
automatically configured or not (Table 9 i-iv)). We then show 
the reaction of the HTTPS interception product when: 

• the CRL is not retrievable or the OCSP server is 
down (Table 9 v) & vi)); 

• the HTTP methods supported to fetch an OCSP 
response (Table 9 vii)); 

• the OCSP stapled response indicates that the server's 
certificate is revoked (Table 9 viii)); 

• there is no stapled OCSP response, with OCSP 
Stapling and Must Staple (Table 9 ix) & x)). 

TABLE 8.   WEB BROWSER'S REVOCATION TESTS 
 OP44,OP62 FF52,FF68 GC57,GC75 IE11 ED25,ED44 

i) Certificate is good in the stapled 
OCSP Response 

A A A A A 

ii) Certificate is revoked in the 
stapled OCSP Response 

R R R R R 

iii) There is no stapled OCSP 
Response available (try later) 

A R A A A 

Where: A=Accept, W=Warn, R=Refuse 
TABLE 9.   HTTPS INTERCEPTION PRODUCTS  REVOCATION TESTS 

 Avast Kaspersky AVG ESET Squid Charles Mitm fiddler 
i) CRL checking Automatic Not supported Automatic Automatic Not 

supported 
Not supported Not supported Not 

supported 

ii) OCSP checking Not 
Supported 

Automatic Not 
supported 

Automatic Not 
supported 

Not supported Not supported Configurable 

iii) OCSP Stapling checking Automatic Not supported Automatic Not supported Not 
supported 

Not supported Not supported Not 
supported 

iv) OCSP Must Staple 
checking 

Not supported Not supported Not 
supported 

Not supported Not 
supported 

Not supported Not supported Not 
supported 

Where: Configurable means that the HTTPS interception product checks the certificate status after setting, but by default it does not do it. Automatic means that the product checks the certificate 
status automatically. 

v) CRL is not retrieved RèA NA RèA RèA NA NA NA NA 

vi) OCSP server is down NA A NA A NA NA NA RèW 

vii) OCSP request HTTP 
methods 

 

NA GET only NA GET only NA NA NA GET only 

Where: GET only means that the HTTPS interception product supports only the GET method, if it fails the HTTPS interception product will not send a POST request. NA means not applicable 
viii) Certificate is revoked in 
the stapled OCSP Response 

 

R NA R NA 
 

NA NA 
 

NA NA 

ix) No stapled OCSP response 
with OCSP Stapling 

RèA NA 
 

RèA NA 
 

NA NA 
 

NA NA 

x) No stapled OCSP response 
with OCSP Stapling and 

Must Staple 

NA 
 

NA NA 
 

NA 
 

NA NA 
 

NA NA 

Where: NA= not applicable, A=Accept, W=Warn, R=Refuse 
 

4) Analysis of the Results 
The overall TLS system suffers from two major problems: the 
first problem is related to the trustworthiness of CAs [19, 20], 
the second problem is with regards circumstances under which 
clients should check whether server certificates are revoked or 
not.  

The success or failure of the OCSP Stapling check depends 
on the implementations of both the web browser and the web 
server. The web browser only obtains an OCSP stapled 
response from the web server if the browser asks for it and the 

server supports it. If either the browser or the web server do 
not support OCSP Stapling, then OCSP Stapling is not used 
and certificate validity status checking will automatically 
revert to the other revocation approaches supported by the 
browser. Unfortunately, most of the HTTP interception 
products do not support OCSP Stapling (Table 9 iii)) and none 
support Must Staple, even though many web sites are taking 
advantage of OCSP Stapling. Our own analysis shows a rise of 
OCSP-Stapling adoption. In 2019 26,25% of tested websites 
support OCSP stapling whereas in 2018 19.25% of tested 
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websites support OCSP-stapling. However, the support of the 
Must Staple extension in their PKCs has totally disappeared in 
2019. 

For the tested web browsers, all of them support OCSP 
Stapling but not the Must Staple extension (Table 10). OCSP 
Stapling is configured and enabled by default in all of them. If 
a stapled OCSP response (good or revoked) is present in the 
TLS handshake message, all the web browsers behave 
correctly. They will refuse the TLS connection with a revoked 
certificate and accept it with a valid one (Table 8 i) & ii)). 
However, when no OCSP response is stapled (Table 8 iii), 
whether to check for OCSP Stapling is set to mandatory or 
optional, all the web browsers except Firefox treat the 
certificate as valid. 

The differences in the behaviours between web browsers is 
however conformant to the standard RFC6961, which states 
that “If the OCSP response received from the server does not 
result in a definite "good" or "revoked" status, it is 
inconclusive.  A TLS client in such a case MAY check the 
validity of the server certificate through other means, e.g., by 
directly querying the certificate issuer.  If such processing still 
results in an inconclusive response, then the application using 
the TLS connection will have to decide whether to close the 
connection or not.  Note that this problem cannot be decided 
by the generic TLS client code without information from the 
application.  If the application doesn’t provide any such 
information, then the client MUST abort the connection, since 
the server certificate has not been sufficiently validated. “ 

The acceptance of certificates with unknown revocation 
status is due to the preferred soft-fail policy of browsers. The 
reasoning behind this is that the lack of an OCSP response 
could be due as much to a network error or mal configuration 
as to malicious activity. Also, according to Adam Langley 
from Google, web browsers apply this policy because they 
consider that hard-failing raises a different security issue by 
creating a single point of failure paving the way for effective 
DDOS attacks. 

Firefox’s behaviour is explained by its support for OCSP 
Must Staple by default. This provides stronger revocation 
checking with its requirement to ensure a stapled OCSP 
response is in the TLS handshake. No other browsers currently 
support this. Table 10 shows which revocation approaches are 
supported by each web browser. 
TABLE 10.   REVOCATION APPROACHES SUPPORTED BY EACH  WEB 

BROWSER  
 

 CRLs OCSP OCSP 
Stapling 

OCSP Must 
Stapling 

GC57,GC75 NS NS S NS 
IE11 S S S NS 
ED25,ED44 S S S NS 
OP44,OP62 NS NS S NS 
FF52,FF68 NS S S S 

Where:  NS= means NOT supported, S= means supported 
Chrome supports OCSP Stapling in addition to its 

own CRLSets method of checking for a revoked certificate 
[21]. The basic idea of CRLSets is that Google merges all the 
CRLs of all the existing CAs and reduces the obtained list by 

removing PKCs that it considers unimportant. The result is a 
minimal CRL list that is periodically pushed to Google 
Chrome. OneCRL is a similar method used by Firefox [22]. 

In 2017, Mozilla announced that Firefox will disable OCSP 
checking for Domain validated (DV) and Organization 
validated (OV) certificates because of performance concerns, 
but it will continue to fetch OCSP response for extended 
validated (EV) certificates. However, in 2019 we found that 
Mozilla Firefox still supports OCSP checking. We believe that 
keeping support for OCSP is vital for Internet security because 
as we said earlier only 26.25% (according to our 2019 survey) 
of websites currently support OCSP-Stapling. 

As noted earlier, web servers should implement OCSP 
Stapling correctly. For some servers, extra-configuration is 
required by the website administrator to enable it correctly. 
This is not the case for CRLs and OCSP, which only involve 
the CA and the browser.   

It is reasonable to also check the implementation of OCSP 
Stapling in web servers. According to Google developer Ryan 
Sleevi [6], there are several requirements for a proper OCSP 
Stapling implementation.   

First, the implementation of OCSP Stapling should be ‘on’ 
by default without the intervention of the website 
administrator. Apache is not compliant with this requirement; 
enabling OCSP stapling is only supported in Apache2.4+ by 
the addition of specific configuration directives, which can be 
a complex and delicate task in a shared system. 

Secondly, the web server should support a long-lived 
Stapling cache. This means that any restarting of the web 
server should not remove any OCSP responses previously 
obtained. An OCSP response should be cached until either the 
server gets a new one or it expires. For Apache, cached OCSP 
responses do not persist across server restarts, because they are 
only kept in a short-lived memory cache. We noted also that 
Apache fetches its OCSP responses during the handshakes of 
the first connections instead of doing it on start-up. Thus an 
extra latency is recorded in this case. 

Thirdly, the web server should avoid a situation where it is 
unable to send out a valid OCSP response. Therefore, it should 
refresh an old response in sufficient time before its expiration. 
It is preferable to start to fetch a response halfway through its 
validity period i.e. "not Before + (not After - not Before) / 2" 
in order to handle non-deterministic situations ("try later" or 
"internal error"). Moreover, the web server should never throw 
away a valid response until it has a newer one. Apache does 
not do this. If the OCSP server is unavailable, and Apache is 
unable to renew the OCSP response, it still throws away the 
existing valid response, meaning it cannot then send out a 
stapled OCSP response. Many problems have been reported 
regarding this behavior [24]. 

These requirements seem rather basic, but they necessitate 
the re-engineering of Apache’s OCSP Stapling 
implementation in order to make it more robust and reliable. 

All the HTTPS interception products provide less than 
optimum support for revocation checking, despite its critical 
importance for securing the integrity of the Internet’s PKIs. 
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All the anti-virus products support at least one automatic 
revocation method, whilst none of the proxies do. 

Maintaining a revocation service (either CRLs or OCSP) is 
a requirement for CAs. The standards also recommend, but do 
not mandate, that relying parties should ensure that certificates 
are not revoked before they rely on them. When the AIA and 
CDP extensions are present and understood by the relying 
parties, they are required to process them.  

Mitmproxy, Squid and Charles do not fetch any revocation 
information to check before accepting a certificate, which 
means they do not understand these extensions. All certificates 
are treated as valid by them, even after being revoked. For 
Squid, the web administrator has the possibility to implement 
revocation via a specific command. 

The fiddler proxy has implemented OCSP checking but 
automatic certificate status verification is not enabled by 
default. This may allow the use of revoked certificates without 
the users being aware of it. Figure 8 shows the extra option for 
fiddler to ensure revocation checking.  
 

 
Figure 8.Revocation setting for fiddler proxy 

Three HTTPS interception products support CRL checking 
(Avast, AVG, ESET). When they cannot fetch the CRL (Table 
9 v) ), all of them were fully conformant in 2017 as none 
accepted the PKC. However, in 2019, all of them changed 
their behaviours to accept the certificate when the CRL was 
not retrievable.  

Three products support OCSP (Kaspersky, ESET and 
fiddler). RFC 6960 states “the OCSP client suspends 
acceptance of the certificate in question until the responder 
provides a response”. In the ‘OCSP down’ test (Table 9 vi) ), 
the responses provided by Kaspersky and ESET are not 
compliant to the standard, only fiddler was rejecting the 
certificate in 2017 but changed this behaviour to show a 
warning message in 2019. 

RFC 6960 requires OCSP requests to be sent using either 
the GET or POST methods. The three HTTPS interception 
products respect this issue. However, some OCSP servers may 
support only one OCSP request method (POST or GET). Our 
OCSP test server only supports the POST method. Our tests 
(Table 9 viii)) show that all tested products support only the 
GET method. RFC 6960 should clarify this issue by 
mandating OCSP servers to support both methods. 

Between 2017 and 2019, we didn’t find any evolution with 
regards to the support of OCSP stapling by the interception 
products. Indeed, only two HTTPS interception products 
support OCSP Stapling (Avast, AVG). Both products do not 
trust a revoked PKC that appears in an OCSP stapled 
handshake. However, when the OCSP stapled response is 

absent, both interception products were rejecting the PKC in 
2017 but accepting it in 2019. In other word, both products 
hard-failed the connection when no OCSP stapled response 
was available in 2017 but preferred the soft-fail policy in 
2019. 

IV. DISCUSSION  
In 2009 we were among the first to raise the problem of 

X.509 certificate validation in browsers [8]. Almost ten years 
later, whilst many of the original issues have been resolved, 
others still persist and new ones have been introduced.  

Since 2007, the web PKI industry has made a lot of positive 
advancements by improving the quality of certificate issuance. 
Today, commercial CAs have less freedom than before, and 
their certificate issuing processes are regulated by a set of 
standards issued by the CA/Browser forum [13, 16]. One of 
the important newer mechanisms for monitoring a CA’s 
performance is Certificate Transparency (CT), which was 
introduced by Google in 2012 [12, 17]. This system was 
conceived as a result of several attacks against the TLS 
ecosystem, including the issuing of fraudulent Google 
certificates. The root causes of these attacks were either a 
CA’s negligence or an abuse of the trust placed in the CA. CT 
can be seen as a global public log to which all CAs are forced 
to record all their issued certificates. In this way, any 
fraudulent certificate can be detected and removed very 
quickly. The CT log is hosted on different synchronized 
servers. In the end, it is planned that all web browsers will 
verify all received server certificates against this log and will 
block connections if a server’s certificate is not present in the 
CT log. 

Thus, we may conclude that the term trusted third party 
(TTP) that has historically been given to CAs, is no longer 
valid because we usually don’t have to monitor people that we 
trust. Ronald Regan’s famous phrase ‘Trust but verify’ is more 
appropriate to CAs today. Several different stories show how 
CAs are not considered to be TTPs anymore. For example, 
Symantec, one of the largest CAs in the world, has decided to 
sell its SSL unit to Digicert after a dispute with Google [10] 
who detected that Symantec didn’t respect the requirements of 
the CA/Browser forum [13]. 

However, end-to-end security doesn’t necessitate 
controlling only the issuing process, but also the validation 
process. Our different studies from 2009 until now show the 
inconsistencies and dangerous behaviors in the validation 
processes of different types of PKI client (web browsers and 
HTTPS interception products). This is why we proposed in our 
previous research work to introduce a new entity, the trust 
broker, into the X.509 trust model [19, 20]. The role of the 
trust broker is to help web users decide whether X.509 
certificates are trustworthy and valid. 

By inspecting the current practices regarding certificate 
status verification, we notice that key players in the web PKI 
industry are leaning towards the abandonment of OCSP, with 
OCSP Stapling being only deployed by 26.25% of web 
servers. Surprisingly, results obtained by our survey are 
slightly better than those obtained in 2018 (19.25%). This can 
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be accounted for by the increasing support of OCSP-Stapling 
by Cloudflare. Indeed, more than 80% of HTTPs requests with 
Cloudflare get an OCSP-Stapling Response, whereas in 2018 
only around 23% of HTTPS requests got an OCSP stapling 
response. In addition, the market share of Cloudflare has 
grown between 2018 and 2019. In 2018, Cloudflare was 
serving 11.8% of the tested web domains whereas in 2019 it 
served 15.2% of the tested web domains. It is of note that 
some high profile web sites such as google.com and 
youtube.com are not using OCSP-Stapling, even though their 
certificates are not EV ones (which ironically means that 
Google Chrome may not issue OCSP requests to verify their 
status). Finally, we detected in 2018 some inconsistencies in 
the same organization; for example www.yahoo.com is 
applying OCSP-stapling whereas yahoo.co.jp is not applying 
it. 

Another interesting fact from our 2019 survey shows that 
the adoption of the Must-Staple option by adding the Must-
Staple extension into their X.509 PKC has totally disappeared 
and that only one website in our survey deploys the Must-
Staple mechanism using the HTTP header. We think that the 
Must-Staple proposal was not adopted because either the web 
server must ask the CA to issue a certificate that includes this 
optional feature, or because the HTTP header solution is 
insecure and suffers from the first-visit problem. A better 
solution might be to create a platform that allows websites to 
tell web browsers whether they prefer the Soft-fail or Hard-fail 
policy. A similar kind of platform already exists for the HTTP 
Strict Transport Security mechanism (HSTS). Google has 
created the platform https://hstspreload.org that allows the 
administrators of websites to declare whether they want to 
serve their contents exclusively via HTTPS. Today, all major 
web browsers share this list. Similarly, website administrators 
could use this kind of platform to inform web browsers 
whether they should apply a hard-fail or soft-fail policy. 

Our 2017 study [1] showed some other validation issues 
related to web browsers. For example, Safari 10 always gave a 
warning message regardless of the seriousness of the 
certificate validation error. Even when a server’s certificate 
was revoked, the web user had the possibility of proceeding to 
the web site.   

The current study has shown that the certificate validation 
performed by HTTPS interception products are even worse 
than that performed by web browsers. The results confirmed 
our expectations and show that these products present 
inconsistent behaviors.  The difficulty with TLS interception 
products is that they have to combine the security measures of 
Web browsers and servers. However, as we saw in our earlier 
studies, web browsers handle certificate validation subject 
inconsistently. 

This situation should not be an excuse for TLS interception 
products because they failed doing very basic validation. 
Adam Langley from Google describes how the proxies’ 
misbehaviors have delayed the deployment of TLS 1.3 by one 
year [11].  He added in his article one sentence that chimes 
with our work “I'll briefly mention the fact that HTTPS proxies 
aren't always so great at performing cryptographic checks. 

(We recently notified a major proxy vendor that their product 
didn't appear to validate certificates at all. We were informed 
that they can validate certificates; it's just disabled by default. 
It's unclear what fraction of their customers are aware of 
that.)” [11]. 

V. CONCLUSIONS 
The objective of our work is to show why the validation of 

X.509 certificates is a complex issue. Specifically, we 
presented two important findings:  

1. The validation of X.509 certificates is highly neglected 
by all types of TLS interception products. When they 
do not verify whether servers’ certificates are revoked 
or not can be very dangerous for web users. Our study 
tested the same products over a period of two years and 
showed that no significant improvements had been 
made by these products during this time. 

2. None of the existing revocation checking techniques 
work consistently or effectively today, for different 
reasons. Even the latest technique, OCSP-Stapling, is 
far from being applied everywhere (only around 27% 
of Web servers in 2019). Unfortunately, this technique 
depends on the web server’s administrator, who either 
may not be aware of it or does not have the motivation 
to deploy it. 

The reasons behind the inconsistent behaviour are: (1) the 
standards are complex or vague or allow different 
implementations for different contexts of use, (2) there are a 
multitude of standards (~50) that handle validation and 
revocation, (3) the products are perhaps more concerned about 
their performance than the security of their web users (e.g. by 
removing OCSP checking), and (4) the absence of a viable 
technique for addressing validation failures. 

The validation situation today resembles the certificate 
generation situation in the mid-2000s where the procedures 
with regard to X.509 certificate generation were not of good 
quality. This situation has largely improved after the 
intervention of the CA/Browser forum, which published a set 
of minimum requirements for EV and DV certificates. 
However, our work shows that web PKI still has some way to 
go before it reaches a consistent and effective approach to the 
validation of X.509 certificates. Clarifying existing PKI 
standards or introducing new PKI standards won’t necessary 
solve this problem. This is because the PKI standards in 
general only give guidance on whether a certificate is invalid 
or not, but do not mandate what an RP should do with it. This 
problem should be somewhat easier to solve in web browsers 
than in interception products because the major web browser 
vendors coordinate through the CA/Browser forum. But 
clearly this is not effective today. So we propose one possible 
solution. Today, the validation APIs that do exist are quite 
complex and ask for different parameters that are not always 
understood by software developers. Publishing a standard PKI 
validation API, with clearly defined parameters, that all 
browsers and interception products implement, would go some 
way towards solving this problem. Supplementing this with a 
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conformance test suite would also help product developers 
ensure that their products conform to the API.  

For future work, we would like to test the validation of 
PKCs by Content Delivery Network (CDN) providers such as 
Cloudflare [15]. Today many websites mandate CDN 
providers cache their contents so that end users can fetch web 
pages from the CDN infrastructure instead of directly from the 
websites. This offers a lot of advantages to websites such as 
saving bandwidth costs, security protection, service 
availability, etc. CDN providers act in this case as online 
proxy servers that can intercept all the traffic of end users. End 
users can not figure out whether the web pages were brought 
from the CDN infrastructure or from the original web server. It 
would be interesting to make a detailed study about this kind 
of online proxy to show how they handle the validation of the 
servers’ certificates, and whether they still deliver content 
from web sites with revoked certificates. 
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