
HAL Id: hal-02863329
https://hal.science/hal-02863329v1

Submitted on 10 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Validation of Web X.509 Certificates by TLS
interception products

Ahmad Samer Wazan, Romain Laborde, David Chadwick, Rémi Venant,
Abdelmalek Benzekri, Eddie Billoir, Omar Alfandi

To cite this version:
Ahmad Samer Wazan, Romain Laborde, David Chadwick, Rémi Venant, Abdelmalek Benzekri, et
al.. On the Validation of Web X.509 Certificates by TLS interception products. IEEE Transactions
on Dependable and Secure Computing, 2022, 19 (1), pp.227 - 242. �10.1109/TDSC.2020.3000595�.
�hal-02863329�

https://hal.science/hal-02863329v1
https://hal.archives-ouvertes.fr

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3000595, IEEE
Transactions on Dependable and Secure Computing

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

On the Validation of Web X.509 Certificates by TLS
interception products

Wazan Ahmad Samer4, Laborde Romain1, Chadwick David W2, Venant Rémi1, Benzekri Abdelmalek1, Billoir
Eddie3, Omar Alfandi 4

1:{ Laborde, remi.venant, Benzekri}@irit.fr

2: D.W.Chadwick@kent.ac.uk
3:eddie.billoir@gmail.com

4:{ahmad.wazan, Omar.AlFandi@zu.ac.ae}@zu.ac.ae

Abstract— The Transport Layer Security (TLS) protocol aims
to provide confidentiality and integrity of data. It is based on
X.509 Certificates. Our previous research showed that popular
Web Browsers exhibit non-standardized behaviour with respect
to the certificate validation process [1]. This paper extends that
work by examining their handling of OCSP Stapling. We also
examine several popular HTTPS interception products, including
proxies and anti-virus tools, regarding their certificate validation
processes. We analyse and compare their behaviour to that
described in the relative standards.

Keywords— Web PKI; X.509 Certificate; Certificate Validation;
OCSP Stapling

I. INTRODUCTION
The TLS Protocol is designed to provide confidentiality and
integrity of end-to-end communications [2]. However, the end-
to-end protection provided by TLS is incompatible with other
security products that need to retain visibility into network
traffic, such as anti-virus tools. To retain visibility into
network traffic, HTTPS interception products interpose in the
middle of the communication between the client application
and the web server and operate as a man-in-the-middle
(MITM). As a consequence, these products transform the end-
to-end communications into two TLS communications:
Client<->HTTPS interception product and HTTPS
interception product<->web server (Figure 1).

Figure 1 The End-to-End HTTPS Communication / Intercepted HTTPS

Communication

Each HTTPS communication is based on X.509
Certificates. Therefore, the HTTPS interception product acts
as a TLS server for the client application by presenting its own
certificate. Similarly, the web server authenticates itself to the
interception product by presenting its own certificate when the
client initiates a TLS connection.

Different legitimate reasons necessitate the interception of
HTTPS communications, such as enforcing a usage policy
inside an enterprise (e.g. employees are not allowed to access
streaming websites), Malware detection and Crypto
compliance to use strong cipher suites, etc.

Theoretically, things are relatively simple. But in practice,
things are much more complicated: the HTTPS interception
product establishes the second HTTPS connection after the
validation of the web server certificate. The client application
has no visibility of the web server’s identity; it delegates the
server’s certificate validation to the interception product, and
simply accepts the decision of the HTTPS interception
product.

Problems in the X.509 certificate validation process such as
accepting revoked, untrusted or invalid certificates can cause
dangerous consequences paving the way for attacks that may
weaken the client’s communications security.

In 2009, we highlighted the different behaviours of several
web browsers (Internet Explorer (IE), Opera and Firefox)
when validating certificates [8]. We explained that the reasons
for these differences were either due to violation of the
standards by the browsers, or ambiguity in the standards
themselves.

In 2017, we performed an increased set of tests [1], and
covered a greater number of web browsers (IE, Edge, Opera,
Firefox, Safari and Chrome), as well as covering the newest
standards. Our work described the quality of X.509 certificate
validation implemented by these web browsers, as well as
showing their evolution since 2009. Also, we produced new
tests for analysing how web browsers implement the OCSP
protocol.

In this paper, we complete our work by:
1. Applying the same set of tests to different HTTPS

interception products. We tested anti-virus and proxy
software in order to highlight their behaviours when
they were confronted with chosen test values in
specific certificate fields. The results were then
analysed and compared to the expected behaviour
described in the respective standards.

2. As in our 2017 study [1], we applied the same set of
tests at two different dates between 2017 and 2019, in
order to show any evolution in the behaviour of the
interception products. This helps to show whether

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3000595, IEEE
Transactions on Dependable and Secure Computing

they have improved their behaviour with regards to
the related standards or not.

3. Analysing the behaviour of web browsers and web
servers with regards to OCSP Stapling. We also show
the results of a survey that we performed on two
different dates between 2018 and 2019 in order to
show the evolution of the deployment of OCSP
Stapling.

Since 2014, several different works have been published
about certificate validation errors detected in TLS clients. For
example, Brubaker et al [14] proposed a tool that can generate
a set of test certificates whose values are random. Detecting
different behaviour between at least two TLS clients is
considered an indication of a certificate validation error. Our
work adopts a different test strategy in order to detect cases
where all TLS clients behave badly with regards to a specific
test certificate. In addition, our test certificates don’t include
random values; instead we present well-crafted test certificates
for TLS clients. Carnavalet et al [7] have performed different
tests on TLS interception products, but their tests covered
mostly known issues in the TLS protocol (e.g. FREAK,
CRIME, BEAST, etc.) rather than focusing on validation
issues of X.509 certificates. Finally, both research studies
didn’t show the evolution of validation behaviour by TLS
products and didn’t handle the revocation-checking behaviour
as we do in this work. The revocation problem is an important
one because many of the studied TLS products can lead web
users to accept revoked certificates. Our study shows, perhaps
not unsurprisingly, that TLS interception products are not the
only ones responsible for not correctly checking the revocation
status of certificates, because even the major web browsers
don’t have a consistent approach to this. Worse still, we find
that things are not necessarily improving over time. Finally,
our study analyses the reasons behind certificate revocation
failings and we give a suggestion for improving this in the
conclusions.

The rest of this paper is structured as follows. Section 2
overviews the base set of standards related to X.509
certificates. Section 3 exposes and analyses the results of tests
executed on six TLS interception products. In this section, we
show how the behaviour of these products is inconsistent. Our
study also shows the evolution of these products’ behaviour
between 2017 and 2019. In section 3.C we focus on the
revocation problem and present the different revocation
techniques. We show how web browsers and interception
products implement them. We also show the deployment trend
between 2018 and 2019 for the latest revocation checking
technique, called OCSP Stapling. Finally, in section 4 we
discuss our findings and give our conclusions in section 5.

II. WHAT IS AN X.509 CERTIFICATE
The contents and processing of X.509 public key certificates
(PKCs) are regulated through numerous standards documents,
first officially described in the ISO/ITU-T X.509 standard [3].
X.509 provides the general framework for public key
infrastructures (PKIs), the syntax of PKCs and revocation lists,
and how PKCs can be extended (by literally anyone). Each
standard certificate field has its own syntax and semantics as

well as constraints on its possible values. In many cases a field
can have different syntax choices. These fields provide
information about the certificate version number, the subject
of the certificate, the public key, the way the key can be used,
and the certificate life cycle management process (Figure 2).

Figure 2. Certificate contents (inspired by [9])

Three kinds of field exist: mandatory fields, optional fields
and extensions (which are all optional). When a field is
mandatory, Certificate Authorities (CAs) must fill it and
Relying Parties (RPs) must check it when validating
certificates. Extensions can be marked as critical or not. If
present and marked critical, the RP must obey its contents or
reject the certificate. If marked not critical, the RP can ignore
the extension if it does not recognize it, but must obey it
otherwise i.e. it should not ignore a non-critical extension that
it supports.

The complexity of the X.509 standard, in terms of fields
that are mandatory, optional, choices, and extensions, means
that it is almost impossible for two different implementers to
produce fully interworking code. A PKC produced by one
implementer cannot always be fully validated by another, and
vice versa.

Consequently, the IETF PKIX group developed an X.509
standard profile (RFC 5280) to address the specific needs for
using PKIs on the Internet. Especially, the profile eliminates
most options, make choices where several are available, and
specifies which extensions should be used. However, due to
the large constituency of the IETF, many different authors
proposed many different extensions and ways of using X.509
certificates, so that by now, over 50 PKIX specified RFCs
exist. One can easily see why it is still not a trivial task to
implement a fully conformant web browser.

Among all the certificate extensions defined in X.509 and
RFC 5280, Internet applications (such as web browsers) must
at least be able to recognize: basic constraints, certificate
policies, policy constraints, subject alternative name, key
usage, name constraints, extended key usage and inhibit any-
policy extensions; but do not need to recognize: authority and
subject key identifiers, and policy mapping extensions [4].

Starting from 2007, a new consortium of implementors of
CAs, web browsers and OSs was established to improve the
quality of certificate issuance and management, known as the
CA/Browser Forum [13]. In the beginning, the consortium
issued a set of guidelines for a new kind of certificate called an
Extended Validation (EV) certificate. In 2011, CA/Browser
forum issued “Baseline requirements” for any kind of public

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3000595, IEEE
Transactions on Dependable and Secure Computing

key certificate. Both standards are now globally adopted by the
majority of CAs on the Internet.

Other important standards related to X.509 PKCs are:

• RFC 6125: this explains the rules that must be
followed in representing and verifying the identity of
servers identified in the PKCs,

• RFC 6960: this specifies the OCSP protocol used for
checking a PKC’s status.

• RFC 5019: this addresses the scalability issues related
to the deployment of OCSP servers in high-volume
environments. It also specifies the rules to follow for
caching OCSP responses.

Other standards will be mentioned in the rest of the paper
at the appropriate point.

III. ANALYSIS OF TLS INTERCEPTION PRODUCTS’ BEHAVIOR
In this section, we provide the results of our tests with

several HTTPS interception products when they validate web
server certificates. We focus our tests on the fields related to
the subject, the key usage and the certificate status.

Our objective is not to show the quality of certificate
validation for every existing HTTPS interception product.
Rather we selected a sample from the most popular ones. We
didn’t limit the study to license-free products. We also tested
trial versions of commercial products. Prior to testing, we
reviewed the products’ specifications to ensure that they
supported HTTPS interception, and we configured their
settings to enable interception if a product did not do it by
default. The list of tested products includes 4 anti-virus and 4
proxies (see Table 1).

TABLE 1. LIST OF TESTED PRODUCTS

Product Version (Test Date)

Avast Antivirus Gratuit 17.4.2294 (2017),
19.5.2378 (2019)

Kaspersky Total security 17.0.0.611 (2017),
19.0.0.1088 (2019)

AVG Internet Security 17.4.3014 (2017),
19.5.3093 (2019)

ESET Internet Security 10.1.210.2 (2017),
12.1.34.0 (2019)

Squid 3.3.8 (2017), 4.6(2019)
Charles Web debugging Proxy 4.1.2 (2017), 4.2.8

(2019)
Mitmproxy 0.9.2 (2017), 4.0.4

(2019)
Telerik Fiddler 4.6.20171.14978

(2017),
5.0.20192.25091(2019)

With regards to the validation, we found three different

strategies followed by HTTPS interception products:
• Full validation (fV): in this case, the product handles the

validation of certificates itself. It shows personalized error
messages that are different from those of the web
browsers. Kaspersky, Mitm, Fiddler and Squid proxies are
in this category.

• Delegated validation (dV): in this case, the interception
product delegates the validation of certificates to the web
browsers, except for revocation checking, which it
performs itself. The product copies the certificate’s
contents into a new PKC issued by itself and passes this to
the browser for validation. The product is in effect
becoming the issuing CA of all received certificates.
Revocation checking cannot be delegated because the
browsers receive the certificates generated by the
interception product and not the original certificates
generated by the web servers’ CAs. Avast, AVG and
ESET fall into this category.

• Incorrect Validation (iV): In this case, the interception
product delegates validation to the browsers, as in the dV
case, but doesn’t handle the revocation checking itself.
The Charles proxy falls into this category.

With regards to the products that fall under the fV category,
we found three possible responses when the HTTPS
interception product handles a certificate, denoted as follows:

• A: accept the certificate without any intervention by
the user,

• W: warn the user about the existence of a problem by
showing a warning message and asking him/her to
make an accept/refuse decision,

• R: refuse the certificate and prohibit access to the
web server without any intervention by the user.

To easily identify the evolution of TLS interception
products’ behaviour compared to 2017, we use the symbol è
to show any change in the product’s behavior with regards to a
test case scenario. The result on the left side of the arrow
represents the result obtained in 2017, and the result on the
right side of the arrow represents the result obtained in 2019. In
addition, we highlight the results that are not conformant to
standards by colouring them in red. The evolution in behaviour
of a TLS interpection product is considered as a regression
when the table shows a change in the cell from a non-coloured
result to a red coloured result (e.g. WèA). The evolution is
considered as an improvement when there is change from a
red-coloured result to a non-coloured result (e.g A èW).

A. TLS Certificate Subject
The TLS certificate subject represents the web server. The

identity of the server may be either a Fully Qualified Domain
Name (FQDN) or an IP address or both. FQDNs and IP
addresses are different types of name (called name forms in the
standards). A web server could hold many FQDNs that all
point to the same IP address and conversely, one FQDN may
point to different IP addresses.

1) What do the standards state about the subject ?
The X.509 standard [3] states that the subject field identifies

the entity associated with the public-key found in the subject
public key field. An entity could have one or more alternative
names, of different types (or forms), held in the
subjectAltName extension. According to the X.509 standard,
an implementation that supports this extension is not required
to process all the name types. If the extension is flagged
critical, at least one of the name types that is present must be

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3000595, IEEE
Transactions on Dependable and Secure Computing

recognized and processed, otherwise the certificate must be
considered invalid.

RFC 5280 states that the subject name may be carried in the
subject field and/or the subjectAltName extension. If the
subject naming information is present only in the
subjectAltName extension, then the subject name should be
empty and the subjectAltName extension must be critical.
According to this statement a TLS certificate can hold multiple
names in a combination of the Subject field (commonName
(CN) component) and the Subject Alternative Name
(subjectAltName) extension. These names must all refer to the
same entity, although a browser need not recognize all the
different name types.

According to the baseline requirements (BR) of the
CA/Browser forum, CAs are discouraged from issuing
certificates that have a commonName (CN) component in the
subject field [16], however this is not prohibited. BR states
that if the CN component is present, it MUST contain a single
IP address or Fully-Qualified Domain Name that should be
one of the values contained in the certificate’s subjectAltName
extension. However, the CA/Browser forum requires the
presence of the subjectAltName extension in all certificates,
and this may have a dNSName (i.e. DNS name) or an
iPAddress value. Finally, since October 2016 the CA/Browser
forum has prohibited the practice of inserting a reserved
(private) IP address in the subjectAlternativeName extension
or in the Subject commonName. This is because these
addresses are typically local addresses, and consequently refer
to thousands of internal servers, many of which are not be
accessible from the Internet [25].

2) Tests and Results
The identity of a server could be represented by a FQDN

value or by an IP address or both. We have performed

experiments to test certificates holding the two types of name
separately as well as both types together.

In the first set of experiments (TABLE 2), we tested how the
HTTPS interception products reacted when the certificate
contains zero, one or more FQDN names. We configured our
web server to respond to requests sent to either sana1.fr or
sana1dns.fr. As the names could be mentioned in either or
both of the Subject Name - Common Name (SCN) and
SubjectAltName - DNS Name (SAN-DNS) fields, we tested
the following different combinations of names in our web
server certificate:

i. SCN=sana1.fr, SAN-DNS=sana1dns.fr
ii. SCN=null, SAN-DNS= sana1dns.fr

iii. SCN= sana1.fr, no SAN-DNS field
iv. SCN=null, no SAN-DNS field
v. SCN=null, SAN-DNS = sana1.fr and sana1dns.fr.
For each combination, we recorded the reaction of each

HTTPS interception product when accessing sana1.fr and
sana1dns.fr. We also state whether the certificate is Valid (V)
or Invalid (I) according to the X.509 standards.

In the second set of experiments (Table 3), our server was
located at 192.168.133.149 and in some cases it was
configured with the DNS name sanal.fr. We tested how the
HTTPS interception products reacted when the certificate
contains a combination of IP address and FQDN as follows:

vi. SCN=null, no SAN-DNS field, SAN-IP =
192.168.133.149

vii. SCN= sana1.fr, no SAN-DNS field, SAN-IP =
192.168.133.149

viii. SCN= null, SAN-DNS= sana1.fr , SAN-IP =
192.168.133.149

ix. SCN=null, SAN-DNS = sana1.fr , no SAN-IP field
x. SCN=null, SAN-DNS = null , no SAN-IP field

xi. SCN =null, SAN-DNS = null , SAN-IP =
192.168.133.149

TABLE 2 MULTIPLE FQDN WEB SERVER IDENTITIES

 Antivirus Proxies

Avast Kaspersky AVG ESET Squid Charles Mitm Fiddler Standards

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

i) SCN= sana1.fr, SAN-DNS=sana1dns.fr dV dV W A dV dV dV dV W A iV iV W
è
R

A W A I V

ii) SCN= null, SAN-DNS=sana1dns.fr dV dV W A dV dV dV dV R A iV iV W
è
R

A W A I V

iii) SCN= sana1.fr , no SAN-DNS

dV dV A W dV dV dV dV A
è
W

R iV iV A W
è
R

A W ? I

iv) SCN=null, no SAN-DNS dV dV W W dV dV dV dV R R iV iV W
è
R

W
è
R

W W I I

v) SCN=null, SAN-DNS=sana1.fr ,
sana1dns.fr

dV dV A A dV dV dV dV A A iV iV A A A A V V

Where : S1 = sana1.fr, S2 = sana1dns.fr, dV= delegated Validation, iV=incorrect Validation, A=Accept, W=Warn, R=Refuse, I=Invalid certificate w.r.t standard,
V=valid certificate w.r.t standard

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3000595, IEEE
Transactions on Dependable and Secure Computing

TABLE 3. IP ADDRESS SERVER AND/OR FQDN IDENTITIES

 Antivirus Proxies

Avast Kaspersky AVG ESET Squid Charles Mitm Fiddler Standards

S1 IP S1 IP S1 IP S1 IP S1 IP S1 IP S1 IP S1 IP S1 IP

vi) SCN= null , SAN-IP=192.168.133.149 dV dV W A dV dV dV dV R R iV iV W
è
R

W
è
R

W W
è
A

I I

vii) SCN= sana1.fr ,SAN-
IP=192.168.133.149

dV dV A A dV dV dV dV W R iV iV A W
è
R

A W
è
A

V I

viii) SCN= null, SAN-IP=192.168.133.149
SAN-DNS=sana1.fr

dV dV A A dV dV dV dV A R iV iV W
è
A

W
è
R

A W
è
A

V I

ix) SCN= null ,No SAN-IP ,SAN-
DNS=sana1.fr

dV dV A W dV dV dV dV A R iV iV A W
è
R

A W V I

x) SCN= null ,No SAN-IP ,SAN-DNS=null

dV dV W W dV dV dV dV R R iV iV W
è
R

W
è
R

W W I I

xi) SCN= null , SAN-DNS=null , SAN-
IP=192.168.133.149

dV dV W A dV dV dV dV R R iV iV W W W W
è
A

I I

xii) SCN= null , SAN-IP=141.115.26.43 dV dV ?
è
W

?
è
A

dV dV dV dV ?
è
R

?
è
R

iV iV ?
è
R

?
è
R

?
è
R

?
è
A

I V

xiii) SCN= dane.irit.fr ,SAN-
IP=141.115.26.43

dV dV ?
è
A

?
è
A

dV dV dV dV ?
è
W

?
è
R

iV iV ?
è
A

?
è
R

?
è
A

?
è
A

V V

xiv) SCN= null ,SAN-IP=141.115.26.43
SAN-DNS=dane.irit.fr

dV dV ?
è
A

?
è
A

dV dV dV dV ?
è
A

?
è
R

iV iV ?
è
A

?
è
R

?
è
A

?
è
A

V V

xv) SCN= null , SAN-DNS =null, SAN-
IP=141.115.26.43

dV dV ?
è
W

?
è
A

dV dV dV dV ?
è
R

?
è
R

iV iV ?
è
R

?
è
R

?
è
W

?
è
A

I V

Where : S1 = sana1.fr or dane.irit.fr, IP = 192.168.133.149 or 141.115.26.43, Na= not applicable, dV= delegated Validation, iV=incorrect Validation, A=Accept,
W=Warn, R=Refuse, I=Invalid certificate w.r.t standard, V=valid certificate w.r.t standard, ? è=means that we didn’t make this specific test in 2017

3) Analysis of the Results
The Primary objective of an X.509 PKC is to bind an

identity to a public key. In the case of a web server, the
identity is either a FQDN name or an IP address.

When the identity of the server is null (test iv, test x) the
HTTPS interception product cannot authenticate the server,
and therefore the TLS certificate is invalid. In 2017, the Squid
proxy was the only product that refused the certificate. In
2019, the Mitm proxy has aligned its behaviour with Squid by
rejecting this kind of certificate. All the other products under
fV category keep the same behaviour as in 2017 by showing a
warning to the user and asking him to take the right decision.
Whether a certificate validation entity should immediately
refuse an invalid certificate (R) or ask the user what to do (W)
is partly a usability issue and partly a security issue. But it is
not a standard’s issue. The standards will only give guidance
on whether a certificate is invalid or not, but will not advise a
relying party what to do with it.

From a security perspective, if the HTTPS interception
product cannot authenticate the web server, the certificate
should be rejected (R). From a usability perspective the user
could be given a choice (W), although in practice most users

simply click OK to all the pop-up windows so invalid
certificates end up being accepted.

In the case when the identity of the server is contained in
only the SCN field without having the subjectAltName
extension to hold the identity of the server (test iii), most of
the interception products accept this certificate except the
Squid Proxy. It is difficult to decide the validity of these
certificates because on the one hand, the certificate is valid
because the baseline requirements (BR) of CA/Browser forum
don’t prohibit the use of the SCN field to hold the identity of a
server. On the other hand, the certificate is not valid because it
doesn’t have the subjectAltName extension, which is
mandatory according to the BR requirements. This may
explain the divergence in the behaviours of different products.

When the identity of the server is defined by the SAN-DNS
field to hold its DNS name and the SAN-IP component to
match its IP address (test viii), the Mitm proxy presented a
warning message with the DNS name in 2017 although the
certificate is valid. This behaviour was probably due to poor
implementation of the Subject-Alt-Name Extension. In 2019,
this behaviour was modified to accept the valid certificate.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3000595, IEEE
Transactions on Dependable and Secure Computing

When the identity of the server is defined by the SCN field
to hold the DNS name and the SAN-IP component to match a
reserved IP address (test vii), a diversity of behaviour is
recorded with S1 access. The server’s certificate is accepted by
all the tested products of fV category except Squid, which
presents a warning message. We obtained the same behaviour
in 2017 and 2019. The related standards imply that such a
certificate is valid because they don’t prohibit the SCN field
from containing a dNSName, and they mandate the existence
of the subjectAltName extension, which is the case in our test.
With an IP access, the same certificate is invalid because it
contains a reserved IP address. All the products under the fV
category, except Squid and Mitm proxies, are not conformant
to the standards as they accept this certificate with IP access
(similarly, certificates in tests vi, vii, viii and xi are considered
as invalid with a reserved IP address).

At first glance, the Mitm and Squid proxies look to be the
only conformant products with regards to certificates with a
reserved IP address. However, their behaviour can be
interpreted differently i.e. they may not support SAN-IP.
According to X.509 standard "An implementation is not
required to be able to process all name forms". So no HTTPS
interception products have to support SAN-IP.

To understand the exact reason for the rejection of IP values
by the Mitm and Squid proxies, we decided to add a new
series of tests that include certificates with public IP addresses
(xii, xiii, xiv, xv). The objective is to know whether the
interception products give special treatment to reserved IP
addresses or whether they support this kind of name form. The
results of these tests show that all products show exactly the
same behaviour whether the IP address is reserved or public.

With regards to the Mitm proxy, we have always obtained
the same error message that indicates the absence of the SNI
(Server Name Indication) extension in the TLS protocol,
whenever a certificate has an IP value in its subjectAltName
extension and we access the server using an IP address. SNI is
a TLS extension in the Client Hello message sent by the client
to inform the server which hostname it is attempting to access.
The presence of SNI values in the new protocol of TLS is
fundamental to proxies in order to be able to intercept TLS 1.3
communications [18]. Indeed, according to the specification of
TLS 1.3 [2], the client hello message is the only message that
will be sent in the clear.

With regards to the Squid proxy, the rejection of certificates
with IP addresses is due to a bad implementation. Every time a
certificate is used with a URL containing an IP address, we
obtain the same error message, which indicates a mismatch
between the hostname of the server and the value contained in
the subjectAltName (Figure 3). By inspecting the certificates
generated by the Squid proxy, we can see that these
certificates don’t match the certificates of the tested server. In
fact, as Figure 4 shows, the Squid proxy’s certificate sets the
IP value in the DNS field of the subjectAltName extension
instead of setting it in the IP field of this extension. This
explains why we always get the same error message for every
certificate with an IP address value.

Another quite confusing behaviour is that of Avast and
AVG with regards to public domains and public IPs. When we
executed our tests with our public domain dane.irit.fr, we
realized that Avast and AVG don’t intercept the
communication with our public domain. However, when we
tested with another public domain such as www.amazon.com,
Avast and AVG have intercepted the TLS communications
with these websites (Figure 5). More strangely, the decision to
intercept a TLS communication by Avast and AVG changes
according to the type of web browser used by the user. For
example, when the web user uses the Edge browser, Avast and
AVG intercept the communication with amazon.com. When
the web user uses Firefox, Opera or Chrome, Avast and AVG
don’t intercept the communication with amazon.com (Figure
6). Further research is needed to determine the interception
strategy of Avast and AVG. Kaspersky and ESET have more
consistent behaviour as they intercept all public domains and
public IP servers.

FIGURE 3.ERROR MESSAGE FROM SQUID PROXY

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3000595, IEEE
Transactions on Dependable and Secure Computing

FIGURE 4.ORIGINAL SERVER CERTIFICATE AND CORRESPONDING SQUID
GENERATED CERTIFICATE

FIGURE 5.THIS FIGURE SHOWS HOW AVAST HAS INTERCEPTED THE
COMMUNICAITON WITH THE DOMAIN AMAZON.COM AND NOT WITH

DANE.IRIT.FR

FIGURE 6. THIS FIGURE SHOWS HOW AVAST DIDN'T INTERCEPT

COMMUNICATION WITH AMAZON.COM WHEN THE WEB USER USES CHROME

B. Key usage, extended key usage
Key usage and extended key usage are used to determine

the purpose of the public key contained in the certificate. A
TLS server certificate could have a key usage extension or not.

1) What do the standards state about the Key usage and
Extended Key Usage ?

The X.509 standard [3] states that if either the extended key
usage or key usage extensions are recognized by the relying
party then the certificate must be used only for one of the
purposes stated in the both fields. The key usage and the
extended key usage must be treated separately but they must
have consistent values. If there is no purpose consistent with
both fields, then the certificate shall not be used for any
purpose [3].

RFC 5280 states that the key usage extension, when it
appears, should be a critical extension. For a TLS certificate,
RFC 5280 recommends that the key usage, when it is defined,
should have the value of “digital signature, key encipherment
and/or key agreement” and the consistent value of the
extended key usage should be “Server Authentication”.

2) Tests and Results
The value needed in the key usage extension depends on the

encryption algorithms used for generating the certificate's keys
(RSA, DSA, DH, etc.) and on the cipher suite applied in the
TLS communication between the HTTPS interception product
and the web server. A cipher suite consists of a key exchange
scheme, a signature algorithm, a block cipher algorithm, and a
hashing algorithm for computing the authentication key.
They’re usually identified in a string [23] viz:

 [SSL/TLS]_[key exchange]_[signature

algorithm]_WITH_[block cipher]_[authentication hash]

We generated our test certificates using the RSA algorithm.

In this case, two types of cipher-suites are possible:
- TLS_ECDHE_RSA*: in this case, the key exchange

algorithm is ECDHE (Elliptc Curve with ephemeral
Diffie-Hellman). This means that the RSA private key of
the server’s certificate will be used for signing the
ECDHE public key and the associated parameters. The
appropriate value of the key usage extension is
digitalSignature.

- TLS_RSA_*: in this case the key exchange algorithm is
RSA. This means that the HTTPS interception product
will use the RSA public key of the server’s certificate for
encrypting the random value chosen by the client. The
appropriate value of the key usage is keyEncipherment.

Since RSA keys can lead to different key usages, we first
check the cipher suites agreed between our web server and the
HTTPS interception product by looking at the Hello server
message in the TLS protocol. Table 4 shows the cipher-suites
chosen by the HTTPS interception product and the appropriate
key usage value for each product.

We tested how the HTTPS interception product reacted
when it validated a certificate, which conveyed an RSA public
key and had a key usage value different from the correct value
digitalSignature or keyEncipherment according to the cipher-
suites used.

TABLE 4. CHOSEN CIPHER SUITES

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3000595, IEEE
Transactions on Dependable and Secure Computing

where: cipher suite written in red to indicate the change of cipher suite for the same product between 2017 and 2019, AA=refers to products that should have
digitalSignature value in their key usage extension, BB=refers to products that should have keyEncipherment value in their key usage extension, GCM= Galois

Counter Mode, CBC= Cipher Block Chaining

TABLE 5. KEY USAGE TEST

Key Usage Standard
Validity

Avast Kaspersky AVG ESET Squid Charles Mitm Fiddler

key usage extension = KA
No Extended key usage extension

I dV A dV dV R
è
A

iV A A

key usage extension = DE
No Extended key usage extension

I dV A dV dV R iV A
è
R

A

key usage extension = KE
No Extended key usage extension

I (AA Products)
V(BB Products)

dV A dV dV A iV A
è
A

A
è
A

key usage extension = DS
No Extended key usage extension

I (BB Products)
V(AA Products)

dV A dV dV A iV A
è
A

A
è
A

key usage extension = KA
key Extended usage extension

=SA

I dV A dV dV R
è
A

iV A A

key usage extension = DE
key Extended usage extension

=SA

I dV A dV dV R iV A
è
R

A

key usage extension = KE
key Extended usage extension

=SA

I (AA Products)
V(BB Products)

dV A dV dV A iV A
è
A

A
è
A

key usage extension = DS
key Extended usage extension

=SA

I (BB Products)
V(AA Products)

dV A dV dV A iV A
è
A

A
è
A

No key usage extension
key Extended usage extension

=CA

I dV W dV dV R iV A
è
R

A
è
W

key usage extension = DS
key Extended usage extension

=CA

I dV W dV dV R iV A
è
R

A
è
W

Where: CA=clientAuthentication, DE=dataEncipherment, DS=digitalSignature, KA=keyAgreement, KE=keyEncipherment, dV= delegated Validation,
iV=incorrect Validation, SA=serverAuthentication, I=invalid w.r.t standard, V=valid w.r.t standard, A=Accept, W=Warn, R=Refuse, I (AA Products)=means the

certificate is invalid for AA products, V(AA Products)= means the certificate is valid for AA products
3) Analysis of the Results
Here, the diversity of the HTTPS interception products’

behaviour is due to violations of the standards when the key
usage and/or the extended key usage extension contain wrong
values. Those certificates that should have been treated as
invalid were treated as acceptable by most of the tested
products.

In 2017, Squid accepted certificates when the key usage had
wrong values of keyEncipherment instead of digitalSignature.
For all others test cases, its behaviour was correct. Squid
rejected invalid certificates without asking the user. In 2019,
Squid gives the same behaviour with regards to the same
wrong certificate. In addition, Squid now incorrectly accepts

 Kaspersky AVG & Avast ESET Squid Charles Mitm Fiddler
Chosen

cipher suite
in 2017

TLS_ECDHE_R
SA_WITH_AES_

256_GCM_SHA384

TLS_RSA_W
ITH_AES_128_
CBC_SHA256

TLS_RSA_W
ITH_AES_128_
CBC_SHA256

TLS_ECDHE_R
SA_WITH_AES_

256_GCM_SHA384

TLS_ECDHE_R
SA_WITH_AES_

256_CBC_SHA256

TLS_ECDHE_R
SA_WITH_AES_

256_CBC_SHA256

TLS_RSA_W
ITH_AES_128_

SHA256

Valid key
usage

extension
value for

2017 cipher
suite

digitalSignature
AA

keyEncipherment
BB

keyEncipherment
BB

digitalSignature
AA

digitalSignature
AA

digitalSignature
AA

keyEncipherment
BB

Chosen
cipher suite

in 2019

TLS_ECDHE_RSA
_WITH_AES_128
_GCM_SHA256

TLS_ECDHE_RSA
_WITH_AES_128
_GCM_SHA256

TLS_RSA_W
ITH_AES_128_
GCM_SHA256

TLS_ECDHE_R
SA_WITH_AES_

256_GCM_SHA384

TLS_ECDHE_R
SA_WITH_AES_

256_CBC_SHA256

TLS_RSA_W
ITH_AES_128_
GCM_SHA256

TLS_ECDHE_RSA_W
ITH_AES_256_GCM_

SHA384
Valid key

usage
extension
value for

2019 cipher
suite

digitalSignature
AA

digitalSignature
AA

keyEncipherment
BB

digitalSignature
AA

digitalSignature
AA

keyEncipherment
BB

digitalSignature
AA

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3000595, IEEE
Transactions on Dependable and Secure Computing

certificates that were correctly rejected in 2017, such as the
certificate that has the wrong value of keyAgreement.

In 2017, all others products accepted certificates when the
key usage had wrong values of dataEncipherment or
keyAgreement instead of digitalSignature or
keyEncipherment. In 2019, we obtain similar results, except
for the Mitm proxy which changes its behaviour to reject
invalid certificate whose key usage field is dataEncipherment.

In 2017, when the extended key usage had the wrong value
of clientAuthentication instead of serverAuthentication,
Kaspersky and Squid proxy rejected the certificate whilst
Fiddler and Mitmproxy treated the certificate as valid and
accepted access to the website. By 2019, the Fiddler and Mitm
proxies had changed their behaviour to conform to the relevant
standards.

It should be noted that in many cases, we have obtained the
same results when presenting a test certificate to two different
versions of the same product. For example, when presenting
an invalid certificate to the Mitm product, the certificate was
accepted in 2017 and 2019. However, in 2017 Mitm was using
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA256 and in
2019 Mitm uses a different cipher suite. As a consequence, the
(A)ccept behaviour in 2017 for a certificate that has KE in its
Key usage was considered non-conformant to the standard, but
in 2019 the same behaviour was considered conformant
(AèA).

C. Revocation
Certificate revocation is one of the many challenges faced

by PKIs. It is the action of declaring a certificate as invalid and
no longer trusted before its scheduled expiration date.

The security of the PKI depends on our ability to revoke
lost, stolen, or compromised certificates from circulation as
quickly as possible. This is usually done by asking the relying
party to check the certificate’s status before accepting it.
Consequently, CAs must make all revocation information
available. They can revoke a PKC by publishing its serial
number in a Certificate Revocation List (CRL) that can be
downloaded from a repository. However, CRLs might become
very large, resulting in an unacceptable latency. The second
approach is the Online Certificate Status Protocol (OCSP). A
CA can indicate that a PKC has been revoked by running an
OCSP server to which a client submits an OCSP request. The
server responds with the status of the PKC.

OCSP has some limitations, such as the privacy of clients,
as it gives the OCSP server a lot of information about which
PKCs are being used where. Another severe problem is the
availability of the OCSP server for under resourced CA
infrastructures. High traffic websites can result in a large
number of requests being sent to the OCSP servers. As a
consequence, some clients are not able to make contact and
obtain an OCSP response, and so no PKC revocation
information is delivered.

In this case and from a security point of view, such a PKC
should be considered as invalid. However, practically all
clients implement OCSP in soft fail mode, meaning that if the
client receives no positive response (good or revoked), then
the PKC will be considered as good and the client will allow

access to the associated web content. This problem makes the
whole OCSP concept vulnerable: if an attacker tries to use a
revoked certificate it can simply block connections to the
OCSP server (e.g. a DDOS attack).

CrlDistributionPoints (CDP) and AuthorityInfoAccess
(AIA) extensions are used to hold the CRL and the OCSP
indicators respectively in a PKC. They tell the RP where it can
fetch CRLs or OCSP responses from, respectively.

OCSP Stapling and Must-Staple are new alternatives to
OCSP for checking a PKC’s status. For this reason, we start by
giving a brief description of them. OCSP Stapling is described
in RFC 6066 (for checking the status for server certificates)
and RFC 6961 (for checking the status of every certificate on
the chain). Must Staple is described in RFC 7633.

OCSP Stapling eliminates the need for the client to request
an OCSP response directly from the CA’s server. As shown in
Figure 7, the web server makes the OCSP request and then
caches the response. This allows the web server to staple the
OCSP response within the TLS handshake via the Certificate
Status Request extension.

This approach offers three main advantages. First, it reduces
the costs for CAs because the number of OCSP request is
significantly reduced, coming only from web sites. Secondly,
it improves the privacy of clients because CAs cannot identify
the web sites that users are visiting and thirdly, it improves the
performance of clients as a second connection to an OCSP
server does not need to be established. However, this approach
does not resolve the problem of single point of failure and
DDOS attacks. An attacker can still attack the OCSP servers
of a CA to prevent web servers from fetching new OCSP
responses. As a consequence, access to these web sites would
be authorized with a soft-fail policy.

A new certificate extension called Must Staple has been
defined to require OCSP Stapling in the TLS handshake. CAs
issue certificates to web servers with this new extension, and
this requires the web server to send a cached OCSP response
along with its server certificate to the client (RP). Clients
should ensure this stapled OCSP response is present otherwise
they should hard-fail the TLS connection.

FIGURE 7. THE OCSP STAPLING APPROACH

1) What do the standards state about the CRL Distribution

Points, Authority Info Access and The TLS Status_Request
extensions?

The X.509 standard states that the CDP extension can be,
at the option of the certificate issuer, critical or not; but it
recommends it to be non-critical for interoperability reasons.
When it is a critical extension, a certificate-using system shall
not use the certificate without first retrieving and checking the
certificate against the downloaded CRL [3]. However, when
the extension is not critical a certificate-using system can use

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3000595, IEEE
Transactions on Dependable and Secure Computing

the certificate only if the revocation checking is not required
by a local policy or it is accomplished by other means [3].

According to RFC 5280, the CDP and AIA extensions
should be non-critical extensions, but it recommends
supporting these extensions by CAs and applications [4].

Starting from 1 January 2013, the CA/Browser forum
imposed the use of the OCSP protocol. However, the
CA/Browser forum also allowed the use of other checking
methods such as CRLs and OCSP stapling. With regards to
OCSP stapling, BR states “If the Subscriber Certificate is for a
high-traffic FQDN, the CA MAY rely on stapling, in
accordance with [RFC4366], to distribute its OCSP
responses. In this case, the CA SHALL ensure that the
Subscriber “staples” the OCSP response for the Certificate in
its TLS handshake. The CA SHALL enforce this requirement
on the Subscriber either contractually, through the Subscriber
Agreement or Terms of Use, or by technical review measures
implemented by the CA.”. Note that RFC4366 has been
obsoleted by RFC 6066. According to RFCs 6961, 6066 and
7633, the only TLS feature extensions that are relevant to the
revocation status are the Certificate Status Request extension
(status_request) and the Multiple Certificate Status Extension
(status_request_v2). These extensions should not be marked
critical. Marking the TLS feature extension critical breaks
backward compatibility and is not recommended unless this is
the desired behavior.

2) OCSP-Stapling Survey
In 2013, Netcraft [5] performed a survey that indicated that

around 22% of certificates were served with a stapled OCSP
response. However, to the best of our knowledge there has
been no survey since then. So we decided to undertake our
own to see whether there has been any change since 2013.

a) Dataset and methodology
We implemented a Java program in order to detect whether

a web server supports OCSP Stapling or not. The program
doesn’t check all available web domains. Instead it checks the
top one million websites that we obtained from alexa.com. For
each domain, the program establishes a TLS connection and
notifies the server that an OCSP Stapling response is needed
(by adding the TLS certificate status request extension during
the Handshake phase). Our objective is to know whether the
server supports: OCSP-Stapling, Must-Staple via a certificate
extension or Must-Staple via the HTTP header.

We ran our program two times: the first time was on March
3, 2018 and the second time was on May 28, 2019. This can be
useful to understand the evolution of OCSP-Stapling adoption.
Our program ran on a 32-cores architecture (2 Intel Xeon
processors with 64GB RAM). It used all the cores to run the
tests. The total duration of the 2018 survey to process all the
999,950 websites was 24 hours, 29 minutes and 15 seconds
whereas the total duration of the 2019 survey was 22 hours, 59
minutes and 54 seconds.

b) Survey Results
In 2018, our program was able to test only 735,320 web

domains from the 999,950 websites whereas in 2019, our
program was able to test 828,777 web domains from the
999,950 websites. We were not able to test all domains

because of different types of errors. For example, some errors
were due to bad configuration of TLS. TABLE 6 shows the
division of error types in the 2018 and 2019 surveys.
Unreachable means the server did not answer any request
(either from OpenSSL or the HTTP client). This means that
either the website is no longer online, or the server does not
listen to port 443. Rejected means the server answered back,
but rejected the TCP connection and sent an ICMP message.
Finally, TLS Error means that the server answered back on
port 443 but the TLS handshake failed. This study does not
detail the reasons for the handshake failure, but for instance,
some of the servers were serving HTTP rather than HTTPS on
port 443, whilst others were using a deprecated version of
SSL, and others provided invalid certificates, etc.

TABLE 6.ERROR TYPES

 SSL Error Rejected Unreachable
2018 26% 27% 46%
2019 39% 24% 37%

Of the 735,320 tested web domains in 2018, we found that

only 141,541 (19.25%) supported OCSP-Stapling. However,
in 2019 we found that 221733 of the 828777 tested web
domains (26.75%) supported OCSP-Stapling.

TABLE 7. OCSP STAPLE AND MUST-STAPLE SUPPORT

 OCSP
Stapling
support

Must-Staple
certificate
extension
support

Must-Staple
HTTP Header

Support

2018 19% 0,04%
(58 websites)

1 website

2019 27% 0% 1 website

TABLE 7 shows that the proportion of OCSP-Stapling servers

that support Must-Staple (by adding the Must-Staple extension
into their X.509 PKC) was tiny in 2018, but no website is
supporting the Must-Staple option in 2019.

The third columns of TABLE 7 shows that the proportion of
OCSP-Stapling servers that support the Must-Staple HTTP
Header is even smaller (only 0.00007%), but we got the same
results in 2018 and 2019.

Our analysis shows a significant rise in the use of OCSP-
Stapling by Cloudflare (Content Delivery Network provider)
where in 2018 only 23% of Cloudflare responses were
supporting OCSP-Stapling, while in 2019 >80% of Cloudflare
responses supported OCSP-stapling.

3) Tests and Results
We performed two sets of experiments. The first set related

to OCSP-Stapling support in web browsers. We checked if the
OCSP Stapling and Must Staple approaches were supported,
and if they were automatically implemented or not. In 2017,
we tested the popular web browsers: Internet Explorer
11(IE11), Firefox 52 (FF52), Opera 44 (OP44), Microsoft

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3000595, IEEE
Transactions on Dependable and Secure Computing

Edge 25 (ED25), Google Chrome 57 (GC57). In 2019, we
tested Firefox 68 (FF68), Chrome 75 (GC75), Edge 44
(ED44), Opera 62 (OP62) and Internet Explorer 11 (IE11).
The first step was to enable and configure OCSP Stapling in
our Apache web server, which has been supported since
Apache HTTPD Server 2.3.3+.

In tests i) and ii) in Table 8, we show the reaction of web
browsers when the server’s stapled OCSP response indicates
that the server’s certificate status is good or revoked, and in
test iii) when the stapled OCSP response is not present. We
obtained exactly the same results in 2017 and in 2019. Table
10 shows the browsers that support Must Staple. The results
that we obtain in test iii in Table 8 are the same whether Must
Staple is activated or not.

In the second set of experiments, we tested the HTTPS
interception products. We first determined the revocation
methods supported by each product, and whether they were
automatically configured or not (Table 9 i-iv)). We then show
the reaction of the HTTPS interception product when:

• the CRL is not retrievable or the OCSP server is
down (Table 9 v) & vi));

• the HTTP methods supported to fetch an OCSP
response (Table 9 vii));

• the OCSP stapled response indicates that the server's
certificate is revoked (Table 9 viii));

• there is no stapled OCSP response, with OCSP
Stapling and Must Staple (Table 9 ix) & x)).

TABLE 8. WEB BROWSER'S REVOCATION TESTS
 OP44,OP62 FF52,FF68 GC57,GC75 IE11 ED25,ED44

i) Certificate is good in the stapled
OCSP Response

A A A A A

ii) Certificate is revoked in the
stapled OCSP Response

R R R R R

iii) There is no stapled OCSP
Response available (try later)

A R A A A

Where: A=Accept, W=Warn, R=Refuse
TABLE 9. HTTPS INTERCEPTION PRODUCTS REVOCATION TESTS

 Avast Kaspersky AVG ESET Squid Charles Mitm fiddler
i) CRL checking Automatic Not supported Automatic Automatic Not

supported
Not supported Not supported Not

supported

ii) OCSP checking Not
Supported

Automatic Not
supported

Automatic Not
supported

Not supported Not supported Configurable

iii) OCSP Stapling checking Automatic Not supported Automatic Not supported Not
supported

Not supported Not supported Not
supported

iv) OCSP Must Staple
checking

Not supported Not supported Not
supported

Not supported Not
supported

Not supported Not supported Not
supported

Where: Configurable means that the HTTPS interception product checks the certificate status after setting, but by default it does not do it. Automatic means that the product checks the certificate
status automatically.

v) CRL is not retrieved RèA NA RèA RèA NA NA NA NA

vi) OCSP server is down NA A NA A NA NA NA RèW

vii) OCSP request HTTP
methods

NA GET only NA GET only NA NA NA GET only

Where: GET only means that the HTTPS interception product supports only the GET method, if it fails the HTTPS interception product will not send a POST request. NA means not applicable
viii) Certificate is revoked in
the stapled OCSP Response

R NA R NA

NA NA

NA NA

ix) No stapled OCSP response
with OCSP Stapling

RèA NA

RèA NA

NA NA

NA NA

x) No stapled OCSP response
with OCSP Stapling and

Must Staple

NA

NA NA

NA

NA NA

NA NA

Where: NA= not applicable, A=Accept, W=Warn, R=Refuse

4) Analysis of the Results
The overall TLS system suffers from two major problems: the
first problem is related to the trustworthiness of CAs [19, 20],
the second problem is with regards circumstances under which
clients should check whether server certificates are revoked or
not.

The success or failure of the OCSP Stapling check depends
on the implementations of both the web browser and the web
server. The web browser only obtains an OCSP stapled
response from the web server if the browser asks for it and the

server supports it. If either the browser or the web server do
not support OCSP Stapling, then OCSP Stapling is not used
and certificate validity status checking will automatically
revert to the other revocation approaches supported by the
browser. Unfortunately, most of the HTTP interception
products do not support OCSP Stapling (Table 9 iii)) and none
support Must Staple, even though many web sites are taking
advantage of OCSP Stapling. Our own analysis shows a rise of
OCSP-Stapling adoption. In 2019 26,25% of tested websites
support OCSP stapling whereas in 2018 19.25% of tested

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3000595, IEEE
Transactions on Dependable and Secure Computing

websites support OCSP-stapling. However, the support of the
Must Staple extension in their PKCs has totally disappeared in
2019.

For the tested web browsers, all of them support OCSP
Stapling but not the Must Staple extension (Table 10). OCSP
Stapling is configured and enabled by default in all of them. If
a stapled OCSP response (good or revoked) is present in the
TLS handshake message, all the web browsers behave
correctly. They will refuse the TLS connection with a revoked
certificate and accept it with a valid one (Table 8 i) & ii)).
However, when no OCSP response is stapled (Table 8 iii),
whether to check for OCSP Stapling is set to mandatory or
optional, all the web browsers except Firefox treat the
certificate as valid.

The differences in the behaviours between web browsers is
however conformant to the standard RFC6961, which states
that “If the OCSP response received from the server does not
result in a definite "good" or "revoked" status, it is
inconclusive. A TLS client in such a case MAY check the
validity of the server certificate through other means, e.g., by
directly querying the certificate issuer. If such processing still
results in an inconclusive response, then the application using
the TLS connection will have to decide whether to close the
connection or not. Note that this problem cannot be decided
by the generic TLS client code without information from the
application. If the application doesn’t provide any such
information, then the client MUST abort the connection, since
the server certificate has not been sufficiently validated. “

The acceptance of certificates with unknown revocation
status is due to the preferred soft-fail policy of browsers. The
reasoning behind this is that the lack of an OCSP response
could be due as much to a network error or mal configuration
as to malicious activity. Also, according to Adam Langley
from Google, web browsers apply this policy because they
consider that hard-failing raises a different security issue by
creating a single point of failure paving the way for effective
DDOS attacks.

Firefox’s behaviour is explained by its support for OCSP
Must Staple by default. This provides stronger revocation
checking with its requirement to ensure a stapled OCSP
response is in the TLS handshake. No other browsers currently
support this. Table 10 shows which revocation approaches are
supported by each web browser.
TABLE 10. REVOCATION APPROACHES SUPPORTED BY EACH WEB

BROWSER

 CRLs OCSP OCSP
Stapling

OCSP Must
Stapling

GC57,GC75 NS NS S NS
IE11 S S S NS
ED25,ED44 S S S NS
OP44,OP62 NS NS S NS
FF52,FF68 NS S S S

Where: NS= means NOT supported, S= means supported
Chrome supports OCSP Stapling in addition to its

own CRLSets method of checking for a revoked certificate
[21]. The basic idea of CRLSets is that Google merges all the
CRLs of all the existing CAs and reduces the obtained list by

removing PKCs that it considers unimportant. The result is a
minimal CRL list that is periodically pushed to Google
Chrome. OneCRL is a similar method used by Firefox [22].

In 2017, Mozilla announced that Firefox will disable OCSP
checking for Domain validated (DV) and Organization
validated (OV) certificates because of performance concerns,
but it will continue to fetch OCSP response for extended
validated (EV) certificates. However, in 2019 we found that
Mozilla Firefox still supports OCSP checking. We believe that
keeping support for OCSP is vital for Internet security because
as we said earlier only 26.25% (according to our 2019 survey)
of websites currently support OCSP-Stapling.

As noted earlier, web servers should implement OCSP
Stapling correctly. For some servers, extra-configuration is
required by the website administrator to enable it correctly.
This is not the case for CRLs and OCSP, which only involve
the CA and the browser.

It is reasonable to also check the implementation of OCSP
Stapling in web servers. According to Google developer Ryan
Sleevi [6], there are several requirements for a proper OCSP
Stapling implementation.

First, the implementation of OCSP Stapling should be ‘on’
by default without the intervention of the website
administrator. Apache is not compliant with this requirement;
enabling OCSP stapling is only supported in Apache2.4+ by
the addition of specific configuration directives, which can be
a complex and delicate task in a shared system.

Secondly, the web server should support a long-lived
Stapling cache. This means that any restarting of the web
server should not remove any OCSP responses previously
obtained. An OCSP response should be cached until either the
server gets a new one or it expires. For Apache, cached OCSP
responses do not persist across server restarts, because they are
only kept in a short-lived memory cache. We noted also that
Apache fetches its OCSP responses during the handshakes of
the first connections instead of doing it on start-up. Thus an
extra latency is recorded in this case.

Thirdly, the web server should avoid a situation where it is
unable to send out a valid OCSP response. Therefore, it should
refresh an old response in sufficient time before its expiration.
It is preferable to start to fetch a response halfway through its
validity period i.e. "not Before + (not After - not Before) / 2"
in order to handle non-deterministic situations ("try later" or
"internal error"). Moreover, the web server should never throw
away a valid response until it has a newer one. Apache does
not do this. If the OCSP server is unavailable, and Apache is
unable to renew the OCSP response, it still throws away the
existing valid response, meaning it cannot then send out a
stapled OCSP response. Many problems have been reported
regarding this behavior [24].

These requirements seem rather basic, but they necessitate
the re-engineering of Apache’s OCSP Stapling
implementation in order to make it more robust and reliable.

All the HTTPS interception products provide less than
optimum support for revocation checking, despite its critical
importance for securing the integrity of the Internet’s PKIs.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3000595, IEEE
Transactions on Dependable and Secure Computing

All the anti-virus products support at least one automatic
revocation method, whilst none of the proxies do.

Maintaining a revocation service (either CRLs or OCSP) is
a requirement for CAs. The standards also recommend, but do
not mandate, that relying parties should ensure that certificates
are not revoked before they rely on them. When the AIA and
CDP extensions are present and understood by the relying
parties, they are required to process them.

Mitmproxy, Squid and Charles do not fetch any revocation
information to check before accepting a certificate, which
means they do not understand these extensions. All certificates
are treated as valid by them, even after being revoked. For
Squid, the web administrator has the possibility to implement
revocation via a specific command.

The fiddler proxy has implemented OCSP checking but
automatic certificate status verification is not enabled by
default. This may allow the use of revoked certificates without
the users being aware of it. Figure 8 shows the extra option for
fiddler to ensure revocation checking.

Figure 8.Revocation setting for fiddler proxy

Three HTTPS interception products support CRL checking
(Avast, AVG, ESET). When they cannot fetch the CRL (Table
9 v)), all of them were fully conformant in 2017 as none
accepted the PKC. However, in 2019, all of them changed
their behaviours to accept the certificate when the CRL was
not retrievable.

Three products support OCSP (Kaspersky, ESET and
fiddler). RFC 6960 states “the OCSP client suspends
acceptance of the certificate in question until the responder
provides a response”. In the ‘OCSP down’ test (Table 9 vi)),
the responses provided by Kaspersky and ESET are not
compliant to the standard, only fiddler was rejecting the
certificate in 2017 but changed this behaviour to show a
warning message in 2019.

RFC 6960 requires OCSP requests to be sent using either
the GET or POST methods. The three HTTPS interception
products respect this issue. However, some OCSP servers may
support only one OCSP request method (POST or GET). Our
OCSP test server only supports the POST method. Our tests
(Table 9 viii)) show that all tested products support only the
GET method. RFC 6960 should clarify this issue by
mandating OCSP servers to support both methods.

Between 2017 and 2019, we didn’t find any evolution with
regards to the support of OCSP stapling by the interception
products. Indeed, only two HTTPS interception products
support OCSP Stapling (Avast, AVG). Both products do not
trust a revoked PKC that appears in an OCSP stapled
handshake. However, when the OCSP stapled response is

absent, both interception products were rejecting the PKC in
2017 but accepting it in 2019. In other word, both products
hard-failed the connection when no OCSP stapled response
was available in 2017 but preferred the soft-fail policy in
2019.

IV. DISCUSSION
In 2009 we were among the first to raise the problem of

X.509 certificate validation in browsers [8]. Almost ten years
later, whilst many of the original issues have been resolved,
others still persist and new ones have been introduced.

Since 2007, the web PKI industry has made a lot of positive
advancements by improving the quality of certificate issuance.
Today, commercial CAs have less freedom than before, and
their certificate issuing processes are regulated by a set of
standards issued by the CA/Browser forum [13, 16]. One of
the important newer mechanisms for monitoring a CA’s
performance is Certificate Transparency (CT), which was
introduced by Google in 2012 [12, 17]. This system was
conceived as a result of several attacks against the TLS
ecosystem, including the issuing of fraudulent Google
certificates. The root causes of these attacks were either a
CA’s negligence or an abuse of the trust placed in the CA. CT
can be seen as a global public log to which all CAs are forced
to record all their issued certificates. In this way, any
fraudulent certificate can be detected and removed very
quickly. The CT log is hosted on different synchronized
servers. In the end, it is planned that all web browsers will
verify all received server certificates against this log and will
block connections if a server’s certificate is not present in the
CT log.

Thus, we may conclude that the term trusted third party
(TTP) that has historically been given to CAs, is no longer
valid because we usually don’t have to monitor people that we
trust. Ronald Regan’s famous phrase ‘Trust but verify’ is more
appropriate to CAs today. Several different stories show how
CAs are not considered to be TTPs anymore. For example,
Symantec, one of the largest CAs in the world, has decided to
sell its SSL unit to Digicert after a dispute with Google [10]
who detected that Symantec didn’t respect the requirements of
the CA/Browser forum [13].

However, end-to-end security doesn’t necessitate
controlling only the issuing process, but also the validation
process. Our different studies from 2009 until now show the
inconsistencies and dangerous behaviors in the validation
processes of different types of PKI client (web browsers and
HTTPS interception products). This is why we proposed in our
previous research work to introduce a new entity, the trust
broker, into the X.509 trust model [19, 20]. The role of the
trust broker is to help web users decide whether X.509
certificates are trustworthy and valid.

By inspecting the current practices regarding certificate
status verification, we notice that key players in the web PKI
industry are leaning towards the abandonment of OCSP, with
OCSP Stapling being only deployed by 26.25% of web
servers. Surprisingly, results obtained by our survey are
slightly better than those obtained in 2018 (19.25%). This can

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3000595, IEEE
Transactions on Dependable and Secure Computing

be accounted for by the increasing support of OCSP-Stapling
by Cloudflare. Indeed, more than 80% of HTTPs requests with
Cloudflare get an OCSP-Stapling Response, whereas in 2018
only around 23% of HTTPS requests got an OCSP stapling
response. In addition, the market share of Cloudflare has
grown between 2018 and 2019. In 2018, Cloudflare was
serving 11.8% of the tested web domains whereas in 2019 it
served 15.2% of the tested web domains. It is of note that
some high profile web sites such as google.com and
youtube.com are not using OCSP-Stapling, even though their
certificates are not EV ones (which ironically means that
Google Chrome may not issue OCSP requests to verify their
status). Finally, we detected in 2018 some inconsistencies in
the same organization; for example www.yahoo.com is
applying OCSP-stapling whereas yahoo.co.jp is not applying
it.

Another interesting fact from our 2019 survey shows that
the adoption of the Must-Staple option by adding the Must-
Staple extension into their X.509 PKC has totally disappeared
and that only one website in our survey deploys the Must-
Staple mechanism using the HTTP header. We think that the
Must-Staple proposal was not adopted because either the web
server must ask the CA to issue a certificate that includes this
optional feature, or because the HTTP header solution is
insecure and suffers from the first-visit problem. A better
solution might be to create a platform that allows websites to
tell web browsers whether they prefer the Soft-fail or Hard-fail
policy. A similar kind of platform already exists for the HTTP
Strict Transport Security mechanism (HSTS). Google has
created the platform https://hstspreload.org that allows the
administrators of websites to declare whether they want to
serve their contents exclusively via HTTPS. Today, all major
web browsers share this list. Similarly, website administrators
could use this kind of platform to inform web browsers
whether they should apply a hard-fail or soft-fail policy.

Our 2017 study [1] showed some other validation issues
related to web browsers. For example, Safari 10 always gave a
warning message regardless of the seriousness of the
certificate validation error. Even when a server’s certificate
was revoked, the web user had the possibility of proceeding to
the web site.

The current study has shown that the certificate validation
performed by HTTPS interception products are even worse
than that performed by web browsers. The results confirmed
our expectations and show that these products present
inconsistent behaviors. The difficulty with TLS interception
products is that they have to combine the security measures of
Web browsers and servers. However, as we saw in our earlier
studies, web browsers handle certificate validation subject
inconsistently.

This situation should not be an excuse for TLS interception
products because they failed doing very basic validation.
Adam Langley from Google describes how the proxies’
misbehaviors have delayed the deployment of TLS 1.3 by one
year [11]. He added in his article one sentence that chimes
with our work “I'll briefly mention the fact that HTTPS proxies
aren't always so great at performing cryptographic checks.

(We recently notified a major proxy vendor that their product
didn't appear to validate certificates at all. We were informed
that they can validate certificates; it's just disabled by default.
It's unclear what fraction of their customers are aware of
that.)” [11].

V. CONCLUSIONS
The objective of our work is to show why the validation of

X.509 certificates is a complex issue. Specifically, we
presented two important findings:

1. The validation of X.509 certificates is highly neglected
by all types of TLS interception products. When they
do not verify whether servers’ certificates are revoked
or not can be very dangerous for web users. Our study
tested the same products over a period of two years and
showed that no significant improvements had been
made by these products during this time.

2. None of the existing revocation checking techniques
work consistently or effectively today, for different
reasons. Even the latest technique, OCSP-Stapling, is
far from being applied everywhere (only around 27%
of Web servers in 2019). Unfortunately, this technique
depends on the web server’s administrator, who either
may not be aware of it or does not have the motivation
to deploy it.

The reasons behind the inconsistent behaviour are: (1) the
standards are complex or vague or allow different
implementations for different contexts of use, (2) there are a
multitude of standards (~50) that handle validation and
revocation, (3) the products are perhaps more concerned about
their performance than the security of their web users (e.g. by
removing OCSP checking), and (4) the absence of a viable
technique for addressing validation failures.

The validation situation today resembles the certificate
generation situation in the mid-2000s where the procedures
with regard to X.509 certificate generation were not of good
quality. This situation has largely improved after the
intervention of the CA/Browser forum, which published a set
of minimum requirements for EV and DV certificates.
However, our work shows that web PKI still has some way to
go before it reaches a consistent and effective approach to the
validation of X.509 certificates. Clarifying existing PKI
standards or introducing new PKI standards won’t necessary
solve this problem. This is because the PKI standards in
general only give guidance on whether a certificate is invalid
or not, but do not mandate what an RP should do with it. This
problem should be somewhat easier to solve in web browsers
than in interception products because the major web browser
vendors coordinate through the CA/Browser forum. But
clearly this is not effective today. So we propose one possible
solution. Today, the validation APIs that do exist are quite
complex and ask for different parameters that are not always
understood by software developers. Publishing a standard PKI
validation API, with clearly defined parameters, that all
browsers and interception products implement, would go some
way towards solving this problem. Supplementing this with a

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3000595, IEEE
Transactions on Dependable and Secure Computing

conformance test suite would also help product developers
ensure that their products conform to the API.

For future work, we would like to test the validation of
PKCs by Content Delivery Network (CDN) providers such as
Cloudflare [15]. Today many websites mandate CDN
providers cache their contents so that end users can fetch web
pages from the CDN infrastructure instead of directly from the
websites. This offers a lot of advantages to websites such as
saving bandwidth costs, security protection, service
availability, etc. CDN providers act in this case as online
proxy servers that can intercept all the traffic of end users. End
users can not figure out whether the web pages were brought
from the CDN infrastructure or from the original web server. It
would be interesting to make a detailed study about this kind
of online proxy to show how they handle the validation of the
servers’ certificates, and whether they still deliver content
from web sites with revoked certificates.

REFERENCES
[1] A. S. Wazan, R. Laborde, D. W. Chadwick, F. Barrere and A. Benzekri.

TLS Connection Validation by Web Browsers: Why do Web Browsers
Still Not Agree? In 2017 IEEE 41st Annual Computer Software and
Applications Conference (COMPSAC), Turin, 2017, pp. 665-674.
doi: 10.1109/COMPSAC.2017.240.

[2] E. Rescorla and Mozilla.The Transport Layer Security (TLS) Protocol
Version 1.3, https://tools.ietf.org/html/rfc8446, August 2018.

[3] ITU-T Recommendation X.509 | ISO/IEC 9594-8. Information
Technology Open Systems Interconnection- The Diretory : Public-key
and Attribute Certificate Frameworks.

[4] Cooper, NIST, Santesson, Microsoft, Farrell, Trinity College Dublin,
Boeyen, Entrust, Housley, Vigil Security, Polk. Internet X.509 Public
Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile, RFC 5280, https://tools.ietf.org/html/rfc5280, May 2008.

[5] Statistics of Netscraft:
https://news.netcraft.com/archives/2013/07/19/microsoft-achieves-
world-domination-in-ocsp-stapling.html, Accessible on 18 April 2020.

[6] Ryan Sleevi, OCSP Stapling,
https://gist.github.com/sleevi/5efe9ef98961ecfb4da8, Accessible on 18
April 2020.

[7] X. de Carné de Carnavalet and M. Mannan. Killed by proxy: Analyzing
client-end TLS interception software. In Network and Distributed System
Security Symposium, 2016.

[8] A. S. Wazan, R. Laborde, D. W. Chadwick, F. Barrere, and A. Benzekri.
Which Web Browsers Process SSL Certificates in a Standardized Way?
In Emerging Challenges for Security, Privacy and Trust, 2009.

[9] A. Jøsang, I. G. Pedersen, and D. Povey. PKI Seeks a Trusting
Relationship. In Information Security and Privacy, 2000, pp. 191–205.

[10] Chrome’s Plan to Distrust Symantec Certificates
https://security.googleblog.com/2017/09/chromes-plan-to-distrust-
symantec.html, September 11, 2017, Accessible on 18 April 2020.

[11] Adam Langley. TLS 1.3 and Proxies,
https://www.imperialviolet.org/2018/03/10/tls13.html, 10 Mar 2018,
Accessible on 18 April 2020.

[12] Certificate Transparency Project: https://www.certificate-
transparency.org, Accessible on 18 April 2020

[13] CA/Browser forum website : https://cabforum.org, Accessible on 18
April 2020.

[14] C. Brubaker, S. Jana, B. Ray, S. Khurshid, and V. Shmatikov. Using
Frankencerts for Automated Adversarial Testing of Certificate
Validation in SSL/TLS Implementations. In Proceedings of the 2014
IEEE Sym- posium on Security and Privacy (Oakland), Berkeley, CA,
USA, May 18-21, 2014, 2014.

[15] End-to-end HTTPS with Cloudflare - Part 3: SSL options
https://support.cloudflare.com/hc/en-us/articles/200170416-End-to-end-
HTTPS-with-Cloudflare-Part-3-SSL-options, Accessible on 18 April
2020.

[16] CA/Browser forum, Baseline Requirements, v. 1.5.5 ,
https://cabforum.org/wp-content/uploads/CA-Browser-Forum-BR-
1.5.5.pdf, Accessible on 18 April 2020.

[17] Emily Stark, Ryan Sleevi, Rijad Muminovic, Devon O'Brien, Eran
Messeri, Adrienne Porter Felt, Brendan McMillion, Parisa Tabriz. Does
Certificate Transparency Break the Web? Measuring Adoption and
ErrorRate. In 40th IEEE Symposium on Security and Privacy, May,
2019.

[18] F. Andreasen., N. Cam-Winget, E. Wang, Cisco Systems. TLS 1.3
Impact on Network-Based Security, Internet-Draft,
https://tools.ietf.org/id/draft-camwinget-tls-use-cases-03.html, December
29, 2018.

[19] Ahmad Samer Wazan, Romain Laborde, David W. Chadwick, François
Barrère, Abdelmalek Benzekri, Mustafa Kaiiali, Adib Habbal. Trust
Management for Public Key Infrastructures: Implementing the X.509
Trust Broker. In Security and Communication Networks, Wiley, Vol.
Volume 2017, 2017.

[20] Ahmad Samer Wazan, Romain Laborde, François Barrère, Abdelmalek
Benzekri. A formal model of trust for calculating the quality of X.509
certificate. In Security and Communication Networks, Wiley, Vol. 4 N.
6, p. 651-665, June 2011.

[21] CRLSets, https://dev.chromium.org/Home/chromium-security/crlsets,
Accessible on 18 April 2020.

[22] OneCRL, https://blog.mozilla.org/security/2015/03/03/revoking-
intermediate-certificates-introducing-onecrl/, Accessible on 18 April
2020.

[23] Adam Bard. On secure SSL: The least every developer should know.
https://adambard.com/blog/the-new-ssl-basics/, Accessible on 18 April
2020.

[24] https://bz.apache.org/bugzilla/show_bug.cgi?id=57121, Accessible on 18
April 2020.

[25] https://cabforum.org/wp-content/uploads/Guidance-Deprecated-Internal-
Names.pdf, Accessible on 18 April 2020.

BIOGRAPHY
Ahmad Samer Wazan: is an Associate professor at Zayed

University. Between 2014 and 2019, He was associate
professor at the university of Toulouse and a member of
the SIERA research group at IRIT Laboratory. His
research topics include trust management, PKIs, Access
Control, OS security and security requirement
engineering. Between 2007 and 2011, he led a research
project that defined a new trust model for X.509 standard,
by adding a new entity called Trust Broker. This is now
included in the 2016 edition of the X.509 standard. he also
participated with other researchers from UK and France in
the implementation of the first proof of concept verifiable
credential system. Very recently, he conducted a new
research project that proposed a new command called sr
(switch role) that intends to replace the command sudo in
Linux environment (more information can be found here
https://github.com/SamerW/RootAsRole).

Romain Laborde: is an Associate Professor at University of
Toulouse (Paul Sabatier- IUT ’A’), France since 2006. He
is also member of the Institut de Recherche en
Informatique de Toulouse. He received his PhD in
Computer Science from University Paul Sabatier in 2005.
Then, he was a Research Associate in the Information
Systems Security Group in the Computer Science
Department, University of Kent at Canterbury, UK. His
research focuses on security management applied to
network security configuration, identity and access
management or privacy.

David Chadwick: BSc, PhD was Professor of Information
Systems Security at the University of Kent for 15 years,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2020.3000595, IEEE
Transactions on Dependable and Secure Computing

and is now Emeritus Professor and CEO of Verifiable
Credentials Ltd. He has published widely, with nearly 200
publications in books, international journals, conferences
and workshops. He is the BSI lead representative to
ISO/ITU-T X.500 standards meetings, and was intimately
involved in the design and standardisation of X.509 Public
Key Infrastructures and Privilege Management
Infrastructures (PMIs). He is an invited expert to the W3C
Verifiable Credentials Working Group and a co-author of
its Verifiable Credentials Data Model Recommendation.

Rémi Venant : PhD is an Associate Professor at Le Mans
University (France), a member of the Laboratoire
d’Informatique de l’Université du Mans, and a member of
the Institut de Recherche en Informatique de Toulouse.
His research mainly focuses on technology enhanced
learning, within the field of learning analytics, artificial
intelligence for education and learning environment
design. He is also involved in security management
research activities that address identity and access
management or privacy issues.

Abdelmalek Benzekri : PhD is full professor at Paul Sabatier
University - Toulouse III, Toulouse, France since 1999,
where he is Director of the Master’s degree in
CyberSecurity. He is the leader of Service IntEgration and
netwoRk Administration (SIERA) Research Group. His
research activities, conducted at IRIT, focus on systems
and networks management and specifically on
information security management. He is formally in
charge of security research policies at IRIT since 2016.

Eddie Billoir: is a student in third year of Telecommunication
systems & IT Networks Bachelor's degree at Toulouse

Paul Sabatier. He's doing this year in apprenticeship as
System Security Tester at Atos Company. Previously
graduated with Electronics and Digital Professionnal High
School degree with honors and IT DUT degree.

Omar Alfandi: is an Associate Professor at the College of
Technological Innovation at Zayed University. He holds a
Doctoral degree (Dr. rer. nat.) in Computer Engineering
and Telematics from the Georg-August-University of
Goettingen - Germany in 2009. He received his M.Sc.
degree in Telecommunication Engineering in 2005 from
the University of Technology Kaiserslautern - Germany.
Between 2009 and 2011, he enjoyed a Post-doctoral
Fellowship at Telematics Research Group and he founded
a Research and Education Sensor Lab where he is
currently as Lab Advisor. Before that he carried his
Doctoral Research as part of an Industry, Academia and
Research centers collaboration European Union (EU)
project. Dr. Alfandi was working package leader of EU
DAIDALOS II in the 6th framework project. He
published numerous articles on Authentication
Framework for 4G Communication Systems, Future
Internet and Trust and Reputation Systems in Mobile ad
hoc and Sensor Networks. He is the co-founder and co-
director of the SMART (Sensors and Mobile Applications
Research and Education) Lab at CTI. His current research
activities are directed towards Internet of Things (IoT),
Security in Next Generation Networks, Smart
Technologies, Security Engineering, Mobile and Wireless
Communications. In August 2015 he was appointed as the
Assistant Dean for Abu Dhabi Campus.

