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Cost-Sensitive Business Failure Prediction When Misclassification Costs Are Uncertain: 

a Heterogeneous Ensemble Selection Approach 

 

Abstract 

In order to assess risks associated with establishing relationships with corporate partners such as 

clients, suppliers, debtors or contractors, decision makers often turn to business failure prediction 

models. While a large body of literature has focused on optimizing and evaluating novel methods in 

terms of classification accuracy, recent research has acknowledged the existence of asymmetric 

misclassification costs associated with prediction errors and thus, advocates the usage of alternative 

evaluation metrics. However, these papers often assume a misclassification cost matrix to be known 

and fixed for both the training and the evaluation of models, whereas in reality these costs are often 

uncertain. This paper presents a methodological framework based upon heterogeneous ensemble 

selection and multi-objective optimization for cost-sensitive business failure prediction that 

accommodates uncertainty at the level of misclassification costs. The framework assumes unknown 

costs during model training and accommodates varying degrees of uncertainty during model 

deployment. Specifically, NSGA-II is deployed to optimize cost space resulting in a set of pareto-

optimal ensemble classifiers where every learner minimizes expected misclassification cost for a 

specific range of cost ratios. An extensive set of experiments evaluates the method on multiple data sets 

and for different scenarios that reflect the extent to which cost ratios are known during model 

deployment. Results clearly demonstrate the ability of our method to minimize cost under the absence 

of exact knowledge of misclassification costs. 

Keywords: Business failure prediction, cost-sensitive learning, ensemble selection, Brier curves, cost 

curves, cost uncertainty, multicriteria optimization, genetic algorithms, NSGA-II 
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1 Introduction 

In the wake of the financial crisis of 2008 and the subsequent economic downturn, numerous companies 

experienced financial distress. Figures of insolvent companies rose up to 178,000 in the European Union 

alone. After a number of stable years, 2012 saw another year-on-year rise of 9.1 percent in bankruptcies 

(Creditreform, 2014). In Western Europe, insolvencies are expected to rise 3% in 2019 due to slowing 

economic growth, slowing world trade and unstable trade regulation (Bodnar, 2019). In this light, 

business failure prediction (BFP) will continue to play a significant role as an instrument for assessing 

the risk of corporate failure of collaborating companies. BFP models predict business failure or financial 

distress based upon all that is known about a company at a given moment in time. Such models first 

generalize the link between business failure and a range of variables characterizing the company, its 

activities and performance based upon historical data. Then, in a second stage, the model allows the 

risk analyst to produce estimations of future business failure for a new set of companies based upon 

their current profile and performance. 

Numerous algorithms have been deployed for BFP models. Early approaches of Altman (1968), 

Martin (1977) and Ohlson and James (1980) predicted business failure using multivariate statistical 

methods on a variety of financial ratio’s. More recent studies have focused on data mining methods. 

Examples are artificial neural networks (Pendharkar, 2005), support vector machines (Li & Sun, 2011a), 

Bayesian networks (Sun & Shenoy, 2007), decision trees (Frydman, Altman, & Kao, 1985) and 

ensemble classifiers (Li & Sun, 2011b). A comprehensive review of statistical and data mining 

techniques used for BFP can be found in (Ravi Kumar & Ravi, 2007). 

Ensemble classifiers have evangelized the practice of combining predictions from individual 

models in BFP (Verikas et al., 2010). Ensemble classifiers use combinations of predictions generated 

by constituent models called ensemble members (Kuncheva & Rodriguez, 2007). The main factor 

defining the popularity of ensemble algorithms in the field of BFP is the strong prediction performance 

(Sun et al., 2014; Verikas et al., 2010). An ensemble of member classifiers is likely to generate better 

and more robust predictions than a single algorithm when accuracy and diversity are present amongst 
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the ensemble members. This paper focuses on BFP through heterogeneous ensemble selection, a 

subclass of ensemble classifier algorithms that seeks diversity through an interplay of member model 

variation and selective member fusion. When diversity is sought by combining ensemble members 

originating from different algorithms, heterogeneous ensemble classifiers are created. Many studies 

have demonstrated the added value of creating heterogeneous ensemble classifiers in BFP studies 

(Doumpos & Zopounidis, 2007; Ravi et al., 2008). In ensemble selection, a selective fusion rule 

excludes certain member models from the final ensemble classifier. The promise is that an elitist 

selection of a notably competent subcommittee of models could improve performance. In BFP, such an 

improvement of classification performance was demonstrated by Chen & Ribeiro (2013) who applied 

ensemble selection based on individual member performance and pairwise diversity.  

BFP models can be evaluated through different performance metrics. Classification metrics such as 

accuracy and ranking metrics such as AUC are commonly reported in BFP studies. Despite their ease 

of interpretation, such metrics fail to recognize that the costs associated with the two types of errors 

(identifying a healthy company as a failing one, and vice versa) are rarely equal (Balcaen & Ooghe, 

2006; Bauer & Agarwal, 2014). For example, for a financial institution, the inability of a model to 

timely predict the bankruptcy of a lending company could entail severe financial losses, while the cost 

associated with wrongfully flagging a company as a potential risk would typically be limited (e.g. to 

the cost of an in-depth screening, or the loss of the contribution if the contract is cancelled). The 

evaluation and benchmarking of classifiers should consider the consequences of errors. An approach 

that is more in line with real-life usage of BFP models is offered through evaluation in terms of 

misclassification cost metrics, which accommodate unequal misclassification cost for different types of 

errors. While still less common nowadays, gradually more papers on BFP report expected 

misclassification cost (Bauer & Agarwal, 2014; Chen & Ribeiro, 2013; Kirkos, 2012; Pendharkar, 

2008). When cost information is not only involved for model evaluation but also incorporated during 

model training and models are inherently designed to minimize misclassification cost, one enters the 

realm of cost-sensitive learning (Viaene & Dedene, 2005).  
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Cost-sensitive learning has been applied in BFP (e.g. Chen, Chen, & Ribeiro, 2015; Kirkos, 2012; 

Pendharkar, 2005). Corresponding studies accommodate asymmetric misclassification costs by 

involving them for model evaluation or by incorporating them in the model training phase. However, 

prior work in BFP assumes error costs to be known. This is an unrealistic assumption in many domains 

(Zadrozny & Elkan, 2001). Several reasons could introduce uncertainty on misclassification cost values 

or ratios, both at the moment when models are trained, and at the moment when they are deployed for 

scoring. First, while misclassification cost asymmetry in BFP is generally acknowledged, it is extremely 

challenging to estimate the exact values of misclassification costs since it is difficult to estimate the cost 

of a partnering company’s failure (Kirkos, 2012). It is almost guaranteed that a bankruptcy will incur 

losses to associated companies, but the search for compensation is time- and cost-intensive, and its 

outcome highly uncertain (Kolay, Lemmon, & Tashjian, 2016). Second, the cost that the bankruptcy of 

a partnering company incurs is highly dependent on variables that could evolve over time: contract 

value, trade and contract terms, switching costs and external variables such as legal counsel costs, 

exchange and interest rates. When cost information is not known at the model training phase, the usage 

of traditional cost-sensitive algorithms is guaranteed to lead to a suboptimal solution.  

Certain approaches such as RiskBoost (Johnson, Raeder, & Chawla, 2015) and cost-interval-

sensitive support vector machines (CISVM; Liu & Zhou, 2010) have been specifically designed for 

scenarios of cost uncertainty. Such methods replace conventional classifiers with entirely new, purpose-

built algorithms and could thus not be deployed to extend or leverage existing models, such as 

(heterogeneous) ensemble classifiers. Other approaches such as score calibration (Zadrozny & Elkan, 

2002) or threshold varying (Hernández-Orallo, Flach, & Ferri, 2012) allow converting existing 

classification models to cost-sensitive learners when cost information is revealed after model training 

by transforming the model’s predictions. Such approaches have two notable disadvantages: (i) they 

require cost information to be fully known when the model is deployed, i.e., at the scoring phase, and 

moreover (ii) they require additional training of a meta-model at the scoring phase that needs to be 

repeated whenever operating conditions (such as costs or cost ratios) evolve or vary among data 
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segments (Liu & Zhou, 2010). Finally, recent approaches in classifier optimization and selection (Cheng 

et al., 2019) have successfully deployed multicriteria optimization to directly or indirectly deal with 

uncertain operating conditions by optimizing multiple performance metrics simultaneously. 

Specifically, to build multi-purpose classifiers that perform well under various operating conditions, 

previous attempts have focused on optimizing classifier performance in ROC (Receiver Operating 

Characteristics Curve) space (e.g. Chatelain et al., 2010; Cheng et al., 2019; Zhao et al., 2018). While 

such approaches could be suitable for accommodating cost uncertainty, their potential for this task has 

not been formally evaluated and their potential for building heterogeneous ensemble classifiers been 

not been investigated.  

To address these shortcomings, the overarching objective of this study is to raise the efficiency of 

BFP. We develop a novel modeling framework based on two design goals that overcome the 

shortcomings of existing approaches. First, we intend to build cost-sensitive ensemble models for BFP 

whilst accommodating cost uncertainty both at the training and at the scoring phase. We opt for 

heterogeneous ensemble classifiers and build upon their strong performance in the domain in the past. 

A second design objective is to develop a methodology that builds upon common classifier methods 

and requires no additional, computationally intensive analyses at the scoring phase. 

To this end, we present and empirically validate a new methodological framework for building 

heterogeneous ensemble classifiers through ensemble selection as an approach for building cost-

sensitive BFP models that accommodates unknown or uncertain  misclassification costs. Specifically, 

during its training phase, the presented methodology involves the training of a heterogeneous library of 

models, followed by a cost-sensitive ensemble selection. Analogous to recent approaches in classifier 

optimization and selection in ROC space our ensemble selection phase implies a multicriteria 

optimization of cost space (Drummond & Holte, 2006), a classifier evaluation framework used to map 

a model’s expected misclassification cost over a range of possible operating conditions, such as cost 

ratios. The result of the ensemble selection is a set of pareto-optimal ensemble classifiers obtained 

through multicriteria optimization, in cost space, and an ensemble nomination curve that maps 
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competence regions of these ensemble classifiers. This ensemble nomination curve allows, at the model 

scoring phase, to nominate one particular ensemble classifier that will deliver predictions. Depending 

on the remaining level of cost uncertainty at the model scoring phase, our framework prescribes 

alternative usages of the ensemble nomination curve. To validate the framework, extensive experiments 

are conducted on a large number of data sets collected for predicting business failure in various 

countries and sectors.  

This study contributes to literature in several ways. Conceptually, our study is the first to 

acknowledge and address the common problem of cost uncertainty during both model training and 

deployment in any business analytics or risk analysis related predictive scoring application in general, 

and the BFP literature specifically, by means of an integrated modeling framework. Second, 

methodologically, our study introduces the practice of multicriteria optimization of cost space to the 

problem of heterogeneous ensemble selection. Additionally, it is the first to translate the result of this 

multicriteria optimization to an ensemble model selection framework in function of two alternative 

classifier performance measurement frameworks for cost-sensitive learning in cost space, i.e. cost 

curves (Drummond & Holte, 2006) and Brier curves (Hernández-Orallo, Flach, & Ramirez, 2011) 

which can help analysts select the best ensemble in function of cost uncertainty and available cost 

information. Finally, this study sets a benchmark for evaluating cost-sensitive classifiers under cost 

sensitivity by distinguishing between three levels of cost uncertainty. 

2 Related literature 

This subsection discusses related literature in three domains related to the approach presented in 

this study: ensemble learning in BFP, ensemble selection and finally, cost-sensitive learning under cost 

uncertainty. 

2.1 Ensemble Learning for Business Failure Prediction 

The paper contributes to the literature of heterogeneous ensemble classifiers applied to BFP. Table 

1 presents an overview of applications of heterogeneous ensemble classifier in BFP and is an extension 

to a literature overview by Verikas et al. (2010). It also includes selected applications of heterogeneous 
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ensemble learning in the domain of credit scoring. Since this domain is closely related to business failure 

prediction, both conceptually and methodologically, we believe it is important to extend our literature 

overview to credit scoring, especially since this domain has seen successful applications of ensemble 

selection recently.  

A number of conclusions emerge from Table 1. First, several well-established algorithms in the 

BFP domain emerge as popular base learners for hybrid ensembles; most notably multi-layer 

perceptrons (MLP), support vector machines (SVM), linear discriminant analysis (LDA), logistic 

regression (LP) and decision trees (CART, C4.5). In recent credit scoring applications, a broader 

selection of base learners was incorporated. Second, with the exception of Lessmann et al. (2015) 

previous studies have not varied model parameters and the number of models considered in past 

approaches in BFP is limited. This study considers a substantially larger number of models, both 

through incorporating more ensemble member algorithms, and through varying model parameters. 

Third, the study by Chen & Ribeiro (2013) is the only one proposing a cost-sensitive method based on 

ensemble selection and is in that sense more closely related to the method presented here. However, 

their method does not accommodate cost uncertainty during model training, nor does it include a model 

evaluation under this realistic assumption. Finally, while experimental validations in previous studies 

only considered one data set, this study empirically compares models on a solid basis of 21 data sets, 

covering various industries and countries. 

2.2 Ensemble Selection 

The practice of nominating the members of an ensemble model out of a larger pool or library of 

models is denoted ensemble pruning (Zhou, 2012) and in the context of heterogeneous ensembles, the 

term ensemble selection (ES) is often used (Caruana et al., 2004). Common motivations for ensemble 

selection include increased efficiency, since less storage space and computational resources are required 

for storing and operationalizing ensemble learners; comprehensibility since smaller ensembles could 

lead to less complex, and therefore more interpretable models, and most commonly, improved model 

performance (Zhou, 2012).  
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Prior ensemble selection algorithms differ in terms of (i) the selection approach used, (ii) whether 

ES is static or dynamic and (iii) the focal metrics during this process. First, many selection methods 

have been investigated. These include ordered aggregation (Martinez-Munoz, Hernandez-Lobato, & 

Suarez, 2009), clustering (Bakker & Heskes, 2003), probabilistic models (Woloszynski & Kurzynski, 

2011; Woloszynski et al., 2012), and various optimization methods such as greedy forward selection 

(Caruana et al., 2004), nonlinear mathematical programming (Özöğür-Akyüz, Windeatt, & Smith, 

2015) and evolutionary algorithms such as genetic algorithms. Second, a distinction is made between 

static and dynamic ensemble selection (Britto Jr, Sabourin, & Oliveira, 2014): In the former, selection 

occurs on a global level as part of the ensemble training, while in the latter, selection is dynamically 

applied on an instance-level during model scoring (dos Santos, Sabourin, & Maupin, 2008; Ko, 

Sabourin, & Britto, 2008). While dynamic ES was shown to increase performance in certain 

applications, a notable disadvantage is decreased efficiency at the scoring phase, since (i) a secondary 

part of the model training occurs when predictions are required and (ii) the full model pool should be 

stored. Finally, ensemble pruning approaches differ in terms of the metrics they optimize.  
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Study Application Ensemble member algorithms 
Parameter 

variation 
# models 

Ensemble 

selection 

Cost sensitive 

model 

training 

Cost-sensitive 

model evaluation 

Cost 

uncertainty 

# datasets 

and size 

(Jo, Han, & Lee, 1997) BFP MLP, LDA, CBR No 3 No No No No 1 (n=544) 

(Olmeda & Fernández, 

1997) 

BFP MLP, LDA, LR, MARS, C4.5 No 5 No No No No 1 (n=66) 

(Lin & McClean, 2001) BFP MLP, LR, LDA, C5.0 No 5 No No No No 1 (n=1133) 

(Kim & Yoo, 2006) BFP MLP, LR No 2 No No No No 1 (n=4231) 

(Hua et al., 2007) BFP SVM, LR No 2 No No No No 1 (n=120) 

(Ravi et al., 2008) BFP MLP, RBF, PNN, SVM, CART, FRB, 

PCA+MLP, PCA+RBF, PCA+PNN 

No 9 No No No No 1 (n=1000) 

(Sun & Li, 2008) BFP MLP, SVM, LDA, LR, CBR No 5 No No No No 1 (n=270) 

(Chen & Ribeiro, 2013) BFP kNN, MLP, SVM, NB, BLR, C4.5, 

ADT, RBF, LR, DT 

No 10 Yes Yes Yes No 1 (n=37) 

(Davalos et al., 2014) BFP kNN, MLP, C4.5, LDA, SVM No 5 No No No No 1 (n=153) 

(Lessmann et al., 2015) Credit scoring BN, CART, ELM, kNN, C4.5, LDA, 

SVM, LR, RBF, MLP, NB, VP, QDA, 

BAG, ADA, LMT, RF, RTF, SGB,ADT 

Yes 1141 Yes No Yes No 8 (avg. 

n=30403) 

(Ekinci & Erdal, 2017) BFP C4.5, BAG, VP, MB, RSM No 5 No No No No 1 (n=1200) 

          

(Xia et al., 2018) Credit scoring SVM, RF, XGB and GPC No n.a. Yes No No No 4 (avg. n = 

1438) 

          

(Li et al., 2018) Credit scoring XGB,LR,DNN No 3 No No No No 1 

(n =80000) 

(Papouskova & Hajek, 

2019) 

Credit risk 

modelling 

FPA,CDT,HDT,C4.5,RET, 

AMT,M5P,RAT,LR,BN,SVM,NN,BAG, 

RTF,MB,ADA,LB,DR,RSM,SVR 

No 21 Yes No Yes No 2 (avg. 

n=193785) 

This study BFP BAG, TBAG, SGB, RTF, RSM, RF, 

CART, C4.5, C4.4, LR, LDA, QDA, 

MLP, SVM, kNN, ADAC, C4.5+MC, 

C-RF, C-CART 

Yes 200 Yes Yes Yes Yes 21 (avg. 

n=6937) 

Table 1: Literature overview: applications of heterogeneous ensemble classifiers for business failure prediction. MLP=multilayer perceptron, LDA=linear discriminant analysis, QDA=quadratic discriminant analysis, RBF=radial 

basis function network CBR=case-based reasoning, LR=logistic regression, MARS=multivariate adaptive regression splines, ADT=alternating decision tree, DT=decision table, PNN= probabilistic neural network, FRB=fuzzy 

rule-based classifier, MB=MultiBoost, RSM=random subspace method, BAG=bagging, RF=random forests, TBAG=trimmed bagging, ADAC=AdaCost, kNN=k-nearest neighbors, MC=MetaCost, C-RF=cost-sensitive random 

forest, C-CART=cost-sensitive CART, VP=voted perceptron. PCA=principal component analysis, BLR=Bayesian logistic regression, NB=naïve Bayes, SVM=support vector machines, RTF=rotation forest, GPC=Gaussian process 

classifier, BN= Bayesian network, ELM=extreme learning machine, LMT=logistic model tree, XGB=XGBoost, ADT=alternating decision tree, FPA=forest penalizing attributes, CDT=credal decision tree, HDT=Hoeffding decision 

tree, RET=REPTree, M5P=M5P Tree, AMT=alternating model tree, RAT=random tree, M5P=M5 model tree, LOR=Broyden-Fletcher-Goldfarb-Shanno learning algorithm, LB=LogitBoost, DEC=decorate, SVR=support vector 

regression, DNN=deep neural network, DR=decorate 
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Study 
Model type 

(EP/ES/CS/CO) 
Optimization method(s) 

Single or 

multicriteria 

optimization 

(SO/MO) 

Optimization criteria 

Integration of 

cost space / cost 

curve 

Integration 

of cost 

space/ brier 

curve 

Cost uncertainty 

addressed 
Dataset domains 

# datasets 

and size 

(Provost & Fawcett, 2001) CS ROC convex hull MO FPR;TPR No No Yes Mixed (UCI) 10 (avg. 

n=n.a.) 

(Caruana, Munson, & Niculescu-Mizil, 

2006) 

ES Greedy hillclimb search SO ACC,FSC,LFT,AUC,APR, 

BEP,RMS,MXE 

No No No Mixed 11 (avg. 

n=22317) 

(dos Santos, Sabourin, & Maupin, 2008) EP GA, NSGA-II SO,MO ACC, DIV No No No Mixed 7 (avg. 

n=32492) 

(Partalas, Tsoumakas, & Vlahavas, 2009) ES Reinforcement learning MO ACC No No No Mixed 20 (avg. 

n=656) 

(Chatelain et al., 2010) CS,CO NSGA-II MO FPR,TPR No No Yes Mixed (UCI); 

handwritten digit 

recognition 

7 (avg. 

n=558) 

(dos Santos, 2012) EP GA, PSO, NSGA, NSGA-II, controlled 

elitist NSGA 

SO,MO ACC, DIV, DIM No No No Handwritten digit 

recognition 

2 (avg. 

n=99418) 

(Levesque et al., 2012) CO,EP NSGA-II MO FPR,TPR No No No Mixed (UCI) 6 (avg. 

n=563) 

(Zhao et al., 2016) CO 3DCH-EMOA, NSGA-II, GDE3, SMS-

EMOA, SPEA2, MOEA/D 

MO FPR,FNR,CCR No No No Mixed (UCI); 

spam classification 

20 (avg. 

n=802) 

(Zhao et al., 2018) CO 3DCH-EMOA,3DFCH-EMOA,Two-

Arch2, NSGA-III, MOEA/DD, RVEA, 

AR-MOEA, MPSO/D 

MO FPR,FNR,CCR No No No Mixed (UCI) 14 (avg. 

n=792) 

(Cheng et al., 2019) CO MOPA MO TPR,K-FPR No No No Mixed (UCI, 

libsvm) 

10 (avg. 

n=10674) 

This study ES NSGA-II MO FPR,FNR Yes Yes Yes BFP 21 (avg. 

n=6937) 

Table 2: Literature overview: optimization-based ensemble selection and classifier selection methods. EP=homogeneous ensemble pruning, ES=heterogeneous ensemble selection, CS=classifier selection, CO=classifier 

optimization. FPR=false positive rate, FNR=false negative rate, TPR=true positive rate, ACC=accuracy, FSC=F-score, LFT=lift, AUC=area under the ROC curve, APR=average precision, BEP= precision-recall break-even point, 

RMS=squared error, MXE=cross-entropy; DIV=ensemble diversity, CCR=classifier complexity ratio, DIM=ensemble size, K-FPR=partial range false positive rate. GA=genetic algorithm, 3DCH-EMOA=3D convex-hull-based 

evolutionary multiobjective algorithm; MOPA=multiobjective evolutionary algorithm for optimizing partial AUC, PSO=particle swarm optimization, NSGA=non-dominated sorting genetic algorithm,  
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These metrics include measures of classification accuracy derived from the confusion matrix 

(Caruana et al., 2004; Sylvester & Chawla, 2006), ROC space (Levesque et al., 2012), or statistical 

measures (Caruana et al., 2004).  

Other ensemble pruning approaches deploy multicriteria optimization in order to optimize several 

metrics simultaneously, such as measures of accuracy and ensemble diversity (dos Santos, Sabourin, & 

Maupin, 2008; Margineantu & Dietterich, 1997). While genetic algorithms (GA), and more specifically, 

multi-objective genetic algorithms (MOGA) have been used before in the setting of homogeneous 

ensemble pruning, they have not been deployed for heterogeneous ensemble selection. Moreover, most 

prior approaches focused on a selection in terms of accuracy, diversity, or both while to the best of our 

knowledge, no cost-sensitive applications exist in literature. This study contributes to the literature on 

GA-based ES through optimizing the entire cost space using a multicriteria approach with the purpose 

of creating cost-sensitive, heterogeneous ensemble classifiers that accommodate cost uncertainty.  

2.3 Cost-Sensitive Learning for Uncertain Misclassification Costs 

Finally, this study contributes to literature on methodologies to tackle cost-sensitive learning when 

misclassification costs are not or not fully known during model training and/or scoring. A relatively 

limited number of methods belonging to different algorithmic paradigms has been proposed to deal with 

the scenario of cost uncertainty. 

In Zadrozny & Elkan (2001), a method coined cost-sensitive decision-making is introduced for 

situations where costs are assumed instance-specific and known during model training, but unknown 

during model scoring. Their approach involves two components: the estimation of calibrated posterior 

probabilities and estimating instance value while applying a procedure for sample selection bias. 

Experiments in a setting of charitable donations showed improved performance over MetaCost 

(Domingos, 1999). Liu and Zhou (2010) adapt SVMs for scenarios in which cost information is 

provided in the form of an interval at training time. In an experimental validation, uniform probability 

distribution function for the cost intervals and the suggested CISVM algorithm is shown to outperform 

standard SVM and cost-sensitive SVM. A third approach by Wang and Tang (2012) assumes that exact 

cost information is missing, but that multiple cost matrices are given and involves the estimation of a 
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MiniMax classifier. The MiniMax classifier aims to minimize the maximum total cost over a set of 

equally likely cost matrices. An algorithm is presented that simplifies the estimation of the model to a 

number of standard cost-sensitive problems and sub-problems that only involve two cost matrices at a 

time. Both CISVM and Wang & Tang’s (2012) MiniMax classifier assume some cost information to be 

known at training time. A fourth approach is RiskBoost (Johnson, Raeder, & Chawla, 2015), a variant 

of AdaBoost which iteratively assigns higher weights to instances that are misclassified by the member 

classifier with the highest risk, where risk denotes the expected cost of that classifier given a likelihood 

distribution over a range of cost ratios. Experiments demonstrated improved AUC performance over a 

set of UCI datasets.  

Finally, our framework is related to a stream of approaches that pursue classifier or ensemble 

selection through evaluating and optimizing model performance in ROC space by means of multicriteria 

optimization (e.g. Cheng et al., 2019; Zhao et al., 2018). Classifier selection is different from ES in that 

it involves the selection of one single model out of a set of models at the scoring phase. Two approaches 

for classifier selection address cost uncertainty explicitly. First, Provost and Fawcett (2001) propose a 

method that suggests classifier selection through consulting the ROC convex hull (ROCCH) formed by 

a set of pre-trained models. Second, Chatelain et al. (2010) propose an evolutive model selection 

framework for SVM classifiers where hyperparameters are evolved using a multi-objective genetic 

algorithm in order to optimize classifiers in ROC space. Similar to Provost and Fawcett’s ROCCH 

approach (Provost & Fawcett, 2001), the authors propose the concept of a ROC front: the set of Pareto-

optimal SVM classifiers from which an optimal classifier is chosen during runtime. The authors provide 

suggestions on how this selection can be achieved based on whether cost information is available or 

not, but the method’s experimental validation is limited to a comparison in terms of AUC. The method 

described by Chatelain et al. (2010) is similar to ours since it prescribes a multicriteria optimization of 

ROC space. They introduce the concept of a ROC front that allows the analyst to choose a model in 

function of a desired tradeoff of false and true positive rates. However, there are several fundamental 

differences. Our approach is a method for selecting heterogeneous ensemble classifiers from a pre-

trained library of models while Chatelain et al. (2010) focus on SVM parameter optimization and model 
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selection. Second, instead of focusing on ROC space, our method optimizes cost space which allows 

for a more intuitive linkage of model performance to operating conditions. Third, instead of the ROC 

front, our approach depends on the determination of an ensemble nomination curve which is based on 

the concept of cost space. This allows for a more intuitive model selection based on an operating 

condition. Fourth, our method explicitly prescribes alternative usages depending on the degree of cost 

uncertainty during the model’s scoring phase. Finally, our experiments are more elaborate since they 

evaluate the models over a larger pool of datasets and in terms of multiple performance criteria and cost 

uncertainty scenarios. 

Table 2 provides an overview of related optimization-based ensemble selection, classifier selection 

and classifier optimization approaches. 

3 Methodology 

3.1 Cost and Brier Curves  

A metric used previously for evaluating BFP models in a cost-sensitive manner is expected 

misclassification cost (EMC) (Chen & Ribeiro, 2013). EMC involves an estimation of the average cost 

of using the model to classify one randomly chosen instance and can be written as: 

 𝐸𝑀𝐶 = 𝑝(−) ∗ 𝑝(+|−) + 𝑝(+) ∗ 𝑝(−|+) ∗ 𝛼 (1) 

In which p(−) and p(+) are the business survival and failure rates, respectively, p(+|−) is the 

false positive rate, and p(+|−) is the false negative rate, while α is the cost ratio, i.e. the ratio of the 

cost associated with a false negative error to the cost of a false positive error.  

This study assumes uncertainty with respect to misclassification costs. Hence, in order to create cost-

sensitive models under this condition, a more flexible framework is required. To this end, our method 

relies upon the notion of cost space in which cost curves (Drummond & Holte, 2006) and Brier curves 

(Hernández-Orallo, Flach, & Ramirez, 2011) can visualize a classifier’s cost-sensitive performance 

over a range of operating conditions. From Equation (1), it is clear that EMC depends on factors related 

to the scoring context, i.e. the failure rate and the cost ratio on the one hand, and on the classification 

performance of the model, i.e. the false negative and false positive rates, on the other. Cost curves 
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(Drummond & Holte, 2006) measure and visualize classifier cost performance over the full range of 

operating conditions, determined by misclassification cost ratios and class distributions. Hence, they 

accommodate uncertainty with respect to the scoring context, i.e. 𝛼  and 𝑝(−) in Equation (1). 

Specifically, the operating condition is coined ‘probability costs’ (𝑃𝐶(+)) and is quantified as a 

normalization of failure rate times the cost ratio:  

 𝑃𝐶(+) =
p(+)∗α

p(−)+p(+)∗α
 (2) 

Expected misclassification costs (EMC), when normalized by dividing by the highest possible EMC 

and rewritten as a function of 𝑃𝐶(+), can thus be expressed as 

𝐸𝑀𝐶𝑁𝑜𝑟𝑚(𝑃𝐶(+)) = (𝑝(−|+) − 𝑝(+|−)) ∗ 𝑃𝐶(+) + 𝑝(+|−)  (3) 

The cost curve is the lower envelope of all cost lines obtained for every possible threshold value 

used to convert numerical predictions into class predictions. This is shown in panel (a) of Figure 1.  

 

(a) (b) 

Figure 1: Example of cost lines, a cost curve (a), and corresponding Brier curve (b) of a binary classifier 

One disadvantage of cost curves, when used to assess performance of a classifier that outputs 

continuous predictions that reflect prediction confidence, is that they assume optimal threshold choice 

to transform continuous scores into class predictions, which can prove difficult in reality. Therefore, 

Brier curves were proposed by Hernández-Orallo, Flach, and Ramirez (2011) as an alternative where 

probabilistic loss is calculated, i.e. EMC obtained through converting predicted posterior probabilities 

using the operating condition 𝑃𝐶(+) as a threshold. Figure 1(b) shows an example of the Brier curve.  
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Given the widespread adoption and simplicity of cost curve, as well as the more realistic 

performance measurement of the Brier curve, the CSMES framework, which we introduce below, 

adopts both approaches and leaves the choice to the analyst.  

When no precise information is known on a classifier’s operating condition (misclassification cost 

ratio and/or failure rate), it is insightful to consider a model’s full performance profile in cost space. 

This is achieved by calculating the area under the cost curve (AUCC; Adams & Hand, 1999; Drummond 

& Holte, 2006), or equivalently, the area under the Brier curve (AUBC; Hernández-Orallo, Flach, & 

Ramirez, 2011), depending on the cost space framework that is considered. Both frameworks express 

global cost-sensitive performance without assuming a single specific cost ratio and are therefore 

relevant measures for evaluating model performance under high cost uncertainty at scoring time. When 

exact cost ratios remain unknown, but cost intervals or cost probability distributions are available at 

scoring time, AUCC and AUBC can be adapted to measure cost space performance for a restricted 

range of operating conditions, or for variable probabilities over this range. We denote these partial 

measures 𝑝𝐴𝑈𝐶𝐶 and 𝑝𝐴𝑈𝐵𝐶. The AUCC and pAUCC are given by the following equations: 

 𝐴𝑈𝐶𝐶 = ∫ 𝐸𝑀𝐶𝑁𝑜𝑟𝑚(𝑥)𝑑𝑥
1

0
 (4) 

 𝑝𝐴𝑈𝐶𝐶 = ∫ 𝐸𝑀𝐶𝑁𝑜𝑟𝑚(𝑥) ∗ 𝑃𝑟𝑜𝑏(𝑃𝐶(+) = 𝑥)𝑑𝑥
1

0
 (5) 

Where 𝑃𝑟𝑜𝑏(𝑃𝐶(+) = 𝑥) is a probability distribution function defined over the range of operating 

conditions 𝑃𝐶(+). The exact choice of this distribution depends on context. The area under the brier 

curve (AUBC) and partial area under the brier curve (pAUBC) can be calculated analogously. 

3.2 Non-Dominated Sorting Genetic Algorithm (NSGA-II) 

The simultaneous minimization of the false positive rate and false negative rate to obtain a set of 

models that are suitable for deployment under varying operating conditions is tackled using a multi-

objective GA. Purpose-built multicriteria optimization algorithms aim to identify the Pareto front, a set 

of solutions that are each optimal in their tradeoff between multiple objectives. Pareto-optimal solutions 

are solutions for which no objective function can be improved further without degrading performance 

on at least one other objective function. This study adopts a popular, widely used Pareto-based 
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evolutionary algorithm: NSGA-II or the fast elitist non-dominated sorting genetic algorithm (Deb et al., 

2002). NSGA-II is recognized as a highly efficient algorithm for multicriteria optimization. First, it 

adopts elitism, meaning that over subsequent generations, the fittest solutions can be preserved. Second, 

it enforces diversity in terms of objective functions (and thus, dispersion over the Pareto front range) 

using the concept of crowding distance and incorporating this distance measure into the assessment of 

solution fitness. We kindly refer the reader to Appendix A and to Deb et al. (2002) for a detailed 

explanation of the NSGA-II algorithm.  

3.3 Cost-Sensitive Multicriteria Ensemble Selection (CSMES) 

The method presented in this study for tackling cost-sensitive classification under cost uncertainty 

in a PFB context is denoted Cost-Sensitive Multicriteria Ensemble Selection (CSMES). The algorithm’s 

training and scoring phases are visualized in Figure 2 and Figure 3 respectively. These procedures are 

explained in detail in the following subsections.  

3.3.1 CSMES Training Phase 

The CSMES model training phase involves three steps: (i) the creation of a library of models, (ii) 

the optimization of cost space and (iii) the derivation of an ensemble nomination curve. Note that 

misclassifications costs, or their ratio, are assumed unknown during the training phase. 
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Figure 2: Graphical representation of training phase of CSMES 

3.3.1.1 Model Library Creation 

Analogous to other ensemble selection approaches (Caruana et al., 2004; Zhou, 2012), the first step 

of the algorithm involves the creation of a heterogeneous model library, where algorithms and their 

hyperparameters are varied to estimate multiple models using a training data set. The approach adopted 

in this study involves the inclusion of several well-known algorithms commonly available in analytical 

software environments. The exact selection adopted in the empirical validation of this study is revealed 

in Section 4.4. 

3.3.1.2 Cost Space Optimization 

The second step in the training phase of CSMES is heterogeneous ensemble selection. To this end, 

we adopt an approach similar to methods for classifier optimization and classifier selection (Chatelain 
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et al., 2010; Cheng et al., 2019; Levesque et al., 2012; Zhao et al., 2016). These studies suggest 

multicriteria optimization in order to evolve and select classifiers by optimizing ROC space, i.e. by 

simultaneously maximizing true positive rate and minimizing false positive rate. As such, this strategy 

can be easily applied to our objective, which is to select multiple ensemble classifiers that are optimal 

in cost space.  

As discussed in Section 3.1; in cost space, a classifier’s performance (EMC) depends on 𝑝(+|−); 

the false positive rate, and 𝑝(+|−); false negative rate and the operating condition. Through 

multicriteria optimization, and specifically NSGA-II, both the dimensions  𝑝(+|−); and 𝑝(+|−) are 

minimized simultaneously. Instead of obtaining a single optimal ensemble, a Pareto-optimal set of 

ensemble classifiers is obtained that each represent an optimal tradeoff between both metrics. In cost 

space, each Pareto-optimal ensemble is represented through a cost line. These candidate ensembles will 

thus each be optimal for a certain subrange of operating points (PC(+)). Note that in order to reduce the 

risk of overfitting, a validation data sample should be foreseen for this step. The Pareto-frontier obtained 

through optimizing both 𝑝(+|−); and 𝑝(+|−) corresponds to the lower envelope of cost curves.  

Figure 2 illustrates how three Pareto-optimal classifiers (the colored dots in the upper plot and 

similarly colored dashed lines in the lower plot) are optimal in cost space: they minimize EMC for 

different operating point ranges (shown in the lower plot). 

Brier curves relax the somewhat unrealistic assumption of optimal threshold choice through a 

simple choice rule for classification thresholds. Consequently, the calculation of EMC values that 

constitute the Brier curve framework differs slightly from those used in cost curves. In the case of the 

Brier curves, a cutoff is chosen equal to the operating condition, whilst in the case of the cost curve, the 

cutoff that minimizes EMC is assumed. However, in our approach, the optimization of cost space is 

identical for both frameworks. Since an arbitrary threshold of 0.5 is used to convert a candidate 

ensemble’s predictions into class predictions which are then used to calculate 𝑝(+|−); and 𝑝(+|−), 

the influence of the threshold choice is cancelled in this stage, and a single optimization is needed to 

optimize both cost space frameworks simultaneously. 
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3.3.1.3 Ensemble Nomination Curve Derivation 

The third step in the CSMES training phase is the derivation of an ensemble nomination curve. This 

curve is the lower envelope of cost or Brier curves of all pareto-optimal ensemble classifiers obtained 

in the previous step. These cost or Brier curves are calculated for the validation sample. The ensemble 

nomination curve determines candidate ensemble classifier operating point/cost ratio competence 

regions, i.e., which candidate ensemble classifiers are optimal for which operating condition ranges. 

Figure 2 shows an example of a cost curve-based ensemble nomination curve and illustrates how 

different candidate ensembles are optimal for different operating conditions. 

3.3.2 CSMES Scoring Phase 

The scoring phase of CSMES involves three steps: (i) determination of the degree of cost 

uncertainty, (ii) ensemble classifier nomination and (iii) model scoring. These are visualized in Figure 

3. 

3.3.2.1 Degree of Cost Uncertainty Determination 

This study aims at the conception of a cost-sensitive method for BFP to be deployed in situations 

of cost uncertainty. As detailed above, CSMES assumes cost uncertainty during model training 

(including the ensemble selection process), while during model deployment, no assumptions are made 

in terms of cost uncertainty. The first step of the scoring phase involves the determination of the degree 

of cost uncertainty remaining at the scoring phase. Three cost uncertainty scenarios are possible: either 

(i) high cost uncertainty: the uncertainty about the cost ratio remains when model predictions are due; 

(ii) partial cost uncertainty: there is still uncertainty, but a probability distribution is known over the 

range of cost ratios, and (iii) no cost uncertainty: the exact cost ratio is known.  
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Figure 3: Graphical representation of scoring phase of CSMES 

3.3.2.2 Ensemble Classifier Nomination 

Depending on the degree of cost uncertainty, three alternative strategies for choosing the ensemble 

that will deliver predictions are proposed. To avoid any confusion with the term ensemble selection, 
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this step is henceforward denoted ensemble classifier nomination. First, under the assumption of 

absence of cost uncertainty, a cost ratio is known, thus 𝑃𝐶(+) (Equation 2) can be determined and the 

ensemble classifier nomination curve can be directly used to nominate to the optimal ensemble that 

minimizes EMC. Second, under the assumption of full or partial cost uncertainty a different strategy for 

ensemble nomination is required. For these settings, it is possible to evaluate a classifier’s theoretical 

performance in cost space, i.e. over the range of operating conditions that are likely to occur at the 

scoring phase. Specifically, in the scenario of full cost uncertainty we rely upon the AUCC and AUBC 

measure that express a classifier’s performance throughout cost space. The ensemble classifier with the 

best (smallest) overall AUCC or AUBC is selected. Analogously, in the scenario of partial cost 

uncertainty, pAUCC and pAUBC are relied upon to reveal which ensemble classifier performs best in 

a part of cost space, i.e. over a range of operating conditions. The three ensemble nomination strategies 

are visualized in Figure 3. 

The subsequent and final step is trivial: the models constituting the nominated ensemble deliver 

individual predictions which are aggregated through averaging. 

4 Empirical validation 

4.1 Data 

To validate the CSMES framework, a benchmarking experiment with several datasets provided by 

two global data aggregators is conducted. These datasets contain information about a selection of 

French, Italian and Belgian companies that publish consolidated annual accounts, originating from 

various industries. Ample research has addressed BFP at a sector level (e.g. Doumpos et al., 2017; 

Lanine & Vennet, 2006) while other authors (Brigham & Gapenski, 1994; Dimitras, Zanakis, & 

Zopounidis, 1996; McGurr & DeVaney, 1998) have suggested to develop models for BFP using 

homogeneous samples in terms of sector. We believe that the inclusion of multiple data sets from several 

countries enhances the generalizability of the reported results. Table 3 contains detailed information on 

the 21 data sets considered in this study. Note that companies are classified into industry categories 

based upon their 8-digit Standard Industry Code (SIC). 
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Dataset Country Industry 
# 

features 

# 

companies 

Failure 

rate 

1 France Construction industries (15.000.000 <= SIC 8 < 18.000.000) 19 5 678 33.74% 

2 France Manufacturing (20.000.000 <= SIC 8 < 40.000.000) 19 3 266 21.68% 

3 France Transportation, communications and utilities (40.000.000 <= SIC 8  < 50.000.000) 19 1 787 16.96% 

4 France Wholsale trade (50.000.000 <= SIC 8 < 52.000.000) 19 3 337 17.44% 

5 France Retail trade (52.000.000 <= SIC 8 < 60.000.000) 19 6 450 23.55% 

6 France Finance, insurance and real estate (60.000.000 <= SIC 8 < 68.000.000) 19 2 874 6.51% 

7 France Service industries (70.000.000 <= SIC 8 < 89.000.000) 19 8 576 15.24% 

8 Italy Construction industries (15.000.000 <= SIC 8 < 18.000.000) 19 3 801 14.29% 

9 Italy Manufacturing (20.000.000 <= SIC 8 < 40.000.000) 19 5 093 12.84% 

10 Italy Transportation, communications and utilities (40.000.000 <= SIC 8  < 50.000.000) 19 1 837 10.02% 

11 Italy Wholsale trade (50.000.000 <= SIC 8 < 52.000.000) 19 3 671 12.45% 

12 Italy Retail trade (52.000.000 <= SIC 8 < 60.000.000) 19 3 309 9.34% 

13 Italy Finance, insurance and real estate (60.000.000 <= SIC 8 < 68.000.000) 19 3 732 4.02% 

14 Italy Service industries (70.000.000 <= SIC 8 < 89.000.000) 19 6 579 5.46% 

15 Belgium Construction industries (15.000.000 <= SIC 8 < 18.000.000) 108 9 976 4.54% 

16 Belgium Manufacturing (20.000.000 <= SIC 8 < 40.000.000) 108 10 430 2.73% 

17 Belgium Transportation, communications and utilities (40.000.000 <= SIC 8  < 50.000.000) 108 5 339 4.57% 

18 Belgium Wholsale trade (50.000.000 <= SIC 8 < 52.000.000) 108 15 896 3.04% 

19 Belgium Retail trade (52.000.000 <= SIC 8 < 60.000.000) 108 13 626 5.19% 

20 Belgium Finance, insurance and real estate (60.000.000 <= SIC 8 < 68.000.000) 108 10 055 1.64% 

21 Belgium Service industries (70.000.000 <= SIC 8 < 89.000.000) 108 20 364 2.73% 

Table 3: Dataset characteristics 

The outcome variable, a binary business failure indicator (1=business failure; 0= survival) indicates 

the event of bankruptcy over a time horizon of 12 months. The predictors common to all datasets are 

financial ratios and variables related to cash flow (McGurr & DeVaney, 1998). Analogous to (Ross et 

al., 2002), the ratios considered in this study can be classified into liquidity ratios, long-term solvency 

ratios, asset management ratios and profitability ratios. Belgian datasets include additional 

firmographics and variables related to payment timeliness. Appendix B provides a detailed overview of 

all predictors included in the data sets. 

Three common preprocessing steps were applied to all data sets. The first step involves the detection 

and treatment of outlier values (Bou-Hamad, Larocque, & Ben-Ameur, 2011; Chava & Jarrow, 2004). 

To this end winsorization is applied: variables’ ranges are reduced by truncating their values below the 

2.5th and above the 97.5th percentiles. Second, feature selection, commonly considered good practice in 

the domain of bankruptcy prediction (Abellán & Castellano, 2017; Tsai, 2009) was applied. 

Specifically, t-test-based feature selection, a filter-based feature selection approach that compares group 

means and has seen prior applications in BFP literature (e.g. Tsai, 2009) was chosen. Features for which 

failing and healthy companies are significantly different (α=0.05) are retained. Finally, as Table 3 

shows, failure rates in the data sets range from 1.64 to 33.74 percent. To counter the potential negative 
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impact that class imbalance exerts on many predictive methods (Weiss, 2004), undersampling, a 

common practice in BFP (Kotsiantis et al., 2007) was applied to the training data sets through random 

removal of majority-class instances (healthy businesses) until classes are evenly distributed. 

4.2 Evaluation Framework and Metrics 

As detailed in Section 3, this study assumes cost uncertainty during the model training phase, while 

in the scoring phase CSMES supports three scenarios of full, partial, and no cost uncertainty. Hence, 

CSMES and benchmark methods are evaluated under each assumption of cost uncertainty, and in a 

cost-sensitive manner. To this end, two categories of performance measures are considered: (i) 

misclassification cost (EMC), and (ii) aggregated cost space-measures (AUCC, AUBC, pAUCC and 

pAUBC). Figure 4 visualizes the evaluation framework, indicating the three evaluation scenarios with 

respect to cost uncertainty, as well as the performance metrics considered in each of these scenarios. 

First, in each of the three cost uncertainty scenarios, a comparison is made in terms of EMC. The 

objective of this comparison is to assess methods in terms of the metric we are ultimately hoping to 

minimize, even when the exact costs associated with misclassifications are not known. An estimate of 

misclassification cost can be calculated for any model by simply simulating an evaluation condition, 

i.e. randomly drawing a specific cost ratio and calculating EMC as defined in Equation (3) in terms of 

this cost ratio. By repeating this process for different cost ratios and aggregating results, one obtains an 

estimate of a classifier’s true cost-sensitive performance over a range of operating conditions. Hence, 

EMC is reported for all three scenarios of cost uncertainty. Experimental results are reported over a 10-

fold cross-validation.  

To cover a broad range of operating conditions, 10 cost ratios are randomly drawn from a range of 

1 to 20 for each dataset and cross-validation fold. This cost ratio range was suggested previously by 

Chen & Ribeiro (2013). EMC is calculated as a function of the simulated cost ratios, which results in 

100 (10 cross-validation folds times 10 cost ratios) EMC values per algorithm and dataset. The detailed 

procedure used to simulate cost ratios is provided in Appendix D. The aggregation of these results and 

a statistical comparison allows for a cost-sensitive evaluation of CSMES and the benchmark algorithms 

in cost space. 
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Second, aggregated cost space measures are reported. These are more theoretical in nature since 

they do not assume a specific cost ratio, but instead summarize cost space performance by calculating 

the area (or partial area) under the cost curve or Brier curve. On the one hand, AUCC and AUBC (see 

Section 3.3.2.2) measure a classifier’s performance throughout cost space. They are relevant evaluation 

measures when no cost information is assumed available at the scoring phase and are therefore reported 

for this scenario only. On the other hand, pAUCC and pAUBC measure a classifier’s performance for 

a part of the cost space, i.e. for an interval of operating conditions and are therefore reported for the 

scenario of partial cost uncertainty. The underlying distribution over operating conditions (i.e., 

𝑃𝑟𝑜𝑏(𝑃𝐶(+) = 𝑥) in the equations of pAUCC and pAUBC; see Equations 9 and 10) should be chosen 

in terms of the particular nature of cost uncertainty that exists. In our experiments, the beta-distribution 

is chosen since it is well-suited to express varying degrees of certainty around expected operating point 

values that lie within the interval [0,1] (Johnson, Raeder, & Chawla, 2015). Similar to the procedure for 

randomly simulating hypothetical cost ratios, 10 beta-distributions for operating conditions are 

randomly generated per fold and dataset. The beta-distribution is characterized by two parameters, α 

and β that determine its shape. Instead of randomizing α and β directly, they are determined  as a 

function of a desired (mean) operating condition, and a randomly generated desired standard deviation 

for the operating condition. The desired average operating conditions are derived from the simulated 

cost ratios, as described above, through application of Equation (3). The standard deviations are 

randomly chosen between 0.02 and 0.25 to cover various degrees of cost uncertainty. The result is a set 

of probability density functions that represent various degrees of cost ratio uncertainty around operating 

conditions that cover the entire range of 𝑃𝐶(+).  

In the scenario in which there is no cost uncertainty at the scoring phase, the cost ratio used for 

ensemble classifier nomination in CSMES is consistently the same as the one used to calculate EMC 

values for model comparisons. When partial cost uncertainty is assumed for model scoring, cost ratios 

to calculate EMC values are derived from operating conditions (PC(+)) drawn from the probability 

density function  of the simulated beta distribution that is assumed for the calculation of pAUCC and 

pAUBC values used for ensemble classifier nomination. 
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4.3 Benchmark algorithms 

To validate CSMES as a robust, cost-sensitive method in the presence of various degrees of cost 

uncertainty at the model deployment stage, it is compared to three sets of benchmark algorithms. First, 

a comparison is made to three algorithms that have been specifically designed as cost-sensitive 

classifiers when cost information is unknown during the model training stage: CISVM (Liu & Zhou, 

2010), RiskBoost (Johnson, Raeder, & Chawla, 2015) and the minimax classifier by (Wang & Tang, 

2012) (henceforward labeled MiniMax). While RiskBoost assumes full cost uncertainty, CISVM and 

MiniMax require some cost information to be provided. However, in this study they will be evaluated 

in the assumption of full cost uncertainty during model training, through providing a wide cost interval 

to CISVM, and a wide set of cost ratios to MiniMax. 

The second set of benchmark algorithms are alternative heterogeneous ensemble classifier and 

ensemble selection approaches that are less complex in nature than CSMES, but built using the same 

model library. The purpose of this second comparison is to verify whether the performance of CISVM 

can be matched or surpassed by simpler strategies that either avoid optimization of cost space and an 

ensemble nomination step at the scoring phase, or that avoid ensemble selection altogether. One crucial 

benchmark (Full) produces predictions through simply averaging outputs of all models in the library. 

Other benchmarks in this category also take advance of cost-space-wide performance, but in a different 

way than CSMES. A variation on the full library ensemble is a weighted variant that uses AUCC or 

AUBC performance measures of individual models (Weighted). Three additional benchmarks 

heuristically select the single best model (Best), the top ten (Top10) and top twenty-five (Top25) of best 

performing models, respectively. Note that these ensemble selection strategies select models using area 

under the cost or Brier curve performance on a validation sample.  

A third set of competitive benchmarks consists of ensemble or classifier selection approaches based 

on evolutionary algorithms The first benchmark (GHS-ES) is an adaptation of Caruana, Munson, and 

Niculescu-Mizil (2006)’s greedy hillclimb search approach, which was introduced as a versatile 

approach for heterogeneous ensemble selection where the analyst is interested in optimizing arbitrary 

performance metrics. We also, based on work and findings by dos Santos (2012) and dos Santos, 
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Sabourin, and Maupin (2008), include three ensemble selection strategies based on single-criterion and 

multi-criteria evolutionary optimization. In (dos Santos, 2012), it was found that for single-objective 

ensemble selection, genetic algorithms and particle swarm optimization outperformed other methods to 

maximize accuracy, and that for multi-criteria ensemble selection focusing on maximizing accuracy 

and diversity, NSGA-2 outperformed NSGA and controlled elitist NSGA. Several measures for 

ensemble diversity were compared, and ambiguity was found to provide better results. Based on these 

findings, we implement three benchmarks: (i) ensemble selection based on genetic algorithms, 

optimizing cost space through a minimization of AUCC or AUBC (ES-GA); (ii) a similar approach but 

based on optimization through particle swarm optimization (ES-PSO) and (iii) multicriteria ensemble 

selection using NSGA-II that optimizes cost space (AUCC/AUBC) and ensemble diversity (ambiguity) 

simultaneously (MGA-ES). Finally, we adopt the SVM parameter optimization and model selection 

approach by Chatelain et al. (2010) (MGA-SVM-CS).  

4.4 Experimental Settings 

All experimental results are reported over a 10-fold cross-validation. In each fold, the 9 data parts 

not used for testing are further split evenly into a training sample, and a validation sample. In ensemble 

selection algorithms, it is common practice to select models on a data sample that was not involved in 

the training of the models in the model library (Caruana et al., 2004). Moreover, the availability of a 

validation sample allows for an optimization of model in terms of an arbitrarily chosen performance 

metric. Hence, all ensemble selection algorithms involved in the empirical benchmarking deploy the 

validation sample for model selection purposes, while for other algorithms, the validation sample is 

used for an exhaustive search for the best hyperparameter configuration.  

Ensemble selection algorithms require the creation of a model library. For the empirical validation 

of the framework, both algorithms and their hyperparameters are varied to estimate multiple models 

that are commonly available in data analytics software environments and have been used in BFP before. 

Appendix C shows the algorithms that are included, the varied hyperparameters, and the value ranges 

over which hyperparameters are varied. Note that five model categories are included: homogeneous 
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ensemble learners, decision trees, data mining algorithms, statistical methods, and finally a number of 

conventional cost-sensitive algorithms. 

CSMES optimizes cost space through NSGA-II configured for real-coded chromosomes, 

population sizes of 100 individuals and termination after 100 generations. This configuration also 

applies to the benchmarks based on evolutionary algorithms (PSO-ES, GA-ES, MGA-ES and MGA-

SVM-CS). As no cost information is assumed known in this paper, CISVM focuses on a cost ratio range 

of 1 to 20, consistent with the range from which cost ratios are sampled for EMC calculations. 

Analogously, MiniMax is configured to focus on the same range and optimizes for 5 cost ratios: 1, 5, 

10, 15 and 20. CISVM is based on a radial basis function kernel and its two parameters gamma and the 

regularization parameter C, are optimized through grid search. Depending on the cost space framework, 

the best model is selected in terms of AUCC or AUBC performance on the validation sample. Their 

values ranges are chosen identical to the ones for the SVM models in the model library (see Appendix 

C). The number of iterations in MiniMax and RiskBoost is set to 100. 

Statistical comparisons of CSMES and benchmark algorithms are accomplished by the Friedman 

non-parametric anova (Friedman, 1937). This approach was recommended by Demšar (2006), and has 

subsequently been adopted in several studies that compare multiple classifiers across multiple data sets 

(e.g. Lessmann et al., 2015). The test ranks methods for every dataset using a metric of choice and uses 

the average ranks to determine whether they differ significantly. Pairwise post-hoc tests can be 

administered using the following test statistic for comparing algorithms i and j  

 𝑍 =
(𝑅𝑖−𝑅𝑗)

√
𝑘(𝑘+1)

6𝑑

 (6) 

Where k is the number of methods, d the number of datasets and 𝑅𝑗 denotes the average rank of 

algorithm j. The probabilities associated with these statistics need to be corrected for family-wise error 

introduced by making multiple algorithm comparisons. In this study, Li’s procedure (Li, 2008) is used 

to this end, as recommended by García et al. (2010). 
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CSMES, as well as all benchmark algorithms presented in Section 4.3 are implemented in R (R 

Core Team, 2019). Functions to implement CSMES are made publicly available in the new CSMES R 

package (De Bock, Coussement, & Lessmann, 2020) accessible via http://cran.r-project.org. 

5 Results 

This section first presents the results of an experimental comparison of CSMES to other algorithms 

in three scenarios: high, partial, and no cost uncertainty in BFP in terms of classification performance. 

Top-level Friedman test results are included in Appendix E. All global tests indicate the presence of 

significantly different performance levels between the compared algorithms and therefore, post-hoc 

comparisons that are discussed in detail in subsections 5.1, 5.2 and 5.3 are justified. A fourth subsection 

(Section 5.4) discusses a comparison of CSMES to other algorithms in terms of computational costs.  

5.1 High Cost Uncertainty During Scoring Phase 

A first set of comparisons is made in the scenario of high cost uncertainty. This scenario implies 

that no cost ratio information is known during the prediction or soring phase. As outlined before, the 

ensemble nomination in CSMES is here based on the lowest area under the cost or Brier curve, 

depending on the cost space framework adopted. The first comparison is made between CSMES and 

alternative algorithms designed for cost-sensitive learning under cost uncertainty: CISVM, RiskBoost 

and MiniMax.  

Table 4 presents average ranks and adjusted p-values of post-hoc pairwise comparison test results 

based on Li’s procedure for the comparison of CSMES to CISVM, RiskBoost and MiniMax. A first 

comparison involves the generalized performance in cost space. For the cost curve-based model 

selection and evaluation, this is measured as the area under the cost curve (AUCC), while the area under 

the Brier curve (AUBC) is the equivalent for a Brier curve-based evaluation. CSMES outperforms all 

three benchmark methods in terms of AUCC. In terms of AUBC, CSMES outperforms MiniMax, but 

is, despite a lower average rank, not found to significantly outperform CISVM or RiskBoost.  

Cost space 

paradigm  

Evaluation 

metric  

Algorithm 

CISVM RiskBoost MiniMax CSMES  

Cost curve AUCC Avg. rank 2.3801 2.7143 3.9048 1 

    Adj. p-value 0.0005*** 0.000*** 0.0000***  

http://cran.r-project.org/
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  EMC Avg. rank 2.0476 2.9214 3.3333 1.6976 

    Adj. p-value 0.0000*** 0.0000*** 0.0000***  

Brier curve AUBC Avg. rank 2.2857 2.1905 3.8571 1.6667 

    Adj. p-value 0.1886 0.1202 0.0000***  

  EMC Avg. rank 2.1857 2.9024 3.2881 1.6238 

    Adj. p-value 0.0000*** 0.0000*** 0.0000***  

Table 4: Cost-uncertainty accommodating cost-sensitive benchmark results when cost ratios are unknown at scoring 

time (high cost uncertainty). ‘***’ indicates a significant result at α=0.001. 

A second comparison considers simulated cost ratios and compares models based on the expected 

misclassification cost for these cost ratios. Here, it is clear that CSMES outperforms all three 

benchmarks, regardless of the cost space paradigm chosen. This latter result indicates that CSMES, 

where an optimal ensemble is nominated by evaluating overall cost space performance, minimizes 

misclassification costs effectively, even when there is no information about the misclassification cost 

ratio that applies. Based on average ranks, CISVM is the closest competitor.  

Next, CSMES is compared to alternative ensemble and ensemble selection strategies that depend 

on the same heterogeneous model library. Given the increased complexity of CSMES in comparison to 

other ensemble selection strategies (most notably, the ensemble nomination step), it is important to 

verify whether alternative, simpler strategies for ensemble selection in cost space could match or even 

surpass the performance of CSMES. Table 5 presents the post-hoc results of this comparison. 

Cost space 

paradigm 

Evaluation 

metric 
 Algorithm 

 Full Weighted Best Top10 Top25  CSMES 

Cost curve AUCC Avg. rank 2.2836 3.1905 4.0476 4.7142 5.0952  1.6667   
Adj. p-value 0.2836 0.0103** 0.0000*** 0.0000*** 0.0000***    

EMC Avg. rank 3.5119 3.9157 3.3024 3.6386 3.6886  2.9429   
Adj. p-value 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***   

Brier curve AUBC Avg. rank 3.4762 3.6190 3.6667 3.9528 4.8571  1.4285   
Adj. p-value 0.0004*** 0.0002*** 0.0002*** 0.0000*** 0.0000***    

EMC Avg. rank 3.4438 3.9038 3.3171 3.5547 3.6505  3.13   
Adj. p-value 0.0000*** 0.0000*** 0.0005*** 0.0000*** 0.0000***   

          

Table 5: Ensemble selection benchmark results when cost ratios are unknown at scoring phase (high cost 

uncertainty). ‘**’ indicates a significant result at α=0.05, while ‘***’ indicates a significant result at α=0.001. 

The following conclusions emerge. First, in a cost-curve based evaluation, CSMES significantly 

outperforms basic ensemble and classifier selection strategies. The only exception is the full library 

ensemble which does not perform significantly worse in comparison to CSMES. Second, in a Brier 

curve-based evaluation, overall, CSMES dominates all other approaches in terms of global performance 

(AUBC). Third, when evaluating expected misclassification costs for specific cost ratios, the dominance 
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of CSMES becomes more pronounced, since it significantly outperforms all other approaches, both for 

the cost curve and the Brier curve.  

Cost space 

paradigm 

Evaluation 

metric 

 Algorithm 

 

GA-ES PSO-ES GHS-ES MGA-ES MGA-

SVM-CS 

CSMES 

Cost curve AUCC Avg. rank 2.9524 2.9524 3.7619 3.4762 5.4762 2.3810   
Adj. p-value 0.3223 0.3223 0.2414 0.7862 0.0000***   

EMC Avg. rank 3.0571 3.3752 3.2324 3.1776 4.6152 3.0571   
Adj. p-value 0.0000*** 0.0000*** 0.0024** 0.0369** 0.0000***  

Brier curve AUBC Avg. rank 2.5714 3.2381 3.8571 1.7143 6 3.6190   
Adj. p-value 0.1133 0.5894 0.6801 0.0024** 0.0002***   

EMC Avg. rank 3.3067 3.4710 3.8981 3.1814 4.3276 2.8152   
Adj. p-value 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***  

         

Table 6: Optimization-based ensemble and classifier selection benchmark results when cost ratios are unknown at 

scoring phase (high cost uncertainty). ‘**’ indicates a significant result at α=0.05, while ‘***’ indicates a significant 

result at α=0.001. 

Finally, Table 6 summarizes post-hoc comparison test results for CSMES and alternative 

optimization-based ensemble and classifier selection approaches. In terms of AUCC and AUBC, 

CSMES consistently outperforms MGA-SVM-CS, a benchmark explicitly designed for accommodating 

cost uncertainty. Multi-criteria ensemble selection simultaneously minimizing AUCC/AUBC and 

maximizing diversity (MGA-ES) is outperformed, while single-criterion optimization-based ensemble 

selection based on genetic algorithms, particle swarm optimization and greedy hillclimb search (GA-

ES, PSO-ES and GHS-ES) are not outperformed. Similar results are found for brier curve-based 

evaluations. In terms of expected misclassification costs, the dominance of CSMES is evident: all 

benchmark algorithms are significantly outperformed; both for cost curve and brier-curve model 

evaluations.  

In summary, since we believe a cost-ratio based evaluation corresponds closer to reality than 

theoretical measures such as AUCC and AUBC, it is fair to conclude that in a scenario of high cost 

uncertainty, CSMES proves its value and demonstrates that a multi-criterion optimization of cost space 

and an ensemble nomination based on generalized cost space performance is a solid strategy to tackle 

cost uncertainty when a model for business failure prediction is consulted to generate predictions. 

5.2 Partial Cost Uncertainty During Scoring Phase 

The second scenario assumes a partial resolving of cost uncertainty at the stage where predictions 

are required. As explained earlier, this translates to the knowledge of a probability distribution over the 
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range of possible operating conditions. In CSMES, ensemble nomination is then based upon the 

performance of the candidate ensembles in a part of cost space, i.e. based on pAUCC or pAUBC. 

CSMES is again evaluated through a comparison to other cost uncertainty-accommodating methods 

(Table 7), alternative heuristic ensemble selection approaches (Table 8) and optimization-based 

ensemble and classifier selection approaches (Table 9). In the comparison to CISVM, RiskBoost and 

MiniMax, CSMES now consistently outperforms all benchmarks in a highly significant manner. In first 

instance, this applies to the theoretical measures of partial AUCC (pAUCC) and partial AUBC 

(pAUBC) that indicate how well methods perform given the distribution over cost space for which they 

also have been trained. Moreover, an evaluation for specific simulated cost ratios that have been 

randomly drawn from the probability distribution over operating conditions demonstrates that CSMES 

extends this superiority to a more specific and realistic, cost-ratio based comparison. A comparison to 

alternative ensemble and ensemble selection approaches leads to identical findings as in the scenario of 

full cost uncertainty. In terms of pAUCC, the full library ensemble, and the single-criterion ensemble 

selection based on genetic algorithms constitute strong competitors and do not perform significantly 

worse in comparison to CSMES. In a Brier curve-based evaluation, however, all alternative ensemble 

approaches result in worse performance. The comparison with respect to specific misclassification cost 

ratios is clearly in favor of CSMES. None of the alternative approaches matches the performance level 

of CSMES in terms of expected misclassification cost. 

Cost space 

paradigm  

Evaluation 

metric  

Algorithm 

CISVM RiskBoost MiniMax CSMES  

Cost curve pAUCC Avg. rank 2.5833 2.4762 3.8786 1.0620 

    Adj. p-value 0.0000*** 0.0000*** 0.0000***  

  EMC Avg. rank 2.0405 2.9143 3.3333 1.7119 

    Adj. p-value 0.0002*** 0.0000*** 0.0000***  

Brier curve pAUBC Avg. rank 2.5083 2.825 3.3512 1.3155 

    Adj. p-value 0.0000*** 0.0000*** 0.0000***  

  EMC Avg. rank 2.1905 2.9 3.2857 1.6238 

    Adj. p-value 0.0000*** 0.0000*** 0.0000***  

Table 7: Cost-uncertainty accommodating cost-sensitive benchmark results when cost ratios are partially known at 

scoring time (partial cost uncertainty). ‘***’ indicates a significant result at α=0.001. 
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Cost space 

paradigm 

Evaluation 

metric 
 Algorithm 

 Full Weighted Best Top10 Top25  CSMES 

Cost curve pAUCC Avg. rank 3.4962 3.9107 3.2814 3.6164 3.6774  3.0179   
Adj. p-value 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***    

EMC Avg. rank 3.9107 3.4962 3.2814 3.6164 3.6774  3.0179   
Adj. p-value 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***   

Brier curve pAUBC Avg. rank 3.4669 3.9240 3.3086 3.5419 3.6505  3.1081   
Adj. p-value 0.0000*** 0.0000*** 0.0005*** 0.0000*** 0.0000***    

EMC Avg. rank 3.4669 3.9240 3.3086 3.5419 3.6505  3.1081   
Adj. p-value 0.0000*** 0.0000*** 0.0005*** 0.0000*** 0.0000***   

  

        

Table 8: Ensemble selection benchmark results when cost ratios are partially known at scoring phase (partial cost 

uncertainty). ‘***’ indicates a significant result at α=0.001. 

Cost space 

paradigm 

Evaluation 

metric 

 Algorithm 

 

GA-ES PSO-ES GHS-ES MGA-ES MGA-

SVM-CS 

CSMES 

Cost curve pAUCC Avg. rank 3.1176 3.1302 3.3905 3.2974 4.9143 3.15   
Adj. p-value 0.6821 0.7321 0.0001*** 0.0383** 0.0000***   

EMC Avg. rank 3.5 3.3593 3.2098 3.1745 4.6114 3.145   
Adj. p-value 0.0000*** 0.0005*** 0.4013 0.6091 0.0000***  

Brier curve pAUBC Avg. rank 2.415 2.9969 4.7031 3.0769 4.8645 2.9436   
Adj. p-value 0.0000*** 0.3556 0.0000*** 0.0314** 0.0000***   

EMC Avg. rank 3.2733 3 .4726 3.8848 3.1493 4.3386 2.8814   
Adj. p-value 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***  

         

Table 9: Optimization-based ensemble and classifier selection benchmark results when cost ratios are partially 

known at scoring phase (partial cost uncertainty). ‘**’ indicates a significant result at α=0.05, while ‘***’ indicates a 

significant result at α=0.001. 

Finally, the comparison of CSMES to the more competitive optimization-based ensemble selection 

and classifier selection benchmarks (Table 9) shows a more nuanced result. On the one hand, in terms 

of partial AUCC and partial AUBC, CSMES outperforms both benchmarks based on multicriteria 

optimization (MGA-ES and MGA-SVM-CS) as well as ensemble selection based on greedy hillclimb 

search (GHS-ES). However, no clear-cut advantage over GA-based and PSO-based ensemble selection 

is found. On the other hand, in terms of expected misclassification costs, CSMES is superior over all 

benchmarks, both for cost-curve-based and brier-curve-based evaluation.  

5.3 No Cost Uncertainty: Known Cost Ratios During Scoring Phase 

The final analysis involves the scenario of no cost uncertainty, which corresponds to settings where 

the cost ratio is known when business failure predictions are required. Under this assumption, only one 

evaluation metric is reported which is expected misclassification cost. CSMES significantly 

outperforms CICSVM, RiskBoost and MiniMax. (see Table 10), and all alternative heuristic ensemble 

and ensemble selection strategies, on the other (see Table 11). ). This observation holds for both the 

cost curve and the Brier curve model evaluation paradigm. Compared to optimization-based ensemble 
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selection and classifier selection approaches, CSMES consistently performs at least as well as the 

benchmark algorithms, and ,with the exception of ensemble selection based on greedy hillclimb 

searching minimizing AUCC, it outperforms all benchmark algorithms (Table 12). Hence, when 

misclassification cost ratios are not known at the time of model training, but become known at the time 

of model scoring, the multicriteria optimization of cost space, in tandem with ensemble nomination in 

terms of the applicable operating condition puts CSMES at a significant advantage as a method for 

performing heterogeneous ensemble selection. 

Cost space 

paradigm  

Evaluation 

metric  

Algorithm 

CISVM RiskBoost MiniMax CSMES  

Cost curve EMC Avg. rank 2.0666 2.9071 3.3310 1.6952 

    Adj. p-value 0.0000*** 0.0000*** 0.0000***  

Brier curve EMC Avg. rank 2.1881 2.9 3.2857 1.6262 

    Adj. p-value 0.0000*** 0.0000*** 0.0000***  

Table 10: Cost-uncertainty accommodating cost-sensitive benchmark results when cost ratios are known at scoring 

time (no cost uncertainty). ‘***’ indicates a significant result at α=0.001. 

Cost space 

paradigm 

Evaluation 

metric 
 Algorithm 

 Full Weighted Best Top10 Top25  CSMES 

Cost curve EMC Avg. rank 3.4855 3.915 3.2881 3.6267 3.6826  3.0021  

 Adj. p-value 0.0000*** 0.0000*** 0.0005*** 0.0000*** 0.0000***   

Brier curve EMC Avg. rank 3.4660 3.9181 3.3105 3.5417 3.6481  3.1157  

 Adj. p-value 0.0000*** 0.0000*** 0.0007*** 0.0000*** 0.0000***   

Table 11: Ensemble selection benchmark results when cost ratios are known at scoring phase (no cost uncertainty). 

‘***’ indicates a significant result at α=0.001. 

Cost space 

paradigm 

Evaluation 

metric 

 Algorithm 

 

GA-ES PSO-ES GHS-ES MGA-ES MGA-

SVM-CS 

CSMES 

Cost curve EMC Avg. rank 3.5052 3.3529 3.2140 3.1755 4.6145 3.1378   
Adj. p-value 0.0000*** 0.0004*** 0.2781 0.5147 0.0000***  

Brier curve EMC Avg. rank 3.2504 3.4695 3.8814 3.1445 4.3407 2.9133   
Adj. p-value 0.0000*** 0.0000*** 0.0000*** 0.0000*** 0.0000***  

         

Table 12: Optimization-based ensemble and classifier selection benchmark results when cost ratios are known at 

scoring phase (no cost uncertainty). ‘**’ indicates a significant result at α=0.05, while ‘***’ indicates a significant 

result at α=0.001. 

5.4 Computational cost analysis 

The results discussed above demonstrate that CSMES consistently outperforms the non-ensemble 

methods considered in this study (i.e., CISVM and MiniMax) in terms of cost-sensitive performance 

metrics. However, ensemble selection depends on the training of a sizeable heterogeneous library of 

models and CSMES adds the component of multicriteria optimization which could result in an increased 

computational cost. To compare CSMES to the other methods in function of computational effort, an 
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analysis was conducted in terms of training phase runtimes. The setup of this comparison, as well as 

the full results are presented in Appendix F.  

In summary, these results show that CSMES performs comparably to MGA-SVM-CS but is clearly 

outperformed by standalone algorithms designed for cost uncertainty: CISVM, MiniMax and 

RiskBoost. However, CSMES’ dependence on multicriteria optimization and the derivation of an 

ensemble nomination curve does not result in a disadvantage in terms of training phase runtimes in 

comparison to alternative ensemble and classifier selection approaches. All ensemble selection 

benchmark algorithms that depend on optimization (GA-ES, PSO-ES, GHS-ES and MGA-ES) are 

significantly outperformed by CSMES. An explanation of this result is found in the nature of the metrics 

that are optimized by CSMES. False negative and false positive rates are less computationally expensive 

in comparison to AUCC and AUBS that are minimized in these four benchmarks. 

6 Conclusion, Limitations and Directions for Future Research 

There is growing agreement that the evaluation of BFP models should accommodate asymmetric 

misclassification costs. This has inspired researchers to adopt alternative evaluation metrics and 

indicates the relevance of cost-sensitive learning algorithms, designed to involve cost information 

during the model training stage. Unfortunately, the assumption that costs or cost ratios are known, or 

can be reliably estimated prior to model estimation, is often not realistic. This leads to a non-trivial 

challenge: a need for models that can be trained when cost information is not available, yet are more 

cost-conscious than existing algorithms in an attempt to reduce misclassification costs when these 

models are actually deployed. 

This study proposes a novel method for heterogeneous ensemble selection that assume an absence 

of cost information during model training, and various degrees of remaining cost uncertainty during 

model scoring. Ensemble selection prescribes an informed selection of members from a library of 

models that originate from various algorithm classes, and usually involves an optimization towards one 

or more performance criteria. The approach presented in this study deploys multicriteria optimization 

through NSGA-II to optimize cost space and obtain a set of Pareto-equivalent ensemble candidates that 
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each represent a different trade-off of error types. The concept of an ensemble nomination front is 

introduced, which maps competence regions of candidate ensembles in cost space. This nomination 

front is an instrument that allows an analyst, when predictions are due, to select an appropriate ensemble 

model with respect to the cost ratio information that is known at that time, or any cost uncertainty that 

remains. Three ensemble nomination strategies are suggested for three scenarios of cost uncertainty at 

the time of model scoring.  

An extensive experimental benchmark validates the presented framework on 21 datasets 

representing companies in various sectors and countries, and results are analyzed for three scenarios of 

cost uncertainty at the models’ scoring phase. A comparison is made to three sets of benchmark 

methods. A first set involves alternative methods that have been introduces in literature for dealing with 

cost uncertainty. A second set of benchmarks is formed by alternative ensemble and ensemble selection 

approaches that are based on the same model library, and represent less complex strategies to optimize 

cost space. A third benchmark selection consists of ensemble selection and classifier selection 

approaches that, like CSMES, depend on optimization algorithms. The results demonstrate that our 

method outperforms all benchmark algorithms that have been explicitly proposed in literature to deal 

with cost uncertainty. Furthermore, CSMES performs competitively on metrics that reflect generalized 

performance in cost space overall. The results also show that CSMES outperforms all alternative 

ensemble and classifier selection approaches in terms of misclassification cost, based on specific 

misclassification cost ratios. Finally, while CSMES is outperformed by benchmarks that do not depend 

on the training of a heterogeneous model library in terms of computational cost, it does demonstrate 

shorter training runtimes in comparison to alternative approaches for ensemble selection based on 

optimization. In the light of these results we believe the presented method is a valuable contribution to 

the BFP domain since it is the first to address cost uncertainty through an integrated ensemble selection 

framework.  

Several limitations can be identified relating to the presented approach and its empirical validation. 

First, the study does not provide recommendations on the choice between an ensemble nomination 

based on the cost curve versus the Brier curve. Since both frameworks have advantages and 



38 

 

disadvantages, we opted to accommodate both in our method to allow analysts to make a choice in 

terms of preferences and project requirements. Second, the presented method and its validation rely on 

the assumption that models and ensembles are fully trained at the training stage, that is, they are not 

fine-tuned or selected at the stage of model scoring. While this would substantially increase the 

computational cost, in some situations it could be feasible to postpone model training, ensemble 

selection, or a part thereof, to the moment when predictions are due. In that case, model training and 

ensemble selection could benefit from updated cost ratio information. Finally, the method has been 

validated for BFP, which is one application in business analytics where cost-sensitive model evaluation 

and cost uncertainty are relevant. Future research should validate the method in other domains.  
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Appendix A: NSGA-II algorithm  

The pseudocode of the NSGA-II algorithm (adapted from (Deb et al., 2002)) is given by: 

Parameters: population size N; number of generations M; p fitness functions Fi; i=1,...,p; mutation 

probability pm and crossover probability pc 

 

Initialize population: randomly generate N real-valued chromosomes into P0 

t=0 

While (t <M and stopping criteria not met) do 

 Evaluate fitness of each population chromosome for each fitness functions Fi; i=1,...,p 

 Apply non-dominated sorting to Pt to determine fitness rank and front membership of chromosomes 

 Calculate crowding distance for each member chromosome of Pt  

 Create offspring population Qt of size N from Pt  by applying the following operators: 

▪ Parent selection through binary tournament selection based on fitness rank and crowding 

distance and the crowding selection operator 

▪ Crossover using crossover probability pc 

▪ Mutation using mutation probability pm 

 Apply non-dominated sorting to Pt ∪ 𝑶t  to determine front membership and assign non-domination 

level (rank) to each chromosome 

 Calculate crowding distance for each member chromosome of Pt ∪ 𝑶t   

 Create population of generation by selecting N best chromosomes from  Pt ∪ 𝑶t  using and the 

crowding selection operator 

 t=t+1 

End While 

 

The NSGA-II algorithm initializes by randomly generating a starting population P0   containing N 

chromosomes. In the iterative process that follows, offspring populations are derived from parent 

populations whereby selection favours parents that are fitter in terms of the p objective functions and 

more diverse in comparison to others. Specifically, fitness is assessed through the process of non-

dominated sorting, which assigns instances to a hierarchy of fronts of equally fit individuals and 

domination ranks are awarded accordingly as fitness ranks. Then, with the aim of enforcing spread, 

individuals on each front are evaluated in terms of crowding distance that quantifies dispersion in 

terms of how they score on the p objective functions. Both fitness rank and crowding distance 

influence parent selection, which takes the form of binary tournament selection. Comparison between 

individuals involves use of a crowding selection operator which favours individuals with lower (i.e., 

better) fitness rank or in case of a fitness draw, individuals with higher crowding distance. Offspring 
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and parent populations are combined, non-dominated sorting is applied again and finally, the new 

generation is formed by selection the best N chromosomes. 
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Appendix B: Overview and description of dataset variables 

This appendix provides an overview of the variables included in the datasets used in the 

experimental validation in this study. 

Variable class 

  

Variable label 

  
Variable description 

  

Availability 

Datasets 1-14  

(Fra,Ita) 

Datasets 15-

21 (Bel) 

1. Financial 

ratios 

      

Liquidity ratios 

  

  
  

Cash ratio t-i Cash ratio: cash and cash equivalent assets / total liabilities, at 

time t-i 
✓ 1 ✓ 2 

Current ratio t-i Current ratio: current assets / current liabilities, at time t-i ✓ 1 ✓ 2 

NWC2TA ratio t-i Net working capital to total assets ratio: (current assets - current 

liabilities) / total assets, at time t-i 
✓ 1 ✓ 2 

Quick ratio t-i Quick ratio: (current assets - inventories) / current liabilities, at 

time t-i 
✓ 1 ✓ 2 

Long-term 

solvency ratios 

  
  

  

  

Debt ratio t-i Debt ratio: total liabilities / total assets, at time t-i ✓ 1 ✓ 2 

Debt2worth ratio t-i Debt to net worth ratio: total debt / (total assets - total liabilities), 

at time t-i 
✓ 1 ✓ 2 

Solvency ratio t-i Solvency ratio: net profit after taxes / total liabilities, at time t-i ✓ 1 ✓ 2 

Times interest earned ratio 

t-i 

Times interest earned ratio: EBITDA / total financial charges, at 

time t-i 
✓ 1 ✓ 2 

Avg. collection period ratio 

t-i 

Average collection period ratio: (average accounts receivable / 

sales revenue ) * 365, at time t-i 
✓ 1 ✓ 2 

Turnover ratios 

  

  
  

Debtor turnover ratio t-i Debtor turnover ratio: net credit sales / average accounts 

receivable, at time t-i 
✓ 1 ✓ 2 

Fixed-asset turnover t-i Fixed-asset turnover: sales / average net fixed assets, at time t-i ✓ 1 ✓ 2 
Inventory turnover t-i Inventory turnover: cost of goods sold / average inventory, at 

time t-i 
✓ 1 ✓ 2 

Asset turnover t-i Asset turnover: net sales revenue / average total assets, at time t-i ✓ 1 ✓ 2 

Profit margin t-i Profit margin: profit after tax / revenue, at time t-i ✓ 1 ✓ 2 

ROA t-i Return on assets (ROA): net income before tax / total assets, at 

time t-i 
✓ 1 ✓ 2 

ROE t-i Return on equity (ROE): net income after tax / equity, at time t-i ✓ 1 ✓ 2 

ROI t-i Return on investment (ROI): net income after interest and tax / 

total assets, at time t-i 
✓ 1 ✓ 2 

2. Payment 

timeliness 

indicators  

  

  

  

  
  

Social security dues t-i Amounts due to social security authority, at time t-i 
 

✓ 2 
Tax dues t-i Amounts due to tax authority, at time t-i 

 

✓ 2 

Nbr. protested bills [t-j;t] Number of protested bills in period [t-j;t] 
 

✓ 2 

Nbr. summons [t-j;t] Number of social security summons in period [t-j;t] 
 

✓ 2 
Overdue balance [t-j;t] Total current overdue balance in period [t-j;t] 

 

✓ 2 

Pct. late payments [t-j;t] Percentage reported transactions with late payment in period [t-

j;t] 

 

✓ 2 

Pct. late payments cat. k [t-

j;t] 

Percentage of reported transactions with late payment in 

payment delay category k in period [t-j;t] 

 ✓ 2 

3. Firmo-

graphics 

  
  

  

  
  

  

  
  

  

  
  

  

  

Avg. director age Average age of the directors and owners 
 

✓ 

Domestic purchases only Dummy indicator for exclusive domestic purchases 
 

✓ 

Domestic sales only Dummy indicator for exclusive domestic sales 
 

✓ 

Move recency Days since last change of business address 
 

✓ 

Nbr. directors Number of directors and/or owners 
 

✓ 

Nbr. new directors Number of directors appointed during last 12 months 
 

✓ 

Nbr. resigned directors Number of directors who resigned during last 12 months 
 

✓ 

Nbr. directors with stock Number of directors and/or owners holding stock  ✓ 

Nbr. employees Number of employees  ✓ 

Nbr. directors  (fail hist.) Number of directors previously employed in a company that 

failed 
 ✓ 

Nbr. directors  (oob hist.) Number of directors previously employed in a company that 

went out of business 
 ✓ 

Years in business Company age (total number of years of business activity)  ✓ 

SIC bin Binned standard industry code (SIC 8)  ✓ 

Legal form code Legal form code  ✓ 

1 i=0 for French and Italian companies (datasets 1 to 14); 2 i ∈ {0,1,2}and j ∈ {1,2} for Belgian companies (datasets 

15 to 21).   

As can be seen in the table, in terms of variables the Belgian datasets (15-21) deviate from the 

Italian and French datasets (1-14) in three ways. First, they include two additional sets of variables: 
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variables that measure payment timeliness and firmographic variables. The former variables reflect 

how well and timely a company pays its amounts due to the tax authority, social security authority and 

selected suppliers while firmographics provide meta-information about the company (e.g. company 

age, industry category, legal form and number of employees) and its management. Second, most ratios 

and payment timeliness variables are calculated at different time points. Year count indices i and j are 

used to indicate at which moment in time, or for which time interval relative to time t certain variables 

are calculated. Additionally, payment delay categories k; k ∈ {1,2,3,4,5,6} in the variable Pct. late 

payments cat. k [t-j;t] are coded as 1=up to 30 days ; 2=from 31 to 60 days ; 3=from 61 to 90 days; 4= 

from 91 to 120 days; 5= from 121 to 180 days and 6=more than 180 days. For example for Belgian 

dataset, time point t denotes the end of the independent variable collection period, i.e. May 31st 2008. 

As such, the variable Current ratio t-1 provides current ratio calculated using the most recent 

information available on May 31st 2007, i.e. using annual account information for the year 2006. 

Similarly, a set of payment timeliness variables are measured over time intervals, dating either one or 

two years back prior to time point t. For example, the variable Pct. late payments [t-2;t] is the 

percentage of registered transactions for which payment was late, measure over a  two-year period 

until May 31st, 2008. Finally, a different timeline was respected for the measurement of predictor and 

outcome variables, as shown in the following figure. 

(a) 

 

(b) 

 

Figure B.1: Data collection time lines 

Note that Figure (a) applies to data French and Italian companies (datasets 1-14) while Figure (b) 

applies to data for Belgian companies (datasets 15-21). 
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Appendix C: Overview of model library algorithms, varied hyperparameters and values 

Method category  Algorithm Varied hyperparameters and values 

Homogeneous 

ensembles 

 Bagging (Breiman, 1996) Ensemble size: 10,50,100 

Random feature subset size: (5%,10%,25%,50%,75%)*#features, SQRT(#features)  Trimmed bagging (Croux, Joossens, & Lemmens, 

2007) 

   Stochastic gradient boosting (Friedman, 2002) 

  

 Rotation forest (Rodríguez, Kuncheva, & Alonso, 

2006) 

AdaBoost (Freund & Schapire, 1996) 

   Random subspace method (Ho, 1998) 

   Random forest (Breiman, 2001) 
       

Decision trees  CART (Breiman et al., 1984) Pruning = TRUE, FALSE 

   C4.5 (Quinlan, 1993) Minbucketsize = AUTO 2 4 6 8 10 20 40 60 80 100 250 500 750 1000 

   C4.4 (Provost & Domingos, 2003)   
       

Statistical models  Logistic regression Variable selection: none, forward, backward, stepwise 

   Linear discriminant analysis variable selection entry & stay probabilities = 0.01, 0.05,0.1,0.15,...,0.95 

   Quadratic discriminant analysis   
      

Data mining 

algorithms 
  

  

 Multi-layer perceptron Number of hidden layers = 1,2,3,4,5,6,7,8,9,10 
     

 Support vector machines Linear kernel: regularization parameter (soft margin constant C): 2**(-12,-6,0,6,12) 

  

 

  

Radiant basis function kernel: regularization parameter (soft margin constant C): 2**(-12,-

6,0,6,12) X gamma=2**(-13,-9,-6,-1) 
       

  

 K-Nearest neighbours Number of nearest neighbors : 

1,5,10,50,100,150,200,300,400,500,600,700,800,900,1000,1500,2000,2500,3000,3500,4000 
       

Cost-sensitive 

classifiers 

 AdaCost (Fan et al., 1999) Ensemble size: 10,50,100 

 Metacost - C4.5 (Domingos, 1999) Cost ratio: 2,5,10 
       

   Cost-sensitive (weighted) random forest (Chen, 

Liaw, & Breiman, 2004) 

  

Ensemble size: 10,50,100 

   Cost ratio: 2,5,10 

   Random feature subset size: (5%,10%,25%,50%,75%)*#features, SQRT(#features) 
       

   Cost-senstive CART (Breiman et al., 1984) Pruning = TRUE, FALSE 

     Minbucketsize = AUTO 2 4 6 8 10 20 40 60 80 100 250 500 750 1000 

     Cost ratio: 2,5,10 
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Supplementary Materials 

Appendix D: Procedure for generation of operating points and operating point 

probability distributions 

The procedure for simulation operating points (required for measuring expected misclassification 

costs) and probability density functions over operating points (required for measuring partial AUCC 

and partial AUBC performance estimations) is given by the following pseudocode: 
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Parameters: number of datasets d, number of cross validations ncv, number of folds per cross-validation nf, 

number of evaluations per fold ne,  𝜶𝒎𝒊𝒏, 𝜶𝒎𝒂𝒙  is the desired range of cost ratios used for simulating operating 

points and  𝒔𝒅𝒎𝒊𝒏, 𝒔𝒅𝒎𝒂𝒙  is the desired range of standard deviations for probability distributions over 

operating points  

 

For (i in 1 to d) do 

 For (j in 1 to ncv) do 

  For (k in 1 to nf) do 

• Determine failure and survival rates for the validation sample of dataset i, cross validation 

iteration j and fold l: 𝒑𝑖,,𝒋,𝒌,𝒍(−) and 𝒑𝑖,,𝒋,𝒌,𝒍(+) 

• Determine  𝑷𝑪𝒊,𝒋,𝒌,𝒍,𝒎𝒊𝒏(+), 𝑷𝑪𝒊,𝒋,𝒌,𝒍,𝒎𝒂𝒙  , the operating point range corresponding to   𝜶𝒎𝒊𝒏, 𝜶𝒎𝒂𝒙   

using equation (2), 𝒑𝒊,,𝒋,𝒌,𝒍(−) and 𝒑𝒊,,𝒋,𝒌,𝒍(+).  

• Illustrated through an example in Figure D.1 (a). 

 

   For (l in 1 to ne) do 

• Pick a random operating condition 𝑷𝑪𝒊,𝒋,𝒌,𝒍(+) from interval 

 𝑷𝑪𝒊,𝒋,𝒌,𝒍,𝒎𝒊𝒏(+), 𝑷𝑪𝒊,𝒋,𝒌,𝒍,𝐦𝐚𝐱 (+) .  

• Used for comparing algorithms in terms of expected misclassification cost (EMC) in 

evaluation scenarios 1 and 3  

• Illustrated in Figure D.1 (b). 

 

• Simulate a Beta distribution Beta(𝒂, 𝒃) as probability density function for 𝑷𝑪(+).  

▪ Simulate a standard deviation value for 𝑷𝑪𝒊,,𝒋,𝒌,𝒍(+) by generating a random number 

in the interval  𝒔𝒅𝒎𝒊𝒏, 𝒔𝒅𝒎𝒂𝒙  and denote it as 𝒔𝒅𝒊,𝒋,𝒌,𝒍  

▪ Determine 𝒂𝒊,𝒋,𝒌,𝒍  and 𝒃𝒊,𝒋,𝒌,𝒍 , shape parameters of the beta distribution so that its 

mean is 𝑷𝑪𝒊,𝒋,𝒌,𝒍(+) and its standard deviation is 𝒔𝒅𝒊,𝒋,𝒌,𝒍   

▪ Beta(𝑎𝑖,𝑗 ,𝑘 ,𝑙  , 𝑏𝑖 ,𝑗 ,𝑘 ,𝑙  ) is used as probability density function over 𝑃𝐶(+) for comparing 

algorithms in terms of partial AUCC and partial AUBC in evaluation scenario 2. 

▪ Illustrated in Figure D.1 (c). 

 

• Randomly draw an operating condition value 𝑷𝑪𝒊,𝒋,𝒌,𝒍
′ (+) from Beta(𝒂𝒊,𝒋,𝒌,𝒍 , 𝒃𝒊,𝒋,𝒌,𝒍 ). 

• Used for comparing algorithms in terms of expected misclassification cost (EMC) in 

evaluation scenario 2. Illustrated in Figure D.1 (d). 

   Endfor 

  Endfor 

 Endfor 

Endfor 
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(a) 

 
(b) 

 

(c)  

(d) 

Figure D.1: Examples of operating point range boundaries (a), target operating point (b), operating point probability 

density function (Beta distribution)  (c) and operating point drawn from ), operating point probability density 

function (d) 

  

𝑷𝑪𝒊,𝒋,𝒌,𝒍,𝒎𝒊𝒏(+) 𝑃𝐶𝑖,𝑗,𝑘,𝑙,𝑚𝑎𝑥(+) 

𝑃𝐶𝑖,𝑗,𝑘,𝑙(+) 

𝑃𝐶𝑖,𝑗,𝑘,𝑙
′ (+) 

Beta(𝒂𝒊,𝒋,𝒌,𝒍 , 𝒃𝒊,𝒋,𝒌,𝒍 ) 
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Appendix E: Friedman non-parametric Anova test results 

Cost un-

certainty 

scenario 

Benchmarks Algorithms 

Cost space 

paradigm for 

ensemble 

selection and 

model 

evaluation 

Evalu-

ation 

metric 

Friedman 

Chi-squared 

statistic 

P-value Significance 

High Cost-sensitive 

classifiers for 

cost uncertainty 

CISVM, RiskBoost, 

MiniMax, CSMES 

Cost curve AUCC 53.971 (df=3) 1.138 e-11 ***  
EMC 427.98 (df=3) < 2.2 e-16 *** 

Brier curve AUBC 39.914 (df=3) 1.111 e-08 ***  
EMC 412.82 (df=3) < 2.2 e-16 *** 

 Alternative 

ensemble/ensem

ble selection 

strategies 

Full, Weighted, Best, 

Top10, Top25, CSMES 

Cost curve AUCC 56.048 (df=5) 7.945 e-11 *** 

  EMC 346.31 (df=5) <2.2 e-16 *** 

 Brier curve AUBC 20.456 (df=5) 0.00103 ** 

  EMC 217.32 (df=5) <2.2 e-16 *** 

  Optimization-

based ensemble 

and classifier 

selection 

benchmarks  

GA-ES, PSO-ES, GHS-

ES, MGA-ES, MGA-

SVM-CS, CSMES 

Cost curve AUCC 34.959 (df=5) 1.533 e-06 ***  
EMC 979.67 (df=5) <2.2 e-16 *** 

Brier curve AUBC 63.068 (df=5) 2.818 e-12 ***  
EMC 871.22 (df=5) <2.2 e-16 *** 

Partial Cost-sensitive 

classifiers for 

cost uncertainty 

CISVM, RiskBoost, 

MiniMax, CSMES 

Cost curve pAUCC 1002 (df=3) <2.2 e-16 
 

 
EMC 427.98 (df=3) < 2.2 e-16 *** 

Brier curve pAUBC 562.8 < 2.2 e-16 ***  
EMC 413.2 (df=3) < 2.2 e-16 *** 

 Alternative 

ensemble/ensem

ble selection 

strategies 

Full, Weighted, Best, 

Top10, Top25, CSMES 

Cost curve pAUCC 1496.8 (df=5) <2.2 e-16 *** 

  EMC 296.37 (df=5) <2.2 e-16 *** 

 Brier curve pAUBC 255.67 (df=5) <2.2 e-16 *** 

  EMC 237.33 (df=5) <2.2 e-16 *** 

  Optimization-

based ensemble 

and classifier 

selection 

benchmarks  

GA-ES, PSO-ES, GHS-

ES, MGA-ES, MGA-

SVM-CS, CSMES 

Cost curve pAUCC 1475.2 (df=5) <2.2 e-16 ***  
EMC 942.76 (df=5) <2.2 e-16 *** 

Brier curve pAUBC 3197.4 (df=5) <2.2 e-16 
 

 
EMC 845.4 (df=5) <2.2 e-16 *** 

None Cost-sensitive 

classifiers for 

cost uncertainty 

CISVM, RiskBoost, 

MiniMax, CSMES 

Cost curve EMC 426.3 (df=3) < 2.2 e-16 ***      
Brier curve EMC 413.2 (df=3) < 2.2 e-16 ***      

 Alternative 

ensemble/ensem

ble selection 

strategies 

Full, Weighted, Best, 

Top10, Top25, CSMES 

Cost curve EMC 308.76 (df=5) <2.2 e-16 *** 

      

 Brier curve EMC 229.94 (df=5) <2.2 e-16 *** 

      

  Alternative 

Optimization-

based ensemble 

and classifier 

selection 

benchmarks  

GA-ES, PSO-ES, GHS-

ES, MGA-ES, MGA-

SVM-CS, CSMES 

Cost curve EMC 1480.8 (df=5) <2.2 e-16 ***   
  

 

Brier curve EMC 3172.7 (df=5) <2.2 e-16 ***      

  ‘**’ indicates a significant result at α=0.05; ‘***’ indicates a significant result at α=0.001. 

 

Appendix F: Computational cost analysis 

In this appendix, CSMES is compared to benchmark algorithms in terms of computational cost 

required to train models. Two comparisons are made in terms of model training runtimes. First, CSMES 
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is compared to all standalone algorithms designed for cost-sensitive learning under the assumption of 

cost uncertainty. This benchmark set involves CISVM, RiskBoost, MiniMax and MGA-SVM-CS. The 

second comparison considers CSMES and alternative ensemble and classifier selection algorithms that 

depend on the training of a (heterogenous) model library. Since all these selection strategies are applied 

to the same model libraries in this study, this comparison only involves runtimes of the model selection 

stages. For GA-ES, PSO-ES and GHS-ES this involves runtimes of single-criterion optimization 

schemes. For CSMES and MGA-ES this involves multi-criteria optimization (through NSGA-II), 

followed by the derivation of an ensemble nomination curve. Finally, for all ranking-based classifier 

and ensemble selection strategies (Full, Weighted, Best, Top10, Top25) this merely involves an 

assessment of all constituent classifiers in terms of AUCC or AUBS, depending on the cost space 

paradigm chosen for the evaluation. Since these ranking-based ensemble and classifier selection 

strategies all depend upon the same performance assessment and subsequent ranking of model library 

members they are reported as a single entity.  

Experimental configurations are identical to the settings deployed for comparing model 

classification performance. Model training phase runtimes are recorded in seconds and statistically 

compared over 21 datasets and a 10-fold cross-validation. Moreover, these analyses make abstraction 

of the cost space paradigm deployed (cost space or Brier space) by averaging runtimes over both 

settings. All models are trained on a desktop computer equipped with an Intel Core I7-6700k processor 

with 8 threads clocked at 4.0 Ghz and 32 GB RAM. All classifiers involved in the comparisons are 

implemented in R (R Core Team, 2019). The model libraries upon which ensemble and classifier 

selection algorithms depend are built in R and SAS using a variety of packages and procedures. None 

of the classifiers and optimization algorithms deploy parallel computing. 

The following table (Table F.13) present the results of Friedman tests (Friedman, 1937) for both 

comparisons depicted above. 
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Benchmarks Algorithms 

Friedman 

Chi-squared 

statistic 

P-value Significance 

Standalone cost-sensitive 

classifiers for cost uncertainty 

CISVM, RiskBoost, 

MiniMax, MGA-SVM-

CS, CSMES 

78.324 (df=4) 4.441 e-16 *** 

Alternative 

ensemble/ensemble selection 

strategies based on 

heterogeneous model library  

GA-ES, PSO-ES, GHS-

ES, MGA-ES, Ranking-

based benchmarks (Full, 

Weighted, Best, Top10, 

Top25), CSMES 

75.422 (df=5) 7.55 e-15 *** 

Table F.13: Model train time duration comparison test results. ‘**’ indicates a significant result at α=0.05; ‘***’ 

indicates a significant result at α=0.001. 

These results indicate the existence of significant differences in training phase runtimes between 

the algorithms in the comparison. The following tables (Table F.14 and Table F.15) present average 

ranks (where lower ranks indicate shorter average runtimes) and post-hoc test results based on Li’s 

procedure (Li, 2008) that provide more detailed insights in how CSMES compares to the benchmark 

algorithms.  

 

Evaluation 

metric 

 Algorithm 

 

CISVM RiskBoost MiniMax MGA-SVM-CS 

 

CSMES 

Model 

training 

time (sec.) 

Avg. rank 1 2.1904 2.8571 4.8571 4.0952 

Adj. p-

value 0.0000*** 0.0001*** 0.0125** 0.1184  

Table F.14: Model train time duration post-hoc tests: CSMES versus cost-uncertainty accommodating cost-sensitive 

benchmark algorithms. ‘**’ indicates a significant result at α=0.05, while ‘***’ indicates a significant result at 

α=0.001.  

Evaluation 

metric 

 Algorithm 

 

GA-ES PSO-ES GHS-ES MGA-ES Ranking-based 

benchmarks (Full, 

Weighted, Best, 

Top10, Top25) 

CSMES 

Model 

training 

time (sec.) 

Avg. rank 3.5714 4.5238 5.3810 4.3333 1.4762 1.7143 

Adj. p-

value 
0.0040** 0.0000*** 0.0000*** 0.0383** 0.6801  

Table F.15: Model train time duration post-hoc tests: CSMES versus alternative ensemble/ensemble selection 

strategies based on heterogeneous model libraries. ‘**’ indicates a significant result at α=0.05, while ‘***’ indicates a 

significant result at α=0.001. 

The results in Table F.14 demonstrate that CSMES is significantly outperformed by CISVM, 

RiskBoost and MiniMax classifiers in terms of model training runtimes. Since CSMES depends on the 

training of a sizeable heterogeneous library of models and multicriteria optimization, it is unsurprising 

that non-ensemble classifiers have an advantage over CSMES in terms of model training time. This 
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observation does not hold for MGA-SVM-CS, a more complex benchmark explicitly designed for 

accommodating cost uncertainty that is characterized by multicriteria hyperparameter optimization and 

classifier selection.  

Table F.15 compares CSMES to alternative ensemble and classifier strategies that, like CSMES, 

share dependence on the creation of a heterogeneous model library. These results demonstrate the 

competitive nature of CSMES in comparison to these benchmarks in terms of computational 

requirements. First, in comparison to single-criterion ensemble selection, CSMES is characterized by 

training phase runtimes that are significantly shorter. A likely explanation is that GA-ES, PSO-ES and 

GHS-ES deploy AUCC and AUBS as optimization criteria, which are far more complex and thus, 

computationally demanding, than false negative rate and false positive rates minimized by CSMES. A 

similar reasoning explains the advantage that CSMES holds over MGA-ES which adds the criterion of 

model ambiguity to AUCC and AUBS. Finally, in comparison to heuristic ensemble selection 

approaches that depend on a simple ordering of model library classifiers along AUCC or AUBS but 

involve no optimization, no significant difference could be established. 

In summary, these results show that the added complexity of CSMES over standalone algorithms 

designed for cost uncertainty comes at a cost of increasing runtimes. However, in comparison to 

alternative ensemble or classifier selection approaches, CSMES’ dependence on multicriteria 

optimization and the derivation of an ensemble nomination curve does not result in a disadvantage in 

terms of training runtimes. 

 


