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Abstract: For spacetimes containing quiescent singularity hypersurfaces we propose a
general notion of junction conditions based on a prescribed singularity scattering map, as we
call it, and we introduce the notion of a cyclic spacetime (also called a multiverse) consisting
of spacetime domains bounded by spacelike or timelike singularity hypersurfaces, across
which our scattering map is applied. A local existence theory is established here while, in a
companion paper, we construct plane-symmetric cyclic spacetimes. We study the singularity
data space consisting of the suitably rescaled metric, extrinsic curvature, and matter fields
which can be prescribed on each side of the singularity, and for the class of so-called quiescent
singularities we establish restrictions that a singularity scattering map must satisfy. We
obtain a full characterization of all scattering maps that are covariant and ultralocal, in a
sense we define and, in particular, we distinguish between, on the one hand, three laws of
bouncing cosmology of universal nature and, on the other hand, model-dependent junction
conditions. The theory proposed in this paper applies to spacelike and timelike hypersurfaces
and without symmetry restriction. It encompasses bouncing-cosmology scenarios, both in
string theory and in loop quantum cosmology, and puts strong restrictions on their possible
explicit realizations.
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1 Introduction

1.1 Toward a theory of cyclic spacetimes

Main contribution. We investigate here the problem of crossing cosmological singulari-
ties in the context of the Einstein-scalar field system. We study the nature of singularities
in general relativity (without symmetry restriction) and address the question of extending
a spacetime beyond a spacelike singularity hypersurface, as well as whether a spacetime
can contain a timelike singularity hypersurface. Our contribution is two-fold and relies on
notions of Lorentzian geometry and theoretical physics modeling.

• A notion of cyclic spacetimes. We propose a notion of cyclic spacetime (in definition 4.4
below), which is cast in a form that can conveniently be applied. As a direct application,
we establish a local existence theory for the initial value problem, based on the generic
power-law behaviour of the metric understood by Belinsky, Khalatnikov and Lifshitz
(BKL) [10, 11]. Our construction produces a broad class of spacetimes containing Big
Crunch-Big Bang transitions or timelike singular interfaces.

• A classification of all singularity scattering maps. Our notion of cyclic spacetime is
based on specifying a singularity scattering map that describes how data on both
sides of the singularity are related. Inspired by the ultralocality of the BKL expansion
near the singularity, we focus our attention on singularity scattering maps that are
ultralocal (or pointwise) and we establish a complete classification thereof.

As a consequence of our analysis, across a bounce we can distinguish between, on the
one hand, three laws of bouncing cosmology which are of universal nature and, on the
other hand, model-dependent junction conditions which involve only a limited number of
defining functions and must depend upon additional physics beyond general relativity. In
addition, in the companion paper [56], we study the global geometry of plane-symmetric
cyclic spacetimes. In the plane-symmetric case we solve the gravitational wave interaction
problem globally. This global resolution to the collision problem involves both spacelike
and timelike singularity hypersurfaces, which are traversed using a singularity scattering
map. The reader is also referred to [55] for a brief overview of our main results.

Global dynamics of self-gravitating matter. Many spacetimes satisfying the Einstein
equations exhibit singularities such as curvature singularities or, at least, suffer from geodesic
incompleteness as established by Penrose and Hawking [41]. However, our theoretical
knowledge about the structure of such singularities is extremely limited. One important
issue in general relativity is deciding whether the Einstein equations provide a fully predictive
theory in the sense that it uniquely determines the global evolution of the geometry and
matter fields from their knowledge on a Cauchy hypersurface. Rather partial results are
available and typically encompass only solutions that are globally close to Minkowski
spacetime for “small” matter fields.

The series of papers [50–54] has recently initiated a program on the mathematical
study of the global dynamics of matter fields, which stems from pioneering contributions
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by Christodoulou on the global evolution problem in spherical symmetry and Penrose’s
censorship conjectures. In this direction, one outstanding question that arises naturally is
whether a spacetime determined by solving the initial value problem associated with the
Einstein equations can be continued so that the corresponding future globally hyperbolic
Cauchy development, understood in a suitable sense, is unique. A mathematically as well
as physically consistent theory must allow for an extension beyond geometric singularities.
For further material on singular solutions to Einstein equations, see [58–61].

Bouncing through singularities. Another motivation for traversing geometric singu-
larities stems from cosmology. In the past thirty years, bouncing cosmologies and junction
conditions at the bounce were proposed in many approaches: pre-Big Bang scenarios of
Gasperini and Veneziano [39, 40] (and [16, 17, 22, 32, 49, 78]) expyrotic models spearheaded
by Steinhardt and Turok [48, 75], matter bounces of Brandenberger and Finelli [18, 33], as
well as constructions based on string gas cosmology of Brandenberger and Vafa [20, 66], loop
quantum cosmology in the Ashtekar school [4, 6, 8], and certain modified gravity theories
such as [13, 14, 23, 24]. These approaches resolve the initial cosmological singularity through
violations of null-energy conditions, modifications of Einstein gravity, or quantum gravity
effects that only affect dynamics near the bounce. We discuss some of these scenarios
further in this text, and refer the reader to the review by Brandenberger and Peter [19] on
bouncing cosmologies. An important alternative proposal is the conformal cyclic cosmology
introduced by Penrose [69], followed by Tod, Lübbe, and others [62, 63, 77]. Our method
should extend to Penrose’s scenario, but this issue is outside the scope of the present paper.

The Einstein equations admit solutions representing matter spacetimes that have
“quiescent” singularities — a class first named by Barrow [9, 10, 29]. Our aim in the present
paper is to analyze the class of such spacetimes (without symmetry restriction), which
encompasses behavior generically observed in the presence of a sufficiently “strong” massless
scalar field; in [56] we apply our theory to study plane-symmetric spacetimes in this context.
In contrast, vacuum spacetimes are expected to feature spacelike singularities with an
oscillating behavior [11] or null Cauchy horizons [27].

1.2 The notion of cyclic spacetime

Beyond standard junction conditions. We are interested in 4-dimensional spacetimes
(M, g(4)) (with boundary), required to satisfy Einstein-scalar field equations of general
relativity

G = 8πT. (1.1)

Here, G denotes the Einstein tensor of g(4) and T the energy-momentum tensor, while the
Newton constant and the light speed are normalized to unity. We consider a massless scalar
field φ : M→ R with energy-momentum tensor

T = dφ⊗ dφ− 1
2 |dφ|

2g(4), (1.2)

which can also be used to describe an irrotational stiff fluid. Under these conditions, the
Einstein equations are equivalent to equations on the Ricci curvature Ric of the metric,
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that is,
Ric = 8π dφ⊗ dφ. (1.3a)

In addition, the Bianchi identities imply that the scalar field satisfies the wave equation
associated with the wave operator � associated with the metric, that is,

�φ = 0. (1.3b)

Solutions to (1.3) may exhibit singularities localized along a hypersurface in (M, g(4)).
The standard junction conditions (discovered by Israel [43], and also investigated by Darmois,
Lichnerowitz, Penrose, and others) apply to (regular) hypersurfaces when the spacetime
metric and the extrinsic curvature are sufficiently regular up to the hypersurface and only
possibly suffer a jump discontinuity across it. They are derived from the ADM equations
(introduced below) by integration in an arbitrarily small neighborhood of the hypersurface,
and allow for impulsive (measure) contributions contributed by the matter.

One of the ADM equations (see below) does not involve the matter field and, assuming
that the extrinsic curvature remains bounded, this ADM equation implies the continuity
of the metric. On the other hand, the other ADM equation implies that the jump of the
extrinsic curvature is compensated by a (possibly vanishing) matter surface term in the
energy-momentum tensor. All terms constructed from the metric and extrinsic curvature
remain bounded in this regime (albeit possibly discontinuous), and only matter provides
singular contributions to the ADM equations and constraints. In contrast, our setup in the
present paper concerns a foliation of hypersurfaces whose extrinsic curvature blows up for
some value of the foliation parameter.

Notion of singularity scattering map. We thus consider the Cauchy problem in the
ADM formalism, in which solutions of Einstein-scalar equations are represented as an
Einstein flow (I being an interval)

t ∈ I 7→ (g(t),K(t), φ(t)) (1.4)

consisting of the time-dependent three-metric g(t) and extrinsic curvature K(t) of the
hypersurfaces of the foliation, and a matter field φ(t). We assume sufficient regularity and
work with functions defined on each side of the singularity hypersurface and blowing up as
one approaches it. We emphasize that no preferred junction condition is introduced in the
present paper and, rather, we find it essential to propose a framework that can accommodate
many different junctions, which we describe via the notion of singularity scattering map. As
indicated above, we concentrate on the quiescent regime and on singularity scattering maps
that preserve this regime. We refer to sections 3 and 4 for the terminology (singularity
scattering maps, cyclic spacetimes, etc.) and to theorem 4.5 for our explicit construction of
spacetimes based on such a singularity scattering map.

Notion of singularity data manifold. Our analysis is based the ADM formulation for
a foliation of hypersurfaces, together with Fuchsian-type arguments in order to rigorously
validate asymptotic expansions satisfied by the main unknowns of the problem, that is, the
induced metric g(t), the extrinsic curvature K(t), and the matter field φ(t). We follow
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Andersson and Rendall [3] who treated spacetimes with non-oscillatory singularities of
spacelike nature, while we also provide a generalization to timelike hypersurfaces. For the
huge literature existing on the Fuchsian method in mathematical general relativity, we refer
to [70, 71] as well as [2, 3, 12, 28, 36, 37] and the references cited therein.

Considering solutions to the Einstein equations coupled to a scalar field, we begin by
neglecting all spatial derivative terms and we solve a simpler system consisting of ordinary
differential equations in the (Gaussian) time variable. In turn, this provides us with an
explicit Ansatz which we can validate for general solutions in the vicinity of the singularity
hypersurface of interest.

In the course of our analysis, we introduce the notion of the singularity data manifold,
which we denote by Ispace for spacelike hypersurfaces. The initial value problem is then posed
directly on the singularity hypersurface by prescribing a data set (g−,K−, φ0−, φ1−) ∈ Ispace
and solving backward in time in order to describe the past of the singularity. The future of
the singularity is likewise solved for in terms of a data set (g+,K+, φ0+, φ1+) ∈ Ispace, itself
obtained by applying a singularity scattering map S : Ispace → Ispace to the prescribed data
set (g−,K−, φ0−, φ1−). We use a Gaussian foliation (see below) in each regularity domain,
based on a proper time function t normalized such that the singularity hypersurface is
at t = 0.

Suppression of instabilities. We emphasize that our analysis is concerned with those
spacetimes that have a non-vanishing matter field near the singularity, so that the oscillating
regime identified by Belinsky, Khalatnikov, and Lifshitz [11] in general vacuum spacetimes is
beyond the scope of the present paper. Namely, such oscillations on a singularity generically
do not arise in the presence of scalar matter, nor in vacuum spacetimes enjoying some
symmetry (or high enough dimensions).

The quiescent regime has recently been shown to be stable in these contexts when
evolving towards the singularity in suitable Sobolev spaces [38, 72–74]. Stability of the
quiescent regime starting on the singularity has also been understood earlier with analytic
regularity in [3, 28]. These works establish rigorously the physics expectation developped
in [9, 10, 29] that the scalar field removes instabilities of vacuum gravity near spacelike
singularities.

Notion of cyclic spacetime. The quiescent regime, and our notion of singularity scat-
tering map, apply equally well to spacelike and timelike singularity hypersurfaces. Generic
hypersurfaces feature spacelike and timelike regions, separated by lower-dimensional transi-
tions where the hypersurface becomes null. This motivates us to define cyclic spacetimes
as obeying the Einstein-scalar field equations away from hypersurfaces, and admitting a
quiescent expansion subject to our junction conditions along these hypersurfaces except
at an exceptional locus of codimension 2. Despite the unconstrained behaviour at the
exceptional locus, we find that our notion of cyclic spacetime is sufficiently robust to specify
a unique global development for generic plane-symmetric collisions of gravitational waves,
as we establish in the companion paper [56].

The global existence of solutions with large data is a notoriously difficult endeavour
beyond 1 + 1 dimensions. Spacelike singularity hypersurfaces (for the Einstein-scalar
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field system) are physically understood to be generically of quiescent type away from an
exceptional locus of codimension 2. However, it is not clear presently whether there can
be null singularity hypersurfaces, or how to extend spacetimes beyond stable null Cauchy
horizons exhibited in [27]. We postpone to future work the analysis of junction conditions
in the null case. Another important question is to understand whether timelike singularity
hypersurfaces, equipped with the junction conditions we define, are stable under the time
evolution. Regardless of the outcome of these investigations, quiescent singularities form an
important class of singularities in the Einstein-scalar field system, for which our analysis of
junction conditions is crucial.

1.3 The classification of singularity scattering maps

Toward a unification of bouncing scenarios. Bouncing cosmologies are normally
constructed by selecting some particular quantum gravity theory or modification of Einstein
gravity and finding spacetimes that are well-described by Einstein gravity on both sides of
a bounce, with all corrections being concentrated near the bounce. This approach starting
from an explicit microscopic theory is only completely calculable in highly symmetric
spacetimes. Our approach is instead to observe that, regardless of the mechanism causing
the bounce, the resulting scattering map must respect Einstein constraints for the asymptotic
behavior before and after the bounce in the regimes well-described by Einstein’s gravity
theory. While these constraints are trivial in highly symmetric spacetimes, they are
very constraining for scattering maps that apply to general 3 + 1 dimensional spacetimes.
This macroscopic approach to scattering maps is the avenue that we follow in this paper:
the effect of microscopic physics is entirely encapsulated in a singularity scattering map
S : Ispace → Ispace.

Our method applies whenever the corrections to general relativity are subleading away
from the bounce and locality is preserved during the bounce. More precisely, we propose
to focus on ultralocal scattering maps, which stem from bounces in which the evolution at
different points in space are independent from each other, in agreement with the well-known
BKL analysis on each side of the bounce (see the main text below).

Main statement of this paper. The maps of interest are scattering maps for which the
values of (g+,K+, φ0+, φ1+) at a point x along the singularity hypersurface only depend on
(g−,K−, φ0−, φ1−) at the same point, and not on (spatial) derivatives thereof. This strategy
allows us to single out two classes of maps: the anisotropic ultralocal scattering maps Sani

Φ,c,ε
and the isotropic ones Siso

λ,ϕ,ε, which we describe in detail momentarily. Remarkably, these
two cases exhaust the set of ultralocal scattering maps, as the following theorem states.
In both cases, one easily checks that the shear (traceless part of the extrinsic curvature)
K̊ := K − 1

3(TrK)δ weighted by the volume form
√
|g| is at most multiplied by a constant

when traversing the singularity. We uncover universal, as well as model-dependent, laws
(in (1.6) below) and we summarize here our main discovery in this paper, as follows.

Theorem 1.1 (Classification of singularity scattering maps in general relativity). Any
ultralocal scattering map is either an anisotropic map Sani

Φ,c,ε or an isotropic map Siso
λ,ϕ,ε.
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Beyond theorem 1.1 classifying ultralocal scattering maps, theorem 5.4 in the main text
further describes several rich subclasses: maps that are quiescence-preserving, invertible,
shift-covariant, momentum-preserving, etc. The relevant restrictions depend on the applica-
tion and on assumptions on the microscopic physics. For instance, our local construction of
cyclic spacetimes (cf. theorem 4.5) involves quiescence-preserving maps, which are defined
as those that map singularity data with K− > 0 to data with K+ > 0, thus do not generate
oscillatory BKL behavior from quiescent behavior.

For our study of colliding gravitational waves in plane-symmetry (cf. [56]), it is natural
to focus on the natural class of momentum-preserving maps, defined by K+ = K− and
φ0+ = φ0−. The name “momentum” stems from noticing that (K±, φ0±) are normal
derivatives of the metric and scalar field at the singularity, while (g±, φ1±) pertain to
values of the metric and scalar field. Momentum-preserving ultralocal scattering maps are
determined by a single function f of φ0− and of Kasner exponents (eigenvalues of K−).
They lead to the junction condition

K+ = K−, φ0+ = φ0−, φ1+ = φ1− + f, (1.5)

with g+ given in full in [56]. These maps are particular cases of the anisotropic maps Sani
Φ,c,ε

described below. They are manifestly invertible, which is a useful feature for scattering maps
that describe timelike singularities because it means data on either side (g±,K±, φ0±, φ1±)
is expressible in term of the other singularity data set. Pleasantly, the maps can also be char-
acterized (up to a sign normalization) by requesting S and S−1 to be quiescence-preserving
and shift-covariant, in the sense that they respect the symmetry of the wave equation under
constant shifts of φ. By studying the collision of plane-symmetric gravitational waves in [56],
we discover that the evolution problem imposes an additional causality condition on these
scattering maps. The condition expresses that gravitational waves that come out of the
singular timelike interface must be determined from the incoming waves on the interface. It
constrains the function f in such a way that, for example, an identically vanishing f = 0
is forbidden.

The three laws of bouncing cosmology. In abstracting away all microscopic details
of the physical model, we can focus on how solutions to Einstein equations should join
across the bounce. Importantly, it turns out that we can distinguish between universal
and model-dependent features of junction relations. From our classification we extract
three universal laws obeyed by any ultralocal bounce, which are independent of the specific
physics required in formulating the junction conditions and are summarized as follows.

• First law: scaling of Kasner exponents. With a dissipation constant γ ∈ R, we have

|g+|1/2K̊+ = −γ |g−|1/2K̊−, (1.6a)

which involves the spatial metric g in synchronous gauge, its volume factor |g|1/2,
and the traceless part K̊ of the extrinsic curvature as a (1, 1) tensor. The isotropic
maps Siso

λ,ϕ,ε have γ = 0 while anisotropic maps Sani
Φ,c,ε have γ 6= 0.
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• Second law: canonical transformation. The massless scalar φ undergoes a canonical
transformation, as explicited in definition 5.3 below:

Φ: (φ0−, φ1−) 7→ (φ0+, φ1+) preserves r(φ0)3 dφ0 ∧ dφ1 (1.6b)

up to a sign, in which r(φ0) = (1− 12πφ2
0)1/2. The matter map Φ depends in addition

on a scalar invariant χ ' Tr K̊3
−/r(φ0−)3.

• Third law: directional metric scaling. The metric after the bounce is a nonlinear
rescaling in each proper direction of K−, specifically

g+ = exp
(
σ0 + σ1K− + σ2K

2
−
)
g−, (1.6c)

in which σ0, σ1, σ2 are arbitrary for isotropic scattering maps Siso
λ,ϕ,ε as explicited

in (5.12) below, and are made explicit (in (5.12) below) for anistropic maps Sani
Φ,c,ε in

terms of Φ, γ for γ 6= 0.

The three laws are universal in the renormalization group sense: they impose constrains on
the macroscopic aspects of all bounces and apply to different microscopic corrections to
Einstein equations. Contrarily to field theory universality classes, which depend on finitely
many parameters, ultralocal singularity scattering maps depend on a whole map, namely Φ.

1.4 Organization of this paper

In section 2, after introducing in more detail the isotropic and anisotropic scattering maps
we explain how various physically-motivated bouncing scenarios fit in our framework. In
section 3 we begin with the proposed definition of scattering maps for a spacelike singularity
hypersurface, and next in section 4 we present our general definition of cyclic spacetimes
containing both spacelike and timelike singularity hypersurfaces. In section 5 we establish
the classification of all ultralocal scattering maps, while postponing to section 6 the technical
derivation. See also [55] for a brief overview of our main results, and [56] for a global
construction in the class of plane-symmetric spacetimes.

2 Outlook and applications

2.1 The anisotropic and isotropic maps

Anisotropic ultralocal scattering. While omitting a few technical aspects (discussed
in full detail later in Example 4; cf. (5.12) below), we describe first our anisotropic scattering
maps, written as

Sani
Φ,c,ε : (g−,K−, φ0−, φ1−) 7→ (g+,K+, φ0+, φ1+). (2.1a)

General covariance imposes that (φ0+, φ1+) are functions of scalar invariants of the data,
only, and there are a priori five such invariants not involving any derivatives which are the
matter components φ0−, φ1− and the three Kasner exponents, namely the eigenvalues of the
extrinsic curvature K−. However, the Einstein constraints only allow for Kasner exponents
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k1 + k2 + k3 = 1

k3

k1

k2

(1, 0, 0)

(0, 1, 0)

(0, 0, 1)

θ

|φ0|=1/
√

12π
r=0

φ0=0

Figure 1. Kasner exponents allowed by the constraints. The condition TrK± = 1 restricts
eigenvalues k1±, k2±, k3± of K± to a plane. The Hamiltonian constraint TrK2

± = 1 − 8πφ2
0± 6 1

restricts them to the shaded ball, specifically to a sphere of radius controlled by φ0±. The plane and
ball intersect along the Kasner disk, depicted on the right, which is conveniently parametrized by
the Kasner radius r(φ0±) and angle θ. The center of the disk is K± = 1

3δ, for which φ0± = 1/
√

12π.
More generally, r(φ0±)2 = 1−12πφ2

0±. We also shade the Kasner triangle, subset of the disk in which
all Kasner exponents are positive. Its corners are (k1±, k2±, k3±) = (1, 0, 0) and permutations thereof.

to lie in a circle (with a φ0−-dependent radius r(φ0−)), which we parametrize by a Kasner
angle θ− as depicted in figure 1 (and likewise θ+ for the image data on the other side of the
singularity). Altogether, these fields are described by a map

Φ: (θ−, φ0−, φ1−) 7→ (φ0+, φ1+). (2.1b)

Regarding the extrinsic curvature, our main tool is the asymptotic version of the
ADM momentum constraint, which expresses the divergence of K± in terms of the scalar
fields φ0±, φ1±. Based on the fact that the scattering map must preserve this momentum
constraint, we prove that the extrinsic curvature K+ depends at most linearly on K−. In
other words the traceless part of the extrinsic curvature is simply scaled as(

K+ −
1
3δ
)

= εΩ(φ0+, φ0−)
(
K− −

1
3δ
)
, (2.1c)

for some sign ε = ±1 and a conformal factor Ω(φ0+, φ0−) = r(φ0+)/r(φ0−) determined by
radii of the circles on which Kasner exponents lie. The Kasner exponents (minus their
average 1/3) are scaled by a positive coefficient (ε = +1) or negative coefficient (ε = −1) that
depends on φ0− and φ0+, and additionally the corresponding eigenvectors of the extrinsic
curvature are preserved. Returning to our parametrization of Kasner exponents we learn
that the scattering map either preserves the Kasner angle or shifts it by π, that is,

θ+ = θ− if ε = +1, θ+ = θ− + π if ε = −1. (2.1d)

We then prove that Ω is a constant multiple of √g−/
√
g+, hence is identically vanishing

(which leads to the isotropic maps Siso discussed next) or nowhere vanishing (which leads
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to anisotropic maps Sani discussed presently). In the anisotropic case Ω 6= 0 we determine
that the metric is scaled differently in each eigenspace of K− (or K+) and reads

g+ = c2Ω−2/3 exp
(

16πεξ cos Θ− − 16πε
(
∂θ−ξ + φ0+

r(φ0+)∂θ−φ1+

)
sin Θ−

)
g−. (2.1e)

Here, c > 0 is a constant parameter, the tensor Θ− = diag(θ−, θ− + 2π/3, θ− + 4π/3) is
such that K− = 1

3δ + 2
3r(φ0−) cos Θ−, while ξ is an auxiliary function of θ−, φ0−, φ1− given

explicitly as an integral formula in terms of Φ. Finally, we prove that for each angle θ−, the
map Φ(θ−, . , . ) is a canonical transformation for a measure (5.11) defined on the phase
space of all matter data (φ0−, φ1−), and prove suitable boundary conditions on Φ.

We emphasize the following features of the map Sani
Φ,c,ε.

• The singularity scattering map depends essentially on the prescription of a single
scalar function Φ.

• This function Φ = (θ−, φ0−, φ1−) depends upon the Kasner angle and matter field
before the bounce, only, and can be chosen (almost) arbitrarily.

• The (trace-free part of) extrinsic curvature is conformally transformed, by a conformal
factor that is explicit in terms of Φ. In fact, the densitized trace-free extrinsic curvature
(K± − 1

3δ)
√
g± is unchanged up to a constant factor εc.

• The metric is rescaled anisotropically, differently along each eigenvector of K±; indeed,
we stress that Θ− is a matrix.

The aforementioned momentum-preserving maps (1.5) correspond to the case with ε = +1
and Φ = (φ0−, φ1− + f(θ−, φ0−)).

Isotropic ultralocal scattering. The second class of ultralocal scattering maps we
discover is obtained by taking Ω = 0 in (2.1c), hence K+ = 1

3δ and r(φ0+) = 0, which fixes
φ0+ up to a sign. The momentum constraint then forces the scalar field φ1+ to be constant,
while the metric is arbitrary. The isotropic scattering map is written (in the spacelike
case) as

Siso
λ,ϕ,ε : (g−,K−,φ0−,φ1−) 7→ (g+,K+,φ0+,φ1+) =

(
λ(Θ−,φ0−,φ1−)2g−,

1
3δ, ε/

√
12π, ϕ

)
(2.2)

for any constant ϕ ∈ R, any sign ε = ±1, and any function λ = λ(θ−, φ0−, φ1−) that
is positive, 2π-periodic and even in θ−, and obeys suitable boundary conditions in φ0−.
Here, the tensor Θ− is as defined below (2.1e) and λ is applied to each of its (diagonal)
entries independently. The sign ε = ±1 and the constant ϕ ∈ R can be normalized away
using symmetries of the wave equation for φ away from the singularity. At first sight,
Siso is obtained as a degenerate case of the anisotropic maps Sani above: take Φ to be a
constant map, specifically φ0+ = ε/

√
12π and φ1+ = ϕ, so that K+ = 1

3δ. However, these
limits of Sani do not give rise to the most general choice of function λ. The metric is less
constrained in the isotropic case than the anisotropic case because obeying the momentum
constraint is trivial in the isotropic case.
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After the bounce under the map Siso
λ,ϕ,ε, we have the following features.

• The scattering map depends essentially on the prescription of a single scalar function
λ.

• This function λ = λ(θ−, φ0−, φ1−) depends upon the Kasner angle and matter field
before the bounce, only, and can be chosen (almost) arbitrarily.

• The metric is rescaled differently by the bounce along the different eigenvectors of the
extrinsic curvature.

• The extrinsic curvature is a constant multiple of the identity, leading to an isotropic
and homogeneous evolution after the bounce: (the asymptotic profile of) the metric
after the bounce simply entails a time-dependent conformal factor that is constant
along leaves of the foliation.

• The two components of the matter field after the bounce are overall constants.

Vacuum case. Our scattering maps are defined for any values of the data compatible
with Einstein constraints, in particular in regions of spacetime that may be vacuum. To
avoid creation of matter by the scattering, one may want to impose Φ(θ−, 0, 0) = (0, 0). In
that case, and restricting them to vacuum data, only, the scattering maps we define above
reduce to (with ε = ±1 and c > 0 constant and ξ an essentially arbitrary periodic function
of θ−)

K̊+ = εK̊−, g+ = c2 exp
(
16πε(ξ cos Θ− − (∂θ−ξ) sin Θ−)

)
g−.

It would be interesting to determine more generally what scattering maps exist in vacuum,
without the restriction that the maps be defined in the presence of scalar fields as well. While
in vacuum the ultralocal scattering maps are likely much simpler than our classification
theorem 1.1, solutions to the Einstein equations may involve BKL oscillations that are not
directly covered by our analysis. Furthermore, our classification method should also apply
to spacetimes containing stiff fluids, an important class of spacetimes in order to deal with
ultra-dense matter that can appear in cosmology; see Zel’dovich [81].

2.2 Applications: collisions, string theory, and loop quantum cosmology

Microscopic versus macroscopic approach. Geometric singularities in solutions to
Einstein equations suggest that general relativity should receive corrections in regions with
high curvature, so as to avoid singularities. In particular, various cosmological models
exist where the Big Bang is replaced by a singular or non-singular bounce, achieved for
example through quantum gravity effects, a modification of the Einstein-Hilbert action, or
simply matter violating the null energy condition. Our macroscopic approach abstracts
away details of the bounce by approximating both sides as a solution of general relativity
and, from the Einstein constraints, deducing strong a priori restrictions on possible bounces
regardless of microscopic details.

The microscopic approaches are mostly studied in the cosmological literature for very
symmetrical spacetimes such as Bianchi (homogeneous) spacetimes, and perturbations
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thereof, for which calculations are analytically tractable. For our approach, in contrast, it is
essential to consider general spacetimes, in which preserving Einstein constraints is a very
restrictive condition on scattering maps.

Our method applies whenever a microscopic theory produces bounces that are well-
described by the BKL solutions to Einstein equations on both sides of the bounce and
whose behavior is dominated by time derivatives rather than spatial gradients: such a
bounce must be described by one of our ultralocal scattering map, which depends solely on
the chosen microscopic theory and not on details of the bounce. The relevant singularity
scattering map can be identified simply by working out bounces in Bianchi I (homogeneous
but anisotropic) spacetimes. Our scattering map approach then predicts features of bounces
in arbitrarily inhomogeneous spacetimes. After validating these predictions (hence the
ultralocality assumption) in simplified setups where first principles microscopic derivations
are possible, such as linearized perturbations around Bianchi I spacetimes, one can start
applying our general tools to learn about cosmological features after bounces with arbitrary
inhomogeneities in the chosen microscopic theory.

Pre-Big Bang scenario in string cosmology. Let us outline the situation for the
pre-Big Bang scenario in a spatially homogeneous setting, ignoring various constants and
postponing a more detailed analysis to later work. We keep the dimension d of spatial slices
unspecified in this paragraph, to ease comparison with available literature. The reader can
substitute d = 3 to match the rest of this paper.

In the string frame (SF), the homogeneous metric-dilaton equations of motion (at tree
level and truncated to the lowest order in derivatives) admit Bianchi I solutions of the form:

gSF = −dt2SF +
d∑
i=1
|tSF|2βidxidxi, φSF = (Σ−1) log |tSF|, with Σ =

d∑
i=1

βi,
d∑
i=1

β2
i = 1.

Thus, any given solution (i.e. any given choice of the βi) belongs to a set of 2d+1 choices,
corresponding to the possibility of flipping the sign of tSF as well as the one of any βi.
This possibility is guaranteed by a symmetry (scale-factor duality [78]) of the string-
cosmology equations in the presence of d abelian isometries. The idea of the pre-Big Bang
scenario [39, 78] is to combine, in a single cosmology valid from tSF = −∞ to tSF = +∞,
two solutions in this set that differ for both the sign of tSF and for that of each βi, so that
each Hubble parameter βi/tSF does not change sign from tSF < 0 to tSF > 0. Each solution
becomes singular at tSF = 0 but it is conjectured that higher derivative and/or higher loop
corrections will remove the singularity and allow for a smooth joining of the two solutions.

In the present context we then write, for all tSF 6= 0,

gSF = −dt2SF +
d∑
i=1
|tSF|2βi±dxidxi, φSF = (Σ± − 1) log |tSF|,

with Σ± =
d∑
i=1

βi±,
d∑
i=1

β2
i± = 1,
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where the subscripts ± are the sign of tSF. This sign distinguishes two sides of the bounce.
As mentioned above, a solution for tSF < 0 with some values of the exponents βi− is joined
to a solution with tSF > 0 with all βi+ = −βi−, hence Σ+ = −Σ−.

The Einstein-frame metric is exp(−2φSF/(d − 1))gSF, and the corresponding proper
time coordinate t (vanishing at the bounce) is

t = ± d− 1
d− Σ±

|tSF|(d−Σ±)/(d−1) for ± tSF > 0.

The Einstein-frame metric g then takes the form

g = −dt2 +
d∑
i=1

g± ii|t|2ki±dxidxi,

with ki± = 1
d

+ d− 1
d− Σ±

(
βi± −

Σ±
d

)
, g± ii =

(
d− Σ±
d− 1

)ki±

. (2.3)

We wrote the Kasner exponents ki± in a form that makes manifest that
∑
i ki± = 1, since

Σ±/d is the average of the βi±. In addition, we readily translate the junction condition
βi+ = −βi− (and Σ+ = −Σ−) to a rescaling of all shears ki±− 1/d and of the volume factor
by inverse amounts:

ki+ −
1
d

= −d− Σ−
d+ Σ−

(
ki− −

1
d

)
,

√
|g+| =

d+ Σ−
d− Σ−

√
|g−|.

This is precisely as predicted by the first law (1.6a) of ultralocal scattering maps, suggesting
that the pre-Big Bang scenario bounce is described by one of our maps. If so, the map
must be an anisotropic map Sani

Φ,c,ε with c = 1 and ε = −1, because (ki± − 1
d)
√
|g+| simply

changes sign.
One can in principle determine Φ by studying how the Einstein-frame canonically

normalized dilaton jumps. Its leading coefficient φ0± (in units where Newton’s constant is
G = 1) is given by

φ = φ0± log |t|+O(1), |φ0±| =

√
d− 1

8π
Σ± − 1
d− Σ±

,

and one easily checks
∑
i k

2
i± = 1− 8πφ2

0±. Clearly, Σ+ = −Σ− allows us to express φ0+ as
a function of φ0−, only, and not of individual Kasner exponents. In the language of (2.1)
this means that φ0+ does not depend on the Kasner angle (or angles, in dimension d > 3).
More precise calculations suggest that φ1+ also does not depend on these angles, so that
our expression of the metric (2.1e) simplifies to an expression of the form

g+ = Ω−2/d exp(λ(K− − 1/d))g−

where λ may a priori depend on φ0−, φ1−. This is consistent with the junction condition
we found on g in (2.3), with λ = log d−1

d−Σ− + d−Σ−
d+Σ− log d−1

d+Σ− . Note that, in principle, one
can try to construct alternative bouncing cosmologies by matching, across the singularity,
any two of the 2d duality-related Kasner cosmologies. It is easy to check, however, that in
other cases our junction conditions are not satisfied: thus, the only bounce consistent with
ultralocality is the one where all β+ = −β−. A specific example of this in the context of
the plane-symmetric case is presented in [56].
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Modified gravity theories. Bounces were also considered in a class of modified gravity
theories including metric or Palatini f(R) gravity, Brans-Dicke theory, and more general
scalar-tensor theory in [23]. The set of gravity theories under consideration is too general to
obtain a specific scattering map. Nevertheless, the densitized trace-free extrinsic curvature√
|g|(K − 1

3 Tr(K)δ) was shown in this setting to remain conserved throughout the bounce,
hence to be the same on both sides of the bounce. In terms of the singularity scattering data
(g±,K±) this gives1 √|g+| K̊+ = −

√
|g−| K̊−, which is consistent with the first law (1.6a)

above. Combined with our classification of ultralocal scattering maps (in theorem 5.4),
this suggests that bounces in rather general modified gravity theories are governed by an
anisotropic scattering map of the form Sani

Φ,1,−, as in the pre-Big Bang scenario. It would
be interesting to extend our arguments to yet further models of gravity such as the one
studied mathematically in [64].

Loop quantum cosmology. Loop quantum cosmology following the Ashtekar school [6, 7]
leads quite generically to cosmological bounces. A different standpoint by Bojowald [15]
was analyzed and opposed in [5, 26, 45].

In loop quantum cosmology [8, 79], and in some classical gravity theories such as limiting
curvature mimetic gravity [24], the junction condition for the extrinsic curvature in a Bianchi
I bouncing spacetime with a stiff fluid or massless scalar field is K+ = 2

3δ −K−. Assuming
that bounces in these modifications of general relativity respect the ultralocality expected
from the BKL analysis, they must be described by a scattering map listed in our classification
in theorem 1.1 above. As we explicitize near (5.17) below, the only scattering maps that give
rise to this sign flip K̊+ = −K̊− are Sani

Φ,c,ε with Φ(θ−, φ0−, φ1−) = ±(−φ0−, f(θ−, φ0−)+φ1−)
and ε = −1. These maps are parametrized by a single function f : R×I0 → R (periodic in θ)
and an unimportant constant c > 0 and sign ±. We call these maps momentum-reversing,
in analogy to the momentum-preserving case that we discussed above.

In this way, our method provides an explicit form of the scattering map applicable
to general spacetimes, starting only from the map of Kasner exponents in a homogeneous
spacetime. It would be interesting to test our assumption of ultralocality by checking
whether the scattering map (5.17) (see below) is compatible with results in loop quantum
cosmology with Gowdy symmetry [21] or with linearized perturbations around homogeneous
spacetimes in limiting curvature mimetic gravity.

Further generalizations.

• Bounces with no classical description. In some other quantum gravity approaches such
as quantum reduced loop gravity [1], the solutions do not admit a classical description
after the bounce, which makes our techniques inapplicable.

• On non-ultralocal scattering maps. More generally, we could also consider sin-
gularity scattering maps that are not ultralocal, namely for which the values of

1The extrinsic curvatures K± are defined with respect to unit normals pointing away from the singularity,
while in a smooth bounce one more naturally works with the normals pointing in the same direction on
both sides of the bounce. This leads to a sign in the scattering map from K− to K+.
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(g+,K+, φ0+, φ1+) at x ∈ H can depend on values of (g−,K−, φ0−, φ1−) and their
derivatives at that point. While in principle an approach similar to the one we take
in the ultralocal case might lead to a classification of singularity scattering maps
involving derivatives of a given order, the calculations appear intractable.

3 Spacelike singularity hypersurfaces in (3 + 1)-dimensional spacetimes

3.1 The 3 + 1 ADM formulation

Gaussian foliation. We describe here the geometry near a spacelike singularity hypersur-
face H0. In the following we shall make use of a local Gaussian foliation emanating from the
singular hypersurface and constructed as follows. Geodesics normal to the hypersurface H0
cover a neighborhood of that hypersurface, so that a time coordinate s can be defined as the
proper time along such geodesics, with s = 0 at H0. Level sets of s form a local spacelike
foliation of spacetime

M(4) =
⋃

s∈[s−1,s1]
Hs,

by a time coordinate denoted by s : M(4) 7→ [s−1, s1] for two parameters s−1 < 0 < s1,
consisting of a past region s ∈ [s−1, 0) and a future region s ∈ (0, s1]. These two regions are
pasted at s = 0 along a spacelike singularity hypersurface H0 on which curvature invariants
may blow up. Each slice Hs, s 6= 0 is endowed with a Riemannian metric g(s) = (gab(s))
and an extrinsic curvature tensor (or second fundamental form) K(s) = (Kb

a(s)). Here,
both tensor fields are symmetric, thus gab = gba and Kab = Kba where, as usual, indices are
lowered (or raised) with the metric g. In our notation, local coordinate indices are written
with Latin letters a, b, . . . = 1, 2, 3. The trace Tr(K) = Kb

b = gabKab represents the mean
curvature of the slices within the spacetime and, in our setup, blows up at s = 0.

Locally, in addition to defining a proper time coordinate s, the geodesics emanating
from H0 and normal to it provide a diffeomorphism from each leaf Hs to H0. The shift
vector is then identically 0, and the lapse function is identically 1 by construction, so that
the foliation is a Gaussian foliation. Then the four-dimensional metric in (M(4), g(4)) is
expressed in terms of the three-dimensional one as2

g(4) =
(
g

(4)
αβ

)
= −ds2 + g(s), with g(s) = gab(s)dxadxb.

Here, Greek indices α, β, . . . range from 0 to 3, while for Latin indices we take a, b, . . . = 1, 2, 3.
We sometimes call s a Gaussian time coordinate. Here and throughout this paper, we use
Greek indices for spacetime indices α, β = 0, 1, 2, 3. In such a foliation, Kab = −(1/2)∂sgab.

2This gauge choice g00 = −1 and g0a = 0 is also called synchronous gauge, but we avoid this terminology,
as it is not applicable to the case of timelike foliations we consider later on. In the ADM formalism the
gauge choice sets the lapse to 1 and the shift to 0. Such a choice of coordinates can only be made locally,
as there are typically obstructions to the existence of a global synchronous gauge coordinate system. Note
additionally that the synchronous gauge (Gaussian foliation) does not guarantee a simultaneous singularity,
but that one can choose to set up the foliation starting from the singularity hypersurface (as we do) to
ensure that the singularity indeed happens simultaneously at s = 0.
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Gravitational field equations. The metric and extrinsic curvature tensor fields are
assumed to satisfy the ADM (Arnowitt-Deser-Misner) first-order formulation of Einstein’s
evolution equations, i.e.

∂sgab = −2Kab, ∂sK
a
b−Tr(K)Ka

b = Rab−8πMa
b , Ma

b = 1
2ρδ

a
b+
(
T ab −

1
2 Tr(T )δab

)
.

(3.1)
Here, Rab denotes the (intrinsic, 3-dimensional) Ricci curvature of the slices, while the
mass-energy density ρ = T

(4)
00 = T (4)(n, n), the momentum vector J = −T (4)

0 • = −T (4)(n, • )
and the stress tensor T = (T ab ) are components of the spacetime energy-momentum tensor
T

(4)
αβ specified below, where n is the future-oriented, unit normal to the foliation.

In addition, the equations (3.1) are supplemented with Einstein’s constraint equations

R+ (TrK)2 − Tr(K2) = 16πρ, ∇aKa
b − ∂b(TrK) = 8πJb, (3.2)

in which R = Rbb denotes the trace of the Ricci tensor. These latter two equations are
referred to as the Hamiltonian and momentum equations, respectively, and provide one
with a restriction of the initial data set that can be prescribed (on any given regularity
hypersurface, say). In the regions s < 0 and s > 0 of regularity, it is well-known that they
hold on any hypersurface Hs provided they hold on any other one.

Coupling with the matter field. The right-hand sides of the equations (3.1)–(3.2)
contain contributions whose explicit expression requires a modeling assumption about the
matter content of our spacetime. Here, we work with a massless scalar field φ whose
energy-momentum tensor is quadratic in the first-order derivatives of φ, namely

T
(4)
αβ := ∂αφ∂βφ−

1
2
(
g(4)γδ∂γφ∂δφ

)
g

(4)
αβ .

After projection on the slices of the foliation, the matter components are found to read

ρ = 1
2
(
(∂sφ)2 + |dφ|2g

)
, J = −∂sφdφ, T = dφ⊗ dφ+ 1

2
(
(∂sφ)2 − |dφ|2g

)
g. (3.3)

By virtue of the Euler equations ∇(4)
α T

(4)α
β = 0, where ∇(4) is the connection associated with

the spacetime metric, the field φ is determined by solving the wave equation ∇(4)
α ∇(4)αφ = 0,

that is, the matter evolution equation

− ∂2
sφ+ Tr(K) ∂sφ+ ∆gφ = 0 (3.4)

with ∆gφ = ∇b∇bφ. This is a linear wave equation which, of course, is coupled to (3.1).
For this matter model, the prescription of two scalar fields, that is, the restrictions of φ and
∂sφ, are required as part of the initial data set on a (regularity) hypersurface. Furthermore,
we emphasize that the term involving Tr(K) accounts for the expanding or contracting
nature of the spacetime.
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Local Cauchy developments from regularity hypersurfaces. It is a standard mat-
ter than the system (3.1)–(3.4) admits a unique local-in-time solution defined on an interval
[s−1, s0), provided a sufficiently regular initial data set3 (g(s−1),K(s−1), φ(s−1),Lnφ(s−1)

)
is prescribed on a regularity hypersurface Hs−1 and s0 is sufficiently close to s−1. In general,
a solution initiating at s = s−1 may not exist over a sufficient long time interval and may
not reach the singularity hypersurface. An alternative and more natural approach, which we
investigate in the rest of this section, consists of prescribing data directly on the singularity
hypersurface and evolving away from it.

3.2 Singularity data and asymptotic profile

BKL behaviors of quiescent or oscillating type. The BKL conjecture [11] describes
how, near a spacelike singularity, the evolution at different points in space generically
decouples. Depending on dimensionality and on the matter content, one expects two
possible regimes [11]:

• The quiescent regime (studied by Barrow and others [9, 10, 29] and which is of main
interest to the present study) where the metric is close to a Bianchi I metric (with
well-defined Kasner exponents) at each point near the singularity hypersurface H0 (as
we describe below).

• The oscillating regime, where the spacetime has successive epochs each being described
by a Bianchi I metric at each point, separated by rapid transitions during which the
Kasner exponents and the directions transform non-trivially.

In our setting with a massless scalar field in 3 + 1 dimensions there are generically no
oscillation and the metric can be approximated by a Bianchi I metric at each point of the
singularity hypersurface. More precisely, in our existence theory (cf. theorem 4.5) dealing
with solutions with a prescribed asymptotic behavior on the singularity, we are able to treat
quiescent bounces, obtained when the second fundamental form has a definite sign in the
sense that all of the Kasner exponents are positive. Furthermore, in each of the two generic
regimes above, singularities may additionally feature spikes [71] in co-dimension 1. This
motivates us, later on in this text, to work away from a two-dimensional exceptional locus.

Evolution equations for the asymptotic profile. We consider first the time interval
s ∈ [s−1, 0) and we investigate the behavior of the solutions (g,K, φ) to the coupled
system (3.1)–(3.4), as s → 0. We seek an asymptotic profile denoted by (g∗,K∗, φ∗) that
accurately approximates a general solution as one approaches the singularity. Such an
asymptotic profile (cf. the review in Rendall’s textbook [70]) should be determined by
solving the so-called velocity-dominated evolution equations,4 obtained by removing all
spatial derivatives in the evolution equations, as follows.

3Here L denotes the Lie derivative operator.
4The terminology “velocity dominated” refers to the fact that time-differentiated terms (interpreted as

“velocity” terms) are dominant.
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Namely, from the evolution equations (3.1) and (3.4) we formally deduce the following
equations with unknowns g∗,K∗, φ∗, respectively,

∂sg∗ab = −2K∗ab, (3.5a)
∂sK∗

b
a − Tr(K∗)K∗ba = 0, (3.5b)

∂2
sφ∗ − Tr(K∗)∂sφ∗ = 0. (3.5c)

The system can be solved explicitly, as follows.

• By taking the trace of (3.5b), we find ∂s Tr(K∗) = (TrK∗)2 and, provided we normalize
the singularity to take place at the time s = 0, it follows that

Tr(K∗)(s) = −1
s
,

so that this asymptotic profile consists of a CMC (constant mean-curvature) foliation.

• Consequently, the same equation in (3.5b) tells us that (−s)K∗ba is a constant in
time, which we denote by K−ba. Hence, we find (with the spatial variable x describing
Hs ' H0):

K∗
b
a(s, x) = −1

s
K−

b
a(x), Tr(K−(x)) = 1, x ∈ H0.

• Next, the metric equation (3.5a) reads s ∂sg∗ab = 2K−ca g∗cb and leads us to

g∗ab(s, x) =
(
|s|2K−(x))c

a
g−cb(x), x ∈ H0,

in which the two-tensor |s|2K− = e2K− log |s| is defined by exponentiation.

• Finally, from the matter equation (3.5c) we obtain

φ∗(s, x) = φ0−(x) log |s|+ φ1−(x), x ∈ H0,

in which the fields φ0−, φ1− are arbitrary.

As we will observe in the proof of theorem 4.5, the asymptotic system (3.5) is a controlled
approximation of the Einstein-scalar field equations if K− is positive definite. Beyond
this so-called quiescent regime, the asymptotic profile is generically unstable, with a well-
understood transition [11] to another value of the exponents K−. Providing the definitions
for general exponents remains useful nevertheless, because non-quiescent singularities are
stable in certain symmetry classes, for instance the plane-symmetric spacetimes that we
explore in [56].

Altogether, an asymptotic profile is uniquely determined from the prescription, on the
singularity hypersurface H0, of an arbitrary Riemannian metric g−ab and a symmetric 2-
tensor field K−ab satisfying TrK− = 1, together with two scalar fields φ0−, φ1−. We observe
that the condition TrK− = 1 implies that the determinant |g∗| of g∗ab is proportional to s2

and, more precisely, √
|g∗(s, x)| = |s|

√
|g−(x)|.
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We also observe that the asymptotic profile can be extended to s ∈ (−∞, 0) using the
same formulas, and that the data (g−,K−, φ0−, φ1−) coincide with the asymptotic profile
(g∗,K∗, s∂sφ∗, φ∗) at s = −1.

It is important to check that g∗ and K∗ have the desired symmetry provided g−ab = g−ba
and K−bag−bc = K−

b
cg−ba. By applying the second identity n times one easily checks that

(Kn
−)bag−bc is symmetric too, thus for any entire function f we have that f(K−)bag−bc is

symmetric. Since g∗ac and K∗bag∗bc both have this form they are symmetric.

Constraint equations for the asymptotic profiles. The above data are not inde-
pendent and we also require the following asymptotic version of Einstein’s constraint
equations (3.2):

(TrK∗)2 −K∗abK∗ba = 16π ρ∗, (3.6a)

∇∗aK∗ab − ∂b(TrK∗) = 8π J∗b, (3.6b)

referred to as the velocity-dominated constraint equations. Here, we have neglected the
scalar curvature term and, in addition, space derivatives are neglected in the matter
components (3.3). Precisely, we set

ρ∗ := 1
2(∂sφ∗)2, J∗ := −∂sφ∗dφ∗, T∗ := 1

2(∂sφ∗)2g∗. (3.6c)

We denote by C the left-hand side minus the right-hand side of (3.6a) and by Db the
same difference for the second constraint (3.6b). A calculation shows us that the evolution
equations (3.5) imply

∂sC = 2(TrK∗)C, ∂sDb = (TrK∗)Db −
1
2∂bC.

The first equation is a first-order differential equation for C, while — once the coefficient C
is known from the first equation — the second equation can also be seen as a first-order
differential equation for each component Db. Therefore, these evolution equations imply
that if constraints are satisfied (that is, C = 0 and Db = 0) on a hypersurface Hs for some
fixed time s, then they are satisfied for all s < 0.

Initial data set on a singularity. We now translate the constraints on the asymptotic
profile into constraints on the singularity data set (g−,K−, φ0−, φ1−). This is simply a
matter of setting s = −1: as we just saw, imposing the constraints at that time ensures that
they hold at all times s ∈ (−∞, 0). In addition, at this time, the tuplet (g∗,K∗, s∂sφ∗, φ∗)
is equal to (g−,K−, φ0−, φ1−). Using additionally TrK− = 1, the asymptotic version of the
Einstein constraints (3.6) read as follows in terms of the singularity data:

1−K−abK−ba = 8π (φ0−)2, ∇−aK−ab = 8π φ0− ∂bφ1−. (3.7)

At this stage of our general definitions, we do not need to make specific regularity
assumptions (with respect to the spatial variable). In our main result below we actually
work in the analytic class (but, when plane symmetry is assumed, a much weaker regularity
can be handled). Throughout, H denotes a 3-manifold.

– 18 –



J
H
E
P
0
4
(
2
0
2
2
)
0
9
5

s > 0
s < 0

(g∗,K∗, φ∗)(s)

(g+,K+, φ0+, φ1+)
(g−,K−, φ0−, φ1−)

(g∗,K∗, φ∗)(s)

Figure 2. Spacetime foliation by spacelike hypersurfaces Hs. A singularity hypersurface H0
along which past and future singularity data (g±,K±, φ0±, φ1±) are prescribed. These data specify
asymptotic profiles (g∗,K∗, φ∗)(s) that solve (3.5) for s < 0 and s > 0, with explicit expressions
given in (3.9) and (3.10), respectively.

Definition 3.1. 1. A set (g−,K−, φ0−, φ1−) = (g−ab,K−ba, φ0−, φ1−) consisting of two
tensor fields and two scalar fields defined on H is called a spacelike singularity initial data
set provided:

(i) g− is a Riemannian metric on H.
(ii) K− is symmetric, that is, g−acK−cb = g−bcK−

c
a.

(iii) H has unit mean curvature, that is, TrK− = 1 on H.
(iv) The asymptotic Hamiltonian and momentum constraints (3.7) hold on H.

(3.8)

The set of all such data is referred to as the space of spacelike singularity data and is
denoted by Ispace(H).

2. The data (g−,K−, φ0−, φ1−) are quiescent if K− > 0. The space of such quiescent
data is denoted by IK>0

space(H).

3. The spacelike asymptotic profile associated with the data set (g−,K−, φ0−, φ1−) ∈
Ispace(H) is the flow s ∈ (−∞, 0) 7→

(
g∗(s),K∗(s), φ∗(s)

)
defined on H by

g∗(s) = |s|2K−g−, K∗(s) = −1
s
K−, φ∗(s) = φ0− log |s|+ φ1−. (3.9)

For a discussion of the properties of the space Ispace(H) we refer to section 4.5. So far,
we have discussed the direction toward the singularity but, clearly, a similar definition can
be given in order to evolve away from the singularity hypersurface toward the future. For
the corresponding data we use the notation (g+,K+, φ0+, φ1+) ∈ Ispace(H) and we define
the corresponding asymptotic profile over the time interval (0,∞) by

g∗(s) = |s|2K+g+, K∗(s) = −1
s
K+, φ∗(s) = φ0+ log |s|+ φ1+. (3.10)

We emphasize that our sign conventions in (3.9)–(3.10) are such that TrK± = 1 and K∗
is the extrinsic curvature measured using the future-pointing unit normal to the foliation,
which explains the opposite sign of TrK∗ for s ≶ 0. Note that while (asymptotic profiles K∗
of) the extrinsic curvatures change sign if one changes the sign of s, hence of the unit normal
∂s, the normalized tensors K± have unambiguous signs, as exemplified by the condition
TrK± = 1. These notations are summarized in figure 2 (above), while in figure 3 (below)
we depict some aspects of light-cones near a singularity hypersurface.
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An important example. As an illustration of our definitions, let us consider a particular
class of data sets and asymptotic profiles, in which for simplicity g− is chosen to be the
Euclidean metric on H ' R3 and K− has constant eigenvectors. In suitable coordinates,
we can write K− ≡ diag(k1, k2, k3) for three functions k1, k2, k3 defined on R3. This choice
leads us the following generalized Kasner metric:

g∗Kasner = (−s)2k1(x)(dx1)2 + (−s)2k2(x)(dx2)2 + (−s)2k3(x)(dx3)2, s < 0,

g
(4)
∗Kasner = −ds2 + g∗Kasner.

(3.11)

This is an asymptotic profile included in the general framework above, provided suitable re-
strictions are put on the data functions k1, k2, k3. Namely, the CMC requirement TrK− = 1
reads

k1(x) + k2(x) + k3(x) = 1, (3.12a)

and from the Hamiltonian constraint in (3.7) we get

(k1(x))2 + (k2(x))2 + (k3(x))2 6 1. (3.12b)

We also have three differential constraints

∂aka(x) = 8πφ0−(x)∂aφ1−(x), φ0−(x)2 = 1
8π
(
1− (k1(x))2 + (k2(x))2 + (k3(x))2

)
.

(3.12c)
For instance, if φ1− is chosen to be a constant, then from the equations ∂1k1 = ∂2k2 =

∂3k3 = 0 together with k1 + k2 + k3 = 1, we conclude that ∂1∂2k3 = 0. Hence, for this class
of singularity data, k3 is the sum of a function of x1 and a function of x2. Using again
k1 + k2 + k3 = 1 we arrive at the family of solutions

k1(x) = 1
3 + f2(x2)− f3(x3), k2(x) = 1

3 + f3(x3)− f1(x1), k3(x) = 1
3 + f1(x1)− f2(x2),

parametrized by three functions on R up to an overall shift, subject only to the inequal-
ity (3.12b), easily satisfied for example by functions with all |fa(xa)| < 1/

√
12. We also

recall that φ0− is given by (3.12c).
Furthermore, we observe that, when the ka are chosen to be constant, the metric (3.11)

is not only an asymptotic profile but, in fact, a genuine solution to the Einstein equations.
It is a vacuum solution (the Kasner solution [46]) only if moreover φ−0 vanishes.

3.3 Singularity scattering maps

Beyond Israel’s junction conditions. In order to construct a solution to the Einstein
equations that crosses over a singularity hypersurface, some prescription has to be found for
connecting data reached from both sides. The standard approach to tackle this problem,
in principle, is offered by the Israel (also called Israel-Darmois) junction conditions [43].
However, these conditions were introduced under the assumption that, near the hypersurface,
the local geometry on each side is sufficiently regular. The conditions found by Israel were
the continuity of the metric, as well as the continuity of the extrinsic curvature unless a
surface matter term is present which then introduces a jump discontinuity in the extrinsic
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s = 0

×

Figure 3. Aspects of light-cones near a singularity hypersurface. Past and future light-cones of two
points on the s = 0 singularity hypersurface H0, and domain of dependence (in gray) of a spacetime
point (cross). Kasner exponents ka± before and after the singularity are all less than 1, except in
the special case k1± = k2± = 0, k3± = 1 (and permutations thereof). Null geodesics then travel by
a finite amount ∼

∫
ds/|s|ka− in the three spatial directions before reaching the singularity, and

likewise after the singularity, hence the domain of determinacy of a sufficiently large region (such
as depicted by the dashed line) can include parts of the spacetime after the singularity. The fact
that null rays can “traverse” the singularity enables us to set up null coordinates globally in the
plane-symmetric gravitational collision problem treated in [56].

curvature. A suitable generalization of Israel’s junction conditions is required in order to
encompass singularity hypersurfaces such that the metric and extrinsic curvature are both
blowing up. We expect that the junctions will require extra physical input and possibly a
matter source of impulsive type.

In fluid dynamics, junction conditions are necessary when two flows of different materials
are separated by a moving interface or a fixed membrane [57]. For instance, for car traffic
flows or other flows through a network one often introduces jump conditions that are not a
consequence of the first principles of the physical theory. Connecting a contracting spacetime
with an expanding one may be thought as analogous to a fluid flow in a converging-diverging
nozzle (a so-called De Laval nozzle), and some loss might be observed (and be described by
suitable small-scale physics modeling) at the throat of the nozzle; see for instance [31].

The notion of scattering map. We regard a singularity hypersurface as an interface
between two “phases” across which the geometric and matter fields may encounter a jump,
due to small-scale physics that we are not modeling here. We are only interested in the
“average” effect rather than the detailed physics that may take place within this interface.
This is a standard strategy in fluid dynamics or material science when small parameters
like viscosity, capillarity, heat conduction, etc., are neglected in the modeling, yet have a
macroscopic effect that is captured by imposing suitable jump conditions.

Definition 3.2. A spacelike singularity scattering map on a 3-manifold H is a diffeomor-
phism-covariant map

S : (g−,K−, φ0−, φ1−) ∈ Ispace(H) 7→ (g+,K+, φ0+, φ1+) ∈ Ispace(H) (3.13)

defined over the space of singularity data Ispace(H) and satisfying the following locality
property: for any open set U ⊂ H, the restriction

S(g−,K−, φ0−, φ1−)
∣∣
U
depends only on (g−,K−, φ0−, φ1−)

∣∣
U
.
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Remark 3.3. The locality property ensures that S is entirely determined by its restriction
to any small open ball, which is independent of the ball thanks to diffeomorphism invariance.
This restriction is an arbitrary singularity scattering map on the ball. Specifying a singularity
scattering map S on H is thus equivalent to specifying one on a unit ball, and it is therefore
natural to identify singularity scattering maps S on all 3-manifolds and suppress the
dependence on H.

A map S is said to be ultralocal (or pointwise) if

S(g−,K−, φ0−, φ1−)(x) depends only on (g−,K−, φ0−, φ1−)(x), x ∈ H.

By diffeomorphism invariance, the restrictions Sx to every point x are the same. The
ultralocality condition is motivated by the fact that the dynamics at different spatial points
decouple near a spacelike singularity. As we see in section 5.3, below, the class of ultralocal
singularity scattering maps is rich while still being amenable to classification. We classify
in theorem 5.4 all ultralocal scattering maps for a self-gravitating scalar field.

We say that S is a quiescence-preserving singularity scattering map if it preserves
positivity of K in the sense that

if K− > 0 then K+ > 0, where K+ is defined by (3.13).

In asymptotic profiles with K−,K+ > 0 all distances decrease to zero as s → 0−, then
increases back to finite values for s > 0: such profiles describe a “bounce”. (This positivity
condition is also motivated by the absence of BKL oscillations in the presence of matter.)

In view of the earlier literature (for instance [63]), we can also single out singularities
across which the metric jumps by a conformal transformation: a singularity scattering
map S is called rigidly conformal if

g+ = λ2g−

for some scale factor λ. We introduce a more general and natural concept of conformal
maps in section 5.4.

Further properties of scattering maps. Another natural physical requirement on
scattering maps is to respect symmetries under constant shifts of φ. This means that
shifting φ1− → φ1− + ϕ for some constant ϕ ∈ R should only affect the result by a shift
φ1+ → φ1+ + ψ that is constant in space. Locality only allows ψ to depend on ϕ, and
composing two shifts shows that ψ is simply a multiple of ϕ. Thus, we say that S is
shift-covariant if there exists a coefficient a ∈ R such that

S(g−,K−, φ0−, φ1− + ϕ) = (g+,K+, φ0+, φ1+ + aϕ)

for any constant ϕ ∈ R, any singularity data set (g−,K−, φ0−, φ1−), and its image
(g+,K+, φ0+, φ1+) under S. The cases a = ±1 are particularly interesting: at least for
ultralocal maps classified in theorem 5.4, we find momentum-preserving maps (K+ = K−
and φ0+ = ±φ0−) or momentum-reversing maps (K+ = 2

3δ −K− and φ0+ = ±φ0−). This
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is somewhat unsurprising, from Noether’s theorem applied to whichever microscopic theory
governs the bounce if it is shift-covariant.

Finally, a map S is called idempotent if

S ◦ S is the identity map on Ispace(H).

The condition states that the two sides of the singularity play the same role. A weaker
requirement is that S be an invertible map, or equivalently that either singularity data set
(g±,K±, φ0±, φ1±) can be expressed in terms of the other. This becomes a very natural
requirement when extending our definitions to timelike singularities, where one may want
both sides of the singularity to play the same role.

As an aside, it is easy to check that composing two scattering maps gives a scattering
map and that if the two scattering maps are both ultralocal, quiescence-preserving, rigidly
conformal, or shift-covariant, then their composition also has the same property. The sets
of scattering maps with any of these properties thus forms a semigroup under composition.

4 Cyclic (3 + 1)-dimensional spacetimes based on a scattering map

4.1 Spacetimes with spacelike singularity hypersurfaces

Main contribution of this section. In order to provide a first application of the
formalism we propose in the present paper, we now establish the following result, together
with the more general statement in theorem 4.5 below. In addition, for a global construction
scheme within the class of plane-symmetric cyclic spacetimes, we refer to the companion
paper [56].

We are going to show in the following result. Given any a quiescence-preserving
singularity scattering map defined on a three-manifold with boundary M3, there exists a
large class of spacetimes diffeomorphic to M3+1 ' [t−1, t1]×M3, satisfying the Einstein-
scalar field system and containing a spacelike singularity hypersurface that separates the
two regions of regularity [t−1, 0)×M3 and (0, t1]×M3. These spacetimes are expressed in
Gaussian coordinates (also called synchronous gauge) in which the singularity is simultaneous,
while the past and future limits at the singularity hypersurface t = 0 are related by the
prescribed scattering map. Moreover, these solutions are parametrized by the expected
degrees of freedom for the Cauchy problem, that is, the induced metric, extrinsic curvature,
and matter field on one of the foliation hypersurfaces.

Generalization. An analogous result holds with timelike hypersurfaces, as we will state
in theorem 4.5. Interesting, our results admit several direct extensions. Using the recent
advances in [2, 36–38, 72–74] it is straightforward to reformulate our conclusions at the
Sobolev regularity level. Furthermore, for any initial data set in a large class of data in
the sub-critical regime, as described in [38], the initial value problem can be solved from a
spacelike hypersurface toward a spacelike singularity hypersurface; next, to the corresponding
initial data set on the singularity hypersurface we can then apply our singularity scattering
map and, finally, we can evolve toward the future by Fuchsian techniques following [37].
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4.2 Timelike singularity scattering maps

A generalization of the ADM formalism. The treatment of timelike hypersurfaces is
formally analogous to the one of spacelike hypersurfaces, and we now outline the necessary
modifications that are required in the definitions and results above. After defining singularity
scattering maps for (quiescent) timelike singularities in this section, we will introduce the
notion of cyclic spacetimes with singularity hypersurfaces, and apply Fuchsian techniques
to construct such spacetimes locally.

For spacelike singularity hypersurfaces we worked with a Gaussian foliation (also called
synchronous gauge) such that the four-dimensional metric takes the form g(4) = −ds2 +g(s).
The analogous setup in the timelike case starts with a local foliation of a spacetime by
hypersurfaces Hs, s ∈ [s−1, s1] with s−1 < 0 < s1, endowed with a (symmetric) Lorentzian
metric g(s) = (gab(s)) and an extrinsic curvature K(s) = (Kb

a(s)) such that Kb
agbc is

symmetric. Here, indices a, b, . . . are local coordinate indices on slices of the foliation.
Without loss of generality locally, we assume the foliation to be a proper distance foliation,
in the sense that one has diffeomorphisms Hs ' H0 such that the four-dimensional metric
reads g(4) = ds2 + g(s). Such a foliation can be constructed in a neighborhood of H0 by
defining s as the proper distance along geodesics normal to H0.

It is useful to treat both spacelike and timelike hypersurfaces together by writing the
four-dimensional metric in a proper time or proper distance foliation as

g(4) = ε ds2 + g(s), (4.1)

where ε = −1 for a spacelike foliation and ε = +1 for a timelike foliation. Taking into
account the signature, the matter evolution equation (3.4) for the massless scalar field φ
becomes

− ∂2
sφ+ Tr(K) ∂sφ = ε∆gφ, (4.2)

where ∆gφ = ∇a∇aφ is the Laplacian operator on spacelike slices or the D’Alembertian on
timelike slices. The ADM formulation (3.1)–(3.2) for the Einstein equations now reads

∂sgab + 2Kab = 0,
∂sK

b
a − (TrK)Kb

a = −εRba + 8πε∂aφ∂bφ,
(TrK)2 − Tr(K2)− 8π(∂sφ)2 = εR− 8πε∂aφ∂aφ,
∇aKa

b − ∂b(TrK) + 8π∂sφ∂bφ = 0.

(4.3)

While in the spacelike case the first two equations are evolution equations and the last two
are constraints on the initial data, no such interpretation is available in the timelike case
since ∂s is then a spatial derivative.

Data for timelike hypersurfaces. In both spacelike and timelike cases, asymptotic
profiles are found by neglecting derivatives along leaves of the foliation compared to
s derivatives. This turns out to exactly remove the ε-dependent terms (all right-hand sides)
in the system (4.2)–(4.3). In both cases asymptotic profiles thus take the form

g∗(s) = |s|2K−g−, K∗(s) = −1
s
K−, φ∗(s) = φ0− log |s|+ φ1−, (4.4)
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in terms of singularity data (g−,K−, φ0−, φ1−) such that TrK− = 1 and the asymptotic
Hamiltonian and momentum constraints (3.7) hold. This leads to a natural extension
of definition 3.1 to the case of timelike singularity hypersurfaces. We keep the notion of
quiescent data defined as in the spacelike case since the same positivity condition appears
in both cases in our main existence theorem.

Definition 4.1. 1. A timelike singularity initial data set on H is a set (g−,K−, φ0−, φ1−)
consisting of a Lorentzian metric g− on H, a two-tensor K− = (K−ba) that is symmetric
(namely g−acK−cb = g−bcK−

c
a) and obeys TrK− = 1, and two scalar fields such that the

constraints (3.7) hold. The space of timelike singularity data, denoted by Itime(H), is the
set of all such data.

2. Data (g−,K−, φ0−, φ1−) are quiescent if K− > 0. The space of such quiescent
timelike singularity data is denoted by IK>0

time (H).

3. The timelike asymptotic profile associated with a data set (g−,K−, φ0−, φ1−) ∈
Itime(H) is the flow s ∈ (−∞, 0) 7→

(
g∗(s),K∗(s), φ∗(s)

)
defined on H by (4.4).

An example. It is useful to consider again the class of asymptotic profiles with Kasner be-
havior. These, now, only depend on the proper distance from a timelike hypersurface labelled
s = 0. Specifically, the generalized Kasner profile with timelike singularity is defined as

g
(4)
∗Kasner = ds2 + g∗Kasner,

g∗Kasner = −(−s)2k1(t,x)dt2 + (−s)2k2(t,x)(dx2)2 + (−s)2k3(t,x)(dx3)2, s < 0.

The discussion of (3.11) applies verbatim, apart from renaming the coordinate x1 to t
to emphasize that it is now a time coordinate. Namely, g∗Kasner is an asymptotic profile
included in our framework provided k1 + k2 + k3 = 1, k2

1 + k2
2 + k2

3 6 1, and the three
differential constraints (3.12c) are obeyed. As in the spacelike case, the profile is an exact
solution of Einstein’s equations when the exponents ka are constants.

Junction along timelike hypersurfaces. Our definition 3.2 of singularity scattering
maps extends straightforwardly from the spacelike to the timelike case by changing Ispace
to Itime.

Definition 4.2. A timelike singularity scattering map on a 3-manifold H is a local
diffeomorphism-covariant map S : Itime(H)→ Itime(H).

As in the spacelike case, the singularity hypersurface on which the (local) scattering
map is defined is irrelevant. Likewise, a timelike singularity scattering map is defined to
be ultralocal, quiescence-preserving, or rigidly conformal under the same conditions as for
the spacelike case. Since the only difference between Ispace and Itime is the signature of the
metric, it is natural to combine these two spaces into the space of singularity data

I(H) = Ispace(H) t Itime(H),

whose elements are tuples (g−,K−, φ0−, φ1−) in which g− is a Riemannian or Lorentzian
metric, K− is symmetric, TrK− = 1, and the Hamiltonian and momentum constraints
are obeyed.
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Definition 4.3. A singularity scattering map is a local diffeomorphism-covariant map
S : I(H)→ I(H) that maps Ispace(H) to itself and Itime(H) to itself.5

4.3 The notion of cyclic spacetimes

The main definition. We are now ready to introduce a notion of spacetimes with
singularities that encompasses the common construction of cyclic spacetimes made of
successive epochs separated by bounces. We describe each bounce using a singularity
scattering map.

In our case-study of colliding plane symmetric gravitational waves in [56] we naturally
construct a spacetime with intersecting singularity hypersurfaces, and with singularity
hypersurfaces whose spacelike or timelike nature generically changes along a two-dimensional
locus. Away from that locus, singularity hypersurfaces have a fixed nature and it is natural
to match the asymptotic descriptions of the metric on both sides using a singularity
scattering map, as described by the following definition. Another motivation to exclude a
two-dimensional exceptional locus in the definition below is that it allows for the presence
of non-generic “spikes”, where derivatives parallel to the singularity are not negligible
compared to derivatives transverse to it [71].

Definition 4.4. A cyclic spacetime (M4,N3,P2, g(4), φ) based on a singularity scattering
map S is a smooth oriented 4-manifold M4, endowed with a Lorentzian metric g(4) and
a scalar field φ, both defined outside a singular locus N3 ⊂ M4 consisting of the union
of a collection of oriented and smooth hypersurfaces with boundary and an exceptional
2-dimensional locus P2 ⊂ N3, with the following properties.

• Einstein equations. The Einstein-scalar field evolution and constraint equations
G

(4)
αβ = 8πT (4)

αβ and the matter evolution equation g(4)αβ∇(4)
α ∇(4)

β φ = 0 hold outside the
singular locus N3.

• Local foliations. Every point in N3 \ P2 admits a neighborhood U that can be endowed
with a foliation by hypersurfaces Hs for s in an interval (s−1, s1) containing s = 0,
such that H0 = N3 ∩ U, the hypersurfaces Hs are all diffeomorphic to H0, and the
metric reads g(4) = ±ds2 + g(s) for a one-parameter family of metrics g(s) defined
on Hs ' H0. (The orientation of ∂s is chosen to be compatible with the orientation
of M4 and the hypersurfaces.)

• Singularity behavior. Near each such H0, the singularity data from both sides are
well-defined, as the limits

(g+,K+, φ0+, φ1+) := lim
s→0
s>0

(
|s|2sKg, −sK, s∂sφ, φ− s log |s|∂sφ

)
(s),

(g−,K−, φ0−, φ1−) := lim
s→0
s<0

(
|s|2sKg, −sK, s∂sφ, φ− s log |s|∂sφ

)
(s).

(4.5)

5We tacitly assume that the scattering maps are regular. Specifically, we require that smooth data are
mapped to (at least) continuous data.
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U =
⋃
sHs

•

x

s>0

s<0
N

Figure 4. Singular locus in a cyclic universe. In this example, the singular locus N consists of two
singularity hypersurfaces, one of which is spacelike. The codimension 2 locus P (depicted by three
ticks along N) consists of their intersection and of the two-dimensional locus where a hypersurface
changes between timelike and spacelike nature. It could have additional components near which the
approximation of the metric by an asymptotic profile breaks down (so-called spikes). By definition,
every x ∈ N \P admits a neighborhood U with a (spacelike or timelike) Gaussian foliation such that
H0 = N ∩ U.

• Scattering conditions. On each such H0, the following junction conditions hold:

(g+,K+, φ0+, φ1+) = S(g−,K−, φ0−, φ1−). (4.6)

To motivate the choice of limits in (4.5), we remark that for any asymptotic profile
s ∈ (−∞, 0) 7→ (g∗(s),K∗(s), φ∗(s)), these limits coincide with the corresponding singularity
data (g−,K−, φ0−, φ1−) and, in fact, the arguments of the limits are independent of s. In
theorem 4.5 below we check that, when data are imposed on one side of the singularity with
positive definite K−, suitable solutions as described in definition 4.4 do exist and admit
well-defined limits (4.5). Figure 4 summarizes some notations.

Geometric properties near a singularity. We explain now some geometric conse-
quences of the definition. In the more constrained setting of theorem 4.5, we will see that
somewhat stronger statements (whose proof requires Fuchsian techniques) hold. For the
time being we study the curvature of a general cyclic spacetime (M4,N3,P2, g(4), φ), based
only on the definition. Let x ∈ N \ P be a point on the singularity locus such that φ0±
defined by (4.5) are non-zero. Consider a local foliation Hs, s ∈ (s−1, s1) whose existence
is entailed by definition 4.4, namely a foliation such that x ∈ H0 ⊂ N while other leaves
do not intersect N, and such that g(4) = εds2 + g(s) (ε = ±1) for some diffeomorphisms
Hs ' H0. Restrict the foliation to a smaller neighborhood if necessary so that

φ0± 6= 0 throughout H0. (4.7)

Observe that this condition is for instance ensured if we assume quiescent data (K± > 0),
since TrK± = 1 and the asymptotic Hamiltonian constraint then imply 4πφ2

0± = k1±k2± +
k2±k3± + k3±k1± > 0, where ka± are the eigenvalues of K±.

• Behavior of the curvature. Under the assumption (4.7), we now show that the
spacetime curvature component R(4)

00 along the unit normal to the foliation blows up
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with a uniform power of s, namely lims→0± s
2R

(4)
00 (s) = 8πφ2

0± on H0, so that H0 is
a curvature singularity. This is checked as follows. By the Einstein equations and
the form of the massless scalar stress-energy tensor, we have R(4)

00 = 8π (∂sφ)2. Since
s∂sφ → φ0± as s → 0±, this term behaves as φ2

0±/s
2, as announced. On the other

hand, for general cyclic spacetimes we cannot show that the spacetime scalar curvature
R(4) blows up, since we are not assuming any control of the spatial derivatives, such
as the property ∂aφ = O(log |s|) for solutions that we construct in theorem 4.5.

• Behavior of the second fundamental form. We see that the mean curvature H = TrK
of the leaves blows up uniformly:

lim
s→0

sH(s) = −1 on H0. (4.8a)

We check this rather easily by noting that −sK → K± implies −sH(s)→ TrK± = 1.

• Behavior of the volume. In the spacelike case (g(4) = −ds2 + g(s) with g Riemannian)
the volume of co-moving regions vanishes on the singularity. Namely, consider
a compact subset C ⊂ H0 and let VC(s) be the volume of its image under the
diffeomorphism H0 ' Hs. This volume shrinks to zero

lim
s→0

VC(s) = 0, (4.8b)

which, together with H(s) → −∞, implies that H0 is (by definition) a crushing
singularity.
This is checked as follows. By definition, |s|2sKg → g± as s→ 0±, so |s|sTrK |g|1/2 →
|g±|1/2. Since sTrK → −TrK± = −1, for sufficiently small s we have sTrK < −1/2
(say) so

|g|1/2 . |s|1/2|g±|1/2 → 0 as s→ 0±.

We conclude that the volume of any compact region shrinks as s→ 0.

4.4 Existence theory and qualitative behavior

Solutions generated by the Fuchsian method. We are now in a position to show
the existence of a large class of spacetimes with prescribed singularity data on a spacelike
or timelike hypersurface. Motivated by [3] our result is restricted to the regime where the
extrinsic curvature is positive. The regime where some of the Kasner exponents (eigenvalues
of K± as introduced above) are negative is not amenable to the theory of Fuchsian equations
since the more involved BKL oscillation mechanism generically takes place. Despite a
local existence theory being available only in the all-positive regime, we have allowed
our definitions of singularity data and singularity scattering maps to cover the general
case where some Kasner exponents may be negative, as this case appears in our study of
plane-symmetric spacetimes in [56].

Theorem 4.5 (A class of cyclic spacetimes based on arbitrary Fuchsian data). Consider
an analytic three-manifold H0 together with a singularity scattering map S : I(H0) 7→ I(H0)
defined over the space of singularity data on H0. Assume that the map S is quiescence-
preserving in the sense that it preserves positivity of the extrinsic curvature.
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• Existence theory. Then, given any singularity data (g−,K−, φ0−, φ1−) defined and
analytic on H0, that is quiescent in the sense that K− > 0, there exists a cyclic
spacetime (M(4), g(4)) in which H0 embeds as a single singularity hypersurface such
that the initial conditions (4.5) hold on the two sides of the singularity, with the singu-
larity data (g+,K+, φ0+, φ1+) determined from (g−,K−, φ0−, φ1−) via the singularity
scattering map S, as stated in (4.6). In particular, for every compact subset L ⊂ H0
there exists an s∗ > 0 such that every geodesic originating from L normal to the
singularity hypersurface exists for a proper time or distance s∗.

• Crushing curvature singularity property. Furthermore, in the spacelike case and
assuming for definiteness that H0 is compact, the mean curvature H(s) and the
volume V (s) = VolHs of the slices (as pointed out in (4.8)) satisfy

lim
s→0

sH(s) = −1 on H0, lim
s→0

V (s) = 0,

so that s = 0 is a crushing singularity, while the spacetime scalar curvature blows up
in a uniform way, namely lims→0± s

2R(4)(s) = 8π ε φ2
0± on H0.

Step 1. Spacelike hypersurface. We rely on the existence theorem established in [3],
which treats spacelike hypersurfaces only. With our terminology, the main theorem therein
states that given any singularity initial data set such that extrinsic curvature has a definite
sign, there exists an actual solution to the Einstein-scalar field system that enjoys the same
asymptotic behavior as the associated asymptotic profile. Recall that analyticity of the
Fuchsian data is assumed in [3] and throughout the present discussion.

The sign condition is that the initial data has negative definite extrinsic curvature
tensor K (defined using a normal pointing away from the singularity), which holds in our
case on both sides of the singularity because of the signs in (3.9), (3.10) and our convention
to use a normal pointing toward increasing values of s. Equivalently, the corresponding
Kasner exponents (eigenvalues of −K) are all positive. (Other behaviors are in principle
possible but the Fuchsian-type arguments in [3] would not apply.)

The given singularity data (g−,K−, φ0−, φ1−) has everywhere positive-definite K−
by assumption, hence their existence theorem provides a local solution defined on the
s < 0 side6 of the singularity. By the same token, the image (g+,K+, φ0+, φ1+) under the
singularity scattering map S also has K+ > 0 (because S is quiescence-preserving), so that
applying the same existence theorem, but forward in time, yields a local solution for small
s > 0. Pasting these two solutions together along the singularity hypersurface at s = 0
completes our construction in the spacelike case.

To prove that we constructed a cyclic spacetime in the sense of definition 4.4, there
remains to show that (|s|2sKg,−sK, s∂sφ, φ − s log |s|∂sφ) tends pointwise to the given
singularity data (g±,K±, φ0±, φ1±) as s→ 0± on both sides of the singularity. We fix once
and for all a side ±s > 0 and a specific spatial point x0 at which we study the behavior.
We rely on detailed estimates of [3] on the difference between the solution (g,K, φ) and its

6We recall from definition 4.4 that this may be the past or future side of the singularity depending on
the cyclic spacetime’s orientation.
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asymptotic profile (g∗,K∗, φ∗) as s→ 0±. They fix a positive α0 < min(ka±(x0))/10 and
construct a frame on a neighborhood of x0 such that at each point x in this neighborhood,
K±(x) is close to a tensor Q(x) = diag(q1(x), q2(x), q3(x)) that is diagonal in that frame,
in the sense that the spectrum of K± −Q stays in a small interval (−α0/8, α0/8). One can
arrange for K±(x0) = diag(k1±(x0), k2±(x0), k3±(x0)) to be diagonal in that frame at x0,
and the closeness condition implies |ka±(x0)− qa(x0)| < α0/8. For each a, b = 1, 2, 3 they
prove in particular the following estimates:(
|s|−αa

b(g−1
∗ g−δ)ab, |s|1−α

a
b(K−K∗)ab, φ−φ∗, |s| log |s| ∂s(φ−φ∗), ∂a(φ−φ∗)

)
s→0±−−−−→ 0,

(4.9)
where αab = α0 + 2 max(0, qb − qa) > 0. These imply our desired limits immediately except
for the metric, which we now study.

By symmetry ofK we have |s|2sKg= g|s|2sK , so it is enough to show that g−1
± g|s|2sK→ δ.

Using that g±= g∗|s|−2K± by construction of the asymptotic profile, we find

g−1
± g|s|2sK =

(
|s|2K±g∗−1g |s|−2K±)(|s|2K± |s|2sK). (4.10)

The first factor is close to the identity:
(
|s|2K±g∗−1g |s|−2K±)a

b
= |s|2ka±−2kb±(g∗−1g)ab = |s|2ka±−2kb±

(
δab +o

(
|s|αa

b
))

= δab +o(|s|α0/2)

where we first used that K± is diagonal, then (4.9), then αab + 2ka± − 2kb± > α0 +
2(qb − kb±) − 2(qa − ka±) > α0 − 4α0/8. Next, we write the second factor as ∆(1) with
∆(λ) := |s|2λK± |s|2λsK . We observe that

1
2∂λ∆(λ) = |s|2λK±(K± + sK)|s|2λsK = |s|2λK±(K± + sK)|s|−2λK±∆(λ),

whose solution with ∆(0) = δ is explicitly given by the series (a path-ordered exponential)

∆(λ) =
∑
n>0

∫
06µn6...6µ16λ

(
n∏
i=1

2|s|2µiK±(K± + sK)|s|−2µiK±

)
dnµ. (4.11)

Indeed, it is easy to check this is formally a solution, while convergence of the series is
checked as follows. Their estimate (4.9) on K reads (K± + sK)ab = o(|s|αa

b), hence, for
0 6 µ 6 1, we get(
|s|2µK±(K±+sK)|s|−2µK±)a

b
= |s|2µ(qa−qb)(K±+sK)ab = o

(
|s|2min(0,qa−qb)+αa

b
)

= o(|s|α0).

Thus the matrix norm of all factors 2|s|2µiK±(K± + sK)|s|−2µiK± in (4.11) is bounded by
C|s|α0 for some C, so that the n-th term in the sum is bounded by Cn|s|nα0/n! (where
the 1/n! factor comes from the volume of {0 6 µn 6 . . . 6 µ1 6 1}). In addition, we learn
from this bound that ∆(λ) − δ = o(exp(|s|α0) − 1) = o(|s|α0). This concludes the proof
that (4.10) tends to the identity matrix as s→ 0. Altogether, the spacetime we constructed
using the result of [3] in the spacelike case is indeed a cyclic spacetime in the sense of
definition 4.4, as we expected.
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Step 2. Timelike hypersurface. By applying the same strategy as in the spacelike
case, and using that the scattering map S preserves the signature of the metric and is
quiescence-preserving, we reduce the problem to proving a timelike counterpart to the
existence theorem of [3]. For definiteness we work on the s > 0 side. We summarize their
proof and explain along the way how to modify it to include the signature ε = ±1 (we recall
our convention that g(4) = εds2 + g(s) so that ε = −1 is the spacelike case). The key point
is that ε arises only in source terms in (4.3), so that it does not change the analysis of the
Fuchsian differential equations and, especially, their behavior in powers of s.

Following [3], we fix a point x0 ∈ H0 and prove existence and uniqueness in a small
neighborhood of x0, the full solution being easily patched up from these local ones. We
fix a positive number α0 < min(ka+(x0))/10. On a sufficiently small neighborhood U of x0
we can find a frame {ea} on U , and a diagonal tensor Q = diag(q1, q2, q3) in this frame,
such that the spectrum of K+ −Q is in the small interval (−α0/8, α0/8) and such that all
ka+ > 5α0 everywhere.7

We parametrize the differences between exact solutions and asymptotic profiles using
the same Ansatz as [3]:

(g∗−1g − δ)ab = sα
a

bγab, ec(γab) = s−ζλabc, s(K −K∗)ab = sα
a

bξab,

φ− φ∗ = s2ζψ, ec(ψ) = s−ζωc, s∂s(φ− φ∗) = s2ζχ,
(4.12)

where αab = α0 + 2 max(0, qb − qa) > 0, ζ = α0/800, and we seek solutions with
γab, λ

a
bc, ξ

a
b, ψ, ωc, χ = o(1). Let us turn to the equations obeyed by these six remainder

functions. Injecting the Ansatz for (g,K, φ) into the Einstein-scalar field equations in
ADM formalism (4.2)–(4.3) yields equations with first order and second order derivatives of
γab, ξ

a
b, ψ. As anticipated in (4.12) we give names ωc, χ to weighted derivatives of ψ along

and across leaves of the foliation, and likewise λabc, ξab to weighted derivatives of γab. Then
first order s∂s derivatives of the six remainder functions can be expressed in terms of their
first order derivatives along leaves of the foliation: generalized to either signature ε = ±1
their equations (48) and (47) read

s∂sγ
a
b + αabγ

a
b + 2ξab − 2[γ,K+]ab = −2sαa

c +αc
b−α

a
b (γξ)ab,

s∂sλ
a
bc = sζec(s∂sγab) + ζsζec(γab),

s∂sξ
a
b + αabξ

a
b +K+

a
b Tr ξ = sα0(Tr ξ)ξab − ε s2−αa

b
(SRab − 8πgacec(φ)eb(φ)

)
,

s∂sψ + 2ζψ − χ = 0,
s∂sωa = sζea(χ− ζ ψ),

s∂sχ+ 2ζχ = sα0−2ζ(φ0+ + s2ζχ) Tr ξ − ε s2−2ζ(∆gφ∗ +∇agωa
)
.

(4.13)
7As a side-note we point out an easily fixed mistake in [3]. In their section 5, α0/8 is implicitly chosen to

be smaller than any non-zero difference |ka+(x0) − kb+(x0)| so that their case distinction between “near
Friedmann”, “near double eigenvalue”, and “diagonalizable” exactly matches with the number of coincident
eigenvalues of K± at x0. As we discuss momentarily, this additional restriction on α0 would break the proof
that constraint equations are obeyed. Thankfully, this additional restriction on α0 and its consequence
K±(x0) = Q(x0) are not actually used in their paper.
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The only differences between the spacelike and timelike cases are the sign of two source
terms in (4.13) as expected from our (4.3), and the signature of g, which does not affect
their discussion at all.

Observe that the system takes the form s∂sU + AU = F (s, x, U, Ux), where U =
(γab, λabc, ξab, ψ, ωc, χ) is the vector of remainder functions, A is s-independent, and the
source term F only involves at most first-order x derivatives of U . To be precise, s∂sγab
in the right-hand side of the second equation should be replaced by its value according to
the first equation. The Ricci curvature tensor SRab of Sgcd := 1

2(gcd + gdc) must likewise
be expressed in terms of first-order derivatives of λabc instead of second-order derivatives
of γab. Finally, while ∆gφ∗ + ∇agωa involves second order derivatives of the asymptotic
profile φ∗, it only involves first order derivatives of the remainder functions γab, ωa. The
most technical part of [3] is to prove that (4.13) are Fuchsian equations, in the sense that
the matrix A is the direct sum of a zero matrix and a matrix with positive spectrum, and
that F is suitably analytic and tends to zero as some positive power of s. The matrix A is
does not depend on ε so their analysis of its spectrum applies verbatim to the timelike case.
The bounds they derive on F as s→ 0 do not rely on cancellations between terms so the
same bounds apply to both signs ε = ±1.

Once the system is shown to be Fuchsian, a general theorem implies the existence
and uniqueness of U = (γab, λabc, ξab, ψ, ωc, χ) on a small interval s ∈ (0, s1] such that
U tends to zero as s → 0. Such a solution automatically has symmetric gab and Kab;
indeed, s1−α0(Kab −Kba) turns out to obey a linear Fuchsian equation and tends to zero
as s→ 0 hence vanishes, which then implies that gab − gba is s-independent yet bounded
by a positive power of s as s → 0, hence vanishes. At this point, we know that (g,K, φ)
given in terms of γab, ξab, ψ by the Ansatz (4.12) is a solution of the Einstein-scalar field
“evolution” (meaning ∂s) equations, but not necessarily the constraints. If the prescribed
singularity data set has “isotropic enough” K+ ' 1

3δ, then (suitable rescalings of) the
Hamiltonian and momentum constraints are shown to obey linear Fuchsian equations
and tend to zero as s → 0 hence they vanish identically. More precisely, this argument
goes through provided all |ka+ − 1/3| < α0/10. Concretely, this establishes the existence
and uniqueness in neighborhoods of points x0 at which all |ka+(x0)− 1/3| < 1/500 (say)
because this inequality ensures that α0 = 1/50 < min(ka+(x0))/10 fulfills all the necessary
inequalities.8

The general case K+ > 0 relies on an analytic continuation argument. Consider a
singularity data set (g+,K+, φ0+, φ1+) that is quiescent (K+ > 0), and a point x0 along
the singularity hypersurface. In the neighborhood U of x0 considered previously we have
that all ka+ > 5α0. From this and the constraints

∑
a ka+ = 1 and

∑
a k

2
a+ = 1 − 8πφ2

0+

8Even when all |ka+ − 1/3| are very small it is not necessarily possible to fulfill the additional restriction
on α0 explained in footnote 7. Indeed, consider k1+ = 1/3− a+ a2, k2+ = 1/3− a− a2 and k3+ = 1/3 + 2a
for a tiny a > 0. This is arbitrarily close to 1/3, but the condition |ka+ − 1/3| < α0/10 of applicability of
the argument for constraints requires α0 > 20a; then |k1+ − k2+| < α0/8, which fits in Case II of [3] even
though K+(x0) is non-degenerate. As we point out in footnote 7 this minor oversight is corrected by simply
ignoring the idea that the number of equal eigenvalues of K+(x0) controls whether the data set should be
treated as Case I, II, or III in their case distinction.
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one can work out that 12πφ2
0+ > 15α0. For a (constant) parameter a ∈ (0, 1] we consider

the data set(
µ2g+,

1
3δ + µ−3K̊+, a

−1µ−3φ0+, aφ1+

)
, µ =

(
1 + 12πφ2

0+(a−2 − 1)
)1/6

. (4.14)

For a = 1 this is the original data set (g+,K+, φ0+, φ1+). One readily checks that this choice
of conformal rescaling of the metric, trace-free extrinsic curvature, and φ0+ by powers of µ
leaves the momentum constraint ∇+aK+

a
b = 8πφ0+∂bφ1+ invariant, and that the expression

of µ in terms of a leaves the Hamiltonian constraint 1 − TrK+
2 = 8πφ2

0+ invariant. For
a ∈ (0, 1] we have µ > 1 so 1

3δ + µ−3K̊+ is closer than K+ to the center 1
3δ of the Kasner

disk, hence is positive. We have thus constructed an analytic family (parametrized by a)
of singularity data sets that are quiescent. Solutions of Fuchsian equations are known to
depend analytically on parameters in this context, and in particular the constraints depend
analytically on a. For a ∈ (0, 1] sufficiently small we have 15α0(a−2 − 1) > 106 so µ > 10,
which makes the rescaled data (4.14) “isotropic enough” in the sense above. The constraints
thus vanish identically for small a, and depend analytically on a, so they vanish for all a.
This concludes our proof of the timelike analogue of Andersson and Rendall’s result on
Einstein-scalar field equations.

The analytic continuation argument in [3] does not rely on our construction (4.14).
Instead, they use a much simpler construction that applies to stiff fluids to conclude for
this type of matter, then they remark that solutions with a massless free scalar φ give rise
to (particular) solutions with stiff fluids whose velocity is the normalized gradient ∇φ/|∇φ|.
Our nontrivial construction (4.14) makes for a conceptually clearer argument, as it makes
the proof for the massless scalar completely independent of that for stiff fluids. Another
motivation for our approach is that the normalized gradient of a scalar field is spacelike near
timelike singularities, so that it cannot be interpreted physically as the velocity of a fluid.

Step 3. Behavior of the curvature. By construction of the foliation, g(4)00 = ε and
g(4)0a = 0 so we compute

R(4) = −8πTr(4)(T ) = 8πg(4)αβ∂αφ∂βφ = 8π
(
ε(∂sφ)2 + gab∂aφ∂bφ

)
.

Since s∂sφ → φ0± as s → 0±, the first term behaves as εφ2
0±/s

2 as announced in the
theorem. There remains to prove that the second term does not contribute to the limit of
s2R(4). On the other hand, the asymptotic Hamiltonian constraint implies an upper bound
on each eigenvalue ka± of K±:

k2
a± 6 Tr(K2

±) = 1− 8πφ2
0± 6 (1− 4πφ2

0±)2.

Since −sK → K± as s→ 0±, we deduce that, for sufficiently small s, eigenvalues of −sK
are less than 1− 2πφ2

0± (say). This, and the fact that |s|2sKg has a finite limit g±, enables
us to bound the inverse metric as g−1 = |s|2sK

(
|s|2sKg

)−1 = O
(
|s|4πφ

2
0±−2). On the other

hand, ∂aφ = ∂aφ∗ + o(1) = O(log |s|) so we deduce as desired (provided φ0± 6= 0)

gab∂aφ∂bφ = O
(
|s|4πφ2

0±−2(log |s|)2) = o(s−2).
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4.5 Parametrization of the set of singularity data

The space of spacelike singularity data. To get a better handle on the space of
singularity data, we now turn to parametrizing it, first in the spacelike setting. Consider
the conditions (3.8), together with (3.7), defining the space of spacelike singularity data
Ispace(H). We drop the “−” subscripts for brevity. Hence, g is an arbitrary Riemannian
metric on H while K is a symmetric two-tensor satisfying on H

TrK = 1, 1− Tr(K2) = 8π φ2
0, ∇aKa

b = 8π φ0∂bφ1.

For definiteness, we treat the case where H is a compact three-manifold. We parametrize
the subspace of singularity data defined by the restriction that φ0 > 0 everywhere.

We adapt here the so-called conformal method, originally proposed by Lichnerowicz
and recently generalized by several authors; see [65] and the references therein. It turns out
to be convenient to scale the metric g and trace-free part of K, by introducing a metric g̃
and a tensor H̃ as follows:

gab = φ
−2/3
0 g̃ab, Ka

b −
1
3δ

a
b = φ0H̃

a
b . (4.15)

Then, the symmetry of K, the trace condition TrK = 1, and the Hamiltonian constraint
in (3.7) read

g̃abH̃
b
c = g̃cbH̃

b
a, H̃a

a = 0, φ0 =
√

2/3
8π + Tr H̃2

, (4.16)

while the differential constraint in (3.7) simplifies to ∇̃aH̃a
b = 8π ∂bφ1. Here ∇̃ is the

Levi-Civita connection of g̃. Let us also define ∇̃b by ∇̃a = g̃ab∇̃b.
Any symmetric traceless tensor, such as g̃ H̃, can be decomposed into a symmetric

tranverse-traceless tensor σ and a vector field part W :

g̃ H̃ = σ + 1
2N L̃W, ∇̃aσab = 0, (4.17)

in which N > 0 is any prescribed function and L̃ denotes the conformal Killing operator of
the metric g̃ (

L̃W
)
ab

= ∇̃aWb + ∇̃bWa −
2
3
(
∇̃cWc

)
g̃ab.

Its dual L̃∗ act on symmetric, traceless tensors Aab and is defined as (L̃∗A)b = −2∇̃aAab.
Plugging this Ansatz into our momentum equation, we obtain the elliptic system(

L̃∗
( 1

2N L̃W

))
b

= −16π ∂bφ1. (4.18)

This is a system of three equations for a vector field W defined on H (assumed to be
compact). A unique solution W exists (see section 6.1 in [42]) provided the right-hand
side is L2-orthogonal to any conformal Killing field on H. For instance, this is always true
whenever the metric g̃, or equivalently the metric g, has no conformal Killing field.

Given the solution W of (4.18) and any chosen transverse-traceless tensor σ we obtain
H̃ from (4.17), then deduce φ0 from (4.16). Finally, we scale (g̃, H̃) to get (g,K − δ/3).

– 34 –



J
H
E
P
0
4
(
2
0
2
2
)
0
9
5

Choosing N = 1 in the above for definiteness, we find the following proposition.

Proposition 4.6 (Parametrization of the space of singularity data in the spacelike case).
On a compact 3-manifold H, there is a one-to-one correspondence between the singularity
data sets (g,K, φ0, φ1) with φ0 > 0 and the triples (g̃, σ, φ1) consisting of a Riemannian
metric, a symmetric transverse-traceless (TT) tensor field σ on (H, g̃), and a scalar field φ1
such that ∇φ1 is L2-orthogonal to the conformal Killing fields of (H, g̃) (if any exists).

The space of timelike singularity data. For timelike hypersurfaces we can proceed
in a similar way as above, but a significant difference arises: the equation (4.18) for the
(vector-valued) unknown W is now a coupled system of wave equations. Hence, it is natural
to assume that the hypersurface topology is H ' I × Σ2 where I ⊂ R is an interval
containing 0, say, and Σ2 is a two-surface.

From a singularity data set (g,K, φ0, φ1) with φ0 > 0, we scale the metric as in (4.15)
to define g̃ and H̃. To construct a solution W of the wave equation (4.18), suitable initial
data should be prescribed on the two-dimensional slice Σ0 = {0} × Σ2, that is

W |Σ0 = W0, LνW |Σ0 = W1,

in which ν is a unit (for g̃) normal vector field along Σ0. Then σ is defined by (4.17)
as in the spacelike case. We can thus expect a one-to-one correspondence between the
singularity data sets (g,K, φ0, φ1) with φ0 > 0 and the tuples (g̃, σ,W0,W1, φ1) consisting
of a Riemannian metric, a symmetric transverse-traceless (TT) tensor field σ on (H, g̃), and
a scalar field φ1 on H, as well as two scalar fields W0,W1 prescribed on the surface Σ2.

The above parametrizations in the spacelike and timelike cases are not directly used
below, since we prefer to describe the scattering maps S as maps defined for all singularity
data including configurations where φ0 may vanish. To use these parametrizations, we
would need to require scattering maps to map any data set with a positive matter field
φ0 to an image with positive matter field. However, the conformal rescaling method used
in (4.15) is useful at various points later on.

5 Classification of ultralocal scattering maps

5.1 Preliminaries

Organization of this section. Interestingly, many choices of junction are allowed by
our definitions above, and it is only after additional physical input is specified that one can
decide which junction conditions are actually achieved. The same phenomenon occurs with
phase interfaces in fluids undergoing phase transitions: an augmented physical model is
required which provides us with the “internal structure” of the interfaces (or shock waves)
and, in turn, a complete description of the global dynamics of the fluid. See [57] for a
review. Motivated by the observations in Belinsky, Khalatnikov, and Lifshitz [11] that,
along a singularity, the dynamics typically decouples completely at different points, our
aim in the present section is to parametrize the class of ultralocal scattering maps;

After some more preliminaries on scalar invariants of singularity data in this section,
we introduce in section 5.2 the class of rigidly conformal scattering maps, as we call them,
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which are defined as those for which g+ and g− have the same conformal class. We then
give the full classification of ultralocal maps in section 5.3, specifically theorem 5.4. We
end in section 5.4 by defining a more “robust” notion of conformality, that is, the class of
conformal scattering maps which (in contrast with rigid conformality) are independent of
the implicit normalization we made when defining g±.

Theorem 5.4, which classifies ultralocal maps, is established in section 6. Let us highlight
here some steps of our proof, to give the reader some insight on why ultralocal maps are so
restricted. Ultralocality means that the value of (g+,K+, φ0+, φ1+) = S(g−,K−, φ0−, φ1−)
at a point x only depends on (g−,K−, φ0−, φ1−) at the same point, and not on their
derivatives. As we shall show, general covariance then only allows a finite number of tensor
structures for K+ (namely δ, K−, and K2

−), and likewise for g+, with scalar coefficients.
Scattering maps must respect the momentum constraint, which expresses the divergence
∇± ·K± in terms of the scalar fields. We work out that if the expression of K+ includes the
tensor structure K2

−, then ∇+ ·K+ involves not only ∇− ·K− but also other derivatives of K−
that cannot be expressed in terms of scalar fields, thus violating the momentum constraint.
This entails a most crucial property: the trace-free part of K+ is proportional to that
of K−. The momentum constraint then further restricts various scalar fields appearing in
the construction, which leads us to a complete classification of all ultralocal scattering maps.

When describing scattering maps in the rest of this section we generally omit the
subscript “−” for brevity but keep it and the subscript “+” where necessary. Scattering
maps must be sufficiently regular to preserve the regularity of the data (g±,K±, φ0±, φ1±)
in any chosen functional space. In particular, we tacitly require our scattering maps to be
sufficiently regular so that g+ is at least continuous when (g−,K−, φ0−, φ1−) are smooth.

Kasner radius and angle. Ultralocal scattering maps are conveniently described in
terms of the following parametrization of the eigenvalues k1, k2, k3 of K at a given point
x ∈ H. Since K is symmetric with respect to the quadratic form g (at x), it admits
eigenvectors v1, v2, v3 that are orthogonal with respect to g. In this basis, K and g are
diagonal. For spacelike singularities, g is Riemannian so up to rescaling the eigenvectors
we obtain g(va, vb) = δab, and the three eigenvalues k1, k2, k3 are indistinguishable. On
the other hand, for timelike singularities g is Lorentzian, so g(va, vb) can be normalized to
diag(−1, 1, 1): the eigenvalue k1 (say) is singled out as the one with (at least) one timelike
eigenvector.

In terms of the eigenvalues k1, k2, k3 of K, the constraints TrK = 1 and TrK2 6 1
describe a unit disk. We essentially use the Jacobs parametrization [44] of this disk by polar
coordinates: a Kasner radius r ∈ [0, 1] and a Kasner angle θ, such that

k1 −
1
3 = 2

3r cos θ, k2 −
1
3 = 2

3r cos
(
θ + 2π

3

)
, k3 −

1
3 = 2

3r cos
(
θ + 4π

3

)
. (5.1)

For spacelike singularities, eigenvalues are indistinguishable, so the angle θ has periodic-
ity 2π/3 by definition. For timelike singularities, the eigenvalue k1 is special due to the
timelike eigenvector, so θ has periodicity 2π. In both cases, mapping θ → −θ simply
exchanges k2 ↔ k3, which are indistinguishable. When describing scattering maps it is
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nevertheless more convenient to keep the somewhat redundant parametrization with θ ∈ R
and suitable symmetry and periodicity requirements. As usual for polar coordinates, the
value of θ is meaningless when r = 0.

For a 2π-periodic even function f : R→ R we introduce the notation

f(Θ) := diag
(
f(θ), f

(
θ + 2π

3

)
, f

(
θ + 4π

3

))
in the basis v1, v2, v3, (5.2)

which (as we explain momentarily) is well-defined for r 6= 0: when r = 0, θ is completely
ambiguous. Here, Θ stands schematically for diag(θ, θ+ 2π/3, θ+ 4π/3), which is ill-defined
for two reasons.

• First, the Kasner angle is only defined up to changing θ → −θ and θ → θ + 2π/3
or 2π depending on signature, and such changes, together with the corresponding
permutations of eigenvectors, only preserve Θ modulo 2π shifts and overall sign
changes. These ambiguities do not affect f(Θ) thanks to evenness and periodicity
of f .

• Second, when (exactly) two eigenvalues coincide (θ = 0 mod π/3) the basis v1, v2, v3
is ambiguous. This is cured since at these values of θ the corresponding eigenvalues
of f(Θ) coincide, so that changing the basis does not affect f(Θ).

Using the notation (5.2), the equation (5.1) is simply

K = 1
3δ + 2

3r cos Θ, (5.3)

in which the factor r suppresses the ambiguity in cos Θ when r = 0. It will be useful to
compute various powers of the traceless extrinsic curvature K̊ = K − 1

3δ:

K̊ = 2r
3 cos Θ, K̊2 = 2r2

9
(
δ + cos(2Θ)

)
, K̊3 = 2r3 cos(3θ)

27 δ + r2

3 K̊, (5.4)

and their traces

Tr K̊ = 0, Tr K̊2 = 2r2

3 , Tr K̊3 = 2r3 cos(3θ)
9 . (5.5)

Finally, the Kasner radius can in fact be determined solely from φ0 thanks to the
asymptotic Hamiltonian constraint in (3.7) and TrK = 1:

r2 = 3
2 Tr(K̊2) = 3

2 TrK2 − TrK + 1
2 = 1− 12πφ2

0.

In particular, φ0 lies in a bounded interval and it is natural to define

r(φ0) :=
√

1− 12πφ2
0 for φ0 ∈ I0 :=

[
−1/
√

12π, 1/
√

12π
]
. (5.6)

Observe that the relation cannot be inverted since the sign of φ0 cannot be deduced from r.

– 37 –



J
H
E
P
0
4
(
2
0
2
2
)
0
9
5

Scalar invariants of singularity data. An important building block in the classification
is to understand what ultralocal scalar invariants the singularity data (g,K, φ0, φ1) admits,
namely what functions of the data at a point x (and not its derivatives) are invariant under
changes of coordinates.

As explained above, the symmetry ofK with respect to g ensures thatK= diag(k1,k2,k3)
and g= diag(±1,1,1) in some basis v1,v2,v3, where the sign depends on the signature of g.
Any ultralocal scalar is therefore determined by its value for such diagonal matrices, and
can thus only depend on k1,k2,k3,φ0,φ1. Expressing the eigenvalues in terms of (r,θ), and
r in terms of φ0 using (5.6) we obtain the following lemma (recall that θ is undefined when
r= 0 namely φ0 =±1/

√
12π).

Lemma 5.1 (Ultralocal scalars). Any GL(3,R)-invariant function of the singularity data
(g,K, φ0, φ1) at a point can be written as a function of the scalars θ, φ0, φ1 defined in (5.3)
that is an even and periodic function in θ with period 2π/3 (spacelike case) or 2π (timelike
case), and that is θ-independent for φ0 = ±1/

√
12π.

In particular, the scalar fields (φ0+, φ1+) obtained after applying an ultralocal scattering
map are ultralocal scalar invariants. They are thus described by a function Φ: R× I0×R→
I0 × R suitably even and periodic in θ, such that (φ0+, φ1+) = Φ(θ−, φ0−, φ1−). The
function Φ plays a key role in describing the most general ultralocal scattering in section 5.3.

5.2 Rigidly conformal scattering maps

The notion of rigid conformality. As a warm-up before giving the most general
ultralocal scattering map, we describe in this section all rigidly conformal scattering maps,
in the sense that g− and g+ are in the same conformal class. Recall that g− and g+ are
the values of asymptotic profiles for proper times (or proper distances) s = ±1 around the
singularity hypersurface. We introduce later a more flexible notion of conformal scattering
map, defined by comparing the whole asymptotic profiles, rather than specifically their
values g− and g+ at s = ±1.

Example 1. Isotropic rigidly conformal scattering. For any ultralocal scale factor
λ > 0, namely a function of (θ, φ0, φ1) ∈ R × I0 × R that is even and periodic in θ with
period 2π/3 (spacelike case) or 2π (timelike case), any constant ϕ ∈ R and either sign
ε = ±1, we introduce the map

Siso,rc
λ,ϕ,ε : (g,K, φ0, φ1) 7→

(
λ2g,

1
3δ, ε/

√
12π, ϕ

)
. (5.7)

Observe that after the bounce the three Kasner exponents are equal, hence the expansion
(in the spacelike case) is isotropic. The scalar field and extrinsic curvature are com-
pletely shielded by the singularity, except that they make the scale factor λ of the metric
space-dependent.

The constant ϕ and sign ε are mostly irrelevant since they simply affect the overall
sign and constant part of the asymptotic profile φ∗, and the Einstein-scalar field equations
are invariant under mapping φ→ −φ or φ→ (φ+ constant). One could thus focus on the
special case Siso,rc

λ := Siso,rc
λ,0,+, but to have a complete classification we keep all parameters.
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Example 2. Anisotropic rigidly conformal scattering. For any differentiable func-
tion F : R→ R with nowhere vanishing derivative, any constant c > 0, and any sign ε = ±1,
we introduce the map

Sani,rc
F,c,ε : (g,K, φ0, φ1) 7→

(
c2µ2g, εµ−3

(
K − 1

3δ
)

+ 1
3δ, εµ

−3 φ0
F ′(φ1) , F (φ1)

)
, (5.8a)

in which
µ = µ(φ0, φ1) =

(
1 + 12πφ2

0
(
F ′(φ1)−2 − 1

))1/6
. (5.8b)

Observe that 1− 12πφ2
0 = 3

2 Tr((K− δ/3)2) > 0 and 12πφ2
0F
′(φ1)−2 > 0 with equality when

φ0 = 0, so that their sum is positive and µ is indeed well-defined and nonzero. As we will
see, if ε = +1 and F is contracting (|F ′| 6 1), then µ > 1 so the scattering map brings the
Kasner exponents closer to the isotropic case 1

3 .
As in the isotropic case, changing F → −F or shifting it by a constant is mostly

irrelevant due to the Einstein-scalar field equations being invariant under mapping φ→ −φ
or φ→ (φ+ constant). In contrast, the sign ε in Sani,rc

F,c,ε affects K hence has a very strong
effect on the asymptotic profile g∗(s) = |s|2K+g+.

Special cases, limits, and regularity.

• A special case is that Sani,rc
I,1,+ (where I denotes here the identity map R→ R) is the

identity map, which we dub continuous scattering. Another interesting case that plays
a role in proposition 5.2 below is the momentum reversing

Sani,rc
I,1,− : (g,K, φ0, φ1) 7→

(
g,

2
3δ −K, −φ0, φ1

)
.

• The function F must be monotonic. For the anisotropic scattering Sani,rc
F,c,ε to lead to

a continuous g+, one needs µ to be continuous, which requires in particular F ′ to
be continuous. Since F ′ is nowhere vanishing, it must be either positive or negative
everywhere, hence forcing F to be monotonic. The precise regularity condition to
impose on F for Sani,rc

F,c,ε (likewise λ for Siso,rc
λ,ϕ,ε) depends on the chosen regularity of

singularity data sets.

• Some Siso,rc can essentially be obtained as limits of Sani,rc. For this, consider the
limit of Sani,rc

ϕ+c3F,c,ε as c → 0 for some monotonic F : R → R with nowhere vanishing
derivative. For φ0 > 0 or φ0 < 0, the limit is well-defined and coincides with an
isotropic rigidly conformal scattering

lim
c→0

Sani,rc
ϕ+c3F,c,ε(g,K, φ0, φ1) = Siso,rc

λ,ϕ,ε sgnφ0 sgnF ′(g,K, φ0, φ1)

with λ6 = 12πφ2
0F
′(φ1)−2. Observe that the limit is discontinuous and ill-defined

whenever φ0 vanishes.
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Classification of rigidly conformal ultralocal singularity scattering maps. In
fact, the following proposition states that examples 1 and 2 cover all possible classes of such
scattering maps. Interestingly, the classification is the same for spacelike and for timelike
maps, except for the different θ periodicity of λ in Siso,rc

λ,ϕ,ε . Later on, in theorem 5.4, we state
the more general classification of ultralocal scattering maps that are not necessarily rigidly
conformal.

Proposition 5.2 (Rigidly conformal ultralocal scattering maps for self-gravitating scalar
fields). A spacelike or timelike scattering map S that is rigidly conformal and ultralocal is
either Siso,rc

λ,ϕ,ε or Sani,rc
F,c,ε defined in (5.7) and (5.8) above. Among these maps, one distinguishes

several subclasses:

• Quiescence-preserving maps are Siso,rc
λ,ϕ,ε and Sani,rc

F,c,+ with 0 < |F ′| 6 1 identically.

• Idempotent maps are Sani,rc
F,1,ε with F ◦ F = I and nowhere vanishing F ′, which implies

that F = I or F ′ < 0 everywhere.

• Shift-covariant maps are Siso,rc
λ,ϕ,ε with φ1-independent λ, and Sani,rc

F,c,ε with F ′′ = 0.

• Quiescence-preserving idempotent maps are Sani,rc
I,1,+ = I and Sani,rc

(y 7→ϕ−y),1,+: (g,K, φ0, φ1)
7→ (g,K,−φ0, ϕ− φ1). They are automatically shift-covariant.

Proof of which maps are quiescence-preserving, idempotent and/or
shift-covariant. We defer to section 6 the proof that rigidly conformal ultralocal scat-
tering maps are (5.7) or (5.8). For now we determine which of these maps are quiescence-
preserving, idempotent, and/or shift-covariant. Idempotence is primarily relevant for the
case of timelike singularities, but the classification is independent of signature. It is con-
venient to re-introduce in this proof the notation g±, etc. to distinguish between the two
sides of the singularity hypersurface. All tensors are considered at a given point x ∈ H,
which we omit from notations.

Recall that S is quiescence-preserving if K− > 0 (quiescent data) implies K+ > 0.
Manifestly, Siso,rc

λ,ϕ,ε is quiescence-preserving since K+ = 1
3δ > 0 regardless of K−. To show

that Sani,rc
F,c,ε is quiescence-preserving when ε = +1 and 0 < |F ′| 6 1 identically, note that

F ′(φ1−)−2 − 1 > 0 so

µ(φ0−, φ1−)−3 =
(
1 + 12πφ2

0−(F ′(φ1−)−2 − 1)
)−1/2

6 1

identically, thus K+ = µ−3(K− − 1
3δ) + 1

3δ is on the line segment joining 1
3δ and K−. Since

the triangle defined by TrK = 1 and K > 0 is convex and 1
3δ lies in it, we conclude

that K− > 0 implies K+ > 0. Conversely, let us prove next that Sani,rc
F,c,ε is otherwise not

quiescence-preserving. For this we consider a configuration on H = R3 with constant
(g−,K−, φ0−, φ1−) where g− is flat Euclidean or Minkowski and K− = diag(1− 2ξ, ξ, ξ) for
some ξ ∈ (0, 1

2). There are two cases to study.

• If ε=−1, we consider the limit ξ→ 0 with φ1− fixed. In this limit, φ2
0−→ 0 so

µ(φ0−,φ1−)→ ε=−1 so K+→ diag(−1
3 ,

2
3 ,

2
3), hence K+ 6> 0 for sufficiently small ξ > 0.
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• If |F ′(y)| > 1 for some y ∈ R, we take φ1− = y identically and ξ → 1
2 : in this limit

12πφ2
0− → 3

4 > 0 so µ−3 > 1 and the first diagonal entry in K+ = µ−3(K−− 1
3δ) + 1

3δ

tends to 1
3(1− µ−3) < 0. For ξ sufficiently close to 1

2 we get K+ 6> 0.

Recall that S is idempotent if S ◦ S is the identity. Since Siso,rc
λ,ϕ,ε (g,K, φ0, φ1) is indepen-

dent of the eigenvectors of K, it is not injective, let alone idempotent. To determine when
Sani,rc
F,c,ε is idempotent, it is useful to note that

Sani,rc
F2,c2,ε2

◦ Sani,rc
F1,c1,ε1

= Sani,rc
F3,c3,ε3

where c3 = c2c1, ε3 = ε2ε1, and F3 = F2 ◦ F1. The resulting scattering map is the identity
if and only if F3 is the identity, c3 = 1, and ε3 = +1. Thus, Sani,rc

F,c,ε is idempotent if and
only if c = 1 and F ◦ F = I. The condition can be refined in the case F ′ > 0. In that
case we can show F = I: indeed, if for any y ∈ R we have y < F (y) (resp. y > F (y)) then
applying the increasing function F implies the opposite inequality F (y) < F (F (y)) = y

(resp. F (y) > F (F (y)) = y). Once we know F = I and c = 1 there are only two maps,
S = Sani,rc

I,1,+ = I and S = Sani,rc
I,1,− . In contrast, the case F ′ < 0 features a large family of

idempotent scattering maps, as there are many strictly decreasing idempotent functions
F on R.

Next, we consider maps that are quiescence-preserving and idempotent. The identity
map Sani,rc

I,1,+ = I clearly is. For F ′ < 0 we need to understand the interplay of F ◦ F = I and
|F ′| 6 1. The latter condition states that F is a map that reduces distances. In order for it
to be idempotent, it should thus preserve distances: such isometries of R are translations
and reflections. Due to F ′ 6 0 we are left only with reflections F (y) = ϕ− y, as described
in the proposition.

Finally, we study shift-covariant maps, such that shifting φ1− → φ1− + ϕ shifts
φ1+ → φ1+ + aϕ for some constant a and leaves (g+,K+, φ0+) untouched. In the case of
Siso,rc
λ,ϕ,ε , this simply means that the conformal factor λ(θ−, φ0−, φ1−) multiplying the metric

must be invariant under shifts of its last argument. For Sani,rc
F,c,ε we need µ defined by (5.8b)

to be φ1−-independent, hence need F ′(φ1−) to be a constant, as stated in the theorem. It
is easy to check that such affine F lead to a shift-covariant map.

The second part of proposition 5.2 is thus proven, while the proof of the classification
of rigidly conformal ultralocal scattering maps will be done later in section 6 together with
the classification of all ultralocal scattering maps.

5.3 General ultralocal scattering maps

Example 3. Isotropic ultralocal scattering. We now generalize the examples above
to arbitrary ultralocal scattering maps, distinguishing again isotropic and anisotropic
scattering maps. For any three functions α0, α1, α2 of (θ, φ0, φ1) ∈ R× I0×R that are even
in θ and 2π/3-periodic (spacelike case) or 2π-periodic (timelike case), and are such that
∂θα0, α1, α2 vanish at the boundary φ0 = ±1/

√
12π of I0, and for any constant ϕ ∈ R and

sign ε = ±1, we introduce the map

Siso
α0,α1,α2,ϕ,ε : (g,K,φ0,φ1) 7→

(
exp

(
α0 δ+α1 cosΘ+α2 cos(2Θ)

)
g,

1
3δ,

ε√
12π

, ϕ

)
, (5.9)
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where cos Θ and cos(2Θ) are defined through (5.2). In the spacelike case the map can
equivalently be written as

Siso
λ,ϕ,ε : (g,K, φ0, φ1) 7→

(
λ(Θ, φ0, φ1)2g,

1
3δ,

ε√
12π

, ϕ

)
, (5.10a)

λ(θ, φ0, φ1) := exp
(1

2
(
α0(θ, φ0, φ1) + α1(θ, φ0, φ1) cos θ + α2(θ, φ0, φ1) cos(2θ)

))
, (5.10b)

where λ is an arbitrary positive 2π-periodic even function that becomes θ-independent
along the boundary ∂I0. To retrieve the 2π/3-periodic functions α0, α1, α2 from λ one can
decompose 2 log λ into Fourier modes.

For both spacelike and timelike hypersurfaces, Siso reduces to its rigidly conformal
case Siso,rc upon setting α1 = α2 = 0 in (5.9), or in the description (5.10) imposing 2π/3-
periodicity of λ so as to make λ(Θ, φ0, φ1) into a multiple of the identity matrix. In contrast
to the rigidly conformal case, the metric gets generally both scaled and sheared upon
crossing the singularity.

Our comments about Siso,rc in Example 1 are equally applicable to the general isotropic
ultralocal scattering Siso. The name “isotropic” stems from how the expansion after the
bounce is isotropic, given that the three Kasner exponents are equal. Both φ and K are
shielded by the singularity, except for their effect on how the metric transforms. Again, the
constant ϕ and sign ε are mostly irrelevant due to how the Einstein-scalar field equations
are invariant under mapping φ→ −φ or φ→ (φ+ constant).

Phase space and canonical transformation. The initial data for matter on the sin-
gularity hypersurface consists of two scalar fields φ0, φ1. Since the evolution is ultralocal
near the singularity, it is natural to consider the phase space I0 × R in which (φ0, φ1) can
take values at each point. Here, I0 := [−1/

√
12π, 1/

√
12π] is the interval (5.6) in which the

momentum φ0 can vary. We also recall from (5.6) that r(φ0) = (1 − 12πφ2
0)1/2 vanishes

when momentum is maximal (φ0 = ±1/
√

12π), namely along the boundary of I0 × R. Our
construction below is based on the following symplectic form (or volume form) on the
interior of the phase space:

d

(
φ0
r(φ0)

)
dφ1 = dφ0dφ1

r(φ0)3 . (5.11)

Definition 5.3 (Canonical transformation for matter). An ε-canonical transformation for
the matter is a function Φ = (Φ0,Φ1) : R× I0×R→ I0×R obeying the following properties
for some sign ε:

(i) Periodic. The image Φ(θ, φ0, φ1) is 2π/3 (spacelike case) or 2π (timelike case) periodic
and even in θ, and at the boundary φ0 = ±1/

√
12π it is θ-independent.

(ii) Maximal-momentum9 preserving. The function Φ maps boundary to boundary and
interior to interior, in the sense that r(Φ0(θ, φ0, φ1)) = 0 if and only if r(φ0) = 0.
Moreover, the ratio r(Φ0)/r(φ0) has finite limits as φ0 → ±1/

√
12π for each (θ, φ1),

and these limits are θ-independent and nowhere vanishing.
9We could also say that Φ is isotropy preserving since maximal momentum φ0 = ±1/

√
12π corresponds

to K = 1
3δ.
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(iii) Volume preserving. For each θ ∈ R, the map Φ(θ, . , . ) is volume-preserving for the
measure (5.11), namely is a canonical transformation of (the interior of) the phase
space I0 × R, up to the sign ε. Explicitly,

r(Φ0)−3(∂φ0Φ0 ∂φ1Φ1 − ∂φ1Φ0 ∂φ0Φ1
)

= ε r(φ0)−3.

(iv) Regular at boundaries. For each (θ, φ1) ∈ R2, Φ0
r(Φ0)∂θΦ1 → 0 and Φ0

r(Φ0)∂φ1Φ1 −

ε
φ0
r(φ0) → 0 at the boundaries φ0 → ±1/

√
12π. In addition, the integral∫

I0

Φ0
r(Φ0)∂φ0Φ1 dφ0, which is φ1-independent due to the other conditions, vanishes for

all θ.

Example 4. Anisotropic ultralocal scattering. We now define a scattering map

Sani
Φ,c,ε : (g−,K−, φ0−, φ1−) 7→ (g+,K+, φ0+, φ1+) (5.12a)

that depends on a constant scale factor c > 0, a sign ε = ±1, and an ε-canonical transfor-
mation Φ: R× I0 × R→ I0 × R obeying conditions (i)–(iv) above with the sign ε. First,
the scalar fields are given by Φ as

(φ0+, φ1+) = Φ(θ−, φ0−, φ1−), (5.12b)

where the Kasner angle θ− is given by the parametrization (5.1) of eigenvalues of K−. From
φ0± one determines the Kasner radii

r± = r(φ0±) =
√

1− 12πφ2
0±. (5.12c)

Second, the trace-free extrinsic curvature K̊ = K − 1
3δ is continuous through the bounce,

up to a scaling:

K̊+ = 0 for r− = 0, K̊+
r+

= ε
K̊−
r−

for r− 6= 0. (5.12d)

The first case is imposed by condition (ii) since r− = 0 implies r+ = 0 thus K̊+ = 0.
Condition (ii) also states that r− 6= 0 implies r+ 6= 0, which makes the second equality
well-defined. Observe that the allowed scaling factors ±r+/r− are the only ones consistent
with Tr(K̊2

±) = 2r2
±/3. The proportionality has two consequences: K+,K− share their

eigenvectors and θ+ − θ− = 0 (for ε = +1) or π (for ε = −1) modulo 2π. Importantly, even
in the spacelike case where θ+ and θ− are only defined modulo 2π/3 (due to permuting
eigenvectors), their difference is defined modulo 2π since one can compare eigenvalues of
K+ and K− on the same eigenvectors. Third, an auxiliary function ξ : R× I0 × R is given
explicitly by

ξ(θ−, φ0−, φ1−) = −
∫ φ0−

−1/
√

12π

Φ0(θ−, y, φ1−)
r(Φ0(θ−, y, φ1−))∂yΦ1(θ−, y, φ1−) dy. (5.12e)
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Boundary regularity (iv) shows that ξ vanishes at both boundaries φ0− = ±1/
√

12π. Just
as Φ is, the function ξ is manifestly even and (2π/3 or 2π) periodic in θ−, and θ-independent
(in fact vanishing) at the boundary r− = 0. Thanks to the volume-preserving condition (iii),
it is a solution of

∂φ0−ξ + φ0+
r+

∂φ0−φ1+ = 0, ∂φ1−ξ + φ0+
r+

∂φ1−φ1+ = ε
φ0−
r−

. (5.12f)

Finally, for r−, r+ 6= 0 the metric is scaled along the three eigenvectors of K+,K−:

g+ = c2
(
r−
r+

)2/3
exp

(
16πεξ cos Θ− − 16πε

(
∂θ−ξ + φ0+

r+
∂θ−φ1+

)
sin Θ−

)
g− (5.12g)

where Θ− = diag(θ−, θ−+2π/3, θ−+4π/3) in an eigenbasis of K−. As discussed above (5.2),
Θ− is rather ambiguous but cos Θ− = 3

2K̊−/r− is well-defined away from r− = 0. While
sin Θ− is ill-defined, being odd under θ− → −θ−, this sign ambiguity is precisely fixed by
the fact that the ∂θ− derivatives of the even functions ξ and φ1+ are odd as well. The value
of g+ when r− = r+ = 0 is determined as the φ0− = ±1/

√
12π limit of (5.12g). The limit

(lim r−/r+) is well-defined and non-zero by condition (ii). Exponentials drop out thanks to
ξ = 0 and condition (iv) at the boundary, so g+ = c2(lim r−/r+)2/3g−.

Remarks on special cases and limits. We will see in theorem 5.4 that there are no
other ultralocal scattering maps. Let us make a few preliminary comments.

• Example 3 reduces to Example 1 as follows. The isotropic map Siso
α0,α1,α2,ϕ,ε defined

in (5.9) is rigidly conformal if and only if the matrix multiplying the metric is a
multiple of the identity matrix, namely if and only if α1 = α2 = 0. In this case it
coincides with Siso,rc

λ,ϕ,ε with λ = exp(α0/2).

• Example 4 reduces to Example 2 as follows. The anisotropic map Sani
Φ,c,ε defined

in (5.12) is rigidly conformal if and only if the metric is scaled by a scalar namely the
exponential in (5.12g) is trivial. This requires the auxiliary function ξ to vanish and
∂θΦ1 = 0. The function ξ (5.12e) can only vanish identically if Φ1 is φ0-independent as
well, namely φ1+ = F (φ1−) for some function F . Then volume preservation gives that
(φ0+/r+)∂φ1−φ1+ − εφ0−/r− is φ0−-independent, but boundary regularity imposes
that it vanishes at φ0− = ±1/

√
12π so it vanishes throughout. This fixes Φ completely

in terms of F . One then easily works out that the scattering map coincides with
Sani,rc
F,c,ε given in (5.8).

• As in its rigidly conformal special case Sani,rc
F,c,ε , the only effect of changing Φ→ −Φ or

shifting Φ1 by a constant in Sani
Φ,c,ε is to map φ→ −φ or shift φ after the scattering,

both of which are symmetries of the Einstein-scalar field equations.

Classification of ultralocal scattering maps. To state the following theorem we
introduce the notation θ̂ and the 2π/3-periodic function φmin that gives the value of φ0 for
which constraints impose that (at least) one eigenvalue of K vanishes:

φmin(θ) =
( 1

12π

(
1− 1

4 cos2 θ̂

))1/2
, where θ̂ = θ − 2π

3

⌊ 3θ
2π − 1

⌋
∈
[2π

3 ,
4π
3

)
. (5.13)
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θ

|φ0|=1/
√

12π
r=0

|φ0|=φmin(θ)
r=1/(2 cos θ̂)

φ0=0
K > 0

Figure 5. Kasner disk and triangle. The disk consists of points with r2 = 1− 12πφ2
0 6 1, and the

(shaded) triangle is characterized by K > 0 or equivalently by |φ0| > φmin(θ) with φmin defined
in (5.13).

The geometric meaning of φmin is clarified by figure 5. The classification we find, and its
refinements under various conditions, are the same for spacelike and timelike scattering
maps, except for the θ-periodicities: 2π/3 in the spacelike case and 2π in the timelike case.

Theorem 5.4 (Ultralocal scattering maps for self-gravitating scalar fields). Spacelike
or timelike, ultralocal scattering maps S are either Siso

α0,α1,α2,ϕ,ε or Sani
Φ,c,ε defined in (5.9)

and (5.12), respectively. Among these maps, one distinguishes several subclasses:

• Quiescence-preserving maps are Siso
α0,α1,α2,ϕ,ε and Sani

Φ,c,ε under the condition that for
all θ, φ0, φ1 with |φ0| > φmin(θ + πδε=−1) one has |Φ0(θ, φ0, φ1)| > φmin(θ).

• Invertible maps are Sani
Φ,c,ε such that Φ(θ, · , · ) : I0×R→ I0×R is bijective for each θ.

Their inverse is Sani
Ψ,1/c,ε with Ψ(θ, · , · ) = Φ(θ + πδε=−1, · , · )−1 for each θ. They are

idempotent if c = 1 and Φ(θ + πδε=−1, . , . ) ◦ Φ(θ, . , . ) = I for all θ.

• Shift-covariant maps are Siso
α0,α1,α2,ϕ,ε with φ1-independent α0, α1, α2, and Sani

Φ,c,ε given
in (5.16), below, which states that Φ0/r(Φ0) = εa−1φ0/r(φ0) and Φ1 = af + aφ1 for
some non-zero a ∈ R and some suitably regular function f = f(θ, φ0). Among these,
Siso are quiescence-preserving and non-invertible, while Sani are

– invertible for any f, a, c, ε,
– quiescence-preserving if and only if |a| 6 1 and ε = +1,
– quiescence-preserving and have quiescence-preserving inverse if and only if a = ±1
and ε = +1,

– idempotent if and only if a = ±1, c = 1, ε = ±1, and f(θ, φ0) = −af(θ +
πδε=−1, εaφ0) for all (θ, φ0).

• Momentum-preserving (ε = +1) or momentum-reversing (ε = −1) maps are Sani
Φ,c,ε

with Φ = ±(εφ0, φ1 +f(θ, φ0)) for some suitably regular function f . They are invertible
shift-covariant maps, with a = ±1.
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This generalizes the classification of rigidly conformal ultralocal maps in proposition 5.2.
We observe that both families of ultralocal scattering maps simply scale the densitized
trace-free extrinsic curvature

√
|g| K̊ by a constant factor γ, with γ = 0 for Siso

α0,α1,α2,ϕ,ε and
γ = εc3 for Sani

Φ,c,ε.

Corollary 5.5 (Scaling of trace-free second fundamental form). Under an ultralocal singu-
larity scattering map S, the trace-free part of

√
|g|K scales by some constant γ ∈ R that

depends only on S: √
|g+|

(
K+ −

1
3δ
)

= γ
√
|g−|

(
K− −

1
3δ
)
. (5.14)

Different applications call for imposing different restrictions on the scattering maps.
Our local existence theory obtained in theorem 4.5 requires quiescence-preserving maps, to
avoid BKL oscillations. Our global existence theory in plane symmetry in [56]. treats both
sides of timelike singularity hypersurfaces on an equal footing, hence requires invertible
maps, and we focus for definiteness on momentum-preserving maps, also characterized as
quiescence-preserving shift-covariant maps whose inverse has the same properties. As per
theorem 5.4 these are Sani

Φ,c,+ with Φ0 = ±φ0 and Φ1 = ±(f(θ, φ0) + φ1).

Proof of which maps are quiescence-preserving, idempotent, shift-covariant,
etc. Proving the classification of scattering maps is somewhat involved, so we delay it
until section 6. For now we prove the second part of the theorem. We restore the indices ± in
the singularity scattering data, namely we denote (g+,K+, φ0+, φ1+) = S(g−,K−, φ0−, φ1−)

First consider Siso. It yields K+ = 1
3δ > 0 so it is quiescence-preserving. It is manifestly

not invertible (hence not idempotent). For this class of scattering maps, shift-covariance
states that the metric is unchanged upon shifting φ1−, which means that the functions
α0, α1, α2 describing the change of metric are only functions of θ− and φ0−.

We thus concentrate henceforth on Sani. This anisotropic scattering map preserves
quiescence provided it maps K− > 0 to K+ > 0. Given a Kasner angle θ−, the corresponding
extrinsic curvature K− is positive if and only if its eigenvalues 1/3+(2/3)r− cos(θ−+2πj/3),
j = 0, 1, 2, are positive. This holds for small enough r−, specifically r− < 1/(2 cos θ̂−) with
θ̂− defined in (5.13). Equivalently, the condition for K− > 0 is |φ0−| > φmin(θ−), and
likewise K+ > 0 is equivalent to |φ0+| > φmin(θ+). Since θ− = θ+ for ε = +1 and θ+ + π

for ε = −1 we get the condition in the theorem.
We turn to invertibility or idempotence. On general grounds, the inverse of an invert-

ible scattering map Sani
Φ1,c1,ε1

is an invertible scattering map, which must be of the form
Sani

Φ2,c2,ε2
because Siso

α0,α1,α2,ϕ,ε is never invertible. Let us check that (even without assuming
invertibility)

Sani
Φ2,c2,ε2 ◦ Sani

Φ1,c1,ε1 = Sani
Φ3,c3,ε3 (5.15)

with c3 = c2c1, ε3 = ε2ε1, and Φ3(θ, φ0, φ1) = Φ2(θ + πδε1=−1,Φ1(θ, φ0, φ1)). On general
grounds, composing two ultralocal scattering maps gives an ultralocal scattering map,
and we have the full classification available, so we simply need to fix parameters (the
composition can manifestly not be of the form Siso). The sign ε3 is fixed by comparing
Kasner angles: the phase eiθ is multiplied by ε1 and then by ε2 upon applying the two
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scattering maps. The scalar fields (φ0, φ1) then manifestly transform according to the
composition Φ2(θ + πδε1=−1, · , · ) ◦ Φ1(θ, · , · ). From volume factors of the metric we
find c2

2c
2
1 = c2

3. This establishes (5.15). Imposing that Φ3 = I, c3 = 1, ε3 = 1 gives the
characterization of invertible maps in the theorem, and their inverse. Imposing further that
Φ2 = Φ1, c2 = c1, ε2 = ε1 gives the characterization of idempotent maps.

Next, we determine which Sani
Φ,c,ε are shift-covariant. Shift-covariance sets ∂φ1−φ0+ = 0

and ∂φ1−φ1+ = a for some constant a ∈ R. Additionally, Φ: (θ−, φ0−, φ1−) 7→ (φ0+, φ1+)
must be an ε-canonical transformation in the sense of definition 5.3. The condition of
preserving volume in phase space is crucial: it gives

∂φ0−

(
a
φ0+
r(φ0+) − ε

φ0−
r(φ0−)

)
= 0,

which is only possible provided a 6= 0. We get φ0+/r(φ0+) = εa−1φ0−/r(φ0−) + b(θ)
where the integration constant b cannot depend on φ1− because φ0+ does not. Boundary
regularity requires aφ0+/r(φ0+) − εφ0−/r(φ0−) = a b(θ) to tend to zero as r → 0. This
fixes b = 0, hence gives the main characterization of shift-covariant maps in the theorem:
φ0+/r(φ0+) = εa−1φ0−/r(φ0−). The condition ∂φ1−φ1+ = a states that a−1φ1+ − φ1− is a
function f(θ, φ0−). We conclude that shift-covariant Sani are characterized by f, a, c, ε and
given explicitly by

φ0+ = εa−1µ−3φ0−, φ1+ = af(θ−, φ0−) + aφ1−, K̊+ = εµ−3K̊−,

g+ = c2µ2 exp
(

16πεξ cos Θ− − 16π∂θ−
(
εξ + φ0−

r(φ0−)f
)

sin Θ−
)
g−

(5.16a)

where we restored the ± indices that denote both sides of the singularity and where

µ = µ(φ0−) = (1 + 12πφ2
0−(a−2 − 1))1/6, ξ = ξ(θ−, φ0−) = −ε

∫ φ0−

−1/
√

12π
∂yf(θ−, y)y dy

r(y) .

(5.16b)
It remains to translate the conditions on Φ in definition 5.3 in terms of f . We find
that f must be 2π/3 (spacelike case) or 2π (timelike case) periodic and even in θ, that
∂θf(θ, φ0) = o(r(φ0)) as φ0 → ±1/

√
12π, and that

ξ

(
θ−,

±1√
12π

)
= 0, namely

∫ 1/
√

12π

−1/
√

12π
∂yf(θ, y) y dy

r(y) = 0. (5.16c)

It is easy to check from (5.15) that all shift-covariant Sani are invertible, with inverse
obtained by replacing c→ 1/c, a→ 1/a and changing f to the map

(θ, φ0) 7→ −af
(
θ + πδε=−1, εaφ0

(
1 + 12πφ2

0(a2 − 1)
)−1/2)

.

Idempotence then requires c= 1 (recall c> 0), a=±1, and f(θ,φ0) =−af(θ+πδε=−1, εaφ0).
If ε= a= +1 this condition is that f = 0. If ε= +1 and a=−1 this condition is that f be an
even function of φ0. If ε=−1 and a= +1 this condition is that f(θ,φ0) =−f(θ+π,−φ0).
If ε=−1 and a=−1 this condition is that f be π-periodic in θ.

– 47 –



J
H
E
P
0
4
(
2
0
2
2
)
0
9
5

We determine now under which condition on f, a, c, ε the shift-covariant maps Sani

are quiescence-preserving. Since φ0 7→ φ0/r(φ0) is monotonic, the condition |φ0| > φmin(θ)
translates to∣∣∣∣ φ0
r(φ0)

∣∣∣∣ > ∣∣∣∣ φmin(θ)
r(φmin(θ))

∣∣∣∣ =
(4 cos2 θ̂ − 1

12π

)1/2
, where θ̂ = θ − 2π

3

⌊ 3θ
2π − 1

⌋
∈
[2π

3 ,
4π
3

)
.

For ε = +1, we want |φ0+/r(φ0+)| to be greater than this lower bound whenever |φ0−/r(φ0−)|
is. Since |φ0+/r(φ0+)| = |a|−1|φ0−/r(φ0−)|, the condition holds if and only if |a| 6 1. For
ε = −1 the relevant angles θ differ by π so the lower bounds are different. Let us write the
condition for θ− = 0, θ+ = π: then θ̂− = 2π/3 so cos θ̂− = −1/2 and we want the following
implication ∣∣∣∣ φ0−

r(φ0−)

∣∣∣∣ > 0 =⇒
∣∣∣∣ φ0+
r(φ0+)

∣∣∣∣ > 1√
4π
.

There is no a that would ensure this, because the premise is obeyed by arbitrarily small
φ0−/r(φ0−), which lead to arbitrarily small φ0+/r(φ0+) = εa−1φ0−/r(φ0−).

Finally, we consider momentum-preserving and momentum-reversing maps, for which
all of |φ0|, |k1 − 1/3|, |k2 − 1/3|, |k3 − 1/3| are continuous through the bounce. In fact it is
enough to require any one of them to be continuous: first, Siso is immediately ruled out,
then, we observe for Sani that each |ka − 1/3| and r(φ0) scales by the same factor r+/r−
upon crossing the singularity, so if any of them is continuous all of them are. We can thus
write φ0+ = εaφ0− for some sign a = ±1. This sign is constant for φ0− > 0 and constant
for φ0− < 0 in order for φ0+ to remain continuous. For φ0− 6= 0, volume-preservation then
imposes ∂φ1−φ1+ = a, thus φ1+ = a(f(θ, φ0−) + φ1−). Continuity of φ1+ as we dial φ0−
from positive to negative then forces the sign a to be the same for φ0− ≷ 0. Altogether, the
canonical transformation Φ coincides with the particular case a = ±1 of what we found for
shift-covariant maps:

K̊+ = εK̊−, (φ0+, φ1+) = ±
(
εφ0−, φ1− + f(θ, φ0−)

)
, (5.17)

where f is subject to the technical condition
∫ 1/
√

12π
−1/
√

12π(yf ′(y)dy/r(y)) = 0, and g+ is given
as in (5.12g).

5.4 Conformal scattering maps

We discuss here an interesting class of scattering maps in which the asymptotic profiles
before and after the singularity are related by a conformal transformation. In section 5.2 we
introduced the notion of rigidly conformal scattering maps, which are such that g+ and g−
are in the same conformal class. Note, however, that g± are simply convenient quantities
to parametrize the asymptotic profiles |s|2K±g± for s ≷ 0 by their values at s = ±1. It is
quite natural, thus, to compare the asymptotic profiles at other values of s: this yields
the more flexible notion of “conformal scattering maps”. For maps that are additionally
ultralocal, as we will see, the whole asymptotic profiles are then conformally related in a
suitable sense, reminiscent of the conformal cyclic cosmology proposal of Penrose, Tod,
Lübbe, and others [62, 63, 77]. An important difference is that we are considering here
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junctions of a Big Crunch with a Big Bang, while the conformal cyclic cosmology proposal
maps (spacelike) future null infinity of an approximately de Sitter spacetime to the Big
Bang of a new aeon.

Definition 5.6. A conformal scattering map on a 3-manifold H is a scattering map S such
that for any data (g−,K−, φ0−, φ1−) and its image (g+,K+, φ0+, φ1+) under S, for each
point x ∈ H there exists s−(x) < 0 < s+(x) such that the metrics |s−|2K−g− and |s+|2K+g+
are in the same conformal class.

Let S be a conformal scattering map that is ultralocal. By corollary 5.5, ultralocality
implies K+ = 1

3(1− ζ)δ+ ζK− for ζ = γ
√
|g−|/|g+|. Conformality states that |s+|2K+g+ =

Ω2|s−|2K−g− for some space-dependent s− < 0 < s+ and scalar factor Ω. For any point
x ∈ H and s > 0 we can thus rewrite the asymptotic profile after the singularity as

|s|2K+g+ =
∣∣∣ s

s+(x)

∣∣∣2K+ |s+(x)|2K+g+

=
∣∣∣ s

s+(x)

∣∣∣2(1−ζ)/3+2ζK−Ω2|s−(x)|2K−g−

=
(

Ω
∣∣∣ s

s+(x)

∣∣∣(1−ζ)/3)2∣∣∣∣∣∣∣ s

s+(x)

∣∣∣ζs−(x)
∣∣∣∣2K−g−.

(5.18)

This means that the asymptotic spatial metric at s > 0 is in the same conformal class as the
one at |s/s+(x)|ζs−(x) < 0. We change slightly the notation s, s± used in this derivation
to state the following proposition.

Proposition 5.7 (Conformal asymptotic profiles). Let S be an ultralocal conformal scat-
tering map on a 3-manifold H, and let (g±,K±, φ0±, φ1±) be singularity data and its image
under S. For any x ∈ H and any s+ > 0 there exists s−(x, s+) < 0 such that |s±|2K±g±
are in the same conformal class.

The analogous statement exchanging s+ and s− only holds if we exclude the isotropic
scattering map Siso

α0,α1,α2,ϕ,ε. Indeed, ζ = 0 in (5.18) in this case, so the asymptotic metric
for any s > 0 is conformal to the asymptotic metric at the same fixed proper time s−(x) < 0
before the singularity, while the asymptotic metrics for other s < 0 are in a different
conformal class. The other family Sani

Φ,c,ε of ultralocal scattering maps, on the other hand, has
ζ 6= 0 so that s+ 7→ s−(x, s+) is a bijection and can be inverted to s− 7→ s+(x, s−) for each x.

To finish off our discussion of conformal ultralocal scattering maps we write down their
classification, which is a straightforward consequence of theorem 5.4. By proposition 5.7 it is
enough to check whether the asymptotic metric at s+ = 1 is conformal to some metric with
s− < 0. Thus, among Siso

α0,α1,α2,ϕ,ε and Sani
Φ,c,ε we seek maps such that g+ = Ω2|s−|2K−g−

for some scalars Ω, s−, or equivalently, exp(aδ + b cos Θ−)g− for some scalars a, b (we recall
K− = 1

3δ + 2
3r− cos Θ−). For Siso

α0,α1,α2,ϕ,ε we immediately find the condition to be that the
coefficient α2 of cos(2Θ−) must vanish. For Sani

Φ,c,ε the coefficient of sin Θ− must vanish.
Since it is known to vanish at the boundary r− = 0 (by isotropy), we simply write that its
φ0− derivative vanishes. To make the proposition self-contained we replace the auxiliary
function ξ in (5.12g) using (5.12f). After expanding derivatives and cancelling some terms
the relation we find is surprisingly simple.
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Proposition 5.8 (Conformal ultralocal scattering maps for self-gravitating scalar fields).
Spacelike or timelike, conformal ultralocal scattering maps S are Siso

α0,α1,α2,ϕ,ε with α2 = 0,
and Sani

Φ,c,ε with

∂θΦ0(θ, φ0, φ1)∂φ0Φ1(θ, φ0, φ1) = ∂φ0Φ0(θ, φ0, φ1)∂θΦ1(θ, φ0, φ1).

6 Proof of the classification of ultralocal scattering maps

6.1 A zoo of singularity data sets

Prescribing values at points. The classification of ultralocal scattering maps requires
several technical lemmas on the existence of singularity data sets, which essentially state
that the momentum constraint is not so constraining after all. We present these rather
technical results in the present section and in section 6.2, which could be skipped on first
reading. We then move on to the classification proper: explaining the relevant tensor
structures in section 6.4, then showing in section 6.5 that K̊+ is a multiple of K̊−, and
finally completing the classification in section 6.6.

To state the lemmas we use the Kasner angle θ introduced in (5.1), which is defined
modulo 2π/3 (spacelike case) or 2π (timelike case) or is completely ill-defined when the
Kasner radius r = ((3/2) Tr K̊2)1/2 = (1−12πφ2

0)1/2 vanishes, namely when φ0 = ±1/
√

12π.
As shown by lemma 5.1, any scalar quantity constructed from the singularity data without
derivatives must be a function of (θ, φ0, φ1). This triplet of scalars ranges over R× I0 × R,
where I0 = [−1/

√
12π, 1/

√
12π], modulo the ambiguity in θ. When we say that a singularity

data set is such that (θ, φ0, φ1) assumes some prescribed value at a point x, we mean this
modulo the ambiguities in θ. Note that prescribing the value of (θ, φ0, φ1) is equivalent to
prescribing φ0, φ1 and eigenvalues k1, k2, k3 of K compatible with the constraints (and with
the convention that timelike eigenvectors have eigenvalue k1), so we often work directly
with prescribed (k1, k2, k3, φ0, φ1), at the cost of having to impose the constraints explicitly
rather than through the Kasner radius/angle parametrization.

Lemma 6.1 (Singularity data sets with prescribed values at points). Let H be a 3-
manifold, let x(1), . . . , x(n) ∈ H be distinct points, and let (θ(i), φ

(i)
0 , φ

(i)
1 ) ∈ R× I0 × R for

any i = 1, . . . , n. Then there exists a smooth singularity data set (g,K, φ0, φ1) such that
(θ, φ0, φ1) assumes the prescribed value (θ(i), φ

(i)
0 , φ

(i)
1 ) at each x(i), i = 1, . . . , n.

Proof. Consider non-intersecting neighborhoods B(i) 3 x(i) each diffeomorphic to the unit
ball in R3. We construct below a data set in each ball that connects in a C∞ manner with
the following trivial data set: K = 1

3δ, φ0 = 1/
√

12π and φ1 = 0 outside
⋃
iB

(i), with the
metric being an arbitrary smooth metric. Here we chose the sign of φ0 arbitrarily.

It is now enough to construct a data set on the unit ball B ⊂ R3 such that

• k1, k2, k3, φ0, φ1 takes a prescribed value (k(i)
1 , k

(i)
2 , k

(i)
3 , φ

(i)
0 , φ

(i)
1 ) at 0 ∈ B, and

• K = 1
3δ, φ0 = 1/

√
12π, and φ1 = 0 uniformly in a neighborhood of the boundary

of B.
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We choose the metric to be conformally flat, specifically a scalar multiple of the standard
(Euclidean or Minkowski) metric on R3, and we rescale the trace-free extrinsic curvature
accordingly:

g = Ω−2/3 diag(±1, 1, 1), K̊ = ΩH̃, (6.1)

where we choose Ω to be a radial function, namely Ω = Ω(|x|2). As we saw in one instance
in section 4.5, this scaling is convenient since the momentum constraint remains simple:

∇aKa
b = 8πφ0∂bφ1 ⇐⇒ ∂aH̃

a
b = 8πφ0

Ω ∂bφ1. (6.2)

The Hamiltonian constraint TrK2 = 1− 8πφ2
0 6 1, on the other hand, imposes an upper

bound on Ω, with equality if φ0 = 0:

Ω 6
(3

2 Tr(H̃2)
)−1/2

.

We construct the data in four concentric layers. To avoid any issue with regularity at the
junction between layers (or at the center 0 ∈ B) we simply arrange for the singularity data
to be constant in a neighborhood of each such junction (or of 0). The whole construction
is summarized in figure 6. For the three inner layers, in 0 6 |x|2 6 3/4 (say), we choose
H̃a
b = K̊a

b to be a constant diagonal matrix

K̊ := diag
(
k

(i)
1 , k

(i)
2 , k

(i)
3

)
− 1

3δ. (6.3)

This reproduces the prescribed data at 0 provided Ω(0) = 1. Since ∂aK̊a
b = 0, the momentum

constraint states φ0∂bφ1 = 0, which we satisfy in three successive layers by imposing ∂bφ = 0,
φ0 = 0, and ∂bφ = 0. The purpose of these layers is two-fold: to allow us to tune the value
of φ1 to zero, and to ensure a particular value φ0 > 0 at the boundary in order to connect
to the last layer.

• First, for 0 6 |x|2 6 1/4, we keep φ1 = φ
(i)
1 constant and vary Ω smoothly from

Ω = 1 for small |x|2 to Ω = (3
2 Tr(K̊2))−1/2 for |x|2 close to 1/4. In this layer, the

Hamiltonian constraint sets

φ0 = ±
√(

2/3− Ω2 Tr K̊2
)
/(8π),

where the sign is that of φ(i)
0 . In particular, for |x|2 close to 1/4 we have φ0 = 0.

• Second, for 1/4 6 |x|2 6 1/2, we keep φ0 = 0 and Ω constant, while varying
φ1 smoothly until φ1 = 0 for |x|2 near 1/2.

• Third, for 1/2 6 |x|2 6 3/4, we keep φ1 = 0 and vary Ω like in the first layer, ensuring
that φ0 > 0. To simplify the construction of the next layer we vary Ω and φ0 until
they become equal, which occurs for φ0 given in (6.4) below. We choose Ω = φ0 equal
to this value for |x|2 close to 3/4, where we recall that H̃ = K̊ is still constant and
given by (6.3).
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x(1)B(1)

x(2)B(2)

x(3)

φ1 = constant

φ0 = 0, φ1 varies

φ0 > 0, φ1 = 0

Ω = φ0

B(3)

trivial

Figure 6. Singularity data set constructed in lemma 6.1. It has prescribed values at x(i) and is
trivial away from ball-shaped neighborhoods. Left: global structure. Right: some properties of the
concentric layers around one x(i).

For the last layer, located in the interval |x|2 ∈ [3/4, 1], we take φ0 > 0 throughout,
which allows us to choose Ω = φ0 in (6.1). The Hamiltonian constraint (together with
φ0 > 0) can be solved:

Ω = φ0 at φ0 =
√

2/3
8π + Tr H̃2

. (6.4)

The momentum constraint (6.2) simplifies to ∂aH̃a
b = 8π∂bφ1 and we consider the following

class of explicit solutions:

H̃a
b = α(|x|2)K̊a

b , φ1 = 1
8πα

′(|x|2)xaK̊a
bx

b,

where K̊a
b is (6.3), α = α(|x|2) is a radial function and α′ its |x|2 derivative. In order for

the layer to properly join with the previous one and with the trivial data outside the ball,
we choose α = 1 for |x|2 close to 3/4, and α = 0 for |x|2 close to 1.

This concludes the construction of the singularity data set on B ⊂ R3 that is trivial near
the boundary and has a prescribed value at 0. Patching such balls around each point x(i)

into a trivial singularity data set on an arbitrary 3-manifold H is then immediate.

Lemma 6.1 has a straightforward consequence, stated now.

Lemma 6.2 (Always-constant ultralocal scalars can only depend on the signature). Let H
be a 3-manifold and A be an ultralocal scalar function of singularity data on H. If A(x) is
independent of x ∈ H for any smooth singularity data (g,K, φ0, φ1) ∈ I(H), then A is an
overall constant independent of the data itself, except for the signature of g.

Proof. Fix a signature (spacelike or timelike) once and for all. We wish to show that A is
constant for data with this signature. By lemma 5.1 we know that the ultralocal scalar A can
be written as A(x) = Â(θ(x), φ0(x), φ1(x)) for some function Â : R×I0×R→ R that is even
and (2π/3 or 2π) periodic in θ. Our goal is to show that Â(θ(1), φ

(1)
0 , φ

(1)
1 ) = Â(θ(2), φ

(2)
0 , φ

(2)
1 )

for any pair of values in R× I0×R. Lemma 6.1 provides a singularity data set assuming the
values (θ(i), φ

(i)
0 , φ

(i)
1 ), i = 1, 2 at two different points. Since A(x) is x-independent, it takes

the same value at these points hence Â takes the same values for the two given (θ, φ0, φ1).
Altogether, Â is constant so A only depends on the signature of g (and on the scattering
map of course).
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Restriction to non-degenerate data. We now prove that ultralocal scalars and ul-
tralocal scattering maps are characterized by their value on data for which φ0 6= 0 and the
eigenvalues k1, k2, k3 are distinct. Some care is needed when stating the result, because our
constructions of scattering data sets (such as the one used for lemma 6.1) involve regions
where the extrinsic curvature K is in fact degenerate.

Lemma 6.3 (Non-degenerate data distinguish ultralocal scalars). Let H be a 3-manifold and
let σ be a continuous ultralocal scalar. Assume that for any scattering data set (g,K, φ0, φ1)
on H, and any x ∈ H such that φ0(x) 6= 0 and K(x) has three distinct eigenvalues, one has
σ(g,K, φ0, φ1)(x) = 0. Then σ = 0 identically.

Lemma 6.4 (Non-degenerate data distinguish ultralocal scattering maps). Let H be a
3-manifold and let S1,S2 be two ultralocal scattering maps on H. Assume that for any
scattering data set (g,K, φ0, φ1) on H, and any x ∈ H such that φ0(x) 6= 0 and K(x) has
three distinct eigenvalues, one has S1(g,K, φ0, φ1)(x) = S2(g,K, φ0, φ1)(x). Then S1 = S2.

Proof of lemmas 6.3 and 6.4. We establish the two lemmas simultaneously. Assume that
we are given a scalar σ and two scattering maps S1,S2 satisfying the conditions in the two
lemmas, respectively.

We construct singularity data sets (g,K, φ0, φ1) on H taking any prescribed value
at some x ∈ H, and show that σ(g,K, φ0, φ1)(x) = 0 and that S1(g,K, φ0, φ1)(x) =
S2(g,K, φ0, φ1)(x) for these specific data sets. Ultralocality extends this equality to any
other data set taking the same value at x ∈ H, and diffeomorphism-invariance shows the
choice of point does not matter. Thus σ = 0 and S1 = S2 at all points for arbitrary data sets.

The key to show σ(g,K, φ0, φ1)(x) = 0 for the data sets constructed below is to use
continuity of σ(g,K, φ0, φ1). Since we know that it vanishes in the set of points x ∈ H

such that φ0(x) 6= 0 and K(x) has three distinct eigenvalues, it must vanish as well in the
closure of that set inside H. We simply need to ensure that the point of interest is in this
closure. The same reasoning applies to S1(g,K, φ0, φ1)(x) = S2(g,K, φ0, φ1)(x) because,
by definition, scattering maps send smooth data to (at least) continuous data.

Rather than constructing a complicated singularity data set that covers all cases at
the same time, we first show that σ vanishes and S1,S2 agree for all data with φ0 6= 0 and
K 6= 1

3δ; in other words we treat the case where two eigenvalues of K coincide. We follow
the construction used in the proof of lemma 6.1, building data on the unit ball B ⊂ R3 and
embedding it inside trivial data for the rest of H. We choose g,K as in (6.1) with Ω = |φ0|
(where φ0 6= 0 will be specified later) so that the momentum constraint simplifies:

g = |φ0|−2/3 diag(±1, 1, 1), K̊ = |φ0|H̃, ∂aH̃
a
b = 8π(sgnφ0)∂bφ1. (6.5a)

We consider the following class of explicit solutions:

H̃a
b = α(|x|2) K̊a

b + β(|x|2)
(
xaxb −

1
3δ

a
b |x|2

)
,

8π(sgnφ0)φ1 = α′(|x|2)xaK̊a
bx

b +
∫ |x|2 (5

3β(q) + 2
3β
′(q)

)
dq,

(6.5b)
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where α = α(|x|2) and β = β(|x|2) are radial functions and K̊ 6= 0 is a prescribed non-zero
value. We choose a smooth function α = β whose derivatives (of all orders) vanish at 0
and 1, with prescribed values α(0) = β(0) = 1 and α(1) = β(1) = 0. It is then easy to check
(using K̊ 6= 0) that for x approaching 0 in a generic direction the eigenvalues of H̃ are all
distinct, hence those of K also are. The function σ(g,K, φ0, φ1) thus vanishes at points x
approaching 0 hence at 0. For the same reason, the continuous functions S1(g,K, φ0, φ1)
and S2(g,K, φ0, φ1) agree at 0. The data at 0 that can be achieved using this construction
is arbitrary except for the conditions φ0 6= 0 and K 6= 1

3δ.
Next, we show that σ vanishes and S1,S2 agree for data with φ0 = 0. Consider the

singularity data sets constructed in the proof of lemma 6.1 and shift φ1 by some arbitrary
overall constant. Since σ(g,K, φ0, φ1) vanishes and Si(g,K, φ0, φ1), i = 1, 2, agree on the
region {φ0 6= 0}, this must still be the case on its boundary. It is easy to check that the
data at such boundary points has φ0 = 0 of course, but no other restriction, namely it has
arbitrary θ and φ1.

The same singularity data sets also show that σ vanishes and S1,S2 agree for K = 1
3δ:

simply consider a point with K = 1
3δ on the boundary of the region {K 6= 1

3δ}. This
concludes the proof of lemmas 6.3 and 6.4.

6.2 On derivatives of singularity data sets

Scalars with vanishing derivatives. We continue our forays into constructing singu-
larity data sets, but this time we additionally impose conditions on derivatives of the scalars
(θ, φ0, φ1) at a point. The saving grace is that we do not need to distinguish various special
cases according to how many eigenvalues coincide: in applications later on, lemma 6.4
allows us to assume k1, k2, k3 are pairwise distinct. This translates to two restrictions on
the scalars: θ 6= 0 mod π/3 and φ0 6= ±1/

√
12π. We denote

∆ 6 =:=
(
R \ π3Z

)
×
( −1√

12π
,

1√
12π

)
× R, (6.6)

so that (θ, φ0, φ1) ∈ ∆ 6 = means that the corresponding eigenvalues are pairwise distinct.
As before, when stating that a singularity data set (g,K, φ0, φ1) assumes at some point x a
certain value in ∆ 6 =, the angle θ is understood up to θ → −θ and modulo 2π/3 (spacelike
case) or 2π (timelike case).

Lemma 6.5 (Non-trivial data with locally constant scalars). Let H be a 3-manifold and
x ∈ H be a point. For any prescribed value in ∆ 6 = (defined above) there exists a singularity
data set (g,K, φ0, φ1) on H such that, throughout a neighborhood of x, (θ, φ0, φ1) assumes
this prescribed value and ∇a(K̊2)ab is nowhere vanishing.

Proof. As in previous proofs we construct data with the desired properties on the unit
ball B ⊂ R3, such that the data smoothly reaches the trivial values φ1 = 0 and K = 1

3δ

at the boundary. This yields a singularity data set on H by mapping the data through a
diffeomorphism from B to a neighborhood of x ∈ H and extending it to H using trivial
data: constant (K,φ0, φ1) and an arbitrary metric. In fact, for the data set we construct
on B, ∇a(K̊2)ab vanishes at 0 and is non-zero in a neighborhood of 0, so the diffeomorphism

– 54 –



J
H
E
P
0
4
(
2
0
2
2
)
0
9
5

identifying B with a neighborhood of x ∈ H should be chosen to map x close to 0 ∈ B but
not exactly at 0.

We construct data on the ball B ⊂ R3 in three layers and work in the standard basis
of R3. Denote by φ0, φ1 and K = diag(k1, k2, k3) the prescribed data.

• The first layer, for |x|2 6 1/2, is described below. It has constant (K,φ0, φ1) =
(K,φ0, φ1), and has a variable metric that smoothly goes to g = diag(±1, 1, 1) at
|x|2 = 1/2, with all derivatives vanishing.

• The second layer, for 1/2 6 |x|2 6 3/4, is essentially the same as the third layer used
in the proof of lemma 6.1. It has φ1 = φ1 and

g = Ω−2/3 diag(±1, 1, 1), K̊ = ΩK̊, (6.7)

where Ω interpolates from 1 at |x|2 = 1/2 to the value (6.4) at which Ω = |φ0|.

• The outermost layer, for 3/4 6 |x|2 6 1 coincides with the outermost layer used in
the proof of lemma 6.1, except for an overall sign of φ0 and constant shift of φ1. It
has (6.7) with Ω = |φ0| and it interpolates from the previous layer to trivial data
K̊ = 0, φ0 = ±1/

√
12π, and φ1 = φ1.

In contrast to lemma 6.1, since we only want to prescribe data in one ball rather than
multiple ones, there is no need to normalize the sign of φ0 or the constant value of φ1 in
order to complete the data into data on H. One would otherwise need two additional layers
for this purpose.

We now construct the first layer, for |x|2 6 1/2. We keep constant K = diag(k1, k2, k3),
φ0, and φ1 = 0, but we consider a diagonal metric with entries ± exp(ha), that is, g =
diag(±eh1 , eh2 , eh3), where ha = ha(x), a = 1, 2, 3 are general functions. To work out the
momentum constraint we compute

∇aKa
b = ∂aK

a
b + ΓaacKc

b − ΓcabKa
c = ∂aK

a
b + ∂c

(
log |g|1/2

)
Kc
b −

1
2K

ac∂bgac (6.8)

where we simply wrote the Christoffel symbols in terms of derivatives of the metric and used
that Kac is symmetric to cancel two terms. For the data we are considering, the derivative
term vanishes. Using that g,K are diagonal we find that (6.8) is equal to∑

a

∇aKa
b = 1

2
∑
a

(kb − ka)∂bha, b = 1, 2, 3, (6.9)

where we explicited the sum in ∇aKa
b to avoid confusion. Given that φ1 = 0, the momentum

constraint states that this sum should vanish for all b. One rather symmetric solution is
to choose ha(x) = λ(|x|2) (ka+1 − ka−1) for a = 1, 2, 3, where indices of k are understood
modulo 3 and λ is some radial function that vanishes at |x|2 = 0 and |x|2 = 1/2 together
with its derivatives of all orders (so as to keep the data smooth).

We are free to impose that λ′(|x|2) 6= 0 for all other values of |x|2: as we now show,
this ensures that ∇a(K̊2)ab 6= 0 for 0 < |x|2 < 1/2. Thanks to the momentum constraint
∇aKa

b = 0,

∇a(K̊2)ab = (∇aKa
c )Kc

b +Ka
c∇aKc

b −
2
3∇aK

a
b + 1

9∇aδ
a
b = Ka

c∇aKc
b .
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Next, using the fact that K is constant (in the given coordinates), and inserting the explicit
form of Christoffel symbols we compute

∇a(K̊2)ab = Ka
c ΓcadKd

b −Ka
c ΓdabKc

d

= 1
2K

ac(gca,d + gcd,a − gad,c)Kd
b −

1
2(K2)ad(gda,b + gdb,a − gab,d).

In both terms the second and third derivatives of g cancel by symmetry of Kac and of (K2)ad.
We now write sums explicitly after using that g and K are diagonal:

∇a(K̊2)ab = 1
2K

d
bK

acgac,d −
1
2(K2)acgac,b = 1

2
∑
a

(kb − ka)ka∂bha, b = 1, 2, 3.

Using that ∂bha = 2xbλ′(ka+1 − ka−1) with indices understood modulo 3, we compute by
explicitly writing down the terms in the sum and factorizing to get

∇a(K̊2)ab = xbλ
′(k1 − k2)(k2 − k3)(k3 − k1).

Since xbλ′ is non-zero for 0 < |x|2 < 1/2 and since we assumed that the prescribed data
has distinct eigenvalues, we find as announced that ∇a(K̊2)ab 6= 0 for 0 < |x|2 < 1/2.

Data with non-trivial derivatives. In the course of proving the classification the
momentum constraint reduces to an equation of the form

∂aγ K̊
a
b =

∑
I

χI∂bζI , (6.10)

where γ, χI , ζI are some scalar functions of the singularity data. The following lemma states
that this equation implies that both sides vanish separately. Its proof is analogous to that
of lemma 6.1 and we give it in section 6.3.

Lemma 6.6 (Extrinsic curvature and derivatives of scalars). Let H be a 3-manifold.
Let γ, χI , ζI be a finite collection of continuous ultralocal scalar fields such that for any
singularity data (g,K, φ0, φ1) on H the relation (6.10) holds at all points x ∈ H such that
K(x) has three distinct eigenvalues. Then γ is a constant: it only depends on the data
through the signature of g.

Derivatives of scalars are independent. Thanks to lemma 6.6 the momentum con-
straint reduces from (6.10) down to the vanishing of a sum of terms χI∂bζI , b = 1, 2, 3,
with χI , ζI being ultralocal scalars. Expanding the derivatives gives a linear combination
of ∂bθ, ∂bφ0, ∂bφ1, and the following lemma states that these derivatives are linearly inde-
pendent in a suitable sense. Its proof is analogous to that of lemma 6.1 and we give it in
section 6.3.

Lemma 6.7 (Linear independence of derivatives of scalars). Let H be a 3-manifold and let
µ, ν,κ be continuous ultralocal scalar fields such that for any singularity data (g,K, φ0, φ1)
on H one has

µ∂bθ + ν∂bφ0 + κ∂bφ1 = 0, b = 1, 2, 3, (6.11)

at all points x ∈ H such that K(x) has three distinct eigenvalues. Then one has µ = ν =
κ = 0.

– 56 –



J
H
E
P
0
4
(
2
0
2
2
)
0
9
5

6.3 Technical steps for the classification of singularity scattering maps

Proof of lemma 6.6. Fix a signature for the metric once and for all. We use the
singularity data set on H that we constructed in the proof of lemma 6.1 for the case of a
single prescribed value (K,φ0, φ1). We recall now solely the aspects that we need in this
proof. Outside a ball B ⊂ H which we identify (by a diffeomorphism) with the unit ball
in R3, the data are trivial. Inside the ball, we have four layers, in which all scalar functions
are radial, in the sense that they only depend on |x|2. The data at 0 matches the prescribed
value (K,φ0, φ1). In the first three layers,

g = Ω−2/3 diag(±1, 1, 1), K̊ = ΩK̊, (6.12)

with a suitably chosen radial function Ω > 0. In particular, Ω(0) = 1 to reproduce the
prescribed data at 0, while at the outer edge of the third layer Ω is equal to a value (6.4)
for which Ω = φ0. In the last layer,

g = φ
−2/3
0 diag(±1, 1, 1), K̊ = φ0αK̊, (6.13)

with a suitably chosen radial function α interpolating smoothly from α = 1 at the inner
edge of the layer to α = 0 in a neighborhood of the boundary of the ball, say for |x|2 > 5/6.
We can select α so that it is positive for |x|2 < 5/6.

Crucially, K̊ is proportional to K̊ throughout, and tends to 0 at |x|2 = 5/6. Choose
now K to have pairwise distinct eigenvalues, so that K(x) also does in the region |x|2 < 5/6.
By assumption, we thus have∑

I

χI∂bζI = ∂aγ K̊
a
b =

(
kb −

1
3

)
∂bγ, b = 1, 2, 3, (6.14)

in this region. Since all scalars are radial we find

2xb
∑
I

χIζ
′
I = 2xb

(
kb −

1
3

)
γ′, b = 1, 2, 3, (6.15)

where primes denote |x|2 derivatives. Away from the coordinate planes we can divide
by 2xb and take the difference of two of these equations to get (kb − ka)γ′ = 0 for all
a, b = 1, 2, 3. Since K(x) is non-degenerate for |x|2 < 5/6, we learn that γ′ = 0 in this
region minus the coordinate planes. Since γ is a radial function we finally get that γ is a
constant on 0 < |x|2 < 5/6. By continuity, γ(0) and γ(5/6) also take the same value. The
scalar field thus takes the same value for the prescribed data as for the trivial data K̊ = 0,
φ0 = 1/

√
12π, φ1 = 0. Let us call this constant value γ0 Now γ − γ0 obeys the conditions

of lemma 6.3 hence γ = γ0 throughout H for arbitrary data sets, as we wanted to prove.

Proof of lemma 6.7. As usual, lemma 5.1 implies that µ, ν,κ are functions of (θ, φ0, φ1).
We prove κ = 0, ν = 0, and µ = 0, in this order, by applying the continuity lemma 6.3 after
proving these identities for data with any prescribed value (K,φ0, φ1) such that φ0 6= 0 and
K has pairwise distinct eigenvalues. We take K diagonal without loss of generality. Let us
show κ = 0. As in previous proofs, we construct the data in layers in the unit ball B ⊂ R3
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and work in the standard basis. We only describe the first layer, as the construction can
easily be completed, using the same layers as in lemma 6.1, to a data set on B that is trivial
near the boundary. In the first layer, say |x|2 6 1/2, we keep K = K and φ0 = φ0 constant
but vary φ1 and the metric, which we choose to be diagonal and of determinant ±1, that is,
g = diag(±eh1 , eh2 , eh3) with h1 + h2 + h3 = 0. For this data, the momentum constraint
simplifies further than (6.9), namely we have −1

2
∑
a ka∂bha = 8πφ0∂bφ1 (b = 1, 2, 3), whose

solution is
φ1 = −1

16πφ0

∑
a

kaha + constant. (6.16)

The functions ha(|x|2) are arbitrary except for h1 + h2 + h3 = 0 and for the fact that they
must vanish together with all their derivatives at 0 and 1/2, so we can arrange that φ′1 6= 0
in ther interval 0 < |x|2 < 1/2. On the other hand, (6.11) reads 0 = κ∂bφ1 = 2xbκφ′1, so
we conclude that κ vanishes near 0, except along the coordinate planes. By continuity, κ
vanishes at 0, namely it vanishes for the prescribed data. By lemma 6.3, κ = 0 identically.

Next, to prove ν = 0, we consider exactly the data set on B ⊂ R3 used for lemma 6.1,
but specify further the conformal factor Ω used there. Recall that in the first layer K̊ = ΩK̊
where K is the prescribed value and Ω = Ω(|x|2) interpolates between Ω(0) = 1 and some
value at the outer boundary |x|2 = 1/4 of the layer, with all derivatives vanishing at these
end-points. We choose Ω such that it takes the value 1 again for some |x|2 ∈ (0, 1/4), but
with a non-zero derivative. Then the data at this point is equal to the prescribed value,
but ∂bφ0 6= 0. On the other hand, by construction of the data set, K̊ is everywhere a
non-negative multiple of the given data, in other words θ is constant. Thus, (6.11) reads
ν∂bφ0 = 0 hence ν = 0. Since this holds for arbitrary prescribed data, we conclude that
ν = 0 identically.

Finally, proving µ = 0 requires building singularity data sets with variable θ, and we
can ignore how φ0, φ1 vary since we already showed ν = κ = 0. We use the conformally flat
data constructed in (6.5). In particular, this data set has K̊ = |φ0|H̃ with

H̃a
b = α(|x|2) K̊a

b + β(|x|2)
(
xaxb −

1
3δ

a
b |x|2

)
. (6.17)

Contrarily to what we do below (6.5), we now take α = α(|x|2) and β = β(|x|2) to be
different radial functions. Specifically, we fix some generic point y ∈ B (we determine later
the genericity condition) and impose some values for α, β, α′, β′ at that particular point:

α(|y|2) = 1, β(|y|2) = 0, α′(|y|2) = K̊a
by
bya, β′(|y|2) = −Tr(K̊2). (6.18)

Then, H̃(y) = K̊ while ∂bH̃(y)ac = 2yb
(
α′K̊a

c + β′(yayc − 1
3δ
a
c |y|2)

)
, so

∂b Tr(H̃2) = 2 Tr(H̃∂bH̃) = 4xb
(
α′Tr(K̊2) + β′yaK̊c

ayc
)

= 0. (6.19)

On the other hand, we have

∂bTr(H̃3) = 3Tr(H̃2∂bH̃)

= 6yb
(
α′Tr(K̊3)+β′

(
ya(K̊2)cayc−

1
3 |y|

2 Tr(K̊2)
))

= 2yb(k1−k2)(k2−k3)(k3−k1)
(
(k2−k3)y1y1 +(k3−k1)y2y2 +(k1−k2)y3y3

)
(6.20)
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where we obtained the second line by explicitly writing down all terms, using Tr K̊ = 0, and
factorizing. For generic y the result is nonzero provided eigenvalues of K̊ are pairwise distinct.

We are interested in the Kasner angle, which one can get from (5.5), and using that K̊
is a positive multiple of H̃: cos(3θ) = Tr K̊3

√
6(Tr K̊2)3/2 = Tr H̃3

√
6(Tr H̃2)3/2 . Taking a derivative and

evaluating at y we get

− 3 sin(3θ)∂bθ = ∂b Tr(H̃3)
√

6(Tr H̃2)3/2
6= 0. (6.21)

As a consistency check we note that sin(3θ) is indeed non-zero when θ 6= 0 mod π/3, namely
when eigenvalues of K are pairwise distinct. An important consequence of (6.21), however,
is that ∂bθ 6= 0. Then (6.11) µ∂bθ = 0 implies that µ = 0 at the point y, where data can
take any prescribed value with φ0 6= 0 (so that the conformal scaling makes sense) and
pairwise distinct eigenvalues for K. We conclude by lemma 6.3 that µ = 0 identically. This
establishes lemma 6.7.

6.4 Structure of scattering maps

Reduction to pointwise scattering maps. Let us consider a spacelike or timelike
ultralocal singularity scattering map S on some (unimportant) 3-manifold H. Its restriction
Sx to any one point x ∈ H can be described as follows. Any choice of local coordinates near x
identifies the space of possible values of (g−,K−, φ0−, φ1−)(x) to the finite-dimensional
space Ipoint of tuples (g,K, φ0, φ1) such that φ0, φ1 ∈ R, g is a quadratic form on R3 with
signature ±++ in the spacelike or timelike case, and K is a matrix that is symmetric with
respect to g and that obeys TrK = 1 and 1− Tr(K2) = 8πφ2

0. Under this identification,
S yields a map Spoint : Ipoint → Ipoint that is independent of the choice of x and of local
coordinates thanks to diffeomorphism invariance. Changing local coordinates acts with a
matrix A ∈ GL(3,R) on both sides of the singularity, namely

Spoint(A · (g,K)) = A · Spoint(g,K),

where A acts in the obvious manner gab 7→ AcaA
d
bgcd and Ka

b 7→ (A−1)acAdbKc
d. We arrive at

a first useful description of ultralocal singularity scattering maps.

Lemma 6.8 (Reduction to pointwise scattering maps). Specifying an ultralocal singularity
scattering map S is equivalent to specifying a GL(3,R)-covariant map Spoint : Ipoint →
Ipoint that preserves the momentum constraint in the following sense. For any data
(g−,K−, φ0−, φ1−) on some three-manifold H, and (g+,K+, φ0+, φ1+) its image under
pointwise application of Spoint, one has:

if ∇−aK−ab = 8π φ0−∂bφ1− then ∇+aK+
a
b = 8π φ0+∂bφ1+.

Polynomial structure of extrinsic curvature. We have seen in lemma 5.1 that scalars
such as φ0+ and φ1+ are simply functions of θ, φ0, φ1 that are even and 2π/3-periodic
(spacelike case) or 2π-periodic (timelike case) in θ, and that are θ-independent for φ0 =
±1/
√

12π. The tensors g+ and K+ are likewise constrained by covariance under GL(3,R)
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(change of basis). We focus first on K+ for definiteness, then we apply the same arguments
to (g−)−1g+, and finally to its logarithm after showing it exists and is real.

Let us work in an orthonormal basis of eigenvectors of K−, namely a basis v1, v2, v3
in which g− = diag(±1, 1, 1) and K− is diagonal. The change of basis mapping one of the
eigenvectors va to its opposite does not affect g− and K− hence the image (g+,K+, φ0+, φ1+)
of (g−,K−, φ0−, φ1−) under the scattering map is also unaffected. However, off-diagonal
components of K+ in the basis v1, v2, v3 change sign under such a change of basis, so
they must vanish. We learn that K+ is diagonal in the same basis as g− and K−. If
k1−, k2−, k3− are all distinct the three matrices δ = diag(1, 1, 1), K− = diag(k1−, k2−, k3−),
and K2

− = diag(k2
1−, k

2
2−, k

2
3−) span the space of all diagonal matrices, so K+ is a linear

combination of them. It is most convenient later on to work with the traceless K̊+ = K+− 1
3δ

and powers of K̊− = K− − 1
3δ, and write

K̊+ = β0δ + β1K̊− + β2K̊
2
− (6.22)

for some functions β0,β1,β2 of (θ−,φ0−,φ1−). Tracelessness of K̊+ imposes β0 = −1
3 β2 TrK̊2

−,
of course, but it is more convenient for us to keep all three functions. At this stage of the
argument, these functions are only defined when eigenvalues are all distinct, namely when
θ− 6= 0 mod π/3. Let us comment on periodicity. Exchanging the eigenvectors v2 and v3
maps θ−→−θ− and swaps k2±↔ k3±, which must leave (6.22) invariant, so the functions
β0,β1,β2 are even in θ−. Likewise, they are 2π/3 periodic in the spacelike case because
the cyclic permutation v1→ v2→ v3→ v1 permutes eigenvalues ka− and ka+ in the same
way and maps θ−→ θ−+2π/3. In the timelike case this cyclic permutation is not available
because v1 is singled out as being timelike with respect to the metric g−.

Whenever two eigenvalues of K− coincide (say, k1− = k2− for definiteness), the corre-
sponding eigenvalues of K+ also do, as we now prove. For this, change basis in Span(v1, v2)
from v1, v2 to another orthonormal pair of vectors v′1, v′2 with the same timelike/spacelike
nature, namely with g−(vi, vj) = g−(v′i, v′j) for 1 6 i, j 6 2. This is an O(2,R) or O(1, 1,R)
transformation depending on signature. The change of basis leaves g−,K− invariant hence
must leave g+,K+ invariant. In particular, K+ remains diagonal, namely v′1, v′2 are also
eigenvectors of K+, which implies that v1 and v2 have the same eigenvalue under K+.

From this fact, and assuming that singularity scattering maps map smooth data to
twice differentiable data, it would be possible to prove that β0, β1, β2 extend to continuous
functions for all (θ−, φ0−, φ1−). The analysis is somewhat tedious but we will not need it:
indeed, lemma 6.4 ensures that studying a singularity scattering map restricted to non-
degenerate data is enough to fully characterize it. We will simply impose at the end that
the scattering maps we find have well-defined limits when two Kasner exponents coincide.

Polynomial structure of scattering maps. The arguments above apply if we replace
K+ by the matrix g−1

− g+ with components g−abg+bc, and they lead to expressing this matrix
as a linear combination of δ,K−,K−2 with coefficients that are possibly singular at r− = 0.
The real matrix g−1

− g+ is diagonal in the real basis v1, v2, v3 hence it has real eigenvalues.
They are non-zero since the matrix is invertible (with inverse g−1

+ g−). Consider briefly
the special case where the two spacelike eigenvalues k2− = k3− of K− coincide. Then as
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proven above for K+, the entries (2, 2) and (3, 3) of g−1
− g+ are equal, from which we deduce

g+(v2, v2) = g+(v3, v3). Because g+ is diagonal and has signature −++, exactly one of its
diagonal entries must be negative, so by elimination g+(v1, v1) < 0. We thus learn that
eigenvalues of g−1

− g+ are all positive in this case k2− = k3−. To extend the result to any K−,
consider a smooth singularity data set (g−,K−, φ0−, φ1−) interpolating between a point
where k2− = k3− and a point with the desired value of K−. Continuity of the metric g+
implies that eigenvalues of g−1

− g+ vary continuously. Since they are positive at a point
and cannot vanish, they are positive everywhere. We conclude that the matrix g−1

− g+ has
positive eigenvalues only. The matrix thus admits a logarithm, to which the arguments
above apply as well. We conclude that the matrix log

(
g−1
− g+

)
is a linear combination of

δ,K−,K
2
− too, as long as the ka− are pairwise distinct.

In practice, instead of δ,K−,K2
− we write matrices as linear combinations of two

other sets of matrices. For K+ we write K− = 1
3 + K̊− and express δ,K−,K2

− as linear
combinations of δ, K̊−, K̊2

− as stated above. For the metric we express these matrices further
in terms of δ, cos(Θ−), cos(2Θ−) where Θ− = diag(θ−, θ− + 2π/3, θ− + 4π/3): we recall the
relations (5.4)

K̊− = 2r−
3 cos Θ−, K̊2

− =
2r2
−

9
(
δ + cos(2Θ−)

)
. (6.23)

Importantly, the angle θ−, hence the matrices Θ−, cos Θ−, and cos(2Θ−), are ill-defined at
r− = 0. Thus, a linear combination α0δ + α1 cos Θ− + α2 cos(2Θ−) only has a well-defined
limit if the scalar fields ∂θ−α0, α1, α2 vanish at r− = 0. We deduce the following lemma.

Lemma 6.9 (Polynomial structure of scattering maps). Any ultralocal singularity scattering
map obeys

g+ = exp
(
α0 δ + α1 cos Θ− + α2 cos(2Θ−)

)
g−, K̊+ = β0 + β1K̊− + β2K̊

2
−, (6.24)

in which α0, α1, α2, β0, β1, β2 are scalar functions, like φ0+, φ1+, namely functions of
θ−, φ0−, φ1− that are even and periodic in θ− with period 2π/3 in the spacelike case and 2π
in the timelike case. In addition, ∂θ−α0, α1, α2 vanish at r− = 0.

The tracelessness Tr K̊+ = 0 translates to β0 = −β2 Tr(K̊2
−)/3 but we do not need this

for now. We also do not analyse yet how β0, β1, β2 behave at r− = 0. The exponential
in (6.24) is defined by its power series; it yields a matrix, whose upper index we lower using
g−, so as to obtain the (0, 2) tensor g+. We easily compute the inverse metric and the
ratio ω of volume factors, which simplifies because cos Θ− and cos(2Θ−) are traceless:

g−1
+ = exp

(
−α0 δ − α1 cos Θ− − α2 cos(2Θ−)

)
g−1
− , ω :=

√
|g+|/|g−| = e3α0/2. (6.25)

6.5 Scaling of trace-free extrinsic curvature

Simplifying the momentum constraint. Our next step is to plug the polynomial
form (6.24) into the momentum constraint. Since K+ has a constant trace, its trace-free
part K̊+ = K+ − 1

3δ has the same divergence as K+ and the constraint reads ∇+aK̊+
a
b =
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8π φ0+∂bφ1+. The Levi-Civita connections of two metrics g+ and g− differ by a tensor,
whose components are

(Γ+ − Γ−)cab = Γc+ab − Γc−ab = 1
2(g−1

+ )cd
(
∇−ag+bd +∇−bg+da −∇−dg+ab

)
,

where we wrote the inverse metric of g+ explicitly as g−1
+ for emphasis. Using the well-known

identity Γaac = ∂c(log |g|1/2) we find (Γ+ − Γ−)aac = Γa+ac − Γa−ac = ∂c(logω). Combining
the above, we compute

∇+aK̊+
a
b = ∇−aK̊+

a
b + K̊+

c
b(Γ+ − Γ−)aac − K̊+

a
c (Γ+ − Γ−)cab

= ∇−aK̊+
a
b + K̊+

a
b∂a(logω)− 1

2K̊+
a
c (g−1

+ )cd∇−bg+da = ω−1∇−a
(
ωK̊+

a
b

)
− 1

2Xb.

(6.26a)
Here, we used the symmetry of K̊+

a
c (g−1

+ )cd and cancelled two terms in (Γ+ − Γ−)cab, while
we introduced a notation for the last term:

Xb := K̊+
a
c (g−1

+ )cd∇−bg+da. (6.26b)

Most terms involve derivatives of scalars. The term Xb defined in (6.26b) can be
recast (using ∇−g− = 0) as the trace of a product of matrices:

Xb = K̊+
a
c (g−1

+ g−)cd∇−b(g−1
− g+)da = Tr

(
K̊+(g−1

+ g−)∇−b(g−1
− g+)

)
.

Given their explicit polynomial forms in lemma 6.9, K̊+ and g−1
+ g− commute, so

(g−1
+ g−)∇−b(g−1

− g+) can be replaced within the trace by ∇−b log(g−1
− g+). Explicitly,

Xb = Tr
(
K̊+∇−b log(g−1

− g+)
)

= Tr
((
β0+β1K̊−+β2K̊

2
−
)
∇−b

(
α0 δ+α1 cosΘ−+α2 cos(2Θ−)

))
.

(6.27)
By writing cos Θ− and cos(2Θ−) in terms of δ, K̊−, K̊2

− using (6.23) we obtain polynomial
expressions in K̊−. Expanding further, the derivative ∇−b can either act on scalars αn,
giving terms of the form Tr(. . .)∂bαn, or act on powers of K̊−, giving terms of the form
Tr(K̊n

−∇−bK̊−) times a scalar. Since Tr(K̊n
−∇−bK̊−) = ∂b Tr(K̊n+1

− )/(n+1) is the derivative
of a scalar, all terms in Xb take the form (scalar)∂b(scalar).

The momentum constraint on the “+” side of the singularity states that ∇+aK̊+
a
b is

also of the form (scalar)∂b(scalar), so (6.26a) can be written as

∇−a
(
ωK̊+

a
b

)
=
∑
I

χI∂bζI (6.28)

for some collection of scalar fields χI and ζI whose precise expression is not useful yet.

Scaling of trace-free extrinsic curvature. To get rid of derivatives of scalar fields
in (6.28), we consider particular configurations (g−,K−, φ0−, φ1−) constructed in lemma 6.5.
These data sets are such that (θ−, φ0−, φ1−) is constant in some domain Ω ⊂ H and is
equal to any prescribed value in ∆ 6 =. This set, defined in (6.6), consists of values such
that the corresponding eigenvalues k1, k2, k3 are pairwise distinct and φ0− 6= 0. Since all
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scalars are functions of θ−, φ0−, φ1−, the first derivative ∂a of any scalar then vanishes at x.
In addition, the data sets are such that ∇−a(K̊2

−)ab 6= 0 on Ω.
For these data sets, the right-hand side of (6.28) vanishes in the domain Ω. We compute

its left-hand side in Ω by plugging the polynomial form (6.24), then dropping all derivatives
of scalar fields since they vanish for this configuration:

∇−a
(
ωK̊+

a
b

)
= ∇−a

(
ωβ0δ

a
b + ωβ1K̊−

a
b + ωβ2(K̊2

−)ab
)

= ωβ1∇−aK̊−ab + ωβ2∇−a(K̊2
−)ab .

The momentum constraint is ∇−aK̊−ab = 8πφ0−∂bφ1−, which vanishes at x in the given
configuration. This eliminates the first term above and we learn that

ωβ2∇−a(K̊2
−)ab = 0.

For the data sets given by lemma 6.5, ∇−a(K̊2
−)ab 6= 0, so we learn that β2 = 0. Because K̊+

is traceless we deduce β0 = 0. Altogether,

β0 = β2 = 0, K̊+ = β1K̊− when K− has three different eigenvalues.

By a continuity argument identical to the proof of lemmas 6.3 and 6.4 we could prove that
this conclusion holds even when eigenvalues are degenerate, but we do not need this.

Constant scaling of densitized trace-free extrinsic curvature. Now that we know
K̊+ = β1K̊− (for non-degenerate data) we can recalculate the left-hand side of (6.28)
without assuming that scalar fields have vanishing derivative. We get

∇−a
(
ωK̊+

a
b

)
= ∇−a

(
ωβ1 K̊−

a
b

)
= ∂a(ωβ1) K̊−ab + 8πωβ1φ0−∂bφ1−,

so (6.28) takes the form

∂a(ωβ1) K̊−ab = −8πωβ1φ0−∂bφ1− +
∑
I

χI∂bζI .

This identity takes the form (6.10) analyzed in lemma 6.6, so we learn that the scalar
coefficient ωβ1 in front of K̊−ab is an overall constant that only depends on the signature
(and the scattering map), so

K̊+ = γω−1K̊− (6.29)
for some constant γ ∈ R. Note that the conclusion of lemma 6.6 does not involve any
non-degeneracy assumption: the identity holds for all data. This gives an alternate proof of
our corollary 5.5 that does not rely on the full classification.

A useful consequence of (6.29) is

r+ =
√

2
3 Tr K̊2

+ = |γ|ω−1
√

2
3 Tr K̊2

− = |γ|ω−1r−. (6.30)

For r+ 6= 0 (hence γ 6= 0 and r− 6= 0 due to the above equation), one can write

cosΘ+ = 3K̊+
2r+

= (sgnγ)3K̊−
2r−

= (sgnγ)cosΘ−, hence

θ+ = θ− if γ > 0,
θ+ = θ−+π if γ < 0.

(6.31)

We emphasize that while angles are only defined modulo 2π/3 in the spacelike case because
the three eigenvectors are indistinguishable, their difference θ+ − θ− is actually well-defined
modulo 2π in both the spacelike and timelike case because one can compare eigenvalues of
K+ and K− on the same eigenvectors.
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6.6 Completion of the classification

Rigidly conformal case. As a warmup, we derive the classification of rigidly conformal
and ultralocal maps announced in proposition 5.2. Specifically, we temporarily restrict
ourselves to ultralocal scattering maps for which g+ and g− have the same conformal class,
namely α1 = α2 = 0. Then the expression (6.27) vanishes thanks to Tr K̊− = 0,

Xb = Tr
(
β1K̊−∇−b(α0δ)

)
= Tr(K̊−δ)β1∂bα0 = 0,

so (6.26a), together with the momentum constraints, gives

8πφ0+∂bφ1+ = ∇+aK̊+
a
b = γω−1∇−aK̊−ab = 8πγω−1φ0−∂bφ1−.

The scalars ω, φ0+, φ1+ are some functions of the scalars (θ−, φ0−, φ1−) given by the data.
The chain rule for φ1+ = φ1+(θ−, φ0−, φ1−) yields

8π
(
φ0+ ∂θ−φ1+

)
∂bθ− + 8π

(
φ0+ ∂φ0−φ1+

)
∂bφ0− + 8π

(
φ0+ ∂φ1−φ1+ − γω−1φ0−

)
∂bφ1− = 0.

By lemma 6.7, the coefficients of ∂bθ−, ∂bφ0−, ∂bφ1− must vanish separately, namely

φ0+ ∂θ−φ1+ = φ0+ ∂φ0−φ1+ = φ0+ ∂φ1−φ1+ − γω−1φ0− = 0. (6.32)

Then, there are two very different cases, γ = 0 and γ 6= 0.

• If γ = 0, we have K̊+ = 0 so r(φ0+) = 0 namely φ0+ = ε/
√

12π with ε = ±1. This
sign is constant since we require scattering maps to map sufficiently regular data to
(at least) continuous data. Since φ0+ 6= 0, (6.32) simply states that φ1+ is a constant,
while ω is completely unconstrained. This yields the isotropic scattering map given
in (5.7), with λ3 = ω:

Siso,rc
λ,ϕ,ε : (g,K, φ0, φ1) 7→

(
λ2g,

1
3δ,

ε√
12π

, ϕ

)
.

• If γ 6= 0, then the last equation in (6.32) prevents φ0+ from vanishing unless φ0− = 0.
Thus, we learn that ∂θ−φ1+ = ∂φ0−φ1+ = 0 for φ0− 6= 0, and, by continuity of φ1+,
for φ0− = 0 as well. In other words, φ1+ = F (φ1−) for some F : R → R. The last
equation in (6.32) reads

φ0+ F
′(φ1−) = γω−1φ0−, (6.33)

which implies that F ′ is nowhere vanishing (since it is independent of φ0−).

We then have to solve (6.33) and the Hamiltonian constraint

1− 12πφ2
0+ = 3

2 Tr(K̊2
+) = 3

2γ
2ω−2 Tr(K̊2

−) = γ2ω−2(1− 12πφ2
0−)

for φ0+ and ω. Eliminating φ0+ using (6.33) gives

γ−2ω2 = 1 + 12πφ2
0−
(
F ′(φ1−)−2 − 1

)
. (6.34)
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It is then immediate to solve (6.33) for φ0+. Denoting µ := |ω/γ|1/3, given in terms
of φ0−, φ1− by (6.34), and denoting ε = sgn γ = ±1, we find

g+ = ω2/3g− = |γ|2/3µ2g−, K̊+ = εµ−3K̊−,

φ0+ = εµ−3 φ0−
F ′(φ1−) , φ1+ = F (φ1−),

(6.35)

which is nothing by the anisotropic rigidly conformal scattering map defined in (5.8).

This concludes the classification in proposition 5.2 of ultralocal scattering maps that are
rigidly conformal.

Isotropic case. We return to general ultralocal scattering maps, in which α1, α2 may be
nonzero. The value of the constant γ plays a key role again in the classification. We treat
in this paragraph the case γ = 0, namely K̊+ = 0: the asymptotic profile on the “+” side of
the singularity undergoes isotropic scaling.

In this case, the Hamiltonian constraint forces φ0+ = ε/
√

12π for some ε = ±1. Because
we require scattering maps to map smooth data to (at least) continuous data, for such data
φ0+ cannot jump between the values ±1/

√
12π, namely ε(x) is independent of x ∈ H. By

lemma 6.2 we learn that ε only depends on the scattering map and not on the data. Next,
since K+ = 1

3δ is constant and φ0+ 6= 0, the momentum constraint states that ∂bφ1+ = 0.
Again we have a space-independent scalar φ1+, which by lemma 6.2 can only depend on
the scattering map. Finally, the metric is not constrained beyond the polynomial structure
given in lemma 6.9. This yields the isotropic scattering Siso

α0,α1,α2,ϕ,ε of (5.9):

(g+,K+, φ0+, φ1+) =
(

exp
(
α0 δ + α1 cos Θ− + α2 cos(2Θ−)

)
g−,

1
3δ,

ε√
12π

, ϕ

)
, (6.36)

where ∂θ−α0 = α1 = α2 = 0 for r− = 0 (namely φ0− = ±1/
√

12π).

Anisotropic case. We now turn to the case γ 6= 0, using the same method as for the
rigidly conformal maps. A convenient form for the trace-free part K̊+ is

K̊+ = 2
3r+ cos Θ+ = 2

3εr+ cos Θ−, with ε = sgn γ = ±1, (6.37)

where the second equality is obvious for r+ = 0 and is (6.31) otherwise. As we will see
momentarily, inserting this expression of K̊+ in the momentum constraint reduces it down
to a short sum of terms of the form (scalar)∂b(scalar). The chain rule rewrites the sum as a
linear combination of ∂bθ−, ∂bφ0−, ∂bφ1−, whose coefficients must all vanish by lemma 6.7.
This vanishing gives three equations on derivatives of α0, α1, α2, φ0+, φ1+ with respect to
θ−, φ0−, φ1−, and we eventually get the solutions Sani

Φ,c,ε defined by (5.12).
Let us begin by calculating using (6.37) the remainder term Xb given in (6.27):

Xb = 2
3εr+ Tr

(
cos Θ−∇−b

(
α0 δ + α1 cos(Θ−) + α2 cos(2Θ−)

))
.
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Upon expanding derivatives we encounter the traces: Tr(cos Θ−) = 0 and

Tr
(
(cos Θ−)2) = 1

2 Tr
(
cos(2Θ−) + δ

)
= 3

2 ,

Tr
(
cos Θ− cos(2Θ−)

)
= 1

2 Tr
(
cos(3Θ−) + cos Θ−

)
= 3

2 cos(3θ−),

Tr
(
cos Θ− ∂b cos Θ−

)
= 1

2∂b Tr
(
(cos Θ−)2) = 1

2∂b
(3

2

)
= 0,

Tr
(
cos Θ− ∂b cos(2Θ−)

)
= 4

3∂b Tr
(
(cos Θ−)3) = ∂b cos(3θ−).

Then Xb simplifies to

Xb = 2
3εr+

(3
2∂bα1 + 3

2 cos(3θ−)∂bα2 + α2 ∂b cos(3θ−)
)

= εr+

(
∂b
(
α1 + cos(3θ−)α2

)
− 1

3α2 ∂b cos(3θ−)
)

= 16πr+∂bξ + εr+α2 sin(3θ−)∂bθ−,

where we introduced (with a factor chosen to simplify later expressions)

ξ = ε

16π
(
α1 + cos(3θ−)α2

)
. (6.38)

Using the divergence given in (6.26a) and our calculation of Xb, the momentum
constraint reads

8πφ0+∂bφ1+ − 8πγω−1φ0−∂bφ1− = −1
2 Xb = −1

2
(
16πr+∂bξ + εr+α2 sin(3θ−)∂bθ−

)
,

hence, dividing by r+ = |γ|ω−1r− provided it is nonzero,

∂bξ + φ0+
r+

∂bφ1+ = ε
φ0−
r−

∂bφ1− −
1

16πεα2 sin(3θ−)∂bθ−.

We then use the chain rule to write all ∂b(scalar) in terms of ∂bθ−, ∂bφ0−, ∂bφ1− and
we write down the three equations stating that coefficients of these three derivatives must
match due to lemma 6.7:

∂θ−ξ + φ0+
r+

∂θ−φ1+ = − 1
16πεα2 sin(3θ−), ∂φ0−ξ + φ0+

r+
∂φ0−φ1+ = 0,

∂φ1−ξ + φ0+
r+

∂φ1−φ1+ = ε
φ0−
r−

. (6.39)

The first equation lets us rewrite in terms of ξ the terms that appear in the polynomial
form (6.24) of g+: first express cos(2Θ−) as cos(x−y) = cosx cos y+sin x sin y for x = 3Θ−
and y = Θ−, then use (6.38) and (6.39). This yields

α0 δ + α1 cos Θ− + α2 cos(2Θ−) = α0 δ + (α1 + α2 cos(3θ−)) cos Θ− + α2 sin(3θ−) sin Θ−

= α0 δ + 16πεξ cos Θ− − 16πε
(
∂θ−ξ + φ0+

r+
∂θ−φ1+

)
sin Θ−.
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On the other hand, (6.25) and (6.30) relate α0 to Kasner radii as exp(3α0/2) = ω = |γ|r−/r+.
Overall, for nonzero r−, r+,

g+ = exp
(
α0 δ + α1 cos Θ− + α2 cos(2Θ−)

)
g−

=
∣∣∣∣γr−r+

∣∣∣∣2/3 exp
(

16πεξ cos Θ− − 16πε
(
∂θ−ξ + φ0+

r+
∂θ−φ1+

)
sin Θ−

)
g−.

(6.40)

The expressions we obtained for (g+,K+, φ0+, φ1+) coincide with those of the anisotropic
scattering Sani

Φ,c,ε (5.12g) with c = |γ|1/3 and Φ: (θ−, φ0−, φ1−) 7→ (φ0+, φ1+), but there
remains to show that the map Φ is indeed an ε-canonical transformation in the sense of
definition 5.3. We prove the conditions in turn.

(i) Periodic. This condition simply states that φ0+, φ1+ are scalar fields.

(ii) Maximal-momentum preserving. We know r+ = |γ|ω−1r− from (6.30), and |γ|ω−1 is
nowhere vanishing since ω is the ratio of volume factors of two non-degenerate metrics.
Thus, r+ = 0 ⇐⇒ r− = 0 and r+/r− = |γ|ω−1 remains finite and non-zero and
becomes θ-independent at the boundary (the last point being because ω is a scalar
field).

(iii) Volume preserving. Imposing that the last two equations in (6.39) are compatible in
the sense that ∂φ0−∂φ1−ξ = ∂φ1−∂φ0−ξ, we obtain for r+, r− 6= 0 that

∂φ0−

(
φ0+
r+

)
∂φ1−φ1+ − ∂φ1−

(
φ0+
r+

)
∂φ0−φ1+ = ε∂φ0−

(
φ0−
r−

)
∂φ1−φ1−. (6.41)

We included here the trivial factor ∂φ1−φ1− to illustrate that this equation states
preservation of the two-form d(φ0/r)dφ1 up to an overall sign ε.

(iv) Regular at boundaries. One conclusion in lemma 6.9 is that α1 = α2 = 0 at the
boundaries φ0− = ±1/

√
12π (because K̊− = 0 has no preferred directions). We deduce

ξ = 0, and its derivatives ∂θ−ξ, ∂φ1−ξ along the boundaries thus vanish. Inserting this
fact (and α2 = 0) into (6.39) yields

φ0+
r+

∂θ−φ1+ → 0, φ0+
r+

∂φ1−φ1+ − ε
φ0−
r−
→ 0. (6.42)

Since ξ vanishes on both boundaries we can integrate on I0 the second equation
in (6.39) to get ∫ 1/

√
12π

−1/
√

12π

φ0+
r+

∂φ0−φ1+ dφ0− = 0. (6.43)

This concludes the proof of the first part of theorem 5.4, that is, the only ultralocal scattering
maps are Siso

α0,α1,α2,ϕ,ε and Sani
Φ,c,ε. The second part was proven already in section 5.3.

This also concludes our study of scattering maps per se. In the companion paper in [56],
we study the class of plane-symmetric spacetimes [34, 35, 47, 61, 67, 68, 76, 80] and we
apply our theory to the particular scenario of colliding plane-symmetric gravitational waves.
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